4603 HW7

1. If f + g is continuous a, must it be true that both f and g are continuous at a? Prove it, or provide a counterexample.

2. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Prove that f is continuous.

3. Define $f: (0,1) \to \mathbb{R}$ by f(x) = 1/x. Prove that f is continuous but not uniformly continuous.

- 4. Prove that if $E \subset R$ is nonempty, closed and bounded above, then $\sup E$ is an element of E.
- 5. Prove the following statements about open sets in \mathbb{R} :
 - (i) Any union of open sets is open.
 - (ii) A finite intersection of open sets is open.
 - (iii) A set is open if and only if it is a union of open intervals.