4603 HW6

1. If f + g has a limit at a, must it be true that both f and g have limits at a? Prove it, or give a counterexample.

Solution. No, for example define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 0 for x < 0 and f(x) = 1 for $x \ge 0$, and let g = -f. Then $f + g \equiv 0$, so f + g has a limit at 0, but neither f nor g has a limit at 0.

2. Define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 1/\sqrt{m}, & x = n/m \in \mathbb{Q} \text{ where } n \neq 0 \text{ and } n, m \text{ have no common divisors} \\ 1, & x = 0 \end{cases}$$

Let $a \in [0, 1]$. Prove that $\lim_{x \to a} f(x) = f(a)$ if and only if $a \notin \mathbb{Q}$.

Solution. Let $\epsilon > 0$ and consider $S = \{x \in [0,1] : f(x) \ge \epsilon\}$. Observe that S is finite: if $x \in S$, then x is rational and can be written x = n/m in lowest terms with $1 \le m \le 1/\epsilon^2$ and $0 \le n \le m$. Write $S = \{x_1, \ldots, x_k\}$ and let $\delta = \min_{x_j \ne a} |x_j - a|$. Then $x \in [0,1]$ and $0 < |x - a| < \delta$ implies $x \ne x_j$ for $j = 1, \ldots, k$, so that $|f(x) - 0| = f(x) < \epsilon$. This shows $\lim_{x \to a} f(x) = 0$. The result follows from definition of f.

3. Let $f : [a, b] \to \mathbb{R}$ be a bounded function, define $g : (a, b) \to \mathbb{R}$ by $g(x) = \sup\{f(y) : y < x\}$, and let $c \in (a, b)$. Prove that if $\lim_{x\to c} f(x) = f(c)$, then $\lim_{x\to c} g(x) = g(c)$.

Solution. We recall the following simple fact:

(*) If
$$x, y \in (a, b)$$
 with $x < y$, then $f(x) \le g(y)$.

Assume $\lim_{x\to c} f(x) = f(c)$. We will consider two cases: g(c) = f(c) and $g(c) \neq f(c)$. Assume g(c) = f(c). Let $\epsilon > 0$ and choose $\delta > 0$ such that $|x - c| < \delta$ implies¹ $|f(x) - f(c)| < \epsilon$. Pick u, v such that $c - \delta < u < c < v < c + \delta$. Note that $f(x) \leq g(c)$ for x < c and $f(x) < f(c) + \epsilon$ for $c \leq x < v$. Thus $x \in (u, v)$ and (*) imply

$$g(c) - \epsilon = f(c) - \epsilon < f(u) \le g(x) \le \max\{g(c), f(c) + \epsilon\} = g(c) + \epsilon.$$

It easily follows that $\lim_{x\to c} g(x) = g(c)$. Now assume $g(c) \neq f(c)$ and let $\epsilon = |f(c) - g(c)|$. Choose δ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$. Then either f(x) > g(c) for all $x \in (c - \delta, c + \delta)$, or f(x) < g(c) for all $x \in (c - \delta, c + \delta)$. The former is impossible by (*), so the latter must hold, which implies g is constant on $(c - \delta, c + \delta)$. It easily follows that $\lim_{x\to c} g(x) = g(c)$.

¹Since $c \in (a, b)$, $\delta > 0$ can be chosen small enough so that $|x - c| < \delta$ also implies $x \in [a, b]$.

4. Let f and g be defined as in Problem 3, and let $c \in (a, b)$. If f has a limit at c, must g have a limit at c? Either prove it, or provide a counterexample.

Solution. No. Define $f: [-1,1] \to \mathbb{R}$ by f(x) = 0 for $x \neq 0$ and f(0) = 1. Then $g: (-1,1) \to \mathbb{R}$ has the formula g(x) = 0 for $x \leq 0$ and g(x) = 1 for x > 0. So f has a limit at 0, but g does not have a limit at 0.

5. Prove that if $f : [a, b] \to \mathbb{R}$ is increasing, then f has a limit at b.

Solution. Observe that f is bounded above by f(b). Let $\epsilon > 0$ and $L = \sup\{f(x) : x \in [a, b)\}$. Pick $y \in [a, b)$ such that $f(y) > L - \epsilon$, and let $\delta = |b - y|$. Then $x \in [a, b]$ and $0 < |x - b| < \delta$ implies y < x < b, so that

$$L - \epsilon < f(y) \le f(x) \le L < L + \epsilon.$$