4603 HW7

1. If f + g is continuous a, must it be true that both f and g are continuous at a? Prove it, or provide a counterexample.

Solution. No. Let f(x) = 0 if x < 0 and f(x) = 1 if $x \ge 0$, and let g = -f. Then $f + g \equiv 0$ is continuous at 0 but neither f nor g is continuous at 0.

2. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Prove that f is continuous.

Solution. Let $a \in \mathbb{R}$ and $\epsilon > 0$. Let $M = \max\{|2a - 1|, |2a + 1|\}$ and choose $\delta = \min\{1, \epsilon/M\}$. Then $|x - a| < \delta$ implies

$$|f(x) - f(a)| = |x^2 - a^2| = |x - a||x + a| < \delta M < \epsilon.$$

3. Define $f : (0,1) \to \mathbb{R}$ by f(x) = 1/x. Prove that f is continuous but not uniformly continuous.

Solution. Let $a \in (0,1)$ and $\epsilon > 0$. Choose $\delta = \min\{a/2, \epsilon a^2/2\}$. Then $x \in (0,1)$ and $|x-a| < \delta$ implies

$$|f(x) - f(a)| = \left|\frac{1}{x} - \frac{1}{a}\right| = \frac{|x - a|}{xa} < \frac{\delta}{a^2/2} < \epsilon.$$

This proves continuity of f. Now let $\epsilon = 1$ and let $\delta \in (0, 1)$. Pick $x = \delta/2$ and $y = \delta$. Then $x, y \in (0, 1)$ and $|x - y| < \delta$ but

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x - y|}{xy} = \frac{\delta/2}{\delta^2/2} = \frac{1}{\delta} \ge \epsilon.$$

This shows f is not uniformly continuous.

4. Prove that if $E \subset R$ is nonempty, closed and bounded above, then $\sup E$ is an element of E.

Solution. Let $z = \sup E$ and assume $z \notin E$. Let $\epsilon > 0$. Since $z - \epsilon$ is not an upper bound of E, there is $x \in E$ such that $z - \epsilon < x < z$. Thus $(z - \epsilon, z + \epsilon)$ has a point of E besides z, showing z is an accumulation point of E. Since E is closed it contains z, contradiction.

- 5. Prove the following statements about open sets in \mathbb{R} :
 - (i) Any union of open sets is open.
 - (ii) A finite intersection of open sets is open.
 - (iii) A set is open if and only if it is a union of open intervals.

Solution. (i) Let $\{U_{\alpha}\}_{\alpha \in A}$ be a collection of open sets and let $U = \bigcup_{\alpha \in A} U_{\alpha}$. Let $x \in U$. Then $x \in U_{\alpha}$ for some $\alpha \in A$. Pick $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset U_{\alpha}$. Since $U_{\alpha} \subset U$, $(x - \epsilon, x + \epsilon) \subset U$, showing U is open.

(ii) Let U_1, \ldots, U_n be open sets and $U = U_1 \cap \ldots \cap U_n$. Let $x \in U$. Then $x \in U_j$ for $j = 1, \ldots, n$. For each $j = 1, \ldots, n$, pick ϵ_j such that $(x - \epsilon_j, x + \epsilon_j) \subset U_j$. Let $\epsilon = \min\{\epsilon_1, \ldots, \epsilon_n\}$. Then for each $j = 1, \ldots, n$ we have $(x - \epsilon, x + \epsilon) \subset (x - \epsilon_j, x + \epsilon_j) \subset U_j$. Thus $(x - \epsilon, x + \epsilon) \subset U_1 \cap \ldots \cap U_n$, proving $U_1 \cap \ldots \cap U_n$ is open.

(iii) Assume U is open. For each $x \in U$ pick ϵ_x such that $(x - \epsilon_x, x + \epsilon_x) \subset U$. Then $U = \bigcup_{x \in U} (x - \epsilon_x, x + \epsilon_x)$. The converse follows from part (i).