
4603 HW9

1. Suppose f : [a, b]→ R is continuous and injective. Prove that f is either strictly increasing
or strictly decreasing.

Solution. Suppose f is not strictly increasing or strictly decreasing. Then there exist x, y, z ∈
[a, b] such that x < y < z and either (i) or (ii) below holds:

(i) f(x) < f(y), f(y) > f(z)

(ii) f(x) > f(y), f(y) < f(z)

Assume (i) holds. If f(z) = f(x) then f is not injective, contradiction. If f(z) > f(x) then
f(x) < f(z) < f(y), so by the IVT there exists u ∈ (x, y) such that f(u) = f(z). As z > y > u
this contradicts injectivity of f . If f(z) < f(x) then f(z) < f(x) < f(y), so by the IVT there
exists v ∈ (y, z) such that f(v) = f(x). As x < y < v this contradicts injectivity of f . So we see
that (i) leads to a contradiction. Similar arguments show that (ii) also leads to a contradiction.
So f must be strictly increasing or strictly decreasing.

2. Let f : R→ R and suppose that:

(∗) for each c ∈ R, the equation f(x) = c has exactly two solutions.

Prove that f is not continuous.

Solution. Pick c ∈ R and pick x < y such that f(x) = f(y) = c. Since f is continuous, it
attains a minimum value, p, and a maximum value, q, on [x, y]. If p = q = c then f is constant
on [x, y], a contradiction to (∗). If p < c < q then by IVT there is z ∈ (x, y) such that f(z) = c,
again a contradiction to (∗). So it must be that exactly one of p or q is equal to c. Without
loss of generality assume that p = c and q = f(u) > c for some u ∈ (x, y).

Now by (∗) there exists v 6= u such that f(v) = f(u) = q. One of the following must hold:

(i) x < u < v < y (ii) x < v < u < y

(iii) v < x < u < y (iv) x < u < y < v

In all of cases (i)-(iv) we have

f(x) = f(y) = p, f(u) = f(v) = q.

We will consider only cases (i) and (iii), as the proofs in cases (ii) and (iv) are analogous.
Suppose (i) holds. Pick any c ∈ (u, v). Then c ∈ [x, y] so we must have p ≤ f(c) ≤ q.

Combining this with (∗), we see that actually p < f(c) < q. Now by IVT, there exists a ∈ (x, u)
and b ∈ (v, y) such that f(a) = f(b) = f(c). This contradicts (∗).

Now suppose (iii) holds. Pick any r such that p < r < q. Then by IVT there exists
a ∈ (v, x), b ∈ (x, u), and c ∈ (y, v) such that f(a) = f(b) = f(c) = r.

3. Define f : (0,∞) → R by f(x) =
√
x. Use the definition of derivative to show that f is

differentiable and f ′(x) = 1
2
√
x
.
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Solution. Let x ∈ (0,∞) and note that

lim
y→x

√
y −
√
x

y − x
= lim

y→x

1
√
y +
√
x

=
1

2
√
x
,

where in the last step above we have used algebraic properties of limits along with the fact that
the function g(y) =

√
y is continuous for y > 0.

4. Let f : [a, b]→ R be continuous and assume f is differentiable on (a, b). Let M > 0. Prove
that |f ′(x)| ≤M for all x ∈ (a, b) if and only if |f(x)− f(y)| ≤M |x− y| for all x, y ∈ [a, b].

Solution. Assume that |f(x)− f(y)| ≤M |x− y| for all x, y ∈ [a, b]. Let x ∈ [a, b]. Then for all
y ∈ [a, b] such that y 6= x, ∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤M.

Taking a limit of the above expression as y → x, we see that |f ′(x)| ≤M .
Conversely, assume that |f ′(x)| ≤ M for all x ∈ (a, b). Suppose that there is x < y ∈ [a, b]

such that
|f(x)− f(y)| > M |x− y|.

Then by the MVT, there exists c ∈ (x, y) such that

f ′(c) =
f(y)− f(x)

y − x

so that |f ′(c)| > M , contradiction.

5. A function f : D → R is called Lipschitz continuous if there is M > 0 such that for all
x, y ∈ D,

|f(x)− f(y)| ≤M |x− y|.

Prove that if f is Lipschitz continuous, then f is uniformly continuous. Then show that the
converse is false. (Hint: Consider f(x) =

√
x on [0, 1] and use Problems 3 and 4.)

Solution. Let f be Lipschitz continuous with constant M . Let ε > 0 and pick δ = ε/M . Then
x, y ∈ D and |x− y| < δ imply

|f(x)− f(y)| ≤M |x− y| < δM = ε.

To see that the converse is false, note that f : [0, 1] → R is continuous, and f is differentiable
on (0, 1), but f ′(x) = 1/(2

√
x) is not bounded on (0, 1), so by Problem 4 f is not Lipschitz

continuous.
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