4603 HW9

1. Suppose $f : [a, b] \to \mathbb{R}$ is continuous and injective. Prove that f is either strictly increasing or strictly decreasing.

Solution. Suppose f is not strictly increasing or strictly decreasing. Then there exist $x, y, z \in [a, b]$ such that x < y < z and either (i) or (ii) below holds:

(i)
$$f(x) < f(y)$$
, $f(y) > f(z)$
(ii) $f(x) > f(y)$, $f(y) < f(z)$

Assume (i) holds. If f(z) = f(x) then f is not injective, contradiction. If f(z) > f(x) then f(x) < f(z) < f(y), so by the IVT there exists $u \in (x, y)$ such that f(u) = f(z). As z > y > u this contradicts injectivity of f. If f(z) < f(x) then f(z) < f(x) < f(y), so by the IVT there exists $v \in (y, z)$ such that f(v) = f(x). As x < y < v this contradicts injectivity of f. So we see that (i) leads to a contradiction. Similar arguments show that (ii) also leads to a contradiction. So f must be strictly increasing or strictly decreasing.

2. Let $f : \mathbb{R} \to \mathbb{R}$ and suppose that:

(*) for each $c \in \mathbb{R}$, the equation f(x) = c has exactly two solutions.

Prove that f is not continuous.

Solution. Pick $c \in \mathbb{R}$ and pick x < y such that f(x) = f(y) = c. Since f is continuous, it attains a minimum value, p, and a maximum value, q, on [x, y]. If p = q = c then f is constant on [x, y], a contradiction to (*). If p < c < q then by IVT there is $z \in (x, y)$ such that f(z) = c, again a contradiction to (*). So it must be that exactly one of p or q is equal to c. Without loss of generality assume that p = c and q = f(u) > c for some $u \in (x, y)$.

Now by (*) there exists $v \neq u$ such that f(v) = f(u) = q. One of the following must hold:

(i)
$$x < u < v < y$$

(ii) $x < v < u < y$
(iii) $v < x < u < y$
(iv) $x < u < y < v$

In all of cases (i)-(iv) we have

$$f(x) = f(y) = p,$$
 $f(u) = f(v) = q.$

We will consider only cases (i) and (iii), as the proofs in cases (ii) and (iv) are analogous.

Suppose (i) holds. Pick any $c \in (u, v)$. Then $c \in [x, y]$ so we must have $p \leq f(c) \leq q$. Combining this with (*), we see that actually p < f(c) < q. Now by IVT, there exists $a \in (x, u)$ and $b \in (v, y)$ such that f(a) = f(b) = f(c). This contradicts (*).

Now suppose (iii) holds. Pick any r such that p < r < q. Then by IVT there exists $a \in (v, x), b \in (x, u)$, and $c \in (y, v)$ such that f(a) = f(b) = f(c) = r.

3. Define $f: (0,\infty) \to \mathbb{R}$ by $f(x) = \sqrt{x}$. Use the definition of derivative to show that f is differentiable and $f'(x) = \frac{1}{2\sqrt{x}}$.

Solution. Let $x \in (0, \infty)$ and note that

$$\lim_{y \to x} \frac{\sqrt{y} - \sqrt{x}}{y - x} = \lim_{y \to x} \frac{1}{\sqrt{y} + \sqrt{x}} = \frac{1}{2\sqrt{x}},$$

where in the last step above we have used algebraic properties of limits along with the fact that the function $g(y) = \sqrt{y}$ is continuous for y > 0.

4. Let $f : [a, b] \to \mathbb{R}$ be continuous and assume f is differentiable on (a, b). Let M > 0. Prove that $|f'(x)| \le M$ for all $x \in (a, b)$ if and only if $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in [a, b]$.

Solution. Assume that $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in [a, b]$. Let $x \in [a, b]$. Then for all $y \in [a, b]$ such that $y \ne x$,

$$\left|\frac{f(y) - f(x)}{y - x}\right| \le M.$$

Taking a limit of the above expression as $y \to x$, we see that $|f'(x)| \leq M$.

Conversely, assume that $|f'(x)| \leq M$ for all $x \in (a, b)$. Suppose that there is $x < y \in [a, b]$ such that

$$|f(x) - f(y)| > M|x - y|.$$

Then by the MVT, there exists $c \in (x, y)$ such that

$$f'(c) = \frac{f(y) - f(x)}{y - x}$$

so that |f'(c)| > M, contradiction.

5. A function $f: D \to \mathbb{R}$ is called *Lipschitz continuous* if there is M > 0 such that for all $x, y \in D$,

$$|f(x) - f(y)| \le M|x - y|.$$

Prove that if f is Lipschitz continuous, then f is uniformly continuous. Then show that the converse is false. (Hint: Consider $f(x) = \sqrt{x}$ on [0, 1] and use Problems 3 and 4.)

Solution. Let f be Lipschitz continuous with constant M. Let $\epsilon > 0$ and pick $\delta = \epsilon/M$. Then $x, y \in D$ and $|x - y| < \delta$ imply

$$|f(x) - f(y)| \le M|x - y| < \delta M = \epsilon.$$

To see that the converse is false, note that $f : [0,1] \to \mathbb{R}$ is continuous, and f is differentiable on (0,1), but $f'(x) = 1/(2\sqrt{x})$ is not bounded on (0,1), so by Problem 4 f is not Lipschitz continuous.