4603 HW9

1. Suppose f : [a,b] — R is continuous and injective. Prove that f is either strictly increasing
or strictly decreasing.

Solution. Suppose f is not strictly increasing or strictly decreasing. Then there exist z,y, z €
[a,b] such that z < y < z and either (i) or (ii) below holds:

(i) fl=) < fly), fly)> [f(z)

(i) f(z) > f(y), [fly) < f(2)
Assume (i) holds. If f(z) = f(z) then f is not injective, contradiction. If f(z) > f(z) then
f(z) < f(2) < f(y), so by the IVT there exists u € (x,y) such that f(u) = f(z). Asz>y>u
this contradicts injectivity of f. If f(z) < f(x) then f(z) < f(z) < f(y), so by the IVT there
exists v € (y, z) such that f(v) = f(x). As z < y < v this contradicts injectivity of f. So we see
that (i) leads to a contradiction. Similar arguments show that (ii) also leads to a contradiction.
So f must be strictly increasing or strictly decreasing.

2. Let f: R — R and suppose that:
(%) for each ¢ € R, the equation f(x) = ¢ has exactly two solutions.

Prove that f is not continuous.

Solution. Pick ¢ € R and pick z < y such that f(x) = f(y) = ¢. Since f is continuous, it
attains a minimum value, p, and a maximum value, ¢, on [x,y]. If p = ¢ = ¢ then f is constant
on [z,y], a contradiction to (x). If p < ¢ < ¢ then by IVT there is z € (z,y) such that f(z) = ¢,
again a contradiction to (x). So it must be that exactly one of p or ¢ is equal to c¢. Without
loss of generality assume that p = ¢ and ¢ = f(u) > ¢ for some u € (x,y).

Now by (x) there exists v # u such that f(v) = f(u) = ¢. One of the following must hold:

rz<u<v<y (i)z<v<u<y
ii)v<z<u<y (iv)z<u<y<w

In all of cases (i)-(iv) we have

f@)=fy)=p,  [flu)=[f(l)=q¢

We will consider only cases (i) and (iii), as the proofs in cases (ii) and (iv) are analogous.
Suppose (i) holds. Pick any ¢ € (u,v). Then ¢ € [z,y] so we must have p < f(c) < q.
Combining this with (%), we see that actually p < f(¢) < g. Now by IVT, there exists a € (z,u)
and b € (v,y) such that f(a) = f(b) = f(c). This contradicts ().
Now suppose (iii) holds. Pick any r such that p < r < ¢. Then by IVT there exists
a€ (v,x), be (z,u), and c € (y,v) such that f(a) = f(b) = f(c) =r.

3. Define f : (0,00) - R
differentiable and f'(z) =

lon

y f(z) = y/x. Use the definition of derivative to show that f is
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Solution. Let x € (0,00) and note that

VI— VT 1 1
~——— = lim = ,
y=r Yy —x y=e Y+ T 2y

where in the last step above we have used algebraic properties of limits along with the fact that
the function g(y) = /¥ is continuous for y > 0.

4. Let f :[a,b] — R be continuous and assume f is differentiable on (a,b). Let M > 0. Prove
that |f/(z)| < M for all x € (a,b) if and only if | f(z) — f(y)| < M|z — y| for all z,y € [a,]].

Solution. Assume that |f(z) — f(y)| < M|x — y| for all z,y € [a,b]. Let = € [a,b]. Then for all
y € [a,b] such that y # x,
‘f (y) — f(z)

y—x
Taking a limit of the above expression as y — x, we see that |f'(x)| < M.

Conversely, assume that |f/(x)| < M for all € (a,b). Suppose that there is z < y € [a, b]
such that

< M.

[f(x) = f(y)| > Mz —yl.
Then by the MVT, there exists ¢ € (z,y) such that

fly) — f(=)
y—x

f(e) =

so that |f’(c)| > M, contradiction.

5. A function f : D — R is called Lipschitz continuous if there is M > 0 such that for all
z,y €D,

[f(x) = fy)| < Mz —yl.
Prove that if f is Lipschitz continuous, then f is uniformly continuous. Then show that the
converse is false. (Hint: Consider f(x) = +/z on [0,1] and use Problems 3 and 4.)

Solution. Let f be Lipschitz continuous with constant M. Let € > 0 and pick 6 = ¢/M. Then
xz,y € D and |z — y| < 0 imply

|f () — f(y)| < M|z —y| < M =e.

To see that the converse is false, note that f :[0,1] — R is continuous, and f is differentiable
n (0,1), but f/(x) = 1/(2y/x) is not bounded on (0, 1), so by Problem 4 f is not Lipschitz
continuous.



