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1. PRELIMINARIES
1.1. What is math?
Math is truth.

1.2. Bound and unbound variables.

First, a word about the English language:
The past participle of “to bound” is “bounded”.
So, if you bound something, it becomes bounded.
There is a completely different verb, “to bind”,
and its past participle is, confusingly, “bound”.
So, if you bind something, it becomes bound, NOT bounded.

At any point in any definition, theorem or proof, every variable is
either bound or unbound. To see how binding and unbinding works
exactly, read the beginning of the exposition handout, up to the text
“General rules of argument” that appears in the middle of Page 3.
Note: A free variable is exactly the same thing as an unbound variable.

In class (Lec 01, Slide 18), we went through several examples of
binding and freeing of variables. The most common mistake students
make on early homework is not being careful about binding of variables.
A free variable cannot be used, except in a binding statement. If you
use a free variable, it is sometimes a small problem, but often much
larger, and can result in no credit being given at all. So: Understanding
the “scope” of each variable (where it becomes bound, and where, later,
it becomes free) is crucial.

Also, some variables are integers, some variables are sets, some are
real numbers, etc. Understanding the “type” of each variable is also
crucial.

If you have questions about these topics, it’s important to come and
talk to me. It is hard to explain these topics in written form; typically
a conversation is needed.

1.3. The object ®.

AXIOM 1.3.1. VsetS, @¢ S.
AXIOM 1.3.2. Vz, z/0= 0.

THEOREM 1.3.3. 1/0 = @.
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We wish to set things up so that ® is “infective”, meaning:
If some expression contains a subexpression is equal to @,
then the entire expression equal to ®.

Toward that end, we make the following axioms:

AXIOM 1.3.4.
Ve, v+ ®@=0+x = 0.
Ve, o —®=0—x = 0.
Ve, z- @=0 -2 = 0.
Vo, /@ = O/ = @.
Also, using < or >, @ cannot be compared to any object.

AXIOM 1.3.5.

Let a and b be strings of characters.

The notation is short for (b= ®) v (a = ).
The notation is short for (a = ®) v (a = D).

Note that 0/0 = ®, and so —=(Vx € R, z/z = 1).

That is, it is NOT correct to say that, for all z € R, we have z/z = 1,
because it doesn’t work for z = 0.

We could say Vx € R}, z/z = 1.

The following theorems illustrate the notation described above:
THEOREM 1.3.6. Vr e R, x/x *= 1.
THEOREM 1.3.7. Vo eR, x? =% z7/a°.
THEOREM 1.3.8. Vo e R, 25 /2% = ot /a?.

1.4. Some logic and set theory.

We use “V” for “for every”.
We use “d” for “there exists”.
We use “&” for “and”.

We use “v” for “or”.

We use “=" for “not”.
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We use “.".” for “therefore”.

We use “=" for “implies”.

Let A and B be statements. Then “A < B” is a statement, and
means “(A = B)&(B = A)”; here, the parentheses are crucial.
An extended real number or, more succinctly, an extended real,
is any of the following:
areal number or thesymboloo or the two symbol string —oo.
Sometimes “+00” is used to mean “c0”.

DEFINITION 1.4.1. = {—oo} YR {0}
It is our convention that no extended real is considered to be a set:

AXIOM 1.4.2.
Vset A, Vo e R*, © # A.

We will use @ to mean “does not exist”.
So, for example, 1/0 = @. See §1.3 for more information about ®.
An object is any of the following:

an extended real number or a set or ®.
The notation “Vz,” means “for any object z”.
The notation “Jdz s.t.” means “there exists an object x s.t.”.

We use ¢ for the Greek letter epsilon.
We use € as an abbreviation for “is an element of”.
We use ¢ for the Greek letter phi.
We use J to mean the empty set.  Then ¢ = { }.
Note that: Vx, x¢ .
Also, Vr e F, x = 2, because:

there is no element of ¢ that is NOT equal to 2.
Also, Vx e ¥, x # 2, because:

there is no element of ¢ that is equal to 2.
Also, Yz e J, (z =2)& (x # 2), because:

there is no element of ¢ that fails to be

both equalto2 and notequalto2 atthesame time.

According to some formal systems for writing mathematics
Veed, z=2

is not a properly formed statement, because: “V” should always be
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followed by a variable, then a comma, then “(”, and, moreover, the
corresponding “)” should appear at the end of the V statement. If we
believe in such a formatting rule, then

Veed, z=2
is bad, and would be better written as

Ve, (re )= (z=2)).
Note that, no matter which object x is, it is NOT true that x € &,
and so it IS true that ((z € &) = (z = 2)),
because any false assertion DOES imply any other assertion,
and it doesn’t matter whether the second assertion is true or false.

An implication that is true because
the assertion on the left of the symbol “=" is false
is said to be “null true”. So
Vo, (e &) = (x =2)).
is an example of a null true statement.
More precisely, we should probably say that, for every object x,
(v e &)= (x =2)
is null true, but we’ll allow a certain level of sloppiness here.
Using our more informal way of writing, we would say that
Vre @, x=2
is null true. Following “Vz € ¢,”, we could put any assertion about x,
and the resulting statement would be true, and, in fact, null true.

By , we mean the set of all real numbers.
By , we mean the set of all rational numbers.

By , we mean the set of all integers.
By , we mean the set of all semi-positive (i.e. nonnegative integers.
By , we mean the set of all positive integers.

Then Z=1{..,-3,-2,-1,0,1,2,3,...}  and
No={0,1,2,3,...}  and N={1,2,3,...}.
Note that 0 € Ny. On the other hand, 0 ¢ N, or, equivalently, —(0 € N).

DEFINITION 1.4.3. Let A and B be sets.

Then means: VYreA, xe€B.
Also, means the same thing: VYre A, x € B.

THEOREM 1.44. NCNycZ<QcR.
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THEOREM 1.4.5. {1,2,3} < {1,2,3,7} 2 {2,3,7} 2 &.

Note that {2,3,7} © & is null true. That is, because there is NO
element of ¢ that is NOT an element of {2,3,7}, we conclude that
every element of ¢J is an element of {2,3,7}, and so {2,3,7} 2 &. In
fact, the same logic shows that ¢ is a subset of every set:

THEOREM 1.4.6. Vset X, < X.
The following is called the Axiom of Extensionality:

AXIOM 1.4.7. Let A and B be sets. Then:
(A=B)< (A< B)&(B< A)).

DEFINITION 1.4.8. Let A and B be sets. Then:
Al JB] = {z|(zeA) v (zeB)} and
AB| = {z|(zeA) & (veB)} and
A\B = {z|(zreA) & (x ¢ B)}.
THEOREM 1.4.9. Let A :={1,2,3} and B := {3,4,5}. Then:
AUB = {1,2,3,4,5} and
ANB = {3} and
AB = {1,2}.

1.5. Intervals.

DEFINITION 1.5.1.
Va,b e R¥, a;b):={reR*|la<z<b} and

a;b)|:=={reR*|a<z<b} and
a;b]|:={xreR*|la<x<b} and

a;b]|:={x e R*|a < x < b}.

Note that —co ¢ (—o0; 0] and that —7.5,0, 10%, o0 € (—o0; o0].
Note that R = (—o0; 0).

DEFINITION 1.5.2. Z* := {0} |JZ|J{o}. Also:
Va,b e R¥, W:z{xez*\a<x<b} and

[a..b
(a..b
[

a.b]|:={xeZ*|a <z <b}.

={reZ|a<z<b} and

={reZ*|la<xz<b} and
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THEOREM 1.5.3. [1..7] ={1,2,3,4,5,6,7} and
[2.1] =& and
[—o0.4) = {0} U{...,—2,-1,0,1,2,3} and
[—o0..4] = {—o} U{...,—2,—-1,0,1,2,3,4}.

DEFINITION 1.5.4. Let A be a set and let z be an object. Then:
A= AU{=} and AZ = A\{z}.

In class, we graphed [1;2); and (1;3]5 on number lines.

1.6. Manipulation of inequalities.

THEOREM 1.6.1. Let a,b, A, B e R.

Assume (a < A)& (b < B). Then a +b < A+ B.
THEOREM 1.6.2. Let a,b, A, B € R.

Assume (0 <a<A)&(0<b< B). Then ab < AB.
THEOREM 1.6.3. Let a,b, A, B € R.

Assume (a < A)& (b< B). Then a+b< A+ B.
THEOREM 1.6.4. Let a,b, A, B € R.

Assume (0 <a<A)&(0<b<B). Then ab < AB.

If we have mixed inequalities (strict and semi), then we get strict for
addition:

THEOREM 1.6.5. Let a,b, A, B € R.
Assume (a < A)& (b< B). Then a +b < A+ B.

For positive numbers, the product of a the product of a strict in-
equality with a semi-inequality is a strict inequality:

THEOREM 1.6.6. Let a,b, A, B € R.
Assume (0 <a< A)&(0<b< B). Then ab < AB.

It is a common mistake to think that, for nonnegative numbers, the
product of a strict inequality with a semi-inequality should give a strict
inequality. In fact, if we have mixed inequalities (strict and semi), then
we get semi for multiplication:

THEOREM 1.6.7. Let a,b, A, B € R.
Assume (0 <a< A)&(0<b< B). Then ab < AB.

Note that, in the conclusion of the preceding theorem, we cannot
write ab < AB because of the possibility that 0 = b = B.
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1.7. Basic algebraic facts.

The following is called the Naive Product Rule:

THEOREM 1.7.1. Letab, A, Be R.  Then:
A-B—a-b = (A-—a)-b+ a-(B=b) + (A—a)-(B—0).

1.8. The Axiom of Choice.

We imagine that at the beginning of time,
the Grand Oracle has chosen,

from every nonempty set A, an element denoted CH 4.
This is embodied in the Axiom of Choice:

AXIOM 1.8.1. Vnonempty set S, CHge S.

We also make the convention that CHy = ®.

Alternate notation for |CHg [ |CH(S)|or |CHS|.

Then: Vset S, we have: CHg *e S.
THEOREM 1.8.2. CH{4} =4 and CH{{1,2,3}} = {1,2,3}.

For sets with more than one element, we do not know which is chosen,
but we do know that one of them is:

THEOREM 1.8.3. (CH{2,3} = 2) v (CH{2,3} = 3).

THEOREM 1.8.4.
(CH{2,3,5} =2) v (CH{2,3,5} =3) v (CH{2,3,5} =5).

1.9. Unique element of a set.

DEFINITION 1.9.1. Let A be an object.
By A is a singleton or singleton set, we mean:
A is a nonempty set and Vrx,ye A, x =y.

THEOREM 1.9.2.

({3} is a singleton) and
{ {1,2,3} } is a singleton) and
({1,2,3} is a singleton)) and
(& is a singleton) ).

-
-

(
(
(
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DEFINITION 1.9.3.

CH,a, if A is a singleton
For set A, UE4|:=
{@, if A is not a singleton.

Alternative notations: | UE A| and |UE(A) |.

THEOREM 1.9.4.
UE{3} = 3 and
UE{ {1,2,3} } = {1,2,3} and
UE{1,2} = ® and
UE{1,2,3} = ® and
UEYg = ©.

For any objects a and B, the notation means:

(a=®) v (ae B).

THEOREM 1.9.5.
UE{1} *e {1} and
UE{ {1,2,3} } *¢ {{1,2,3} } and
UE{1,2,3} *¢ {1,2,3} and
UE Y *e¢ ¢&.

THEOREM 1.9.6. VA, UE4 *e¢ A.

1.10. Well-ordering and completeness axioms.

DEFINITION 1.10.1. Let S € R*, a € R*.
Then means: Yx € S, x > a.

Also, means: Yr € S, x = a.
Also, means: Vx e S, v < a.

Also, | S < a| means: Yx € S, zlea.

Also, |a < S| means: Vx e S, a < x.

Also, |a < S| means: Vx e S, a < x.

Also, |a > S| means: Vx € S, a > x.
Also, |a = S| means: Vx e S, a > x.

THEOREM 1.10.2.
(N> 0)& (Ny = 0) & (1 < N) & (-3 < Np) & (—(0 < Np)).

THEOREM 1.10.3. Vx e &, 5 < z.
THEOREM 1.104. 5 < .
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THEOREM 1.10.5. (7 < @) & (-0 < ) & (0 < ).
THEOREM 1.10.6. Vz € R*, x < .

THEOREM 1.10.7. Vz e R*, x < .

THEOREM 1.10.8. Vz e R*, z > (J.

THEOREM 1.10.9. Vz € R*, x > (.

In the next definition, LB stands for “Lower Bounds”,
and UB stand for “Upper Bounds”.

DEFINITION 1.10.10. Let S < R*. Then:
:= {reR*|x < S} and
:= {reR*|x > S}

Alternate notations for LBg are: |LB(S)| and |[LB.S|.
Alternate notations for UBg are: | UB(S) | and [UB S].
THEOREM 1.10.11. LB{3,4,5} = [

By Theorem 1.10.6 and Theorem 1.10.8 above, we get:
THEOREM 1.10.12. (LBy = R*) & (UBy = R*).
DEFINITION 1.10.13. Let S < R*. Then:

= UE(S nLBg) and .= UE(S n UBg).
Alternate notations for ming are: | min(S) | and [min S|.
Alternate notations for maxg are: [max(S)| and |max S|,

—o0; 3] and LB{3,4,5} = [5; 0].

We have LB[1;2) = [—o0; 1] and UB[1;2) = [2; o0]. Then:
THEOREM 1.10.14.
min[1;2) = UE([1;2)(\[-o;1]) =1 and
max[1;2) = UE([1;2)([2; «]) = ©.

We have LBy = R* and UBZ = R*. Then:

THEOREM 1.10.15.
ming = UE(Z [ R*) = ©® and
maxy = UE(Q[R*) = ©.

THEOREM 1.10.16. Let S < R*. Then:
(min S *e¢ S)& (max$S *e §).
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Proof. We have min S = UE(S n LBg) *¢ SnLBg < S,
so minS *e S.
It remains to show: maxS *e S.
We have max S = UE(S n UBg) *¢ SnUBgc S,
so maxS *e S. ]

THEOREM 1.10.17. Let S € R*, x,y € S n LBg. Then x = y.

Proof. Since z,y € LBg, we get: (2 <S)&(y<9).
Sincexe S >y, weget z >y. Sinceye S >z, we get y > .
Since x > y and y > z, we get = = y. 0

The preceding theorem says that S n LBg cannot have two unequal
elements; equivalently, that set is empty or singleton:

THEOREM 1.10.18. Let S < R*.
Then (S nLBs =) v (S nLBg is a singleton).

THEOREM 1.10.19. Let S < R*, a € R*. Then:
(a=minS) < ((aeS)&(a<?8)).

Notes on proof: We leave = as an exercise; it follows from the def-
initions. For <, from (a € S)& (a < 5), we get a € S n LBg, which
shows that S n LBg # . Then, by Theorem 1.10.18, S n LBg is
a singleton. So, since a € S n LBg, we get S n LBg = {a}. Then
min S = UE(S n LBg) = UE{a} = a, so a = min S.

Similar reasoning gives:

THEOREM 1.10.20. Let S < R*, a € R*. Then:
(a=maxS) < ((aeS)&(az=S9)).

By, we mean: (a=®) v (a<b),
or, equivalently, (a#0®) = (a<bh).
By, we mean: (b=9®) v (a<b),
or, equivalently, (b#0®) = (a<b).
By, we mean: (a=®) v (a=b),
or, equivalently, (a#®) = (a=D).
By, we mean: (b=®) v (a=0b),
or, equivalently, (b#£0®) = (a=b).

THEOREM 1.10.21. Let S € R*. Then min S *< S.



14 SCOT ADAMS

Proof. We wish to show: (minS # ®) = (minS < 9).

Assume min S # ©®. Want: minS < 5.

We have min S = UE(S n LBg) *¢ S nLBg < LBg,
so, contracting, we get min S' € LBg.

Then, by definition of LBg, we conclude: min § < S.

A similar proof yields:
THEOREM 1.10.22. Let S <€ R*. Then S <* max5.
DEFINITION 1.10.23. Let S < R*. Then:
= max(LBg) and := min(UBg).
Alternate notations for infg are: |inf(S)| and |inf S|

Alternate notations for supg are: |sup(S) | and ’sup S ‘

The inf is sometimes called the “greatest lower bound”.
The sup is sometimes called the “least upper bound”.

THEOREM 1.10.24.

inf[1;2) = max[—o0;1] =1 and sup|l;2) = min[2, 0] = 2.

THEOREM 1.10.25.

inf @ =maxR* =0 and sup @ = minR* = —o0.

The following is the Well-Ordering Axiom.
AXIOM 1.10.26. Vnonempty S < Ng, min S # ®.

The following is the Completeness Axiom.
AXIOM 1.10.27. VS < R*, infg # ® # supg.

THEOREM 1.10.28. Let S < R*.
Then infg > LBg and supg < UBg.

Proof. By Axiom 1.10.27, infg # ® # supg/
We have infg = max(LBg) *> LBg.

So, since infg # ®, we get: infg > LBg.

It remains to prove: supg < UBg.

We have supg = min(UBg) *< UBg.

So, since supg # ®, we get: supg < UBg.

THEOREM 1.10.29. Let S < R*. Then S > infg and S < supg.

O
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Proof. By Axiom 1.10.27, infg # ® # supg.

We have infg = max(LBg) *¢ LBg.

So, since infg # @, we get: infg € LBg.

Then, by definition of LBg, we get: infg < .S. Then S > infg.

It remains to prove: S < supg.

We have supg = min(UBg) *¢ UBs.

S0, since supg # @, we get: supg € UBg.

Then, by definition of UBg, we get: supg = S. Then S <supg. U

THEOREM 1.10.30. Let A < R*, z € R*.
Assume A < z.  Thensup, < z.

Proof. Since z > A, we get: z € UBy4.
Then z € UB4 = supy, S0 2 = supy, SO sup, < 2. O

THEOREM 1.10.31. Let A < R*, z € R*.
Assume A > z. Theninfy > z.

A, we get: z € LB4.
infy, so z <infy, so inf4 > 2. O

Proof. Since z
Then z € LBy

NN

THEOREM 1.10.32. Let S < R*. Then infg =* ming.

Proof. Know: ming = UE(S[)LBg).
Want: (ming # ®) = (infg = ming ).
Assume ming # ®. Want: infg = ming.
Since ming # @ and ming = UE(S[]LByg),
we conclude: ming = UE(S[)LBg).
Since ming = UE(S[)LBgs) *¢ S()LBs,
we get ming € S[)LBg, and so ming € S and ming € LBg.
We have ming € S > infg and ming € LBg < infg,
so ming > infg and ming < infg, and so infg = ming. ]

THEOREM 1.10.33. Let S € R*, z € LBg, a € [—w; z].
Then a € LBg.

Proof. Since a < 2 < S, we get a < S. Then a € LBg. O

1.11. Mathematical induction.

The following theorem is called the Principle of Mathematical In-
duction or PMI:
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THEOREM 1.11.1. Let S N. Assumele §S.
Assume: Yke S, k+ 1€ S. Then: S = N,

The intuitive idea that S is closed under “successor”, meaning that
whenever a positive integer k is in S, then its successor k + 1 is also
in S. So, since 1 € S, we see that 2 € S. Then, since 2 € S, we see
that 3 € S. Then, since 3 € S, we see that 4 € S. And so on. For any
integer, we can eventually show that that integer is in S. Then N < S.
So since S < N, we conclude, from the Axiom of Extensionality, that
S=N.

We omit a formal proof for Theorem 1.11.1, but it would involve the
Well-Ordering Axiom, described earlier. We focus instead on how to
use Theorem 1.11.1, using the PMI template, see EH (20).

THEOREM 1.11.2. VkeN, 14243+ ---+k=——=

Proof. Let S := {keN‘l—i—Z%—S—i—-“—Fk—@}.

1-(1+1
Want: S = N. Since 1 = g, we see that 1 € S.

By the PMI, it suffices to prove: Vke S, k+ 1€ S.
Given ke S. Want: k+ 1€ S.

kE(k+1)

Know: 14+2+4+3+4+---+k= 5

(E+1D)((k+1)+1)
5 .
kE(k+1)

We have: 1+2+3+---+k+(k+1) = — T (k+1)

Want: 1+2+3+---+k+(k+1)=

(k+1) + 1-(k+1) = (§+1)-(k+1)

k|

2

k+2 (k+2)(k+1)
( 5 ) (k+1) 5

_ (k+1) k+2) _ B+ DR+ +1) O
5 :

The following theorem is called the 0-PMI:

THEOREM 1.11.3. Let S N,. Assume(O€S.
Assume: Yke S, k+ 1€ S. Then: S = Ny.
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Idea of proof: The set S is closed under succesor. So, since 0 € S, it
follows that 1 € S, and then that 2 € S and then that 3 € S, etec.
Here is an example of how to use the 0-PMI:

THEOREM 1.11.4. VkeN,, 2°>Fk+1.

Proof. Let S :={keNy|2¥ > k+1}. Want: S = Nj.

Since 2 =1 >0+ 1, we see that 0 € S.

By the 0-PMI, it suffices to show: Vke S, k+ 1€ S.

Given ke S. Want: E+1€S.

Know: 28 > k+ 1.  Want 2! > (k + 1) + 1.

Sincek e S € Ny =0, weget k = 0,50 (k+1)+(k+1) = (k+1)+(0+1).
Then 21 = 2.2 = 2F . (1 +1)=2F. 1 +2F. 1 =2k 4 2k
>k+)+k+)=k+1)+0+)=(k+1)+1. O

1.12. The Archimedean Principle.

The following is The Archimedean Axiom:
AXIOM 1.12.1. sup N = c0.

The following is The Archimedean Principle or AP:
THEOREM 1.12.2. Vz e R, 35 e N s.t. j > x.

Proof. Given x € R.  Want: 45 e Ns.t. j > z.

Assume —(3j € Ns.t. j >x).  Want: Contradiction.

Then VjeN, j <z, soN<ua.

Then supN < z.

Since supN < x € R < o0, we get supN < o0, so supN # o0.

However, by Axiom 1.12.1, we have: supN = co.  Contradiction. [J

It is a theorem in propositional logic that, for any mathematical
statements P and @),

(Pv@Q) < ((-P) = Q)
It follows, for any two objects a and b, that
(a =*b) <= ((b#®) = (a=0)).
Next is The Reciprocal Archimedean Principle or RAP:
THEOREM 1.12.3. Ve >0, 3je N s.t. 1/j < e.

Proof. Given € > 0. Want: 3j e Ns.t. 1/j <e.
Since € > 0, we see that (1/e e R)& (1/e > 0)& (1/(1/e) =¢).
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By the AP, choose j € Ns.t. j > 1/e. Then j € N. Want: 1/j < e.
Since j > 1/e > 0, we get 1/j < 1/(1/e). Then 1/j <1/(1/e) =e. O

We can restate the preceding theorem as:
Ve>0,—-(VjeN, 1/j <e).
Equivalently,
Ve >0, —({1,1/2,1/3,...} = ¢).
Equivalently,
Ve >0, ~(e € LB{1,1/2,1/3,...}).
The following expresses the same thing:

THEOREM 1.12.4. Ve > 0, £ ¢ LB{1,1/2,1/3,...}.

In the preceding theorem, ¢ is a real variable, by convention. How-
ever the theorem would even be true if we use oo for e:

THEOREM 1.12.5. o ¢ LB{1,1/2,1/3,.. }.
THEOREM 1.12.6. LB{1,1/2,1/3,...} = [~0:0].

Proof. We have 0 < {1,1/2,1/3,...},s0 0e LB{1,1/2,1/3,...}.

Then, by Theorem 1.10.33, [—o0;0] < LB{1,1/2,1/3,...}.

It remains to show: LB{1,1/2,1/3,...} < [—;0].

Want: Ve e LB{1,1/2,1/3,...}, ee[—o0;0].

Given € € LB{1,1/2,1/3,...}. Want: ¢ € [—x0;0].

By Theorem 1.12.4 and Theorem 1.12.5, € ¢ [0; 0], so € € R*\[0; «0].
Then € € R*\[0; 0] = [—00;0]. O

Unassigned HW: Show that LB[—o0;0] = [0; oo].
We use that unassigned HW in the following proof.

THEOREM 1.12.7.
min{1,1/2,1/3,..} = ® and inf{1,1/2,1/3,...} = 0.

Proof. By Theorem 1.12.6, LB{1,1/2,1/3,...} = [—0;0].
Then min{l,1/2,1/3,...} = UB({L,1/2,1/3,...} (\[~0:0])

so, since UE(¥) = @, we get min{1,1/2,1/3,...} = ®.
It remains to show: inf{1,1/2,1/3,...} = 0.
We have  max[—00;0] = UE([—0o0;0] ()[0;])

= UE({0}) = 0,

so  max[—o0;0] = 0.

We have inf{1,1/2,1/3,...} = max(LB{1,1/2,1/3,...})
= max[—m;0] = 0. O
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The preceding theorems show the process by which we can prove com-
putations of
LB, UB, min, max, inf, sup.

As you can see, these proofs can be laborious, and, generally, we
will omit them. If you understand the definitions, then they become
straightforward, even if they can be, at first, somewhat intimidating.
In any case, they belong in a course on the foundations of the real
number system, a prerequisite to real analysis.

1.13. Translating and reflecting sets of real numbers.

DEFINITION 1.13.1. Let S € R. Then:
[=S]:={~y|ye S}

THEOREM 1.13.2. —{2,5,9} = {-2, —5, —9}.
DEFINITION 1.13.3. Let SC R, z € R. Then:

:= {r+ylyeS} and:z {y+x|ye S}

THEOREM 1.13.4. 4+ {1,2,5} = {5,6,9} = {1,2,5} + 4.
THEOREM 1.13.5. YSCR, VzeR, z+S=S+uz.
DEFINITION 1.13.6. Let SC R, z € R. Then:

:= {x—y|ye S} and:z {y—x|ye S}

THEOREM 1.13.7.
8—{2,9) = {6,—1} = —{-=6,1} = —({2,9} —8).

THEOREM 1.13.8. YSC R, VzeR, z—S5=—(5—z).
DEFINITION 1.13.9. Let S C R, z € R. Then:

(2-S|={z-ylyeS} and|S z|:={y-z|ye S}.

Note that, by general sloppiness, - is often omitted in multiplication,
and we might write: VS € R, Vx € R,
xS :={zy|ye S} and Sz := {yz|y e S}.

THEOREM 1.13.10. 2 {1,3,4} = {2,6,8} = {1,3,4} - 2.
THEOREM 1.13.11. YSCR,VzeR, z-S=S- .

DEFINITION 1.13.12. Let S € R, x € Rj. Then:
Slx|:={y-x|ye S}
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DEFINITION 1.13.13. Let S < Rg, z € R. Then:
x/S|:={z/y|ye S}

THEOREM 1.13.14. Let S < Rj, x € R;. Then:
x/S =1/(S/x) and S/z=1/(x/S).

THEOREM 1.13.15. 2N := {2,4,6,8,...} and2N—1 = {1,3,5,7,...}.

1.14. Roots and powers of real numbers.
It is our convention that 0° = 1. In fact:

THEOREM 1.14.1. Vz e R, 2°=1.
Also, VreR,VjeN,, 2/t =272z

DEFINITION 1.14.2. Let x € R. Then |v/z|:= max{w € R|w?
THEOREM 1.14.3. /25 = max[—5;5] = 5.

THEOREM 1.14.4. v/2 ¢ Q.

We have {w e R|w? < —1} = ¢, so v/—1 = max &J.
So, since max ¢ = @, we get:

THEOREM 1.14.5. \/—1 = @.

THEOREM 1.14.6. Yz >0, .z # @.
THEOREM 1.14.7. Vz <0, .z = ©@.
THEOREM 1.14.8. V2 >0, (yz)? =z = V22,
DEFINITION 1.14.9. Vz e R, |[|z||:= V22

THEOREM 1.14.10. | — 5] = 1/(—5)2 = /25 = 5.

DEFINITION 1.14.11. Let ke N, z e R. Then:
Vx| := max{w € R|wk < z}.

THEOREM 1.14.12. Vke 2N, Vo =0, <z # ©.
THEOREM 1.14.13. Yk e 2N — 1, Vz e R, ¥z # ©.
THEOREM 1.14.14. Yk € 2N, Vo <0, o= ©.
THEOREM 1.14.15. Vk € 2N, Vo > 0, (¥/2)F =2 = V/ak.
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THEOREM 1.14.16. Vke 2N — 1, Vo e R, (¥/2)*F =1 = Va*.
THEOREM 1.14.17. Yz e R, {/x =x.
THEOREM 1.14.18. Yz > 0, <z =./z.
THEOREM 1.14.19. Vx e R, ¥z =./x.
THEOREM 1.14.20. Vx € R, ¥z = max{w e R|w® < x}.
We have {w € R|w?® < 8} = (—0;2]. Then:
THEOREM 1.14.21. /-8 = max(—w;2] = 2.
THEOREM 1.14.22. Vz e R, (1) =2 = V3.
1.15. Properties of absolute value.
THEOREM 1.15.1. Ya,be R, |a—10b| = |b—al.

It is crucial to us to take a statement like
When z is close to 2, 22 is close to 4
and give it a rigorous meaning.
This requires us to find a rigorous way of talking about “closeness”.
To say
a is close to b
is to say
the distance from a to b is close to zero.
Making this rigorous requires us to rigorize both
distance and close to zero.

We do not formally define distance in this course,
but we have an intuitive sense of distance, and:
the distance from 2 to 5 is 5 — 2.
Also,
the distance from 9 to 1is 9 — 1.
The general rule is: Va,b e R,
the distance from a to b is |b — al.
(NOTE: Ya,be R, |[a —b| = |b—al.)
So, when you see an expression of the form |b — al,
you can interpret it, geometrically as a statement about
the distance from a to b.
This geometric intuition is indispensable.

21
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Since absolute value plays such a big role,
we record a number of its properties, like:

THEOREM 1.15.2. Ya,b e R, we have: la-b] = |al - [b]
and la + 0| < a| + |b|.

The next theorem is called the Triangle Inequality.
THEOREM 1.15.3. Let a,b,ce R. Then: |a—c| < |a—b| + |b— ¢|.
Proof. |la—c|=|(a—=b)+(b—c) <|a—bl+|b—c| O

THEOREM 1.15.4. Ya,b,ce R, |abc| = |a| - |b] - |¢] and
la +b+c| < a| + [b] + |¢].

In the conclusion of the following theorem, we cannot write
|z =2 |2® =822 + Tx| < 0 (Jz>+8-|z|* + 7+ ||
because of the possibility that x = 0.

THEOREM 1.15.5. Let € R, 6 > 0.  Assume |z —2| <.
Then |x —2| - |2® — 8z + Tx| < & (|Jz|> + 8- |z + 7 |x]).

Proof. We have:
|23 — 82? + Tu| + (—82?) + Tz

|
%] + | = 83?2\ +[7x|
|z
|

/AN

>+ = 8] - [=* + |7] - ||
P+ 8- |z|* + 7|zl
So, since 0 < |z — 2| < 6, we get:
|z — 2| |2® =822 + Tx| <& (|zP + 8 |z|* + 7 |z]). O

THEOREM 1.15.6. Let a,be R, £ > 0. Then:

(jb—al<e) e (a—e<b<a+e) and
(lb—al<e) = (b—e<a<b+e) and
(jb—al<e) e (a—e<b<a+¢e) and
(b—al<e) & (b—e<a<b+e)

1.16. A doubly quantified theorem.

In this course, there are exactly two symbols that are called quan-
tifiers. The first is “V”, the second “J”. They both appear in the
following theorem.

THEOREM 1.16.1. Ve >0, 30 > 0 s.t. 8 + 56* + 6 < ¢
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The stream of characters above is an example of a “mathematical
statement”. We will often just say “statement” to mean “mathematical
statement”. This has a technical definition which we will not go into
here, but the intuition is that a statement is a stream of characters
that has a mathematical meaning.

A character stream that is not a statement, like

gyre and gimbel in the wabe

cannot be analyzed mathematically, and so will be ignored in this
course. While you are not expected to know the technical definition
of a statement, there are some rules you should know for how to build
complex statements out of simpler ones. For example, for any two state-
ments A and B, the character stream “(A) = (B)” is also a statement,
though, in practice, we are often sloppy and leave off those parenthesis
and simply write “A = B”. So, not only will we not give any technical
definition of a statement, we will not even be purists about following
that technical definition exactly.

Incidentally, similar remarks hold for “A&B” and “A v B”.

Let A and B be statements. Then the character stream “A = B”
is a statement, and is considered equivalent to saying “if A, then B”.
There is a difference of usage between “A .". B” and “A = B”: The
statement “A = B” means, intuitively, “I am unsure of whether A is
true, but, if it is, then B is also true”. The statement “A .". B” means,
intuitively, “I am completely sure that A is true, and it follows that B
is true as well”.

As mentioned above, Theorem 1.16.1 above involves two quantifiers.
First is the universal quantifier “V”, which means “for all” or, some-
times, “for any”. Second is the existential quantifier “3” which
means “there exists”.

Because it has two quantifiers, Theorem 1.16.1 is “doubly quanti-
fied”.

We turned Theorem 1.16.1 into a game: You give me € > 0. I give
you & > 0. We check to see if ¢ + 56 + § < ¢ is true. If it is, then I
win. If not, then you win.

We played the game, and it was clear that I would win every time.

We developed a strategy: Once you give me € > 0, I could find § > 0
such that all three of the following hold:

6% < ¢/3 and 50* < ¢/3 and 0 < /3.
This suggests setting
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0 :=min{ V/¢/3 , /e/15, ¢/3 }.

We can structure the proof of Theorem 1.16.1:

Proof. Given ¢ > 0.
Want: 36 > 0s.t. 6+ 564+ 6 <e

Want: 6% +50* 4+ < ¢

0
It remains to fill in the J-strategy and finish:
Proof. Given ¢ > 0.
Want: 3§ > 0 s.t. 6° +56* + 6 <e.
Let § := min{ ¥/2/3 , </e/15, /3 }.
Then § > 0.
Want: 6 + 56* + 6 <
We know 0 < 6 < < 5/ so 6% < ¢/3.
We also know 0 < 6 < 4/¢/15, so §* < /15, so 55* < /3.
Finally, we know § < /3.
Since 0° < /3 and 55* < £/3 and § < /3,
we conclude: 6% + 56* + 4§ < (¢/3) + (¢/3) + (¢/3).
Then 6% + 55* + 0 < e. O

We can state Theorem 1.16.1 in a slightly different format, and the
change makes the proof a little simpler because ¢ is bound within the
statement of the theorem in a way that keeps the binding valid until
the end of the proof:

THEOREM 1.16.2. Let € > 0. Then 36 >0 s.t. 5 +55* + 6 < ¢

Proof. Let 0 := min{ {/¢/3 , /¢/15, ¢/3 }.

Then § > 0.

Want: 6% + 56* + § <

We know 0 <6 < ¥ 5/3 so 6% < /3.

We also know 0 < § < {/¢/15, so 6* < &/15. Then 55* < £/3.
Finally, we know ¢ < ¢/3.

Since 6° < ¢/3 and 55! < &/3 and § < £/3,
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we conclude: 6% + 50% + 0 < (¢/3) + (¢/3) + (¢/3).
Then §% + 50 + § < e.

Another similar theorem, and similar proof:
THEOREM 1.16.3. Ve > 0, 30 > 0 s.t. 46°% + 762 + 50 < 9e.

Proof. Given € > 0.
Want: 36 > 0 s.t. 46° + 76% + 55 < 9e.
Let § := min{ {/3¢/4, /3¢/7, 3¢/5 }.
Then 6 > 0.
Want: 46° + 76% + 50 < 9e.
We know 0 < 0 < ¥/3¢/4, so 6® < 3¢/4. Then 46° < 3e.
We also know 0 < 0 < 4/3¢/7, so0 62 < 3¢/7. Then 76* < 3e.
Finally, we know ¢ < 3¢/5. Then 5J < 3e.
Since 468 < 3¢ and 762 < 3¢ and 59 < 3¢,
we conclude: 46° + 76 + 50 < 3¢/3 + 3¢ + 3e.
Then 46% + 76 + 58 < 9e.

1.17. Triply quantified theorems with implication.

THEOREM 1.17.1.
VM eR, 36 > 0 s.t., Vx e R,
(0<z<d)= (1/z>M).

Proof. Given M € R.
Want: 36 > 0 s.t., Vr e R,
(0<z<d) = (1/z>M).
Let § := 1/(max{M, 1}). Then § > 0.
Want: VzeR, (0<z<d) = (1/z > M).
Given x € R. Assume 0 <z <. Want: 1/z > M.
Since 0 < x < 9, it follows that 1/x > 1/6.
Then 1/z > 1/6 = max{M,1} > M.

THEOREM 1.17.2. Ve > 0, 36 > 0 s.t. Yz € R,
(lv—2/<8) = (|o* =52+ 21| <e).

Proof. Given ¢ > 0.
Want: 40 > 0 s.t. Vx € R,
(lz—2/<6) = (|o* =522+ 22| <¢e).
Let ¢ := min{1,e/49}. Then 6 <1 and § < ¢/49 and 6 > 0.
Want: Vo eR, (|z—2|<6) = (|z*—52%+22]<¢e).
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Given z € R. Assume |z — 2| <. Want: [z* — 52? + 2z| < e.
We have |z] < [(z —2) +2| < |z —2[+ 2| =]z —2|+2 < + 2,

so, since 0 < 1, we conclude that |z| < 3.
Since 48/49 < 1 and € > 0, we get 48 - £/49 < ¢.
Since 2t — 522 + 2z = (v — 2) - (23 + 22% — ),

we get |21 — bz? + 2x| = |v — 2| - |2® + 222 — z|.

Then |z* —52% + 22| = |z — 2| [2® + 227 — x| <& (JaP+ 2 |z]? + |z]).
So, since |x| < 3, this gives |z* — 5a? + 22| <46 (33 +2-3% + 3).
So, since 3% + 2 - 32 4 3 = 48, this gives |2? — 522 + 22| < 48 - 6.
So, since § < £/49, this gives |z* — 522 + 2z| < 48 - £/49.
Then |2* — ba? + 22| <48 -¢/49 < e. O

1.18. Primitive ordered pairs.
THEOREM 1.18.1. {1,2} = {2,1} = {1,1,2,2,2}.
THEOREM 1.18.2. {5,5} = {5} and { {5}, {6} }={{5}}.

THEOREM 1.18.3. { {5}, {5,5} } = { {5} ).

{{z}, {wy} ), fz2 02y
®, if (z=0) v (y=0)),

The notation ((x,y)) is read “the primitive ordered pair z, y”.

DEFINITION 1.18.4. Vx,y, | {(z,y))|:= {

THEOREM 1.18.5. ((1,2)) = { {1}, {1,2} } and
«6,{7,8})) ={ {6}, {6,{7,8}} } ~and
5,5y ={{5}, {5,5} } ={{5}} oand
(©,5)) =8, 8)) ={({2,1},9©)) = ©.

THEOREM 1.18.6. ((1,2)> = { {1}, {1,2} } and
«2,))={{2}, {2,1} }.

THEOREM 1.18.7. ({(1,2)) # ((2,1)).

THEOREM 1.18.8. Vnon-® a,b, x, vy,
(La,bp) =Lzy))) < ((a=2) & (b=1y)).

1.19. Relations.

DEFINITION 1.19.1. Let R be a set. Then R is a relation means:
Vze R, z,y s.t. z = {x,y)).
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In other words, a relation is a set of primitive ordered pairs.

Since ® = ((®,®)), we see that, technically, ® is a primitive ordered
pair. However, ® is never an element of any set, and so it cannot be an
element of a relation. So, even if it’s somewhat redundant, it’s possibly
clearer to say that a relation is a set of non-® primitive ordered pairs.

More generally, any set is a set of non-® objects.
THEOREM 1.19.2. { {(1,2)), {1,3)), {4,5)) } is a relation.
THEOREM 1.19.3.
{ {1,{2,3})), 1,9)), (7,6)) } is a relation.
Since Vae,y, x,y)) #{1,2,3}, we conclude:

THEOREM 1.19.4.
{{1,2,3}, «1,9)), «7,6)) } is NOT a relation.

The following is null true:

THEOREM 1.19.5. ¥ s a relation.
DEFINITION 1.19.6. Let R be a relation. Then:
Dr| = {z|ystay)eR} and
Ig| = {y]|3zst {xy)eR}.

We call D the domain of R.
We call I the image of R.
Unassigned HW: Show that Dy = ¢ and Ry = .

DEFINITION 1.19.7. Let R be a relation, x an object. Then:
VLE| = {y|LoypeR ).

We call VLZ the vertical line through x in R.

We justified the following theorem by graphing R.

THEOREM 1.19.8. Let R := {{(1,2)), {{1,3)), ((4,5)) }.
Then Dg = {1,4} and Igr = {2,3,5} and
VLE = {2,3} and VLE = {5} and VLE = &.

We justified the following two theorems by looking at the graph of the
relation of the preceding theorem.
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THEOREM 1.19.9. Let R be a relation and let x be an object.
Then: (reDg) & (VLE % &).

THEOREM 1.19.10. Let R be a relation and let y be an object.
Then: (yelgr) < (JxeDpg s.t. {x,y))€ R).

Some relations cannot be graphed, and yet we can still study domain,
range and vertical lines for them. For example:

THEOREM 1.19.11. Let R := {{{1,{2,3})), {(1,9)), ((6,7))}.

Then Dg = {1,6} and Igr = {{2,3}, 7,9} and

VLE = {{2,3}, 9} and VLE = {7} and VLY = &.

THEOREM 1.19.12. Let R be a relation. Then VL§ = (.
Proof. Assume VL% # 5. Want: Contradiction.
Choose y € VL%. Then ((®,y)) € R.
By Definition 1.18.4, we have: {((®,y)) = ®.
Since ® = {(®,y)) € R, we get: @ € R.

Since R is a set, by Axiom 1.3.1, we have: ® ¢ R.
Contradiction. dJ

1.20. Functions.

DEFINITION 1.20.1. For any object f, by f is a function we mean:
(f is a relation) & ( Vx € Dy, VLI is a singleton ).

In other words, a function is a relation for which each of its vertical
lines, through points in its domain, is a singleton.

THEOREM 1.20.2. {{{1,2)), ((1,3)), {{4,5))} is NOT a function.
THEOREM 1.20.3. {{{3,7)), {2,7)), (1,8))} IS a function.
The function {{(3,7)), ((2,7)), ({1,8))} will typically be written:

3—7
2—17
1—38

Generally, for any n € N, for any objects z,...,z,, for any objects
Y1, - -, Yn, we define
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T1—> U

= { ey e Canya)) )
T — Yn

We are eventually going to cease use of ((e, @) in favor of higher-level
notation, and this is an example.

THEOREM 1.20.4.

2 — {3,5} 2 — {3,5}
8+ 9 B 4 — {6}
6+— —1 B 6— —1
4 — {6} 8—9

THEOREM 1.20.5. Let f be a relation. Then:
(f is a function) < (Vz,y, 2, ({z,9)),z,2)) e f) = (y=2)).

THEOREM 1.20.6. J is a function.
THEOREM 1.20.7. (Dy = @ =1y ) & (Vz, VL? = & ).

DEFINITION 1.20.8. Let f be a function and let x be an object.
Then we define:

.= UE(VLY).

Alternate notation for f, is| f(z)|.

THEOREM 1.20.9.

2—3
Let fi=| 58 |. Then: (£(5)=8)&(f(2) =3)&(f(9) = @).
7—6

THEOREM 1.20.10.
2 {3,5)
4 — {6}
6+— —1
&8—9

THEOREM 1.20.11. Vz, ¢, = ©.

Let f := . Then: (fs = —1)&(f2 = {3,5})&(f3 = ®).

THEOREM 1.20.12. Let f be a function and let x be an object.
Then: (zeD;) < (VL! is a singleton) = ( f, # @).
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THEOREM 1.20.13. Let f be a function and let x,y be objects.
Then:  ({xyypef) < (yeVL) e (fui=y).

The next axiom is part of the general philosophy that
“® is infective.”

AXIOM 1.20.14. For all q, ®, = @ and qg = ©.

THEOREM 1.20.15. Let S — { ( L1 ) }
-1

2— 2
Let f .= UEg. Then: fi and fo = 2 and f3 = ® and
fo = 0.

1—1 1—2
mwonen 120, s - { (171) . (172)]
Let f := UEg. Then: f1 =0 and fo= 6.

DEFINITION 1.20.17. Let A and B be sets. ~ Then:

f:A--» B| means ( f is a function)& (Dy < A)& (I < B) and
f:A — B|means (f is a function) & (D = A)& (I < B) and
f:A—> B|means (f is a function) & (Dy = A) & (I; = B).

2—3
THEOREM 1.20.18. Let f:= | 5~ 8 |. Then:
7—6

f:{2,5,7} — {3,4,6,8} and
F:02,57) - {1,3,4,6,8,9)  and
f:1{2,4,5,7} --+ {3,4,6,8} and
f{1,2,4,5,7} --» {1,3,4,6,8} and
F:{2,5,7) —> {3,6,8).

DEFINITION 1.20.19. Let f be a function. Then:
by f is one-to-one or 1-1, we mean:
Vw,x €Dy, (fuo=/[f)= (w=21).

2—3

THEOREM 1.20.20. Let f:= | 5+—8 |. Then f is 1-1.
7—06
2—5

THEOREM 1.20.21. Let f:= | 5—8 |. Then f s NOT 1-1.

75
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We graphed the function f from the next theorem.
It was the graph of y = 3.

THEOREM 1.20.22. Let f = {{x,y))|(z,ye R) & (y =23)}.
Then f is 1-1.

We graphed the function f from the next theorem.
It was the parabola given by y = 22

THEOREM 1.20.23. Let f := {{z,y))|(z,ye R) & (y = 2?) }.
Then f is NOT 1-1.

DEFINITION 1.20.24. Let A and B be sets.  Then:
means(f:AHB)&:(fisl-]) and
means (f: A—> B)&(f is 1-1).

23
THEOREM 1.20.25. Let f:= | 5+— 8 |. Then:
706

f:42,5,7F — {3,4,6,8} and
f:42,5,7F — {1,3,4,6,8,9} and
f:{2,5,7} —>> {3,6,8}.

We have now introduced enough notation that, going forward,
we can avoid writing ((e, e)).

For example, instead of writing {{z,y)) € f,
we will write f, =y or f(z) =y.

Instead of, for example, writing
Let f = {{z,yp|z,yeR, y =2},
please write
Let f:R — R be defined by: Vz e R, f(z) = 2*
or  Define f: R — R by: Vx e R, f(z) = 2°.
One of the advantages of this is that,
because f(x) is given by a formula,
it is clear that f is a function.
That is, each x corresponds to exactly one y, namely x3.
We will see this, in the proof of (a) in the next theorem.

We graphed the function f from the next theorem.
It was the parabola given by y = 22.
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THEOREM 1.20.26. Define f : R — R by: Vz e R, f, = 22
Then f: R —> [0; ).

We graphed the function f from the next theorem.
It was the graph of y = 3.

THEOREM 1.20.27. Define f : R — R by: Vz e R, f, = 23.
Then f: R —> R.

Proof. Want: (a) f:R—R and (8) fis 1-1.

Proof of (a):
Want: (a) fis afunction and (b)Dy=R and (c)I;=R.

Proof of (a):

Want:¥z,y, 2, ((fo=9)&(fe =2)) = (3= 2)
Given z,y, z. Assume: (f, = y) & (f, = z). Want: y = 2.
We have y = f, = 2.

End of proof of (a).

Proof of (b):
Since f: R — R, we get Dy = R.

End of proof of (b).

Proof of (c):

Since f: R — R, we get I; < R.

It remains to show that R < II;.

Want: VyeR, yel.

Given y e R.  Want: y e I;.

Want:dz € Dy s.t. y = f,.

Since f: R — R, we get Dy = R.

Let v := /y. Then x € R = Dy. Want: y = f,.
We have y = (¢/y)* = 2* = fa.

End of proof of (c).

End of proof of (a).
Proof of (5):

Want:Vw,z € Dy, (f,=f.) = (w=12).
Given w, x € Dy. Assume f,, = f,. Want: w = z.



CLASS NOTES 33

We have w = Vw3 = &/f, = &/f, = Va3 = x.
End of proof of (B). O

The next two theorems are quantified equivalences for equality of func-
tions. In the first, we assume we have a common domain. In the
second, we only assume we have a common superdomain.

THEOREM 1.20.28. Let A be a set. Let ¢ and v be functions.
Assume Dy = A and Dy = A.

Then (=1 ) < (Vre A, ¢, =1, ).
THEOREM 1.20.29. Let S be a set. Let ¢ and 1) be functions.
Assume Dy < S and Dy, < S.
Th6n(gb=¢) g (V‘TES7 Qba: = ¢z)
It a basic property of the real numbers that:
Vz e R, ?/x = x3/2%

This property is used in the proof of the following theorem:

THEOREM 1.20.30. Define f,g: R --» R by:
VzeR, flx) = 2*/x  and g(x) = 23/2%
Then f = g.

Proof. Since f,g: R --» R, we get Dy < R and D, < R.

Want: VreR, f. = 0.

Given z € R. Want: f, = g,.

We have f, = 2*/z = 23/2* = g,. O

We talked about various ways of picturing functions.

DEFINITION 1.20.31. Let f be a function, A a set. Then:
:={fx|m€Am1Df} and
|f*A]:={z e Dy | f, € A},

Alternate notation: | f,(A)|and | f*(A)|.
We do NOT use f(A) and f~1(A).

We discussed how to picture f, A and f*A.
The set f,A is called the f-forward-image of A.
The set f*A is called the f-pre-image of A
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1—14
2+—06
3— 8
9— 8

Then  f.{0,1,2} = {4,6} and f*{6,7,8} = {2,3,9}.

THEOREM 1.20.32. Let f :=

DEFINITION 1.20.33. Va,b, by|a=b], we mean: a = b +# ©.
THEOREM 1.20.34. Va,b, (a=0b)= (a# ©® #b).
We have quantified equivalences for y € f,S":

THEOREM 1.20.35. Let f be a function, S a set, y an object. Then:
(ye fuS) < (IxeSnDy st fo=y) < (JxeSst fo=y).

We have an equivalence for y € f*S:

THEOREM 1.20.36. Let f be a function, S a set, x an object. Then:
(zef*S) < (f.€9).

We omitted formal proofs of the preceding two theorems, but used
pictures to motivate them.

In the following, the set f*{y} is called the f-fiber over y.
We justified that terminology with a picture.

THEOREM 1.20.37. Let f be a function, x,y objects. Then:
(zefy}) = (fa=y)

Proof. Wehave(xef*{y})<:>(fz€{y})<:>(fm:y>‘ U
We define agreement, on a set, of two functions:

DEFINITION 1.20.38. Let f and g be functions and let S be a set.
Byon S, f =g, we mean: Yx € S, f, = g..

Note that, for any two functions f and g, for any set S,
if onS, f=ug, then S c Dy nD,.

THEOREM 1.20.39. Let f be a function. Then fg = ©.

Proof. By definition, we have fg = UE(VL%).
By Theorem 1.19.12, \/LéD = . Then fg = UE(Z) = ®. O
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1.21. Restriction of functions.
We next define the restriction of f to a subset of Dy:

DEFINITION 1.21.1. Let f be a function, S < Dy.
Then | f|S|: S — 1y is defined by: Yx € S, (f|S). = fa-

We defined f : R — R by Vz e R, f, = 22

We graphed f and noted that f is NOT 1-1.

We graphed f|[0;00) and noted that f[[0;o0) IS 1-1.
We next define restriction, f < g:

DEFINITION 1.21.2. Let f and g be functions.
By, we mean: (Dp< Dy ) & (gDf=f).

We next define extension, g 2 f:

DEFINITION 1.21.3. Let f and g be functions.
By, we mean: (Dp<D, ) & ( gDy = f).

Note: (fSg) < (g27f).

Unassigned HW:
THEOREM 1.21.4. Vfunction g, VS < Dy, g|S < g.
1.22. Composition of functions.

DEFINITION 1.22.1. Let f and g be functions. Then:

is the function defined by:

vx? (g % f)JT = gfx

We read go f as “f then ¢” or ¢ compose f”.
The function g o f is called the composition of ¢ and f.

AN
THEOREM 1.22.2. Let f := 8 6 andg:=| 3—9
91 2 4—5

ThengOf:<g:g).

THEOREM 1.22.3. Let f and g be functions. Then:
Dyor = f*(Dy) and Loy = g«(Iy).
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THEOREM 1.22.4. Let A, B, C be sets, f, g be functions. Then:
(1)[((f:A--+B)&(g:B--+C)) = (gof:A-->C)] and
Q) [((f:A—>B)&(g:B—C))= (gof:A—C)] and
(5)[((f: A= B)(g:B—C)) = (gof:A—C)] and
(4)[((f:A—->>B)&(g:B—>>C)) = (gof:A—>>C)]| and
(5) [((f: A=>B)&(g:B—=>C)) = (gof: A=>C)]

1.23. Identity and inverse and characteristic functions. The func-
tion id” in the next definition is called the identity function on A.

DEFINITION 1.23.1. Let A be a set.
Then : A — A s defined by: Vee A, id? =z,

2 2
THEOREM 1.23.2. id248 = | 44
6— 6
THEOREM 1.23.3. > — o and AP =4
THEOREM 1.23.4.  idf =4  and  id}, = ©@.
THEOREM 1.23.5.  id =4  and  idY = @,
1—4 4—1
THEOREM 1.23.6. Let f:=| 2—6 |andg:=| 6 2
38 8 — 3
1—1
Then: gof = [ 2—2 | =id{t?*% = id® and
33
4+— 4
fog=|[ 66 |=id*% = iqP.
8+ 8

THEOREM 1.23.7. Let A, B be sets. Let f: A— B, g: B — A.
Assume go f =id*. Then: (1) f: A<~ B and (2)g:B —> A.

Proof. Proof of (1):

Want:Vw, z € Dy, (fy, = f2) = (w = x).

Given w, x € Dy. Assume f,, = f,. Want: w = z.

Since w,x € Dy = A, we get (go f)w = idﬁ and (go f), = idj}.
Then w = idy, = (90 f)w = g5, = 97. = (90 o = id}} = .
End of proof of (1).
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Proof of (2):

Want:I, = A. Since g: B — A, we know: [, € A. Want: A < [,.
Want:Vx e A, ze€l,. Givenze A. Want: z € [,.

Since x € A = Dy, we get f, € Iy.

Let y := f,. Then y € I;.

Then yel; € B =D,  Then g, €I,.

We have g, = g7, = (90 f)z = id? = 2. Then Gy = .

Then z = g, € I,.

End of proof of (2). O

THEOREM 1.23.8. Let A, B be sets, f: A — B.
Assume: 3g: B — A s.it. (gof=id*) & ( fog=id?).
Then f: A —> B.

Proof. Since go f = id*, by (1) of Theorem 1.23.7, f : A — B.
Want: f: A —>> B.
Since f o g = id”, by (2) of Theorem 1.23.7, f : A —> B. O

The function f~! below is called the inverse function of f.

DEFINITION 1.23.9. Let f be a 1-1 function.
Then| f~'|:1; — Dy is defined by:  Vy €Iy, [t =UE(f*{y}).

1—4
THEOREM 1.23.10. Let [ := 2—6
3—8

Then: f;' = UE(f*{4}) = UE{1} = 1.

1—4 4—1
THEOREM 1.23.11. Let f:=| 2—6 |andg:= | 6— 2
33— 8 8—3

Then: g = f~'and f =g '.

THEOREM 1.23.12. Let f be a 1-1 function.
Then: Vo € Dy, f}? =z.
Also: Vy e I, ffyq =y.

DEFINITION 1.23.13. Let S be a set and let A< S.
Then | x5 |: S — {0,1} is defined by:
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1, ifqge A
0, ifqé¢ A

The function x%, from the preceding definition, is called the char-
acteristic function of A in S.

Vge S, Xalq) = {

1.24. The axiom of choice.

We imagine that at the beginning of time,
the Grand Oracle has chosen,

from every nonempty set A, an element denoted CH 4.
This is embodied in the Axiom of Choice:

AXIOM 1.24.1. Vnonempty set S, CHge S.

We also make the convention that CHy = ©.
Alternate notation for CHg: CH(S) or CHS.

Then: Vset S, we have: CHg *¢ S.

THEOREM 1.24.2. CH{4} =4 and CH{{1,2,3}} = {1,2,3}.
The chosen element of any singleton set is its unique element:

THEOREM 1.24.3. Vz, CH{z} = = = UE{z}.

For sets with more than one element, we do not know which is chosen,
but we do know that one of them is:

THEOREM 1.24.4. (CH{2,3} =2) v (CH{2,3} = 3).

THEOREM 1.24.5.
(CH{2,3,5} =2) v (CH{2,3,5} =3) v (CH{2,3,5} = 5).

1.25. The world of sets - part 1.

THEOREM 1.25.1. Let A be a set.
Then id? : A —> A.

THEOREM 1.25.2. Let A, B be sets, f : A <—>> B.
Then f~': B <> A.

By (5) of Theorem 1.22.4, we have:
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THEOREM 1.25.3. Let A, B,C be sets, f: A<—>> B, g: B> C.
Then go f: A > C.

DEFINITION 1.25.4. Let A, B be sets. Then:

means: Ja function f s.t. f: A— B and
means: 3a function f s.t. f: A—>>DB and
means: 3a function f s.t. f: A—> B.

THEOREM 1.25.5.
Vset A, dJA —>> A.
Vsets A,B, (JA—>>DB) = (IB—>>A).
Vsets A,B,C, ((FJA—>>B)&(IB—>>C)) = (FJA—>>(C).

THEOREM 1.25.6. Let A, B be sets, g: B —> A.
Then 3f : A— B s.t. go f =id*.

Proof.

Claim: Vx € A, g*{z} # .

Proof of claim:

Given z € A.  Want: g*{z} # .

Since g : B — A, we get [, = A.

Since x € A =1, we get x € I,.

Since z € I, choose y € D, s.t. g, = .

Since g, = x, we get y € ¢g*{z}. Then ¢*{z} # &.
End of proof of claim.

Since g : B — A, we get D, = B.
Then: Vset S, ¢*(S) < B.
So, from the claim and the axiom of choice, we conclude:
Vo e A, CHg*{w} S g*{x}
Then: Ve A, CHgysgyy € g*{z} < B.
Define f: A — B by: Vo e A, f, = CHgs(yy.
Then f: A— B.  Want: go f = id".
Since f:A—>Bandg: B— A, wegetgof:A— A
Then Doy = A, Also, Dya = A. Want: Yo e A, (go f), = id2.
Given z€ A.  Want: (go f), =id}. Want: g5, = T.
Let y := f,. Want: g, = z.
Since y = f, = CHgx(yy € g*{x}, we get y € g*{z}.
Since y € g*{z}, we get g, € {x}. Then g;, = x. O
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THEOREM 1.25.7. Let A, B be sets.  Assume: 3B —> A.
Then: dA — B.

Proof. Want:dfunction f s.t. f: A— B.

Since 3B —> A, choose a function g s.t. g : B —> A.
By Theorem 1.25.6, choose f: A — B s.t. go f = id”.
Then f is a function. Want: f: A — B.

By (1) of Theorem 1.23.7, f : A — B.

THEOREM 1.25.8. Let A, B be sets, f: A— B.
Assume A # &.  Then3g: B — A s.t. go f =id?.

Proof. Since f is 1-1, we know: Vo e Dy, fﬁl =x
Since A # &, choose w s.t. w € A.

-1

if I
Deﬁneg:B—>Aby; VyeB’ gy:{ya 1ryely

w, if y¢ Iy

Then g : B —> A.  Want: go f = id™*.

Since f:A—> Bandg: B— A, weget gof:A— A
Then Doy = A, Also, Dya = A, Want: Vo e A, (go f), = id2.
Civenz e A.  Want: (go f), =id}. Want: g;, = .

Let y :== f,. Want: g, = x.

Since z € A = Dy, we get f, € [; and f; = .

Since y = f, € Iy, by definition of g, we get g, = fy_l.
Thengyzj;1 =f}§1 =T

THEOREM 1.25.9. Let A, B be sets.  Assume: A — B.
Assume A # 5.  Then: 3B —> A.

Proof. Want:3function g s.t. g: B —»> A.

Since A — B, choose a function f s.t. f: A — B.
By Theorem 1.25.8, choose g : B — A s.t. go f = id™.
Then g is a function. Want: g: B —»>> A.

By (2) of Theorem 1.23.7, g : B —»> A.

1.26. Sequences and zero-sequences.

DEFINITION 1.26.1. Let s be an object.
By s is a sequence, we mean:

s 1s a function and Dy = N.
By s is a zero-sequence, we mean:

s is a function and Dy = Nj.
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Let s be a sequence. Then s is denoted | (s1, $2, 83, .- .) |-

To say “Let s :=(1,1/2,1/3,1/4,...)"
is equivalent to saying “Define s : N - R by: Vje N, s; = 1/5”.

Let s be a zero-sequence. Then s is denoted | (s, $1, S2, 83, - - ) |

To say “Let s :=(1,2,4,8,16,32,64,...)"
is equivalent to saying “Define s : Ny — R by: Vj € Ny, s; = 27",

DEFINITION 1.26.2. Let f be a function, j € Ng. Then:

(idPs. ifj=0
1 ifj=1
S e i =2
- Jofolf, ifj=3
fofofof, ifj=4

DEFINITION 1.26.3. Let A be a set, f: A— A, z € A.
Define s : Ng — A by: Vj € Ny, s; = fi(z).
Then s is called the semi-forward-orbit of x under f.

THEOREM 1.26.4. Define f : R — R by: Vz e R, f, = 2x.
Let s be the semi-forward-orbit of 1 under f.
Then s = o(1,2,4,8,16,32,...).

THEOREM 1.26.5. Let A be a set, f: A— A, x € A.
Let s be the semi-forward-orbit of x under f.
Then: (so=2z)& (VjeNy, sj1=fs ).

DEFINITION 1.26.6. Let A be a set, f: A— A, x € A.
Let s be the strict-forward-orbit of \/5 under f.
Then s is called the strict-forward-orbit of x under f.

THEOREM 1.26.7. Define f :R—>R by: VzeR, f, =z + 1.
Define s € RY by: Vj e N, s; = f1(\/5).
Thens = (V5+1,v/5+2, vV/5+3, V5+4, V545, /546, ...).
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THEOREM 1.26.8. Let A be a set, f: A— A, x € A.
Let s be the semi-forward-orbit of x under f.
Then: ( So = ) & ( \V/j € No, Sj+1 = fsj- )

1.27. Size of a set.
DEFINITION 1.27.1. Let A be a set. Then:

= sup{k e Ny|3I[Ll..k] — A}.
We have:
[1..0] = &. Vke N, [1.k] ={1,2,3,...,k}.
3[1..0] = &.

VkeN, J[1..k] — &.
THEOREM 1.27.2. #¢ = 0.
We have: Vk e N, [1..k] = {1,2,3,...,k}.

= {2,4,6,8,...}.
Vke[ 4],3[1..k] — {1,5,8,9}.
Vk € [5..00), #[1..k] — {1,5,8,9}.
Yk € [0..50], 3[1..k] — {2,4,6,8,. 100}.
Vk e [51..00), H[1..k] — {2,4,6, 8 ., 100}.

Vk e No, 3[1..k] — 2-N.

THEOREM 1.27.3.
#{1,5,8,9} =4 and
#(2,4,6,8,...,100} =50  and
#2-N = 0.

THEOREM 1.27.4. #N = #N; = #7Z = #Q = #R = 0.

DEFINITION 1.27.5. Let A be a set.
By A is finite, we mean: #A < 0.
By A is infinite, we mean: #A = 0.

1.28. The world of sets - part 2.

THEOREM 1.28.1. Let S and T be sets.
Then: 38 —=T or IT <= S.

We omit the proof of the preceding theorem.

We organize “The World of Sets” in such a way that
for any two sets S and T,



CLASS NOTES 43

( S appears above T ) iff ( 3S < T but not 37 — §)
and
( T appears above S ) iff ( 37" < S but not 35 — T)
and
(S appears side-by-side with 7" ) iff (35 — T'and 3T — 5).

According to our next result, that last condition
38T and IT — S
is equivalent to
15 —>>T.
So two sets appear side-by-side iff they are bijective.

The following is called the Schroeder-Bernstein Theorem,

THEOREM 1.28.2. Let S and T be sets.
Assume: ( IS —>T) & (IT — 5 ).
Then: 45 —>T.

We omit the proof of the preceding theorem.

We picture The World of Sets, starting with ¢ at the bottom.

By itself, it occupies the lowest level in The World of Sets.

Then the singleton sets are all side-by-side, just above the lowest level.
On the next level up are all sets with two elements.

On the next level up are all sets with three elements.

Next is an ellipsis, : indicating all the levels of finite sets.

Next is a horizontal line dividing finite sets from infinite sets.
Somewhere above that line appears N.

First question: Are there any infinite sets that are strictly below N.
The next theorem answers that in the negative:

THEOREM 1.28.3. Vset S, (S is infinite) < (3N — S).

We omit the proof of the preceding theorem.

So, in The World of Sets, the level with N is the lowest level that
is above the dividing line between finite and infinite sets. We draw a
line just above that level. Any set below that line is referred to as a
countable set, and any set above that line is said to be uncountable.
Any set on the same level with N is called countably infinite. Formally:
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DEFINITION 1.28.4. Let S be a set. Then:
S is countable means: 1S — N and
S is uncountable means: 1S — N and
S is countably infinite means: 35 —> N.

Note that, by Schroeder-Bernstein, a set is countably infinite iff it is
both countable and infinite.

Next question: Where do we place Q?

We first look at the set Q n (0;00) of positive rational numbers:
THEOREM 1.28.5. 3N —»> Q n (0; o).

Proof. The sequence
(11, 2/1,1/2 , 3/1,2/2,1/3 , 4/1,3/2,2/3,1/4, , ... )
is a surjection N —-> S.  Then IN —-> Q n (0; o0). O

By Theorem 1.25.7, in The World of Sets,

there are no surjections from a set to a set on a higher level.
Then Theorem 1.28.5 says that

Q N (0; 00) is either at the countable level with N, or else below.
Unassigned HW: Show that Q n (0; o) is countably infinite.

We next show that we place Q on the same level with N,
that is, Q belongs on the level of countably infinite sets.

THEOREM 1.28.6. The set Q is countable.

Proof. By Theorem 1.28.5, choose a function s s.t. s : N —> Qn(0; o0).
Then the sequence
(0, s1,-81 , S2,—S2 , 83,—S3 , ... )
is a surjection N —-> Q.  Then, by Theorem 1.25.7, 3Q — N.
Since id" : N — Q, we get IN — Q.
Then, by Schroeder-Bernstein, N <> Q. 0

Next question: Where do we place Ny and Z?

The next theorem says that if three sets admit a cycle of injections,
then they admit a cycle of bijections:
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THEOREM 1.28.7. Let A, B,C' be sets.
Assume (JA - B )& (IB—C ) & (3C — A).
Then (FA —>> B ) & (3B —>>C ) & (3C —>> A).

Proof. By composition, since ( 3B «— C' ) & ( 3C — A ),
we see that 4B «— A.
So, since 34 < B, by Schroeder-Bernstein, we get: 34 <> B.
By composition, since ( 3C' — A ) & (A — B ),
we see that 3C — B.
So, since 4B — C', by Schroeder-Bernstein, we get: 3B <—> C.
It remains to show: 3C —> A.
By composition, since (3A < B ) & (3B — ('),
we see that 44 — C.
So, since 3C — A, by Schroeder-Bernstein, we get: 3C <> A. O

THEOREM 1.28.8. Let A, B,C' be sets.
Assume (A< B< C ) & (FJA—>C).
Then (3A —> B ) & (3B —> ().

Proof. Since A € B < C, we see that
id*: A~ B and id’:B—C.
Then JA— B and dB < (C.
Since A —> (', by inversion, we get 3C' <> A. Then 3C' — A.
Then, by Theorem 1.28.7, (3A <> B ) & (3B —> (). O

THEOREM 1.28.9. The sets Ny and Z are both countably infinite.

Proof. By Theorem 1.28.6, AN —> Q.
Since N € Ny € Q and N —> Q,
we conclude, from Theorem 1.28.8 that dN «—> Nj,.
Then Nj is countably ininite. Want: Z is countably infinite.
Since Nc Z < Q and N —> Q,
we conclude, from Theorem 1.28.8 that IN <> Z.
Then Z is countably infinite. 0

In The World of Sets, we now see that
N, Ny, Z, Q are all on the countably infinite level.
Next question: Where do we place R?

DEFINITION 1.28.10. Let A, B be sets. Then:
= {functions f|f: A— B}.
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DEFINITION 1.28.11. Let T be a set. Then:
= {sets S|S<T}.

THEOREM 1.28.12. {3,4, 5}{172} =
2 > 3 ’ 2> 4 ) 2. 5
2~3) 7 \2—4) 7 \2-5) "
2 —> 3 ? 2 —s 4 9 2 s 5 .
THEOREM 1.28.13. Let A, B be finite sets. Then #(B*4) = (#B)#4.
THEOREM 1.28.14. {0, 1}{78%

Y

70 70 70 70

{ 8—0 |, [ 8—0 |, [ 8—>1],|8—>1],
90 91 90 91
71 71 71 71
8—0 |, [ 8—0 ], 8—>1],] 81 }
90 91 90 91

THEOREM 1.28.15. Let S be a set.
Then f — f*{1} : {0,1}° —> 25

We omit the proof.
Applying Theorem 1.28.15 to the case S = {7,8,9}, we see:
Fo FH1) 2 {0,1}T89 <os 2789}
Since, in Theorem 1.28.14, we calculated {0, 1}{78%
in order to calculate 2{7%% we can simply, for each f e {0, 1}{7#}
calculate f*{1}, and assemble the resulting sets into a set of sets:

THEOREM 1.28.16. 2{7:89}

{ R
Mmoo, qmey L (18, {7,8,9) }

The following is a consequence of Theorem 1.28.15:

THEOREM 1.28.17. Let S be a set.
Then 3 {0,1}% <> 25,
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THEOREM 1.28.18. Let S be a set.
Then x +— {x} : S — 25,

The preceding theorem is left as Unassigned HW.
The following is a consequence of the preceding theorem.

THEOREM 1.28.19. Let S be a set.
Then 35 < 2°.

THEOREM 1.28.20. Let S be a set.
Then 325 — S.

The preceding theorem is proved by “Cantor diagonalization”.
That proof is omitted.
The preceding two theorems tell us that, in The World of Sets,
for any set S, 2 must be placed strictly higher than S.
As a consequence, while ¢F is at the bottom of the World of Sets,
there is no top to The World of Sets; that is,
for any set S, the set 2° is higher; moreover,
by Theorem 1.28.17, 29 is side-by-side with {0, 1}%.

For any two bijective sets A and B,
24 and 28 are bijective as well:

THEOREM 1.28.21. Let A, B be sets.
Assume 3A —> B.
Then 324 <> 28,

The proof is an Unassigned HW.

In The World of Sets, we create a level
called the “continuum cardinality” level,
into which we place the sets 2N, 2No 2% 2Q
This level also has the sets {0, 1}, {0, 1} {0, 1}%, {0, 1}<.

NOTE: There is an Axiom of Set Theorem called the “Continuum Hy-
pothesis”, which states that there are no sets strictly between countably
infinite and continuum cardinality. Some set-theorists may adopt this
axiom, while others adopt its negation as an axiom. In this course, we
are agnostic about this question.

We now turn to proving that R has continuum cardinality.
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THEOREM 1.28.22. 3{0, 1} — R.

Idea of proof: The mapping which sends
fef{0,1}N  to the base ten number 0.f fof3--- € R
is an injection.

NOTE: It is not surjective because 0.2 is not in the image. The only
digits allowed are 0 and 1.

NOTE: Because we do not allow the digit 9, the map is 1-1.

THEOREM 1.28.23. 3{0, 1}" —> [0;1].

Idea of proof: The mapping which sends
fe{0,1}"  to the base two number 0.f; fof3--- € [0;1]
is a surjection.

NOTE: It is not injective because, in base two, 0.01111 - -- = 0.10000 - - - .

NOTE: The number 1 is in the image because 1 = 0.1111 - - -.
THEOREM 1.28.24. 3[—1;1] — {0, 1}".

Proof. By Theorem 1.28.23, 3{0, 1} —> [0;1].

So, since x — 2z — 1:[0;1] -»> [—1;1],

by composing, we get 3{0, 1} —> [-1;1].

Then, by Theorem 1.25.7, we get 3[—1;1] — {0, 1}, O

THEOREM 1.28.25. IR — [—1;1].

Proof. Define f: R — (=1;1) by: Ve e R, f, = x/v/1 + 22.
Define g : (—1;1) = R by: Yy e R, g, = y/+/1 — y2.
Then go f =id® and f o g = id“%Y, so, by Theorem 1.23.8,
we see that f: R <—> (—1;1).
Then f:R < (—=1;1). Then IR — (—1;1). O

The next theorem asserts that, in The World of Sets,
R belongs on the continuum cardinality level, with 2.

THEOREM 1.28.26. 32" <> R.

Proof. By Theorem 1.28.17, want: 3{0, 1} <> R.
By Theorem 1.28.22, 3{0, 1}V «— R.
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By Theorem 1.28.25, 3R — [—1;1].
By Theorem 1.28.24, 3[—1;1] — {0, 1}V,
Then, by Theorem 1.28.7, 3{0, 1} <> R. O

1.29. Partitions.

DEFINITION 1.29.1. Let S be a set of sets.
By S is pairwise-disjoint, we mean:
VA BeS, (A#B)= (AnB=).

We have { [1;3], [3;5] } is NOT pairwise-disjoint,
because [1;3] n [3;5] = {3} # O.

By contrast, { [1;3) , [3;5) } IS pairwise-disjoint.

Note also that we may put in the empty set:
{[1;3), [3;5), & } IS pairwise-disjoint.

DEFINITION 1.29.2. Let X be a set and let S be a set of sets.
By S is a partition of X, we mean:
S is pairwise-disjoint  and | JS = X.

Let X :=[1;5), S := {[1;3),][3;5), T}
Then S is a partition of X.
However, the empty set really plays very little role here,
so we can remove it, as follows:
We have S5 = S\{} = {[1;3), [3;5)},
and S is also a partition of X.
More generally, we have:

THEOREM 1.29.3. Let X be a set and let S be a partition of S.
Then S8 is a partition of X.

DEFINITION 1.29.4. Let X be a set.

Let P and Q be two partitions of X.

By P is a refinement of Q, we mean:
VPeP,dQ e Q s.t. P Q.

Let X :=[1;5), @ == {[1;3), [3:5) }, P = {[L:2), [%3), [3;4), [45) }.
Then P is a refinement of Q.
Note that {[1;2), [2;3) } is a partition of [1;3)
and that {[3;4), [4;5) } is a partition of [3;5),
so each element of Q is partitioned by a subset of P.
More generally, we have:
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THEOREM 1.29.5. Let X be a set.
Let P and Q be two partitions of X.
Assume that P is a refinement of Q.
Let Qe Q. Let S :={PeP|PcQ}.
Then S is a partition of Q.

DEFINITION 1.29.6. Let X be a set.
Let P and Q be two partitions of X.
By P and Q are comparable, we mean:
P is a refinement of @  or Q is a refinement of P.
By P and Q are incomparable, we mean:
P and Q are not comparable.

Let X :=[1;7), P := {[1;4), [4,7)}, Q :== {[1;3), [3;5), [5,7) }.
Then P and Q are incomparable.
However, by intersecting each element of P with each element of Q,
we can find a partition of X that is
simultaneously a refinement of P and a refinement of Q,

as follows. We compute:

[L4)A[13) = [13),  [L4]n[35) = [34), [1:4)n[57) - 2,

57 A [153) = @, [47)A[3:5) = [45),  [47)n[57) = [57).
Let S = {[1;3), [3:4), &, &, [4:5), [:7) }.
Then § is a partition of X and, also,

S i1s a common refinement of P and Q.
More generally, we have:

THEOREM 1.29.7. Let X be a set.
Let P and Q be two partitions of X.
Let S . ={PnQ|PeP, Qe Q}.
Then: S is a partition of X  and
S is a refinement of P and S is a refinement of Q.

1.30. Algebra of functionals.

DEFINITION 1.30.1. Let f be an object.
By f is a functional, we mean: ( f is a function) & (I; < R).
That is, a functional is a real-valued function.

DEFINITION 1.30.2. Let f be a functional.
Then is the functional defined by:

VZL‘, (_f)ac = _fac'
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THEOREM 1.30.3. Vfunctional f, D_; = Dy.
THEOREM 1.30.4. —(1,2,3,...) = (-1, -2,-3,...).

DEFINITION 1.30.5. Let f be afunctional, c € R.
Then and f - ¢ are the functionals defined by:
Ve, (¢ fle = ¢ fa and
Ve, (f-¢0)s = fo-c.

The “” is often omitted.
THEOREM 1.30.6. 2 (1,2,3,...) = (2,4,6,...) = (1,2,3,...) - 2.

THEOREM 1.30.7. V functional f, Vce R, c¢- f = f-c and Dy =
Dy = Dy..

THEOREM 1.30.8. Y functional f,1-f = f and (1) - f=—Ff.
DEFINITION 1.30.9. Let f and g be functionals.

Then’f +g‘ and’f —g‘ and’f : g‘ and | f/g| are the functionals
defined by:

Vo, (f+9)x Jz + Ga and
Ve, (f—=9)e = fo— 0 and
Ve, (f9)s = fo 0 and
VQ?, (f/g):v = f:p/gz

The “” is often omitted. We sometimes write i instead of f/g.
g

THEOREM 1.30.10. Let f and g be functionals. Then:
f+rg=g+z and f—g=—(g—f) and f-g=g-f and
Dyrg =Dfg=Dysig =D Dy and Dy =Dy 0 [g*(RF)].

DEFINITION 1.30.11. Let f be a functional, c € R. Then:

c/fland| f/c| are the functionals defined by:

Ve, (¢/f)e = ¢/fs and
Vﬂf, (f/c)x = fx/c

We sometimes write ; instead of ¢/f and / instead of f/c.
c

THEOREM 1.30.12. Let se RY, t e RN, Then s- (1/t) = s/t.

Proof. We have Dy.(1/;) € N and Dy, < N.
Want: Vj e N, (s-(1/t)); = (s/t);.
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Given j € N. Want: (s-(1/t)); = (s/t);.
We have (s-(1/1)); = s;- (1/t); = s;- (1/1;)
= si/t; = (s/1);.

1.31. Balls in R.

In the next definition, B(a,¢) is called

the open ball about a of radius e.
We are sometimes sloppy and forget to say “open”.
By default, in this course, a “ball” is an open ball.

DEFINITION 1.31.1. Letae R, e e R.
Then |B(a,e)| := {xreR s.t. |z —al <e}.

THEOREM 1.31.2. Letae R, ¢ > 0.
Then B(a,e) = (a—e;a+¢).

THEOREM 1.31.3. B(0,1/6) = (—1/6;1/6).

DEFINITION 1.31.4.
VaeR, |B(a)| := {B(a,r)|r > 0}.
Br := {B(a,r)|aeR, r>0}.

The next theorem is the Subset Recentering Theorem:

THEOREM 1.31.5. Let C € Bg, v € C.
Then 3B € B(x) s.t. B< C.

Proof. Choose a € R, r > 0 s.t. C' = B(a,r).

Since z € C' = B(a,r), we get |z —al <.

Let e:=7r—|r—al. Thene>0. Let B:=B(z,¢).
Then B e B(z). Want: B< C.

Want: Vze B, ze C.

Given ze B.  Want: ze C.

Since z € B = B(x,e), we get |z —z| <e.

Then |z —z|<e=r—|la—x|, sol|z—z|+|z—a|l<r.
Then |z —a| < |z — 2|+ |z —a] < 7.

Then |z —a| <r, soze B(a,r).

Then z € B(a,r) = C.

THEOREM 1.31.6. Letbe R, a <b.
Let g € (a;b).  Then: 3¢ > 0 s.t. B(q,e) < (a;b).
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Proof. Let ¢ := (a+0)/2, r:= (b—a)/2.
Then B(c,r) = (c—r;c+r) = (a;b).
Let C := B(c,r). Then C = (a;b) and C € Bg.
Since ¢ € (a;b) = C, by Theorem 1.31.5,
choose B € B(q) s.t. B< C.
Since B € B(q), choose € > 0 s.t. B = B(q,¢).
Then e > 0. Want: B(q,¢) < (a;b).
We have: B(q,e) = B< C = (a;b). O

The next theorem is the Superset Recentering Theorem:

THEOREM 1.31.7. Let B € Bg, a € R.
Then 3C € B(a) s.t. B< C.

Proof. Choose a € R, p > 0s.t. B = B(a,p).

Let s :=|a—a|]. Let C:= B(a,p+ s).

Then C € B(a). Want: B c C.

Want: Vx e B, x € C.

Given x € B.  Want: z € C.

Since x € B = B(a,p), we get |z —al <p.

We have |z —a| < |z —a|+|a—a| <p+s, solr—al<p+s.
Then z € B(a,p+s) =C. O

1.32. Bounded sets in R.

DEFINITION 1.32.1. Let S < R.
By S is bounded, we mean: 3B € Bg s.t. S < B.

DEFINITION 1.32.2. Let S < R.
By S is unbounded, we mean: S is not bounded.

THEOREM 1.32.3.
[1;2] is bounded.
[1;00) is unbounded.
{1,1/2,1/3, ...} is bounded.
{2,4,6,8, ...} is unbounded.

DEFINITION 1.32.4. Let X < R.
By X is bounded above, we mean: 3z € R s.t. X < z.
By X is bounded below, we mean: 3z e R s.t. z <
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THEOREM 1.32.5. Let t € RV,
Assume t is convergent.  Then Iy is bounded above.

Proof. Want: 4z e Rs.t. [ < z.

Since t is convergent, choose a € R s.t. t — a.

Since t — a, choose K € N s.t., Vj € N,
(j>K) = (It —al <1).

Then: Vje[K.»), a—1<t;<a+ 1.

Let b:= max{ty,...,tx}.

Then: Vje[l.K], t;<b and Vje|[K.»), t;<a+ 1l

Let z := max{a + 1,b}. Then ze R. Want: [; < z.

Want: Vyel;, y < z.

Given y e ;. Want: y < z.

Since y € I, choose j e D, s.t. y =¢;. Want: ¢; < z.

At least one of the following is true:

() j€[1..K] or (B) je[K..0).

Case (a): Since j € [1..K], we get t; < b.
Then ¢t; < b <max{a+ 1,b} = z, s0 t; < z.
End of Case (a).

Case (f3): Since j € [K..c0), we get t; < a + 1.
Then t; <a+ 1 <max{a+1,b} = z,s0t; < z.
End of Case (). O

THEOREM 1.32.6. Let S € R. Then:
[ S is bounded | < [ (S is bounded above) & (S is bounded below) |.

THEOREM 1.32.7. Let S,T < R.
Assume T is bounded and S cT.
Then S is bounded.

THEOREM 1.32.8. Let s and t be sequences.
Assume  t is a subsequence of s and 1 is bounded.
Then 1, s bounded.

Proof. Since I is bounded and I; < I, it follow that I; is bounded. [
THEOREM 1.32.9. Vfinite FF < R, F is bounded.

Proof. Since min F' < F' < max F,
we see that F'is bounded below and above.

Then f is bounded. 0
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DEFINITION 1.32.10. Let S < R, t e R.

By S is strictly-t-bounded, we mean:
VYa,be S, |a—b| <t.

By S is semi-t-bounded, we mean:
VYa,be S, |a—b| <t

THEOREM 1.32.11.
[—2;5) is strictly-T-bounded.
[—2;5] is NOT strictly-7-bounded, but IS semi-7-bounded.
Vte R, N s NOT strictly-t-bounded.
VteR, & IS strictly-t-bounded.

THEOREM 1.32.12. YVa € R, ¥r > 0, B(a,r) is strictly-2r-bounded.

THEOREM 1.32.13. Let SC R, t > 0.
Assume s is strictly-t-bounded.
Then: VYaeS, S < Bla,t).

The next theorem is UnHW:

THEOREM 1.32.14. Let S < R. Then:
(S is bounded) < (3t >0 s.t. S is strictly-t-bounded ).

THEOREM 1.32.15. Let ac R, C, D € B(a).
Then C ~n D,C v D € {C, D}.

Proof. Choose r,s > 0 s.t. C' = B(a,r) and D = B(a, s).

Let ¢ := min{r, s}.

Then C' n D = B(a,t).

Also, t € {r,s}, so B(a,t) € {B(a,r), B(a,s)}.

Then C' n D = B(a,t) € {B(a,r), B(a,s)} = {C, D}.

Want: C v D € {C, D}.

Let u := max{r, s}.

Then C'u D = B(a,u).

Also, u € {r,s}, so B(a,u) € {B(a,r),B(a,s)}.

Then C' v D = B(a,u) € {B(a,r), B(a,s)} = {C, D}. O

THEOREM 1.32.16. Let X,Y < R.
Assume X and Y are both bounded. Then X Y s bounded.

Proof. Since X and Y are both bounded,
choose A, Be Brst. X € Aand Y C B.
By Theorem 1.31.7, choose C, D € B(0) s.t. A< C and B < D.
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By Theorem 1.32.15, C v D € {C, D}.
Then C v D e {C,D} < B(0) < Bg, so C u D € Bg.
It therefore suffices to show: X vY < C u D.
We have X uY c AuB<cCuD.

THEOREM 1.32.17. Let A < R. Assume A is bounded.
Then 3r > 0 s.t. A< B(0,7).

Proof. Since A is bounded, choose B € Br s.t. A < B.

By Theorem 1.31.7, choose C' € B(0) s.t. B < C.

Since C' € B(0), choose r > 0 s.t. C' = B(0,7).  Then r > 0.
Want: A< B(0,7). Wehave A< B< C = B(0,r).

1.33. Hausdorff property of the real numbers.
The next theorem is called the Hausdorff property of R.

THEOREM 1.33.1. Let a,be R. Assume a # b.
Then 3¢ > 0 s.t. (B(a,e)) n (B(b,e)) = .

Proof. Since a # b, we get b —a # 0, so |b—a|] > 0.
Let e := [b—al/2. Then e > 0.
Want: (B(a,e)) n (B(b,e)) = .
Assume (B(a,e)) n (B(b,¢)) # &. Want: Contradiction.
Choose z s.t. z € (B(a,e)) n (B(b,¢)).
Since x € B(a,¢), we get |z —a| <e.
Since x € B(b,¢), we get |t —b] <e.  Then |b—z| <e.
By the Triangle Inequality, |b —a| < |b — x| + |z — al.
Then |b—a| < |b—z|+ |z — a]
<e+e=2=|b—al,
so |b—al < |b— a|. Contradiction.

1.34. Density of Q in R.

THEOREM 1.34.1. Let a,b e R.
Assume b —a > 1. Then dk € Z s.t. a < k < b.

Proof. By the AP, choose j € Ns.t. j > —a.
Let a:= 7+ a. Then a > 0. Let 8 :=j +b.
By the AP, choose A € N s.t. A > a.

Then A € (a;0) and A e N € Z.

Then A € (a;0) " Z Then A € (o;0) N Z # .
Since a > 0, we get (a;0) < (0; ).
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Then (a;0) N Z < (0;0) N Z.
So, since (0;00) N Z = N, we get (a;0) N Z < N.
Then J # (o;0) N Z < N.
Then, by the Well-Ordering Axiom, min( (o;0) N Z ) # ®.
Let k := min( (a;0) N Z ).
Then k € (a;0) N Z. Then k € Z. Then kK — 1 € Z.
Moreover, since k — 1 < k = min( (a;00) N Z ),
we get Kk — 1 # (a;0) N Z.
So, since k — 1 € Z, it follows that kK — 1 # (a; ).
So, since k — 1 € Z < R, we get £ — 1 € R\(q; 0).
Then k —1 e R\(a;0) = (—0;a] <a,so k —1 < a,s0 k <a+ 1.
So, since 1 < f —a, we get k < a+ (f — a), and so k < f.
Also, k€ (a;0) N Z < (o;0) > e, 80 kK > . Then oo < k < f3.
Let k:=rk—j. ThenkeZ—-j<Z. Want: a <k <b.
We havea—j<k—j<f—7j,s0a<k<b. O

The following is HW#7-2:

THEOREM 1.34.2. Let s,t € R.
Assume s <t. ThendxeQ s.t. s <x <t.

1.35. Some topology on R.
The boundary of a set X is denoted 0.X, ad is defined as follows:

DEFINITION 1.35.1. Let X < R.
Then [0X] = {qeR | (Ise XN st. s > q)
& (e RX)N st t—q)}.

Thinking of X as “we”, of R\X is “they” and 0X as “the wall”,
then the wall consists of the points that both we and they can approach.

THEOREM 1.35.2. Let X := (0;1). Then 0X = {0,1}.
Proof. Define s,t,u,v e RN by: VjeN,
1 y 1 1 1 " 1
= — . - Jp— - , [— —_—.
J+1 j j+1 jh
Then se XN and t e (R\X)N and s > 0 and t — 0, so 0 € 0X.
Also, ue XN andve (R\X)Y andu — 1 and v — 1,80 1 € 0X.

Then {0,1} =€ 0X. Want: 0X < {0,1}.
Want: Vge 0X, q¢e{0,1}.

Sj
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Given g€ 0X. Want: ¢e{0,1}. Want: ¢ [0;1]\(0;1).
Want: ¢ € [0;1] and ¢ ¢ (0;1).
Since ¢ € 0X, choose y e XN s.t. y — ¢
and choose z € (R\X)N s.t. z — ¢.

We have: VjeN, y;el, € X =(0;1) < [0;1],s0 0 <y; <1
So,asy — q,weget: 0 < ¢g<1. Thenqgel[0;1]. Want: q¢ (0;1).
Assume g € (0;1).  Want: Contradiction.
Let C := B(1/2,1/2). Then C = (0,1).
Since g € (0;1) = C, by the Subset Recentering Theorem,

choose B € B(q) s.t. B< C.
Since B € B(q), choose € > 0 s.t. B = B(q,¢).
Since z — ¢, choose K € N s.t., Vj € N,

(j2K) = (J5—d <2).
Since z € (R\X )Y, we have I, € R\ X.
Since K > K, by choice of K, we get |zx — q| < &, so z € B(q,¢).
Then zx € B(q,e) = B< C = (0;1) = X, so zx € X.
Also zg € [, € R\ X, and so zx ¢ X.  Contradiction. L]

The following is an unassigned HW:

THEOREM 1.35.3.
0[0;1] = 0[0;1) = 0(0; 1] = {0, 1}.

THEOREM 1.35.4. VX CR, 0X =a(R\X).

Thinking of X as “we”, of R\X is “they” and 0X as “the wall”,
then our wall is their wall.

Idea of proof:  Keep in mind: R\(R\X) = X.
If a point in R can be approached
both by a sequence in X and by a sequence in R\ X,
then it can be approached
both by a sequence in R\X and by a sequence in R\(R\X).
Thus any point in 0.X is a point in d(R\X).
Then 0X < 0(R\X). The reverse inclusion is similar. QED

The closure and interior of a set X are denoted ClX and Int X,
and defined as follows:
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DEFINITION 1.35.5. Let X < R.

Then = X uoX and
= X\0X.

We also use Cly and Cl(X) to denote Cl X.
We also use Inty and Int(X) to denote Int X.

Any set is between its interior and closure:
THEOREM 1.35.6. Let S < R. ThenIntS < S < CIS.

Unassigned HW:
Int(0;1) = Int[0; 1] = Int[0; 1) = Int(0, 1] = (0;1) and
C1(0;1) = ClJ0;1] = C1[0; 1) = CI(0,1] = [0; 1]

In fact:

THEOREM 1.35.7. Letbe R and let a <b.  Then:
VS € {(a;b), [a;b], [a;0), (a;b]},
Intg = (a;b) and Clg = [a;b].

DEFINITION 1.35.8. Let X < R.
By X s closed, we mean: C1X = X.
By X is open, we mean: Int X = X.

Note that:
[0;1] is closed and

(0;1) is open and
[0;1) is neither and
(0; 1] is neither.

THEOREM 1.35.9. Let X € R.  Then:
[ (X isopen) < (0X < R\X) | and
[ (X is closed) < (0X < X)) ].

Part of proof:

Xisclosed = ClX =X « XuiX =X < 0X c X.
Thinking of X as “we”, of R\ X is “they” and 0X as “the wall”,
one could say:

we and they both have the same wall.

However,
we might own the wall OR
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they might own the wall OR
we both might own part of it.
In the first case, we are closed and they are open.
In the second case, we are open and they are closed.
In the third case, we are neither open nor closed
and they are also neither open nor closed.

Keep in mind that

showing that a set fails to be open
is NOT the same as

showing that it is closed.
Similarly

showing that a set fails to be closed
is NOT the same as

showing that it is open.
Many sets are neither open nor closed.
Closed an open are not opposites.
However they ARE complementary, in the following sense:

THEOREM 1.35.10. Let X < R. Then
[(X is open) < (R\X is closed)] &
[( X is closed) < (R\X is open)].

Thinking of X as “we”, of R\X is “they” and 0X as “the wall”,
then saying that we none of the wall (we are “open”)

is the same as saying they own all of it (they are “closed”).
Also, saying that ~ we own all of the wall (we are “closed”)

is the same as saying they own none of it (they are “open”).

We know that some are closed and some are open,
but many sets are neither.
Question: Are any sets BOTH closed AND open.

DEFINITION 1.35.11. Let X < R.
By X 1is clopen, we mean: X is closed and open.

For us to be clopen, it would have to be true that
both we and they own all of the wall,

but, since we n they = ¢F, this would mean that
the wall simply doesn’t exist.
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That is,
VX c R, (X isclopen) iff (0X=¢g).

THEOREM 1.35.12. Let X < R.  Then:
(X is clopen) < (X =R)v(X=02)).

Idea of proof:

Since X is clopen, 0X = &.

Assume that X # R and X # ¢. Want: Contradiction.
Since X # J, choose p s.t. pe X.

Since X € R and X # R, choose g e R s.t. ¢ ¢ X.

Since pe X and ¢ ¢ X, we get p # ¢, so either p < q or ¢ < p.

Then either pe X n (—w0;q) or pe X n (g;0).

In the first case, let r := sup(X n (—o0;q)).

In the second case, let r := inf(X n (g; 0)).

In either case, one can show (with work) that r € 0X.
Since r € 0X, we get: 0X # (.

Then ¥ # 0X = . Contradiction. QED

THEOREM 1.35.13. Let SC R, ae R.
Then: a€IntS < 30 >0 s.t. B(a,0) < S.

Proof. Proof of =:
Assume a € IntS. Want: 3§ > 0 s.t. B(a,d) < S.

Assume —(30 > 0 s.t. B(a,6) € S). Want: Contradiction.

We have: V6 > 0, B(a,d) & S.

Then: Yo > 0, (B(a,d))\S # &.

For all j e N, let Q; := (B(a, 1/j))\S.

Then: Vj € N, we have: Q; #< and Q; < R\S.

Define z € (R\S)" by: Vj e N, z; = CHg,.

We have: VjeN, z; € Q; = (B(a,1/j))\S < B(a, 1/j).

Then: VjeN, |z; —a| <1/j. Then z — a.

Let y := (a,a,a,a,...). Theny — a.

Since a € IntS = S\dS < S, we get: y e S™.

Since yeSY and y—a and ze (R\S)Y and 2z — aq,
we conclude that: a € 0S.

Since a € IntS = S\0S, we get: a ¢ dS.  Contradiction.

End of proof of =.

61
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Proof of <:
Assume 36 > 0 s.t. B(a,0) < S. Want: a € IntS.
Choose § > 0 s.t. B(a,d) < S. Want: a € S\0S.
We have |a —a| =0 < §, so a € B(a,?).
Since a € B(a,d) < S, it remains to show: a ¢ 0S.
Assume a € 0S.  Want: Contradiction.
Since a € 05, choose z € (R\S)" s.t. 2 — a.
Since z — a, choose K € N s.t., Vj € N,
(72 K) = (| —al <0).
Since z € (R\S)N, we get: zx € R\S.
Since K > K, by choice of K, we get |zx —a| < J, and so zx € B(a, ).
Then zx € B(a,d) €S, 80 zx € 5.
Since zx € R\S, we get z ¢ S.  Contradiction.
End of proof of <. O

Proof. Unassigned HW. O
The following is called monotonicity of interior:

THEOREM 1.35.14. Let S,T < R.
Assume S < T. Then Int S < IntT.

Proof. Unassigned HW. O
The following is called monotonicity of closure:

THEOREM 1.35.15. Let S,T < R.
Assume S < T. Then C1S < CIT.

Proof. Unassigned HW. O

For any U < R, we have Int U < U, and so:
U=1IntU iff UcIntU.

For any U < R, for any a € R, we have:
aelntU iff 30 > 0 s.t. B(a,0) < U
iff BeB(a)st. BCU.

For any U < R, we have:
U is open iff U=IntU
iff UcntU
iff VaeU,aeIntU
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iff Vae U, 30 > 0s.t. B(a,0) = U
iff Vae U, Be B(a)st. BCU.

It follows that the singleton set {0} is not open.
THEOREM 1.35.16. Let U € Bg. Then U is open.

Proof. Want: Yx e U, 3B € B(z) s.t. B U.
Given z € U. Want: 3B € B(z) s.t. B< U.
By the Subset Recentering Theorem, 3B € B(z) s.t. B < U. d

THEOREM 1.35.17. Let U,V < R. Assume U, V are both open.
Then: UouV and U NV are both open.

Proof. This is HW#11-4. U

THEOREM 1.35.18. Let C, D < R. Assume C, D are both closed.
Then: CnD and C u D are both closed.

Proof. Let U := R\C and V := R\D.
Then U and V' are both open.
Then U UV and U n'V are both open.
Then R\(U u V) and R\(U n V') are both closed.
We have R\(UuV)=R\U)n (R\V)=CnD
and R\(UnV)=R\U)u R\V)=CuD.
Then C' n D and C' U D are both closed. O

2. SEQUENCES IN R

2.1. Limit of a sequence in R.

DEFINITION 2.1.1. Let s be a sequence, K € N.
Then the K-tail of s is (Sk, Sk11,SK12,---)-

THEOREM 2.1.2. The7 tail of (1,1/2,1/3,...) is (1/7,1/8,1/9,...).
We next define limit of a sequence in R:

DEFINITION 2.1.3. Let s€ RY, ae R. Then means:
Ve >0, dK e N s.t., Vj e N,
(j=2K) = ([sj—al<e).

We next define the constant function on S with value a:



64 SCOT ADAMS

DEFINITION 2.1.4. Let S be a set, a an object. Then:
CY1: S — {a} is defined by:
vreS, C%x)=a.

THEOREM 2.1.5. Va, CY = (a,a,a,a,a,a,...).
THEOREM 2.1.6. Let a € R. Then C§ —a.

Proof. Want: Ve > 0, 4K € N s.t., Vj e N,

(j=K) = (I(C); —al <e).
Given € > 0. Want: 3K € Ns.t., Vj e N,

(j=K) = (I(C); —al <e).
Let K := 1. Then K € N.
Want: VjeN, (j=>K) = (|(CY);—a|<e).
Given j € N. Assume j > K. Want: |(C)); —a| <e.
We have [(CN); —a| =|a —a| = 0] =0 < &.

THEOREM 2.1.7. (1,1/2,1/3,...) — 0.

Proof. Let s :=(1,1/2,1/3,...). VieN,s;=1/j.
Want: s — 0.
Want: Ve > 0, 3K e Ns.t., Vj e N,

(72K) = (ls;—0]<e).
Given ¢ > 0. Want: K e Ns.t., Vj e N,

(j2K) = (ls;—0]<=).
By the AP, choose K € Ns.t. K > 1/e.  Then K € N.
Want: VjeN, (j=>2K ) = (|s; -0/ <e).
Given jeN. Assume j > K. Want:|s; — 0| <e.
Since € > 0, we get: 1/e > 0 and 1/(1/e) = e.
Since j = K > 1/e, we get j > 1/e.
Since j > 1/e > 0, we get 1/j < 1/(1/¢).
Since j € N> 0, we get j > 0,80 1/ >0, s0 |1/j| =1/5.
Then [s; — 0] = ;| — [1/3] = 1/j < 1/(1/e) = =.

DEFINITION 2.1.8. Let s € RY. Then means:
VM eR, dK e N s.t., Vje N,
(j=2K) = (s;>M).

DEFINITION 2.1.9. Let s € RY. Then means:
VN eR,dK e N s.t., Vj e N,
(j=K) = (s;<N).
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THEOREM 2.1.10. Let s € RY, a,ce R.
Assume s — a. Thenc-s—c-a.

Proof. Want: Ve > 0, 4K € N s.t., Vj € N,

(j=K)= (|(c-s);—c-a|l<e).
Given € > 0. Want: 3K € Ns.t., Vj e N,

(j=2K) = ((c-s)j—c-al <e).
Let p:=¢/(|c| + 1). Then p > 0.
Since s; — a, choose K € Ns.t., VjeN,

(j =2 K) = ([s; —al <p).
Then K e N. Want: VjeN, (7= K) = (|(c-s); —c-a| <¢).
Given j € N. Assume j > K. Want: |(c-s); —c-a| <e.
Since j = K, by the choice of K, we have |s; —a| < p.
By definition of p, we have |c| - p < e.

Then |(c-s); —c-a|l = |c-s; —c-a
= [c-(s; —a)]
= [c|-|s; — al
< Jel-p < e O

THEOREM 2.1.11. Let s,t € RY, a,be R.
Assume s — a and t — b. Then s+t — a+b.

Proof. Want: Ve > 0, 4K € N s.t., Vj € N,
(1=2K)= (|(s+t);—(a+b)| <e).
Given € > 0. Want: 3K € Ns.t., Vj e N,
(j=K)= (|[(s+t);—(a+b)| <e).
Since s — a, choose L € N s.t., Vj € N,
(J=1L) = (ls; —al <¢/2).
Since t — b, choose M € N s.t., Vj e N,
(j=M) = ([t; —b| <¢/2).
Let K := max{L, M}. Then K € N.
Want: VjeN, (j=K)= (|(s+t);—(a+b)|<e).
Given j € N. Assume j > K. Want: |(s+1t); — (a+b)| <e.
Since j = K > L, by the choice of L, we have |s; —a| < /2.
Since j = K > M, by the choice of M, we have |t; — b| < /2.
Then [(s+1t); —(a+0b)] = |(s; +1;) — (a+ )]
= |(s; —a) + (t; - b)|
< sj—al +[t; = bl
< (e/2)+ (¢/2) = e. O
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THEOREM 2.1.12. Let s,t € RY, a,be R.
Assume s — a and t — b. Then s-t— a-b.

Proof. Want: Ve > 0, 4K € N s.t., Vj e N,
(G2 K) = ([(s-);— (a-b)] <=).
Given € > 0. Want: 3K € Ns.t., Vj e N,
(G2 K) = ((s-);— (a-b)] <2).
Let p := min{1,e/(|b] +|a| +2)}. Then p > 0.
Since s — a, choose L € N s.t., Vj € N,
(72 L) = (Is;—al < p).
Since t — b, choose M € N s.t., Vj € N,
(32 M) = (lt;—bl < p).
Let K := max{L, M}. Then K € N.
Want: VjeN, (j=K)= (|(s-t);—(a-b)|<e).
Given j € N. Assume j > K. Want: |(s-t); — (a-b)| <e.
Since j = K > L, by the choice of L, we have |s; — a| < p.
Since j = K > M, by the choice of M, we have |t; — b| < p.
By definition of p, we have: p <1 and p- (|b| + |a| + 1) <e.
By the Naive Product Rule,

(sj-tj) —(a-b)=(s;—a)-b+a-(t; =)+ (s; —a) - (; = b).
Then [(s-); — (a-b) = I(s;-4;) - (a-b)
((sj—a)-b+a-(t;=b)+ (s; —a)-(t; =)
35— al - o] + lal - 1t — bl +|s; — al - [ — ]
p-lbl+lal-p+p-p
p- (b + la + p)
p-(|b| +la| +1) < e.

THEOREM 2.1.13. Let s € (R])Y, a e RY.

Assume s > a.  Then 1/s — 1/a.

Proof. Want: Ve > 0, 4K € N s.t., Vj e N,
(1= K) = ([(1/s); = (1/a)| < ).
Given € > 0. Want: 3K e Ns.t., Vj e N,
(1= K) = ([(1/s); = (1/a)| <e).
Since a € R, we get |a| > 0 and a® > 0.
Let p := min{|a|/2, - a?/2}. Then p > 0.
Since s — a, choose K € N s.t., Vj € N,
(j=K) = ([sj—al <p)
Let K := max{L, M}. Then K € N.
Want: VjeN, (j=K)= ((1/s); —(1/a))| <e).

A A/
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Given j € N. Assume j > K. Want: |(1/s); — (1/a)| < e.

Since j > K, by the choice of K, we have |s; —a| < p.

By definition of p, we have: p < |a|/2 and 2-p/a* < e.

We have |a| — p = |a| — (Jal/2) = lal/2, so |a| — p = |al/2.

Since | o | is distance semi-decreasing, we get | |s;| — |a|| < |s; —al.
Since ||5;] — lal| < |5; —al < p,we get Ja| —p < |s;| < la| +p
Then |s;| > |a| — p = |a|/2, so |s;| > |a]/2.

Then [(1/s); ~ (1/a)| = |7
a-S;
_ Ja—sj]
lal - Is;
|s; —a
< RN S —
lal - (lal/2)
P P 2
= = 2. < e ]
SR Tap T e sc
THEOREM 2.1.14. Let s € RY, t € (RX)Y, a € R, be RZ.
Assume s > a andt —b.  Then s/t — a/b.

Proof. By Theorem 2.1.13, 1/t — 1/b.

So, since s — a, by Theorem 2.1.12, we get s - (1/t) — a- (1/b).

By Theorem 1.30.12, s- (1/t) = s/t.  Also a- (1/b) = a/b.

Then s/t — a/b. O

THEOREM 2.1.15. Let se RY, ae R, € > 0.
Assume s — a. Then 3K e N s.t., Vje N, s; € B(a,¢).

Proof. Since s — a, choose K € N s.t., Vj e N,
(7> K) = (ls; —al <2).
Then K € N. Want: Vj e [K..0), s;€ B(a,e¢).
Given j € [K..0). Want: s; € B(a,¢).
We have j e [K...0) € N and je [K.®0) > K,
so, by choice of K, we get |s; —a| <¢, and so s; € B(a,e). O

THEOREM 2.1.16. Let s := (1,—1,1,—1,1,—1,...).

Then, Ya e R, —(s; — a).

Proof. Given a € R.  Want: —(s; — a).
Assume s; — a.  Want: Contradiction.
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Claim: Vj e N, |sj11 — s;| = 2.
Proof of claim: Given j € N. Want: [s;41 — ;| = 2.

We have: (1) je2N or (2) je2N + 1.
Case (1):
We have Sj = —1 and Sj+1 = ]_, S0 Sj41 — §5 = 27 SO ’Sj+1 — Sj| = 2.

End of Case (1).

Case (2):

We have s; = 1 and s;41 = —1, 80 Sj11 — 5 = —2, 50 [sj41 — S| = 2.
End of Case (2).

End of proof of claim.

Since s; — a, choose K € Ns.t., VjeN
(j2K) = (I —al <1).
Let j := K. By the claim |s;41 — 55| = 2.
Since j = K, by the choice of K, we get |s; —a| < 1. Then |a—s;| < 1.
Since j + 1 > K, by the choice of K, we get |s;41 —a| < 1.
Then 2 = |8j+1—8j| < |sj+1—a|+|a—sj| <1l4+1=2.
Then 2 < 2. Contradiction U

The preceding theorem shows some sequences that have no limit.

DEFINITION 2.1.17. Let s € RN. Then[LIMS,|:= {a € R|s — a}.

Alternate notations: LIMS s and LIMS(s).
The preceding theorem asserts that LIMS(1, —1,1,—-1,1,—1,...) = .
The next theorem asserts that, Vs € RY, #LIMS, < 1.

THEOREM 2.1.18. Let se RY, a,be R.
Assume s — a and s — b. Then a = b.

Proof. Assume a # b. Want: Contradiction.
By the Hausdorff property of R, choose € > 0 s.t.

(B(a,e)) n (B(b,e)) = &.
By Theorem 2.1.15, choose K € N s.t., Vj € [K..0), s; € B(a,¢).
By Theorem 2.1.15, choose L € N s.t., Vj € [L..0), s; € B(b,¢).
Let j := max{K, L}. Then j € [K..0) and j € [L..o0).
Since j € [K..0), by choice of K, we get s; € B(a,¢).
Since j € [L..o0), by choice of L, we get s; € B(b,¢).



CLASS NOTES 69

Then s; € (B(a,¢)) n (B(b,¢)).
Then (B(a,¢)) n (B(b,¢e)) # &. Contradiction. O

DEFINITION 2.1.19. Let s € RY. Then .= UE(LIMS,).

Alternate notation: lim(s).

THEOREM 2.1.20. Let se RY, a e R.

Then: (s—>a) < (lims=a).
Proof.

Proof of =:

Assume s — a. Want: lim s = a.

Since s — a, we get a € LIMS s.

Then, by Theorem 2.1.18, we have: Vbe LIMSs, a =b.
Then LIMS s = {a}. Then lim s = UE{a} = a.

End of proof of =.

Proof of <:

Assume lim s = a. Want: s — a.

We have a = lim s = UE(LIMSs) *¢ LIMSs, soae LIMSs.
Since a € LIMS s = {x € R| s — z}, we get s — a.

End of proof of <. O

2.2. Compact subsets of R.

DEFINITION 2.2.1. Let f : R --» R. Then:

f is strictly-increasing means: Yw,z € D¢, (w < z) = (fu < f2)
and

[ is strictly-decreasing means: Yw,z € Dy, (w < z) = (fu > fa).

DEFINITION 2.2.2. Let f: R --» R.
Then f is strictly-monotone means:
f s strictly-increasing or f 1s strictly-decreasing.

THEOREM 2.2.3. (1,4,9,16,25,36,49...) is strictly-increasing.

If we reverse 1 and 4 in the sequence above, we get a new sequence,
(4,1,9,16, 25, 36,49, ...),
which is NOT strictly-increasing.
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THEOREM 2.2.4. Let se RN,  Then:

[ (s is strictly-increasing) < (VjeN, s; < sj11) ]
and

[ (s is strictly-decreasing) < (VjeN, s; > s;:1) .

DEFINITION 2.2.5. Let f : R --» R. Then:

f is semi-increasing means: Yw,x € Dy, (w < z) = (fu < f2),
and

f is semi-decreasing means: Yw,z € Dy, (w < z) = (fu = f2)-

DEFINITION 2.2.6. Let f : R --» R.
Then f is semi-monotone means:
f 1s semi-increasing or f 1s semi-decreasing.
THEOREM 2.2.7.

(1,1,2,2,3,3,4,4,5,5,...) is semi-increasing,
but NOT strictly-increasing.

THEOREM 2.2.8. Let se RY.  Then:

[ (s is semi-increasing) < (VjeN, s; < sj41) ]
and

[ (s is semi-decreasing) < (YjeN, s; = sj41)].

THEOREM 2.2.9. Let f,g: R -—>R.  Then:
[ (f is strictly-increasing ) & (g is strictly-increasing) |
= [go f is strictly-increasing].

THEOREM 2.2.10. Let f,g: R - R.  Then:
[ (f is strictly-decreasing ) & (g is strictly-increasing) |
= [go f is strictly-decreasing]|.

THEOREM 2.2.11. Let f,g: R --»R.  Then:
[ (f is strictly-increasing) & (g is strictly-decreasing ) |
= [go f is strictly-decreasing]|.

THEOREM 2.2.12. Let f,g: R --»R.  Then:
[ (f is strictly-decreasing ) & (g is strictly-decreasing) |
= [go f is strictly-increasing|.

Recall that sup @ = —oo. Also:
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THEOREM 2.2.13. Let X < R.
Assume X # (. Then sup X # —o0.

Proof. We have X <sup X.

Since X # J, choose z s.t. z€ X

Since z€ Z € R > —o0, we get z > —o0.

Then —0 < ze X <supX, so —0 < supX. Then sup X # —c0. [

THEOREM 2.2.14. Let X < R.
Assume X is bounded above. Then sup X # 0.

Proof. Since X is bounded above, choose z € R s.t. X < z.
Then z € UBx > min UBx = sup X.
Then sup X < z€ R < o0. Then sup X < o0, so sup X # 0. O

THEOREM 2.2.15. Let X < R.
Assume X # & and X is bounded above. Then sup X € R.

Proof. We have sup X € R*.  Want: sup X # —oo0 and sup X # 0.
By Theorem 2.2.13, sup X # —oc0.  Want: sup X # 0.
By Theorem 2.2.14, sup X # 0. 0

THEOREM 2.2.16. Let s € RY.
Assume: s is semi-increasing and 1y is bounded above.
Then: s — suplg.

Proof. Since D, = N # (¥, it follows that I, # .
So, since I is bounded above, by Theorem 2.2.15, we get: supl; € R.
Let a := supl,. Then a € R. Want s — a.
Want: Ve > 0,35 >0s.t.,VjeN, (j > K) = (|s;—al <e).
Given ¢ > 0. Want: 30 > 0s.t., VjeN, (j = K) = (|s;j—a| <e¢).
Since a — ¢ < a = sup I, we see that —(a — ¢ = supI;).
Then —(a — e = 1), so choose x € [ s.t. a — e < x.
Since x € I, choose K € Dy s.t. v = sgx.  Then K e D, = N.
Want: VjeN, (j=K)= (|s;j—a|l<e).
Given je N.  Assume j > K. Want: |s; —a| <e.
Want: a —¢ <s; <a+e.
Since s; € I, <suply, =a <a+e, we get s; <a+e.
Want: a — ¢ < s;.
Since s is semi-increasing, since j, K € N = D, and since j > K,
it follows that s; > sk.
Then s; > sk =x,s0x <s;. Thena—e <z <s;. 0
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THEOREM 2.2.17. Let s € RY,
Assume: s is semi-decreasing and g is bounded below.
Then: s — inflg.

Proof. Unassigned HW. O

THEOREM 2.2.18. Let s € RY.
Assume: s is semi-increasing and g is not bounded above.
Then: s — 0.

Proof. Want: VM € R, 3K e N s.t., Vj e N,
(j=2K) = (s;>M).
Given M € R. Want: 1K € N s.t., Vj e N,
(j=K) = (s> M).
Since [ is not bounded above, we get: —(I; < M).
Choose a € I, s.t. a > M.
Since a € I, choose K € D, s.t. a = sg.
Since s € RY, we get D, = N.  Then K € D, = N.
Want: VjeN, (j=>K) = (s;>M).
Given e N.  Assume j > K. Want: s; > M.
By hypothesis, s is semi-increasing, so, since j > K, we get: s; > sg.
By choice of K, we get: sk =a. Then s; > s = a. 0

THEOREM 2.2.19. Let s € RY,
Assume: s is semi-decreasing and 1y is not bounded below.
Then: 5§ — —00.

Proof. Unassigned HW. U

THEOREM 2.2.20. Let s € RY,
Assume s is semi-monotone and I, is bounded. Then s is convergent.

Proof. At least one of the following must be true:
(1) s is semi-increasing or (2) s is semi-decreasing.

Case (1): By Theorem 2.2.16, s is convergent. End of Case (1).

Case (2): By Theorem 2.2.17, s is convergent. End of Case (2). O

THEOREM 2.2.21. Let s be a sequence, k € NV,
Then sok = (Sky, Skyy Sksy---)-

THEOREM 2.2.22.
(1,1/2,1/3,..)0(1,4,9,16,...) = (1,1/4,1/9,1/16,...).
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THEOREM 2.2.23. Vsequences s,
s O (1,4, 9, 16, .. ) = (81, S4, 59, S16y - - )

In the next theorem, we consider the sequence k : N — R defined by:
kiy=4 and k=1 and Vje[3.0), k= >
Note that k = (4,1,9,16,...).

THEOREM 2.2.24. Vsequences s,
so(4,1,9,16,...) = (S4,51,S9,S16,---)-

THEOREM 2.2.25.
(1,1/2,1/3,..)0(4,1,9,16,...) = (1/4,1,1/9,1/16,...).

THEOREM 2.2.26.
(1,-1,1,-1,-1,1,-1,...)0(1,3,5,7,...) = (1,1,1,1,...).

DEFINITION 2.2.27. Let s and t be sequences.
By t is a subsequence of s, we mean:
Istrictly-increasing k € NN s.t. t = so k.

THEOREM 2.2.28.
(1,1/4,1/9,1/16,...) is a subsequence of (1,1/2,1/3,...).
(1/4,1,1/9,1/16,...) is NOT a subsequence of (1,1/2,1/3,...).
(1,1,1,...) is a subsequence of (1,—1,1,—1,1,—1,1,—1,...).

THEOREM 2.2.29. Let s be a sequence.
Then s is a subsequence of s.

Proof. Since id" € N¥ and id" is strictly-increasing and s o id" = s,
we conclude that: s is a subsequence of s. O

THEOREM 2.2.30. Let s be a sequence and let t be a subsequence

of s.
Then I, < 1.

Proof. Choose a strictly-increasing £ € NN s.t. t = so /.
Then I; = I, < L. O

THEOREM 2.2.31. Let A be a set, s € AN,
Let t be a subsequence of s. Then t € AN,

Proof. Choose a strictly-increasing £ € NN s.t. t = so /.
Since /: N—> Nand s : N — A, we get sol: N — A.
So, sincet = sol, we get t : N — A.  Then t € AV, O
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DEFINITION 2.2.32. Let s € RY,
By s is convergent, we mean: daeR s.t. s — a.

THEOREM 2.2.33.
(1,1/2,1/3,...) is convergent.
(1,-1,1,—-1,1,—1,...) is not convergent.

The following is left as unassigned HW:
THEOREM 2.2.34. Vs € RY,

(s—> o) = (s isnot convergent ).

THEOREM 2.2.35.
(2,4,6,8,10,12,...) is NOT convergent.

While the set of extended reals R* does not have a standard “distance”,
as R does, it does have a standard topology, if you happen to know
what that means. We have:

(2,4,6,8,10,12,...) is convergent in R*, but NOT in R and

(1,-1,1,-1,1,—1,...) is NEITHER convergent in R* NOR in R.
For any s € RY, if we say s is convergent, and if we want to be com-
pletely clear, we should say “in R” or “in R*”; however, in this course
we will always mean “in R”. We do not even assume the reader knows
what a topological space is, so “convergent in R*” is not defined.

THEOREM 2.2.36. Let s,t,u be sequences.
Assume:  u is a subsequence of t and t is a subsequence of s.
Then: u s a subsequence of s.

Proof. Since u is a subsequence of ¢,
choose a strictly-increasing £ € NN s.t. w =t o /.
Since t is a subsequence of s,
choose a strictly-increasing k € N¥ s.t. t = so k.
Since ko /€ NN and k o ¢ is strictly-increasing and v = so ko ¢,
we conclude that: u is a subsequence of s. O

THEOREM 2.2.37. Let k € NN, Assume k is strictly increasing.
Then: VjeN, k;j=j.

An informal proof is as follows:
Since k is increasing, we have: k; < ko < k3 < .. ..
Want: k’l = 1, kQ = 2, l{/‘g = 3, etc.
We have: k1 e N> 1,s0 k; > 1.
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Then ko > k1 = 1 and ky € N, so ky € (1..0)
Then ks > ko > 2 and k3 € N, so k3 € (2..0)
Then kg > k3 > 3 and ks € N, so ky € (3..00)
Ete.

A formal proof, by math induction, is left as unassigned HW.

\YAR\ARV,
INGNCII N

THEOREM 2.2.38. Let s,t € RY, a e R.
Assume: s—a and tis a subsequence of s.
Then: t—a.

Proof. Want: Ve > 0, 4K € N s.t., Vj e N,
(j>K) = (It —al <2).
Given € > 0. Want: 3K e Ns.t., Vj e N,
(32 K) = (Jt;—a <2).
Since s — a, choose K € N s.t., Vj € N,
(> K) = (Js;—a <),
Then K e N. Want: VjeN, (j=>K) = (|t;—a|<e¢).
Given j e N.  Assume j > K. Want: |t; —a| <e.
Since t is a subsequence of s,
choose a strictly-increasing £ € NN s.t. t = so /.
By Theorem 2.2.37, ¢; = j.
Since £; > j = K, by the choice of K, we have |s;, —a| < €.
Then [t; —a| = [(sol); —a| = [s;, —a| <e. O

The proof of the following two theorems are both
similar to that of the preceding theorem.
They are left as unassigned HWs.

THEOREM 2.2.39. Let s,t € RY,
Assume: s — o0 and tis a subsequence of s.
Then: t — 0.

THEOREM 2.2.40. Let s,t € RN,
Assume: s— —oo and t is a subsequence of s.
Then: t — —o0.

Because of the following three theorems, we know:
Let s,t € RY, a e R*.
Assume: s—a and tis a subsequence of s.
Then: t— a.
It is natural to wonder if there might be some way to prove this,
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without breaking the proof up into three cases:

a=—-00 or a€R or a=o0.
There IS such a proof, but it requires the reader to understand the
basics of topology.

DEFINITION 2.2.41. Let s € RY,
By s is subconvergent, we mean:
3 subsequence t of s s.t. t is convergent.

In this course, for any s € RY, saying
s is subconvergent
will always mean
s is subconvergent in R.
By Theorem 2.2.36, convergent implies subconvergent.

THEOREM 2.2.42. YV convergent s € RY, s is subconvergent.
THEOREM 2.2.43. (1,1/2,1/3,...) is subconvergent.

THEOREM 2.2.44.
(1,-1,1,-1,1,—-1,1,—1,...) is subconvergent, but NOT convergent.

THEOREM 2.2.45. (2,4,6,8,...) is NOT subconvergent.
THEOREM 2.2.46. (1,2,1,4,1,6,1,8,...) is subconvergent.
DEFINITION 2.2.47. Let X < R, se XV,

By s is convergent in X, we mean:
Jze X s.t. s — 2.

THEOREM 2.2.48. (1,1/2,1/3,...) is convergent in [0;1].
THEOREM 2.2.49. (1,1/2,1/3,...) is NOT convergent in (0;1].

DEFINITION 2.2.50. Let X € R, s e XV,
By s is subconvergent in X, we mean:
dsubsequence t of s s.t. t is convergent in X.

By Theorem 2.2.36, convergent in X implies subconvergent in X.

THEOREM 2.2.51.
(1,-1,1,-1,1,-1,1,—1,...) is subconvergent in [—1;1].

THEOREM 2.2.52. (1,1/2,1/3,...) is subconvergent in [0;1].
THEOREM 2.2.53. (1,1/2,1/3,...) is NOT subconvergent in (0;1].
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DEFINITION 2.2.54. Let K < R.
By K is compact, we mean:
Vse KN, s is subconvergent in K.

DEFINITION 2.2.55. Letae R, r > 0.
Then |B(a,r)| == {xeR st |z —a| <7 }.

In the preceding definition, B(a,r) is called

the closed ball about a of radius r.
Note: VYaeR,Vr>=0, Bla,r)=[a—7r;a+7]
Then: Vr >0, B(0,r) = [-r;r].

THEOREM 2.2.56. Let X < R.
Assume X is compact.  Then X is bounded.

Proof. Assume X is not bounded. Want: Contradiction.

Claim 1:  YjeN, X\(B(0,7)) # &.

Proof of Claim 1: Given j e N.  Want: X\(B(0,5)) # .
Since B(0,5) < B(0,j + 1), we see that B(0,7) is bounded.
Since B(0, j) is bounded and X is not bounded, X & (B(0, j)).
Then 3z st. both xeX and x¢ B(0,j).

Then 3z s.t. z € X\(B(0,5)). Then X\(B(0,7)) # &.

End of proof of Claim 1.

By Claim 1, Vj e N, X\(B(0,5)) # &.
Define s € X™ by: Vj € N, s; = CHy, (50,))-
Since s € XN and X is compact, s is subconvergent in X.
Choose a subsequence t of s s.t. t is convergent in X.
Then t is convergent, and so II; is bounded.
By Theorem 1.32.17, choose r > 0 s.t. I; < B(0, r).
By the AP, choose j e Ns.t. j > r.
Since t is a subsequence of s,

choose a strictly-increasing £ € NY s.t. ¢t = s o /.
Then ¢; > j. Let m:=¢;. Thenm > j.

Claim 2: |$;| > m.
Proof of Claim 2: By Claim 1, X\B(0,m) # (.
By definition of s, we have s,, = CHy, 5(0,m))-
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Then s,, € X\(B(0,m)).
Then —(s,, € B(0,m)). Then —(|s,,| <m). Then |s,,| > m.
End of proof of Claim 2.

We have t; e I, < B(0,7), so [t;] <.

We have s, = s¢; = (sol); =t;, and so [t;| = [spl.
By Claim 2, |s,,| > m.  Then [t;| = [s,| >m =7 > 1, s07r < |t].
Then r < |t;| <7, s07r <7. Contradiction.

2.3. Maximizing compact subsets of R.

THEOREM 2.3.1. Let L < R.
Assume L is compact. Then L is bounded above.

Proof. This follows from Theorem 2.2.56.
By HW#T7-3 (The Squeeze Theorem), we have:

THEOREM 2.3.2. Lette RY, a e R.
Assume: VjeN, a—(1/j) <t;<a.
Then: t — a.

We restate the theorem with ¢ replaced by s:

THEOREM 2.3.3. Let se RY aeR.
Assume: Yje N, a—(1/5) <s; <a.
Then: s — a.

THEOREM 2.3.4. Let L < R.
Assume L is compact and nonempty.  Then max L # ©.

Proof. Since L is compact, L is bounded.

Since L is bounded and nonempty, sup L € R.

Let a:=supL. ThenaeR. Want: maxL = a.
Want: a€ L and a > L.

We have a =supL > L. Want: a€ L.

Forall jeN,let X; := L n (a—(1/j); o).

Claim 1: Vj e N, X, # &.
Proof of Claim 1: Given j € N. Want: X; # .
Because a — (1/j) < a =sup L,

we get —(a — (1/j) = sup L),

and so —(a — (1/j) = L),
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and so dz € L st. a— (1/7) < =z,
andsodze Lst.x € (a—(1/5); ),
andso L n (a—(1/7); 0) # &,
and so X; # (.

End of proof of Claim 1.

Define s € LN by: Vj e N, s; = CHy,.

Claim 2: Vje N, a—(1/j) < s; < a.
Proof of Claim 2: Given j € N. Want: a — (1/j) < s; < a.

79

Wehaves; € X; =L n (a—(1/j); 0) < (a—(1/j); ©) > a—(1/7).

Want: s; <a. s;e€ L <suplL = a.
End of proof of Claim 2.

By Claim 2 and the Squeeze Theorem, we know that s — a.
Since s € LN and since L is compact,
it follows that s is subconvergent in L.
Choose a subsequence ¢ of s such that ¢ is convergent in L.
Choose be L s.t. t — .
Since s — a and t is a subsequence of s,
it follows that t — b.
Since t — a and — b, it follows that a = b.
Thena=0b€ L.

2.4. Sums of sequences.

THEOREM 2.4.1. Let a € [0; 0)Y.

Define se RN by: VjeN, s; =a; + - + aj.

Then: (i) if Iy is bounded, then s is convergent and
(i1) if Is is unbounded, then s — 0.

Proof. Part (i) follows from Theorem 2.2.16.
Part (ii) follows from Theorem 2.2.18.

2.5. Cauchy sequences and convergence.

DEFINITION 2.5.1. Let s € RY. By s is Cauchy, we mean:
Ve >0, dK e N s.t., Vi, j e N,
(Z,jZK) = (|Si—8j| <€).
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We sometimes say:
“s is Cauchy iff,
for every € > 0, s has an strictly-e-bounded tail.”
More accurately:
“s is Cauchy iff,

for every € > 0, s has a tail whose image is strictly-e-bounded.”

THEOREM 2.5.2. Let s € RY. Assume s is Cauchy.
Then I, is bounded.

Proof. Choose K e Ns.t., Vi,jeN, (i,j > K) = (]s; —s;| <1).

Then: VieN, (i=>K)= (|s;—sk|<1).
Then: Vie{K,K+1,K+2,...}, |s;—skg|<L
Then: Vie{K,K+1,K+2,...}, s;€B(sg,1).
Then {SK,SK+1,SK+2, .. } - B(SK, 1)

Then {sk, Sk+1,Sk+2,- .-} is bounded.

Also, {s1,...,Sk} is finite, and therefore bounded.
Then {s1,...,Sk} U {Sk, Sk+1, SK+2, - - -} is bounded.
So, since I = {s1, $2,83,...} = {S1,..., 5k} U {Sk, SK+1, SK+2, - -

we conclude that I, is bounded.

THEOREM 2.5.3. Let s € RY. Then:
(s is Cauchy ) < ( s is convergent ).

Proof. This is HW#8-3 and HW+#38-5.

3. CONTINUITY AND LIMITS OF FUNCTIONS R — R
3.1. Continuity of functions R --» R.
We next define continuity of function R --» R at a point:

DEFINITION 3.1.1. Let f : R --»> R, a € Dy.
By f is continuous at a, we mean:
Ve >0, 30 > 0 s.t., Vo € Dy,

(|lz—al<d) = (|fe— fo <€).

It is our convention that, for any function f, for any object a,
if a ¢ Dy, then fis NOT continuous at a.

THEOREM 3.1.2. Let f :R -—> R, ae Dy, £ >0, 6 > 0,
Then: (VxeDy, (|x—a|l<d) = (|fo— faol <€) )
< ( fu(B(a,0)) < B(fa;€) ).

3

O
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THEOREM 3.1.3. Let f: R --» R, a € D.
Then: ( f is continuous at a ) =
(Ve>0,36 >0 s.t. fo(B(a,0)) € B(fa,2) ).

THEOREM 3.1.4. Define f : R — R by: Vx e R, f, = 22
Then Ya € R, f is continuous at a.

Proof. Given a € R. Want: f is continuous at a.
Want: Ve > 0, 30 > 0 s.t., Vo € Dy,
(lz —al <d) = (Ife = ful <€)
Given € > 0. Want: 30 > 0 s.t., Vo € Dy,
(lz—al <0) = (Ifa = fal <€)
Let § := min{1,¢/(2+2-|al)}. Then ¢ > 0.
Want: Vr e Dy, (|lz—a| <d) = (|fe — fal <e).
Given x € Dy. Assume |z —a| < 0. Want: |f, — f.| <¢e).
We have § <1land - (1+2-]a|]) <e.
We have |f, — fo| = [2% — a®| = |(z — a)(x + a)|
=lz—a|l |x+al <5 (x| +|al).
Also, [z| = |r —a+a| < |z —a|l+ |a| <+ |a,
so |z|+]a] < d+2-]a]. So,since d < 1, we get |z|+|a] < 1+2-]al.
Then |2% —a?[ <& (Ja| + |a]) <61+ 2 a]) <e. O

THEOREM 3.1.5. Let f : R --»> R, ae Dy, ce R.

Assume f is continuous at a.  Then c - f is continuous at a.

Proof. Want: Ve > 0, 30 > 0 s.t., Vz € Dy,
(lz—al <) = (l(c-fla—(c- flal <€)
Given ¢ > 0. Want: 35 > 0 s.t., Vo € D4,
(lz—al <) = (l(c- fla—(c: flal <€)
Let p:=¢/(1+]c[). Then p>0and |c|-p<e.
Since f is continuous at a, choose > 0 s.t., Vo € Dy,
([z—al <d) = (|fa = fol <p).
Then § > 0. Want: Ve eD.;, (|z—a| <d) = ([(c-fla—(c-fd] <
).
Given z € D..s. Assume |z —a| <. Want: |[(c¢- f), — (¢ f)d| <e.
We have z € D..; = Dy and |z —a| < 0,
so, by the choice of §, we get: |f. — fu| < p-
Then (¢ fla— (c- Nal = |- fo—c- £
= |C' (f:c_fa)|
= el |fo = fal < lel-p < & O
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The following is HW#5-1:

THEOREM 3.1.6. Let f,g: R --+ R, a e R.
Assume f and g are both continuous at a.
Then f + g is conlinuous al a.

THEOREM 3.1.7. Let f,g: R --> R, a e R.
Assume f and g are both continuous at a.
Then f - g is continuous at a.

Proof. Want: Ve > 0, 30 > 0 s.t., Vo € Dy,
(Jr—al<8) = (I(/9)s—(f )al < ).
Given € > 0. Want: 36 > 0 s.t., Vo € Dy,
([z—al <d) = ([(f 9= (f9al <€)
Let p := min{1, e/ (g + |fal +2)}.
Then p>0and p<land p-(|g.| + [fa]l + 1) < e
Since f is continuous at a, choose A > 0 s.t., Vo € Dy,
(lz—al <A) = (|fa = fal <p).
Since g is continuous at a, choose pt > 0 s.t., Vo € Dy,
([z—al <p) = (|92 = gal <p)-
Let ¢ := min{\, u}. Then 6 > 0.
Want: Ve € Dy, (|lz—al<0) = (|(f-9):—(f-9)d <€).
Given z € Dy.,. Assume |x —a| < §. Want: |(f - g9). — (f - 9)d] <e.
We have 6 < A and § < p.
We have 2 € Dy, = D; (D, € Dy and |z —a] < § < A,
so, by the choice of A\, we get: |f, — fa| < p-
We have z € Dy, =D; (D, €D, and |z — a| <6 < p,
so, by the choice of u, we get: |g, — ga| < p-
By the Naive Product Rule,
fo 9o = far9a = (fo=fa) 9o+ far (9o —9a) + (fo—fa) (92— Gu)-
Recall: p- (|ga] + |fal +1) <e.
Since p < 1, we get p-(lgal + |fal +p) < p-(lgal + | fal +1).
Then ’(fg)w - (f'g)a‘ = ’fxg:r - fa'ga|
[(fe = fa) " 9a + fa (92— ga) + (fo — fa) - (92 — Ga)|
|fo = fal  19al + [fal 192 = gal + |fo = fal - |92 — gal
pl9al + [fal-p+pp
p-(lgal + 1ol +p) < p-(lgal +fal +1) <& O

| I/A/AN |

Unassigned HW:
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THEOREM 3.1.8. Let f,g:R - R, a e R.
Then: (a€Dyyr) < (faoeD,).

The following is HW#5-2:

THEOREM 3.1.9. Let f,g: R --+ R, a e R.
Assume:  f is continuous at a  and g is continuous at f,.
Then g o f is continuous at a.

We next define continuity of function R --+» R on a subset of R:

DEFINITION 3.1.10. Let f: R --» R, S < R.
By f is continuous on S, we mean:
Yae S, f is continuous at a.

We next define continuity of function R --» R:

DEFINITION 3.1.11. Let f: R --» R.
By f is continuous, we mean:
f s continuous on Dy.

THEOREM 3.1.12. Let f : R --» R, S < Dy.
Assume f is continuous on S.  Then f|S is continuous.

Proof. Want: Va € Dy g, f|S is continuous at a.
Given a € Dyg.  Want: f[S is continuous at a.
Want: Ve > 0, 30 > 0 s.t., Vo € Dy,

(Jz—al <0) = ([(f|S)e = (f|S)al <€)
Given € > 0. Want: 30 > 0 s.t., Vo € Dy,

(Jz—al <0) = ([(f|S)e = (fIS)al <€)
Since a € Dyg = S and since f is continuous on S,

it follows that f is continuous at a.

Then choose 0 > 0s.t., VreDy (lzr—al<d) = (|fe— fu <¢).
Then 6 > 0.
Want:  Voe Dy, (Jv—al <) = (|(f19). — (1)l < 2).
Given x € Dyjg. Assume |z —a| < 0. Want: |(f|S), — (f|5)d] <e.
We have Dy g = S. By assumption, S < Dy. Then z € Dy = S < Dy.
So, as |z — a| < §, by choice of §, we get: |f, — fu| < e.
Since z,a € Dyg = S, we get (f|S), = fo and (f|5)s = fa-
Then|(f|5)x_(f‘s)a|:|fx_fa|<5' O
The following is HW#5-3:

THEOREM 3.1.13. Let f: R --» R, se (D), ae R.
Assume  f is continuous ata and s—a. Then fos— f,.
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3.2. Lipschitz and uniformaly continuous functions R --» R.
The next two definitions explain Lipschitz, for functions R --+» R.

DEFINITION 3.2.1. Let f :R--» R, L > 0.
By f is L-Lipschitz, we mean:
Vw,z,€ Dy, |fy — ful < Llz —w|.

DEFINITION 3.2.2. Let f : R --» R.
By f is Lipschitz, we mean:
3L > 0 s.t. f us L-Lipschitz.

The next two theorems are left as unassigned exercises.
The first asserts that we need not check w and z when w = .
The second asserts that it’s okay to lable the smaller of the two as w.

THEOREM 3.2.3. Let f:R--»R, L > 0.
Then: f 1s L-Lipschitz if and only if
Vw,z,e Dy, (w#x) = (|fo — ful < Llz—wl).

THEOREM 3.2.4. Let f:R--»R, L > 0.
Then: f is L-Lipschitz if and only if
Vw,z,e Dy, (w<z)= (|fo — fu] <Llz—w|).

We record a quadruply quantified equivalence to continuity:

THEOREM 3.2.5. Let f: R --» R.
By f s continuous iof and only if
Ve >0, Yw e Dy, 30 > 0 s.t., Vo € Dy,

(lz —wl <d) = (Ife = ful <€)

The preceding theorem is left as a unassigned HW.
The next definition covers
uniformly continuous, for functions R --» R.

DEFINITION 3.2.6. Let f: R --» R.
By f is uniformly continuous we mean:
Ve >0, 30 > 0 s.t., Vw € Dy, Vo € Dy,
(|:C—w’ <5> = (’f:v—fw’ <5)-

Note that

the quantified equivalence for continuity
is similiar to

the definition of uniform continuity;



CLASS NOTES 85

only the order of the quantified causes has been changed.

In the preceding definition, we sometimes replace
“YweDys, VeeDy” by “Vw,xzeDy;”,
for brevity. The reader must remember that
the single V in “Vw,z € D;” counts twice.

We sometimes abbreviate uniformly continuous by u.c.

The following is HW#5-4:
THEOREM 3.2.7. Let f : R --» R.

Assume f is Lipschitz. Then f is uniformly continuous.
The following is HW#5-5:

THEOREM 3.2.8. Let f: R --» R.
Assume f is uniformly continuous. Then f is continuous.

Thus, Lipschitz = u.c. = continuous.
We eventually show that neither of these implications can be reversed:

DEFINITION 3.2.9. Let f : R --» R, w,xz € Dy. Assume w # x.

Then |DQg(w, )| := f‘r—fw.

r—w

Note that DQ(w, z) is equal to
the slope of the secant line between (w, f(w)) and (z, f(x)).

DEFINITION 3.2.10. Let f: R --» R.
Then |DQ;| := {DQs(w,z) | (w,z e Dy)&(w #2)}.

Thus DQ; collects all of the slopes of secant lines for the graph of f.

THEOREM 3.2.11. Let f:R—> R, L > 0.
Then: f is L-Lipschitz if and only if
Vw,a,e Dy, (w#a) = (|DQ(w,a)| < L).

THEOREM 3.2.12. Let f:R— R, L > 0.
Then: f is L-Lipschitz if and only if
Vw,z,€ Dy, (w#2) = (-L<DQiw,z)<L).

THEOREM 3.2.13. Let f:R—> R, L > 0.
Then: f is L-Lipschitz if and only if —L<DQ; < L.
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That is, a function R --» R is L-Lipschitz iff
the slopes of its secant lines are bounded above and below.

x
THEOREM 3.2.14. Define f :R—>R by VreR, f, = ——.
V1+ 22

Then f is 1-Lipschitz.

An examination of the graph of the function f above indicates that
all secant line slopes are strictly between 0 and 1,
or, in other words,
0<DQ; <1
Proving this formally is left as an exercise for the reader.

By contrast, for the squaring function, the graph is a parabola, so
its secant line slopes are neither bounded above nor below.

This indicates that the squaring function is not Lipschitz;

in fact it is not even uniformly continuous:

THEOREM 3.2.15. Define f :R — R by Vo e R, f, = 2°.
Then f is NOT uniformly continuous.

Proof. Assume that f is uniformly continuous. = Want: Contradic-
tion.
Since f is uniformly continuous, choose 6 > 0 s.t., Yw, z € Dy,
(|:E—w| <5) = (|fac_fw| < 1)'
Let w:=1/6 and let x := w + (6/2).  Then w > 0.
Then w,z € R = Dy and |z —w| = [6/2| = §/2 < 9,
so, by choice of §, we get |f, — fu| < 1.
Since w > 0 and § > 0, we get
w-d+(6/2)2 > 0
and so lw- 6+ (6/2)?] = w-d+(5/2)>
Then 1> |fy — ful = 2% — w?| = [(w + (§/2))? — w?|
= w?+2-w-(6/2) + (6/2)* — w?|
= w0+ (6/2)* =w-6+ (§/2)
>w-6=(1/§)-0 =1,
so 1 > 1. Contradiction. U

Define f : R — R by Vz e R, f, = 2%

By Theorem 3.1.4, f is continuous.

However, according to the preceding theorem,
f is not uniformly continuous.
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We therefore see that continuous does not imply uniformly continuous.

Now define f: R —» R by Vx e R, f, = J/x.
We will argue that f is uniformly continuous, but not Lipschitz.
The formal proof that f is not Lipschitz will be left to the reader,
but an examination of the graph of f will show that

if w is close to zero, then DQ(—w,w) is very large.
In fact the slopes of secant lines are not bounded above.
We will supply a formal proof that f is uniformly continuous:

THEOREM 3.2.16. Define f :R > R by Vx e R, f, = J/x.

Then f is uniformly continuous.

Proof. Want: Ve > 0, 36 > 0 s.t., Vw, z € Dy,
(|x—w| <5) = <|fac_fw| <5)'
Given € > 0. Want: 36 > 0 s.t., Vw, z € Dy,
(lr—w|<d) = (|fa — ful <e).
Let § := €%/8. Then § > 0.
Want: Vw,z € Dy, (lz—w|<d) = (|fo — ful <e).
Given w, z € Dy. Assume |z — w| < 0. Want: |f, — fu| <e.
We have 0 < |z — w| < £2/8.
Let s := min{w, z} and t := max{w, z}.
Since s < t, we get /s < /t, and so f, < fi.
Then |w —z| =t —s and |f, — fu| = fi — fs.
Then 0 <t — s < £2/8. Want: f, — f, <e.
Let 0 := fs and 7 := f;. Want: 7 —0 <.
Assume 7 — 0 > €. Want: Contradiction.
Since 7 = 0 + ¢, we get 73 = (0 +¢€)3.
Then 7% > 0° + 30% + 30e? + &°.
Then 73 — 03 > 30% + 302 + &3.
Then 30%c + 302 + ¥ <13 — 0 =t — s < &3/8.
Then 30% + 302 + &% — (£3/8) < 0.
Then 302 + 30e? + (7/8)e® < 0.

7
As 3e3 > 0, dividing by 3¢3, we get: 323 33 §'3€_§<0
o> o 7 o g 1 L7
Then %5 + 2 + - < 0. Then (55 +2- 2 -+~ ] — =+ - <0
en 5+ -+ 57 < en(€2+ - +4> 172"

1
2
1\? 1 7 N2 17
We have 0 < g—l—— ,80 —— + — < g_{__ -4
15 2 € 2
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Then L 6 7 L7 _ (o1 21 7
en — = —— - = — RS - - - - -
24 24 24 4 24 e 2 4 24

o? o 1 1 1 7

= 4+92. 2.2 42 ) -2 4 —

<52+ c 2+4) FREEYIR
1
Then 21 < 0. Contradiction.

3.3. Continuity and topological preimages.

THEOREM 3.3.1. Let f: R --» R.
Assume: Vclosed C' < R, we have: f*C' is closed.

Then: f is continuous.

Proof. Want: Va € Dy, f is continuous at a.
Given a € Dy. Want: f is continuous at a.
Want: Ve > 0, 30 > 0 s.t., Vo € Dy,

(lx—al<0) = (|fo — ful <€)
Given € > 0. Want: 30 > 0 s.t., Vo € Dy,

(lx—al<d) = (|fo = ful <€)
By the Subset Recentering Theorem B(f,,¢) is open.
Let C' := R\(B(fa,e)). Then C is closed.
So, by assumption, f*C' is closed. ~ Then R\(f*C') is open.
We have |f, — fu| =0 < ¢, so f, € B(fa,€),80 fo ¢ C,s0a¢ f*C.
We have a e Dy € R and a ¢ f*C, so a € R\(f*C).
So, since R\(f*C') is open, by a class theorem,

choose § > 0 s.t. B(a,d) < R\(f*C). Then § > 0.
Want: VreDys, (lz—al<d) = (|fe— fal <e).
Given x € Dy.  Assume: [z —a| <J. Want: |f, — f,| <e.
Since |r — a| < §, we get: x € B(a,0).
Then = € B(a,d) € R\(f*C). Then z ¢ f*C, and so f, ¢ C.
We have z € Dy, so f, € Iy.  Since f: R --» R, we get: I; < R.
Since B(f,,¢) € R, we get: R\(R\(B(fa,€))) = B(fa,€).
Since f, € Iy < R and since f, ¢ C' = R\(B(f,,¢€)),
we conclude: f, € R\(R\(B(f,,¢))).

Then f, € R\(R\(B(fa,¢))) = B(fa,€). Then |f, — fa| <e.

THEOREM 3.3.2. Let f : R --» R.
Assume: Yclosed C < R, we have: f*C is closed.
Then: f s continuous.
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Proof. This is HW#11-5. O

3.4. The Intermediate Value Theorem.
Recall: ¥S € R* (S <supS < UBg )& (LBg <infS < 95).

THEOREM 3.4.1. Letae R, b > a, S < [a;b].
Assume S # . Then sup S € [a;b].

Proof. Want: b > sup S > a.

We have b > [a;b] 2 5, so be UBg.  Then be UBg > sup S.
Want: sup S > a.

Since S € [a; b]
Then sup S = S

a, we get S = a.

=
> a, s0, since S # J, we get sup .S > a. O

THEOREM 3.4.2. Let f:R--R, a,bcuveR.

Assume a < b and [a;b] < Dy. Assume c € [a;b) and f, < v.
Assume f is continuous at c.
Then 36 > 0 s.t., Vo € [¢; ¢+ §), (zelad]) & ( fo<wv).

Proof. Let € := v — f.. Since f. <wv, we get: ¢ > 0.

Then, since f is continuous at ¢, choose a > 0 s.t., Vo € Dy,
(Jo—cl<a) = (If— fil <2).

Since c € [a;b) < b, we get b — ¢ > 0.

Let § := min{a, b — c}. Then § > 0.

Want: Vz e [c;e+9), (xela;b]) & ( fo<v).

Given x € [¢;c + 0). Want: (z€[a;b] ) & ( fo <v).

We have = € [¢;c+ d) = c€ [a;b) > a,s0 x = a, so a < x.

We have § = min{a,b— ¢} <b—c¢, 800 <b—c¢,s0c+J <bh.

Then x € [¢;c+0) <c+0 <b,sox <b.

Since a < x and x < b, we see that = € [a;b). Then z € [a;b) < [a;b].

It remains to show: f, <wv.

Since x € [¢; ¢ + 0), we get both ¢ < z and x < ¢ + 0.
Since 0 > 0, we get ¢ — 6 < c.

Since c — 6 < c < x, we get ¢ — 0 < x.

Then ¢ —d <z <c+ 46, and so |z — ¢ < 0.

By definition of §, we have § < a and d < b — c.
By hypothesis, [a;b] < Dy.
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Since z € [a;b] < Dy, and |x — ¢| < § < «, by choice of «,
we conclude that |f, — f.| <e,and so f. —e < fo < f. + €.
Then f, < fo+e=f.+ (v— f.) =v. O

The proof of the following is similar to the proof of the preceding.
It is left as unassigned HW.

THEOREM 3.4.3. Let f:R--»R, a,bc,veR.

Assume a < b and [a;b] < Dy. Assume c € (a;b] and v < f..
Assume f is continuous at c.

Then 36 > 0 s.t., Vo € (¢ — d;¢], (zelad]) & (v<f).

THEOREM 3.4.4. Let f:R--»R, a,bvelR.

Assume a < b. Assume [ is continuous on [a;b]. Assume f, <
v < fp.

Then 3c € [a;b] s.t. f.=wv.

Proof. Exactly one of the following holds:
(A)v="fa or B)v="1y or (C) fa<v < fo

Case (A): Let ¢ := a. Then c € [a;]]. Want: f, =v.
We have f. = f, = v.
End of Case (A).

Case (B): Let ¢ := b. Then c € [a;b]. Want: f.=v.
We have f. = f, = v.
End of Case (B).

Case (C): Let S := {x € [a;b]| f. < v}. Then ¢ = sup S.

By hypothesis f, <wv. Since a € [a;b] and f, < v, we get a € S.
Then S # . Then, by Theorem 3.4.1, sup S € [a; b].

Then ¢ = sup S € [a; b]. Want: f.=v.

We wish to show: (1) fo=v and (2) f. <w.

Proof of (1): Assume f. < v. Want: Contradiction.
We have f. < v. By hypothesis, v < f.
Then f. <v < fy, so f. # fp, s0 ¢ # b.

So, since ¢ € [a;b], we get c € [a; b).

Then, by Theorem 3.4.2, choose § > 0 s.t., Vx € [¢; ¢ + §),
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(zela;b] ) & (fa<v).
Then [¢;c+0) < {x € [a;b] | f. < v}.
Then ¢+ (0/2) € [¢;c+ 0) € {x € [a;b]| f» <v} =S <supS =c.
Then ¢ + (0/2) < ¢, 80 §/2 <0, so 6 < 0.
Then 0 < 6§ <0,s00<0. Contradiction.
End of proof of (1).

Proof of (2): Assume f. > v. Want: Contradiction.

We have v < f.. By hypothesis, f, < v.

Then f, < v < fe, 80 fo # fe, S0 a # c.

So, since ¢ € [a;b], we get c € (a;b].

Then, by Theorem 3.4.3, choose § > 0 s.t., Vx € (¢ — d;¢],
(zelab]) & (v<fe)

Since 0 > 0, we get ¢ — 6 < c.

Since ¢ — 6 < ¢ =sup S = min UBg, we get ¢ — d < min UBg.

Then ¢ — 9 ¢ UBg, s0 =(S <c—4),s0 =(Vx e S, z <c—9).

Then choose z € S s.t. © > c— 6.

Since x € S, by definition of S, we get f, < v.

Since x € S <sup S = ¢, we get z < c.

Since x > ¢ — 9, we get ¢ — § < x.

Since ¢ — 0 < x < ¢, we get z € (¢ — d; ¢].

Then, by choice of §, we get (x € [a;b] ) & (v < f, ).

Then v < f, < v, s0 v <. Contradiction.

End of proof of (2).

End of Case (C). O

THEOREM 3.4.5. Let f:R--»R, a,b,velR.

Assume a < b. Assume [ is continuous on [a;b]. Assume f, >
v = fpe

Then c € [a;b] s.t. f.=wv.

Proof. Let g := —f. Then g, < —v < gp.

By Theorem 3.4.4, choose c € [a; ] s.t. g. = —v.

Then c € [a;b]. Want: f.=v.

Since g = —f, it follows that g. = (—f)..

Then f. = _(_fc) = _((_f)c) = —9c = _<_U) =v. O
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DEFINITION 3.4.6. Va,b e R*, we define:
[a]b] [ min{a, b} ; max{a, b} |
and (alb)| := (min{a,b}; max{a,b}).

THEOREM 3.4.7. [7|1] = [1;7] = [1]|7] and (7|1) = (1;7) = (1]7).
THEOREM 3.4.8. Ya,be R*, ([a|b] = [bla]) & ((a]d) = (bla)).
THEOREM 3.4.9. Let f:R-->R, a«,8,veR.

Assume o < (. Assume f is continuous on [«; (3]. Assume v €

[fa|f5]'
Then Ac € [a; 5] s.t. fo=wv.

Proof. At least one of the following is true:

W) fasfe or (2) fs< far

Case (1): Since fo < fg, we get [folfs] = [fa; f5]-

Then v € [fa‘f/g] [fa, fﬁ], SO fa <v < f/g.
Then by Theorem 3.4.4, 3c € [a; (] s.t. fo = v.

End of Case (1).

Case (2) Since fﬁ < fa, We get [foc|fﬂ] = [fﬁ?fa]'

Then v € [falf5] = [f5; fa], s0 fs < v < fa.

Then by Theorem 3.4.5, 3c € [«; ] s.t. f. = v.

End of Case (2). 0

The following is the Intermediate Value Theorem or IVT:

THEOREM 3.4.10. Let f:R--+R, a,beR.
Assume f is continuous on [alb]. Then [falfo] € f«([alb]).

Proof. Want: Yv € [f.|fs], v € f«([a]b]).
Given v € [f,|fp].  Want: v e fi([a]b]).
Want: Jc € [alb] s.t. f. =v.
Exactly one the following is true:
(I)a=10 or (2)a<b or (3) b <a.

Case (1) veE [fa|fb] = [fa|fa] = {fa}> S0V = fa~
Let ¢ := a. Then c € [alb]. Want: f.=v.
We have f. = f, =v.

End of Case (1).
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Case (2): Since a < b, we get [alb] = [a;b].

Let a:=a, B :=b.

Then o < 3, Also, [«; 8] = [a;b] = [a]b], so [a; B] = [a|b].
Want: Jce [a; (] s.t. fo=v.

Then f is continuous on [«; 5] and v € [ fu|fo] = [falf5]-
Then, by Theorem 3.4.9, 3c € [«; 5] s.t. f. = v.

End of Case (2).

Case (3): Since b < a, we get [alb] = [b; a].
Let a:=0b, § := a.
Then oo < . Also, [a; 8] = [b;a] = [a]b], so [«; B] = [alb].
Want: Jce [a; (] s.t. fo=v.
Then f is continuous on [a|b] and [a; 8] = [a|b], so f is continuous on
lo; B]. So, since v € [fal fo] = [fol fa] = [fal/s];
by Theorem 3.4.9, 3c € [«; ] s.t. fo =v.
End of Case (3). O

A power function on R is a power of id¥,
e.g, x—zt:R—>R.
A monomial on R is a scalar multiple of a power function on R,
e.g., x+— TR —R.
The function f defined in the next proof is an example of
a polynomial on R,
i.e., a finite sum of monomials on R,
e.g., x> T+ 223 -5 +8: R —R.
We leave it as an exercise to show that any polynomial is continuous.

THEOREM 3.4.11. YVaeR, 3z e R s.t. 2° — 23 + 2 = a.

Proof. Given a € R. Want: 3z e Rs.t. 2° —2® + 2 = a.
We have: Vt e R, —|t| <t < |t|. Then —|a| < a < |a].
Define f:R - Rby VzeR, f, = 2° — 2% + .

Then f is a polynomial on R, and so f is continuous.
Want: dJz e Rs.t. f; =a.  Want: aclj.

Let b := max{l,|a|}. Thenb> 1.

Also, b > |a|].  Negating this, we get —b < —|al.
Since b > 1, we get b° = b3, and so b® — b > 0.
Then > — b3 + b >b.  Negating this, we get —b° +b> — b < —b.
Then f, =0> — 0> +b>=b> |a| > q,
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S0 a < fp.
Also, fy = (=b)° — (=b)* + (=b) = =0 + b —b < —b < —|a| < a,
so f_p < a.
Then f, < a < fy, s0 a € [f|fo]-
By the IVT, [f_|fo] < fi[-0[b].
For any function g, for any set S, g.S < I,. Then f,[—b[b] < I;.
Then a € [f_y|fy] < fu[~b|b] < L. O

3.5. Limits at extended real numbers of functions R --» R.

DEFINITION 3.5.1. Letae€ R, § > 0. Then|B*(a,d)|:= (B(a,9))r.

The set B*(a,d) is called
the punctured open ball about a of radius 9.

THEOREM 3.5.2. LetaeR, § > 0. Then:
(ze€B*(a,d)) & (0<|r—a|<d).

DEFINITION 3.5.3. Let f : R --+ R, a,z € R.
By as ¢ — a, f, — z, we mean:
Ve >0, 30 > 0 s.t., Vo € Dy,
(O<|z—a|l<0) = (|fa—2]<e).

Let f:R--+R, a,z€ R, §,e > 0. Then the quantified statement
Vo e Dy, (O<|z—a|l<d)= (|fa—z2l<e)

is equivalent to
fu(B*(a,6)) € B(z.e).

DEFINITION 3.5.4. Let f: R --»> R, aeR.
By as x — a, f, — 0, we mean:
VM e R, 36 > 0 s.t., Vo € Dy,
(O<|z—a|l<d) = (fo>M).

DEFINITION 3.5.5. Let f: R --»> R, a e R.
By as x — a, f, — —o0, we mean:
VN eR, 30 >0 s.t., Vo e Dy,
(O<|z—a|l<d) = (fa <N).

DEFINITION 3.5.6. Let f: R --» R, z e R.
By as x - —w, f, — 2z, we mean:
Ve >0, dN e R s.t., Vo € Dy,
(z<N) = (|fe—2| <e).
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DEFINITION 3.5.7. Let f : R --» R, a € R.
By as x — o0, f, — 00, we mean:
VM eR, 3L e R s.t., Vo € Dy,
(z>L)= (f.>M).

DEFINITION 3.5.8. Let f : R --+ R, a € R.
By as x — o0, f, —> —o0, we mean:
VN eR, 3L eR s.t., Vo e Dy,
(z>L)= (f.<N).

THEOREM 3.5.9. Let f :R >R, ye R}
Assume: asx — —0, f, — 1.
Then: as x — —0, (1/f). — (1/y).

Proof. This is HW#12-3. U
3.6. Forward image of a compact set.

THEOREM 3.6.1. Let f : R --» R, K < Dy.
Assume [ 1s continuous on K and K is compact.
Then f.K is compact.

Proof. Want: Vs e (f,K)Y, s is subconvergent in f, K.
Given s e (f,K)N.  Want: s is subconvergent in f,K.
Want: dsubsequence t of s s.t. t is convergent in f, K.

For all j e N, let A; := (f*{s;}) n K.

Claim 1: YVje N, A; # &.
Proof of Claim 1: Given je N.  Want A; # .
Since s € (f. K)N, we get s; € fi K,
so choose z € K s.t. 5; = f.
Since f, = s; € {s;}, we get x € f*{s,}.
So, since z € K, we get z € (f*{s;}) n K.
So, since A; := (f*{s;}) n K, we get z € A;.  Then A; # .
End of proof of Claim 1.

By definition of A;, we have: Vj e N, A, < K.

By the Claim, we have: Vj e N, A; # (.

Define c € KN by VjeN, g, = CHy;,.

By hypothesis K is compact, so ¢ is subconvergent in K.
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Choose a subsequence 7 of ¢ s.t. 7 is convergent in K.
Choose a strictly-increasing £ € NN s.t. 7 = 0 o L.

Let t := sof. Then t is a subsequence of s.

Want: t is convergent in f, K.

Claim 2: foo = s.

Proof of Claim 2: Want: VjeN, (foo); = s;.

Given j e N.  Want: (foo); = s;.

We have 0 € A; = (f*{s;}) n K < f*{s;},s0 0; € f*{s;}, 50 fo, € {5;}.
Then f,, = s;.  Then (foo); = f;, = sj.

End of proof of Claim 2.

By Claim 2, foo =s. Then foogol =5so/.

Sosince rT=cofandt=so/l, weget for =1.

Since 7 is convergent in K, choose £ € K s.t. 7 — &.

By hypothesis f is continuous on K. Then f is continuous at &.
Then, by HW#6-2, fo7m — fe.

So, since foT =1, we get t — fe.

Since { € K and K < Dy, we get fe € f. K.

So, since t — f¢, we see that ¢ is convergent in f, K. 0

3.7. Semi-monotone subsequences of real-valued sequences.

Note that, in Case (1) of the proof of the following theorem,
¢ is the strict-forward-orbit of min P under f

and that, in Case (2) of the proof of the following theorem,
¢ is the strict-forward-orbit of (max P) + 1 under f.

THEOREM 3.7.1. Let s € RY.
Then dsubsequence t of s s.t. t is semi-monotone.

Proof. Let P := {j e N|Vk € (j..0), sp < s;}.
Then PS N, so PN c NV
Exactly one of the following is true:
(1) P is infinite or (2) P is finite.

Case (1): Since P is infinite, we get: Vje N, ¢ # P\[l..j] < N.
So, by the Well-Ordering Axiom, we get: Vj € N, min(P\[1..5]) # ®.
Define f: P — P by: Vj e N, f(j) = min(P\[1..5]).
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Then, Vj e N, f(5) € P\[1..7].

Define £ € PN by: Vj e N, ¢; = fI(min P).
Then, Vj € N, we have f({;) = {;41.

Then, Vj € N, we have {;1 = f(¢{;) € P\[1..¢;].

Claim A: { is strictly increasing.

Proof of Claim A: Want: Vje N, {;,, > {;.

Given j e N. Want: ¢;.; > {;.

We have ;.1 € P\[1..4;] < N\[1..{;] = (¢;..00) > {;.
End of proof of Claim A.

We have ¢ € PN < NN, so, by Claim A,
s o/l is a subsequence of s.

Let t := sof. Then t is a subsequence of s.
Want: ¢ is semi-monotone.
It suffices to show: t is semi-decreasing.
It suffices to show: t is strictly-decreasing.
Want: V] S N, tj+1 < tj.
Given j e N.  Want: ¢, <t;.
By Claim A, ¢;11 > {;.  Since { € PN, we get (;,1 € P.
Since ¢;41 > ¢; and ¢;11 € P < N, we get: {;11 € (¢;..00).
Since £ € PN, we see that {; € P,

so, by definition of P, we get: Vk € (£;..00), s < sq,.
So, since {41 € (£;..00), we get: s;,,, < s¢;.
Then tj.1 = (s04)j11 = 50, < 8¢, = (s0l); =1;.
End of Case (1).

j+1

Case (2): Since P is finite, we get: max P # ®.

Then max P e P. Let m :=maxP. Thenme P.
Since me P < N, we get me N.  Then m + 1 € (m..0).
For all j e N, let X, := {k € (j..00) | s, = s,}.

Then, Vj e N, X; < (j..00).

Claim B: Yj € (m..0), X; # &.

Proof of Claim B: Given j € (m..c0). Want: X, # .
Since j > m = max P, we see that j ¢ P.

Then, by definition of P, choose k € (j..o0) s.t. s, = s;.
Then, by definition of X, we get: k€ X;.  Then X; # .
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End of proof of Claim B.

We have: VjeN, X, < (j.oo)< N, soX;<N

So, by Claim B, we have: Vj e N, ¢ # X; < N.

Then, by the Well-Ordering Axiom, we get: Vj € N, min X; # ®.
Then, Vj € N, min X; € X;.

We have: ¥j € (m..0), j>m, so (j..00)< (m..o0).

We have: Vj € (m..c0), minX; e X; € (j..00) € (m..0).

Then: Vj € (m..0), minX;e (m..0).

Define f : (m..00) — (m..c0) by: Vj € (m..0), f(j) = min X;.
Then, Vj e N, f(j) € Xj.

We have: VjeN, f(j)eX; < (j.o0), so f(j)e (j..0).
Define £ € (m..c0)N by: Vj e N, ¢; = fi(m + 1).

Then, Vj € N, we have f({;) = {;41.

Then, Vj € N, we have £;,1 = f({;) € Xy;, 50 ;41 € Xy,.
Also, Vj € N, we have (;41 = f({;) € (¢;..00) > {;.

Then /¢ is strictly-increasing.

So, as £ € PN < NN, we get: s o/ is a subsequence of s.
Let t :=sof. Then tis a subsequence of s.

Want: ¢ is semi-monotone.

It suffices to show: t is semi-increasing.

Want: VjeN, ;1 > t;.

Given j e N.  Want: t;,, > t;.

We have £, € Xy, = {k e ({;..0)| s = s¢,}. Then s,
Then tj.1 = (s04)j11 = 50, = 8¢, = (s0l); = 1.

End of Case (2).

285..

Jj+1 J

j+1

3.8. Sequentially-closed subsets of R.

DEFINITION 3.8.1. Let A < R.
By A is sequentially-closed, we mean:
Vse AN, (s is convergent) = (s is convergent in A).

THEOREM 3.8.2. Let A< R.
Then A is sequentially-closed if and only if:
Vse AN VzeR, (s—2z)= (z€A).

THEOREM 3.8.3. Leta,z € R, t e RY.
Assume Vj e N, t; < a.
Assume t — 2. Then z < a.
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Proof. Assume z > a. Want: Contradiction.

Let ¢ := z—a. Then e > 0.

Since t — z, choose K e Ns.t., VjeN, (j=K) = (|t; —z| <e).
By assumption, tx < a. By the choice of K, |tx — z| < e.

Since |t — z| <e, we get z —e <txg < z+e.

Thenty <a=z—(z—a) =z—e < lg, so tx < tg. Contradiction. [

THEOREM 3.8.4. Leta,z € R, t e RY.
Assume Vj e N, a <t,.
Assume t — z. Then a < z.

Proof. Assume a > z.  Want: Contradiction.

Let e:=a—2. Then e > 0.

Since t — z, choose K e Ns.t.,VjeN, (j=>K) = (|t;—z <e).
By assumption, a < tx. By the choice of K, |tx — 2| < e.

Since |t — z| <€, we get z —e <tg < z+e.

Thenty < z+e =z+(a—2) = a < tg, so tx < tg. Contradiction. [

THEOREM 3.8.5. Let a,be R. Assume a < b.
Then [a;b] is sequentially-closed.

Proof. Want: Vs € [a;b]N, Vze R, (s—2) = (z€[a;b]).

Given s € [a;b]Y , ze R.  Assume s —» 2.  Want: z € [a;b].

Since s € [a; ], we get: Vj e N, s; € [a;b].

Then Vj € N, we have a < s; < b.

By Theorem 3.8.3, 2 <b. By Theorem 3.8.4, a < z.
Then a < 2 <b.  Then z € [a;b]. O

THEOREM 3.8.6. Let X < R.
Then: (X is closed) < (X is sequentially-closed).

Proof. Proof of =:

Assume X is closed. Want: X is sequentially-closed.
Want: Vse XN VgeR, (s —>q) = (qge X).

Given s € XN, ge R.  Assume s —¢. Want: ge X.
Assume ¢ ¢ X. Want: Contradiction.

Since ¢ € R and ¢ ¢ X, we get: ¢ € R\ X.

Since S is closed, we get: 0X < X.

Let t :== (¢,¢,¢,q,...). Thente (R\)N and t — g¢.

So, since s € X" and s — ¢, we conclude: g€ 0X.
Then g€ 0X € X, s0qe X.
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Then ge X and ¢ ¢ X. Contradiction.
End of proof of =.

Proof of <:

Assume X is sequentially-closed. ~ Want: X is closed.
Want: 0X < X.

Want: Vge X, ge X.

Given g € 0X. Want: g X.

Since ¢ € 0X, we know: 3s € X"V s.t. s — ¢.

So, since X is sequentially-closed, ¢ € X.

End of proof of <.

THEOREM 3.8.7. Let X < R.  Then:

l

( X is compact ) < (X is closed and bounded ).

Proof. Proof of =:

Assume: X is compact.

Want: X is closed and bounded.

By Theorem 2.2.56, X is bounded. @~ Want: X is closed.
Want: X is sequentially-closed.

Want: Vse XN VgeR, (s —>q) = (ge X).

Given se€ XY, ge R. Assume s —¢. Want: ge X.

Since X is compact and s € X, we know: s is subconvergent in X.

Choose a subsequence t of s s.t. t is convergent in X.
Choose z € X s.t. t — z.

Since s — ¢ and since t is a subsequence of s, we get: t — q.
Since t — g and t — z, we get: ¢ = z.

Since ¢ = z € X, we get: g€ X.

End of proof of =.

Proof of <:
Assume: X is closed and bounded.
Want: X is compact.
Want: Vs e XV, s is subconvergent in X.
Given s € X.  Want: s is subconvergent in X.
Want: dsubsequence t of s s.t. t is convergent in X.
Since s € XN < RY, by Theorem 3.7.1,
choose a subsequence t of s s.t. t is semi-monotone.
Then t is a subsequence of s.  Want: t is convergent in X.
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Since X is closed, we know: X is sequentially-closed.
Want: ¢ is convergent.
Since [; < I, € X and since X is bounded,
we conclude: I; is bounded.
So, since t is semi-monotone, t is convergent.

End of proof of <. U

THEOREM 3.8.8. Let C, K < R.
Assume that C' is closed and that K is compact.
Then C' n K is compact.

Proof. Since K is compact, we get: K is closed and bounded.

Since C' and K are both closed, we get: C' n K is closed.

Since K is bounded and since C' n K < K, we get: C n K is bounded.
Since C' n K is closed and bounded, C' n K is compact. O

3.9. Extreme values of continuous functionals on [0;1].

Our goal, in this section, is to prove:
Vcontinuous f: [0;1] - R, maxI; # ®.
We indicated, in class, why
this is NOT true when [0; 1] is replaced by [0;1).

By Theorem 2.2.53, we see that (0;1] is NOT compact.

THEOREM 3.9.1. Let a,be R. Assume a < b.
Then [a;b] is compact.

Proof. Want: Vs € [a;b]Y, s is subconvergent in [a; b].
Given s € [a;b]N.  Want: s is subconvergent in [a; b].
Want: Jsubsequence t of s s.t. ¢ is convergent in [a; b].
By Theorem 3.7.1, choose a subsequence t of s s.t. ¢ is semi-monotone.
Then ¢ is a subsequence of s.  Want: t is convergent in [a; b].
Since I, < I, < [a;b] < B((a + b)/2; (b — a + 2)/2), we see that I, is
bounded.
Since ¢ is semi-monotone and I; is bounded, ¢ is convergent.
By Theorem 3.8.5, [a; b] is sequentially-closed.
So, since t € [a; b]N and t is convergent,
it follows that ¢ is convergent in [a; b]. O
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THEOREM 3.9.2. Let K <R, f:R--»R.
Assume:  fis continuous on K and K is compact and nonempty.
Then: max f, K # ®.

Proof. Theorem 3.6.1, we get: f,K is compact.

Since K is nonempty, f,/K is nonempty.

Let L := f,K. Then L is compact and nonempty.

By Theorem 2.3.4, max L # ®.

So, since L = f,K, we see that max f. K # ®. O

Recall that our goal for this section was to prove:
Vcontinuous f: [0;1] - R, maxI; # ®.
With the preceding three theorems, we are now ready to prove more:

THEOREM 3.9.3. Letae R, b > a. Let f : [a;b] — R.

Assume f is continuous.  Then maxly # ©.

Proof. Let K :=[a;b]. Then I; = f.D; = fi[a;b] = f. K.

Also, K is nonempty and f is continuous on K.

By Theorem 3.9.1, K is compact.

Then, by Theorem 3.9.2, max f, K # ®.

So, since [y = f, K, we conclude that maxI; # ®. O

3.10. Uniform convergence of sequences of functions R --» R.

DEFINITION 3.10.1. Let D and Y be sets, se (YP)N, z e D.
Then | se(x) |€ YN is defined by: Vj e N, ((s.(z)); = s;(z).

We define pointwise convergence.

DEFINITION 3.10.2. Let D € R, s € (RP)N, f e RP.
By s — f pointwise, we mean: Yz € D, s.(z) — f(x).

Let D S R, se (RP)N feRP.
Then s — f pointwise iff
VreD,Ve>0,dK e Ns.t., VjeN,
(1zK) = (|[s(@)] = [f@)]]<e).

We define uniform convergence:

DEFINITION 3.10.3. Let D € R, se (RP)N, f e RP.
By s — f uniformly, we mean: Ve >0, 4K e N s.t., Vj e N, Vx e D,

(j=2K) = ([lsi@)] - [f@)]]<e).
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THEOREM 3.10.4. Define ¢ : R — R by: Vz € R, ¢(z) = 1/(1+2?).
Define s € (R®)N by: Vje N, Vo e R, s;(z) = ¢(j - x).
Let f: X]?o}' Then s — f pointwise.

From the preceding theorem, we see that:
a pointwise limit of continuous functions can be discontinuous.
By contrast, uniform limits of continuous functions are continuous:

THEOREM 3.10.5. Let D € R, se (RP)N, f e RP.
Assume: s — f uniformly and VjeN, s; is continuous.
Then: f s continuous.

Proof. This is HW#9-2. O

3.11. Open Mapping Theorem.

Let A :=[1;2], B := (3;4], C := [5;7].
Define f: Au B — C by: Vee A, fp=x+4
and Vxe B, f, =z + 3.

Then f: Au B —> (C and f is continuous.
However f~! is not continuous at 6.
So the inverse of a continuous function is not always continuous.
Basically, f glues two intervals, A and B, together,

whereas, whereas f~! tears C apart;

gluing is continuous, while tearing apart is discontinouus. Our goal
in this section is to show, that

if a continuous injection has compact domain,

then its inverse is continuous:

THEOREM 3.11.1. Let K <R, f: K — R.
Assume: K is compact and [ is continuous.
Then: 1 is continuous.

Proof. Since f: K — R, we get Dy = K.
By Theorem 3.3.1, want: Vclosed C € R, (f~1)*C is closed.
Given a closed C € R.  Want: (f~')*C' is closed.
By Theorem 3.8.8, C' n K is compact.
Then, by Theorem 3.6.1, f.(C n K) is compact.
Then f.(C n K) is closed.
So, since (f1)*C' = f.C = f.(C nDy) = f.(C n K),
we conclude: (f1)*C' is closed. O
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3.12. Continuity and uniform continuity on a compact set.

THEOREM 3.12.1. Let f: R --» R.
Assume f is continuous and Dy is compact. Then f is uniformly con-
tinuous.

Proof. Assume f is not uniformly continuous. Want: Contradiction.
Choose € > 0 s.t., V0 > 0, Jw,z € Dy s.t.
(lw =2z <0)&([fu = ful = €).
Let K := Dy. Then K is compact.
Also, V6 > 0, Jw,z € K s.t.
(lw—2z| <0)&([fw— ful = €).
Then: Vj e N, Jw,x € K s.t.
(Jw—2| <1/7)&(|fu = fal = ).
By the Axiom of Choice, choose w,z € KN s.t., Vj € N,
(‘wj _xj| < 1/])&(’fwj _ij‘ = 5)'
Since K is compact, w is subconvergent in K.
Choose a subsequence v of w s.t. v is convergent in K.
Choose g € K s.t. v — gq.
Choose a strictly-increasing £ € NY s.t. v = wo /.
Then wo ¢ — q, so, by HW#10-1, x o ¢ — q.
Since w o £ — ¢ and since f is continuous at g, we get: fowo/l — f,.
Choose AeNst,VieN, (1= A) = ([(fowol),— f,| <eg/2).
Since z o { — ¢ and since f is continuous at g, we get: foxol — f,.
Choose BeNs.t.,VieN, (i=>B) = ([(foxol),— f,] <e/2).
Let ¢ := max{A,B}. ThenieNandi> A andi> B.
Since i = A, we get: |(fowol);, — f,| <e/2.
Since i = B, we get: |(foxol), — f,| <¢e/2.
Let j :=¢;. Then |(fow); — f,| <e¢/2 and |(fox);, — f,| <e/2.
Then |fu, — fql <&/2 and |fy;, — f4| < €/2.
Since £/ € NN and j = ¢;, we get: j € N.
Then, by the choice of w and x, we get: |fu, — fo,| = €.
Then & < [fu, = fo;| < [fu, = fol + | fg = fo,]-
Then € < |fwj - fx3| < |fwj - fq| + |fw3 - fq| < (5/2) + (5/2) =¢c.
Then ¢ <e.  Contradiction. U

4. DIFFERENTIABILITY OF FUNCTIONS R --> R

4.1. The double translate.
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The function fI in the next definition is called the Double Translate
of f based at a.

DEFINITION 4.1.1. Let f: R --» R, a € R.
Then :R --» R is defined by: VheR, (fHn=forn—fa
Note that: Vf : R --» R, Ya € R\D;, we have: fI = .

By HW#6-4, we have:

THEOREM 4.1.2. Let f : R --» R, a € Dy.
Assume that fr is continuous at 0.  Then f is continuous at a.

The following is HW#6-5. It is the Precalculus Chain Rule.
THEOREM 4.1.3. Let f,g: R --—» R, a € Dyy.

Then: (go f)aT = g}ra o f;r
The following is HW#7-5. It is the Precalculus Product Rule.

THEOREM 4.1.4. Let f,g: R --» R, a € Dy.,.
Then: (f-g)x = [T 9¢+ fo- 95 + [T - gs.
4.2. O and o.
DEFINITION 4.2.1.
(o)|: R — R is defined by: Ve eR, (o), =ux.
|o||: R — R is defined by: VreR, |el|, =]|x|.
Ve|: R --»R is defined by: VreR, iJo =./x.
DEFINITION 4.2.2. Let k € Ny. Then
(o)"|: R — R is defined by: VreR, (o)F =2k and

xT

|o|"|: R — R is defined by: VreR, |eF =zl

THEOREM 4.2.3.
(o)) =|e0=CF and (o)' = (o) =id" and[e|' =]e|.

THEOREM 4.2.4. Vk € N, | o [ = (o).
THEOREM 4.2.5. (¢)2|[0;0) : [0;00) <> [0; o0).
THEOREM 4.2.6. +/s — (()2|[0; 50))"".
THEOREM 4.2.7. /s : [0;%0) <>> [0; ).
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DEFINITION 4.2.8. Let f: R --»> R, aeR.
Then f is defined at a means: a € Dy.
Also, f is defined near a means:

B € B(a) s.t. B < Dy.

Because D 4 = [0;0), we get:

THEOREM 4.2.9.
Ve is defined near 0.01 and
Ve is defined at 0 and
Ve is NOT defined near 0.

Convention: Each of a <bora<bora=>=bora>b,
implies that a # ® # b.

THEOREM 4.2.10. Let f :R - R, a € R. Then:
( f 1is defined near a and continuous at a ) =
( Ve>0,30 >0 s.t, VreR,

(lz—al<d) = (Ife = fl <) ).
DEFINITION 4.2.11. Let k € Ny. Then:
ok)| == { f:R-->R|Ve>0,30>0 s.t. Vx e R,
(lzl <d) = (Ifel <e-lz]*) }.

Let k € Ng and f: R --» R. Then: feo(k) iff
Ve >0, mnear 0 wehave —c-|e[F < f<e-|o]r

Let f:R --» R. Then: feo(r) iff

near 0 we have —| o [T < f < | o and
near 0 we have —| o |7/2 < f <|e]7/2 and
near 0 we have —| o [7/3 < f < |e|"/3 etc.

Note that ()" ¢ o(7) and that | e |7 ¢ o(7).

THEOREM 4.2.12. Let k€ Ny, f € o(k).
Then:  fo=0 and [ is defined near 0.

THEOREM 4.2.13. Let f € o(k). Then:  feo(0) iff
(f is defined near 0) & ( f is continuous at 0) & ( fo =0).

DEFINITION 4.2.14. Vz € R, Yk e Ny, = ab . Y.
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THEOREM 4.2.15.
VaeR, a1 — w/G  and
Va e R, (a0)V101 = g = (g!/101)101 and
Va € R, |a3+(1/101)| — |a|3+(1/101) _ |a|3 . |a\1/101 and
Va,beR, (a<b) = (a3+(1/101) < p3+(1/101) ).

THEOREM 4.2.16.

(a) (o)} € 0(3)  and
(b) ()4 € o(3).

Proof. Unassigned HW. (Hint: Use Theorem 4.2.15.) O

DEFINITION 4.2.17. Let k € Ny.
Then |O(k)| == {f:R-->R|3C >0,30 >0 s.t.,Vz e R,
(Jz]<d) = (Ifel <C-Jzf*)}.

NOTE: For any k € Ny, for any f: R --» R, we have:
[feO(k)] i [near0, —C-|ef < f<C|of]
Here, “near 0” means “on some ball in R centered at 0”.

THEOREM 4.2.18. Vke N, Vf e O(k), fo =0.

Note that the preceding theorem is not true when k = 0: Cf € (5(0)

On the other hand the next result holds for all k£ € N:
THEOREM 4.2.19. Vk € Ng, Vf € O(k), [ is defined near 0.
THEOREM 4.2.20. Vk € Ny, (o)%,| e |F € O(k).

The next result is called the chain of (’3, O spaces:

THEOREM 4.2.21.
O(1)20(1)20(2)20(2) 2
OB)20(5)20(6)20(6) 2

THEOREM 4.2.22. Let k € Ng. Then:

Vf,geo(k), [f+geo(k) and
Vee R, Vfeo(k), c-feolk).

The preceding and following theorem are both unassigned HW.
NOTE: The “linear operations” are: addition, scalar multiplication.
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The preceding theorem says that o(k) is closed under linear operations.
The phrase “o(k) is linearly closed” expresses that.
The set O(k) is also linearly closed:

THEOREM 4.2.23. Let k € Ny. Then:
Vf,ge O(k), [f+geO(k) and
Vee R, VfeO(k), c-feO(k).

THEOREM 4.2.24. Let k,l e Ny, feo(k), ge o(l).
Then go feo(l-k).

Proof. Want: Ve >0, 30 > 0 s.t., Vz e R,
(lz] <) = (g0 flal <& J2|**).
Given € > 0. Want: 36 > 0 s.t., Vo € R,
(Jel < 8) = (I(go F)al < - [al**).
Since € > 0 and g € o({), choose p > 0 s.t., Vy € R,
(lyl <p) = (lgyl <e-[yl*).
Let 7 := min{x/2,1}. Then 7> 0 and 7 < /2 and 7 < 1.
Since 7 > 0 and f € o(k), choose A > 0 s.t., Vz € R,
(lel < X) = (Ifal < 7-[2l).
Let § := min{\,1}. Then d >0 and § < A and § < 1.
Want: Vo e R, (|z] <d) = (|(go o] <e-|z*F).
Given r e R.  Assume |z] <d. Want: [(go f).| <e- |z|F.
Since |x| < § < A, by choice of \, we get: |f,| <7 |z|*.
Let y := fy.  Then |y| = |fo| < 7-|z|F, solyl <7z~
We have |z| < § < 1, so, since k € Ny, we get: |z[F < 1.
Then |y| < 7-|zfF <7 -1=7<p/2<pu, solyl <p.
eyl
Since |y| < 7 |z|* and 7 < 1, we get: |y| < |z~
Then [(g0 f)ul = gzl = lgy] < eIyl <e- (2l = ol O

THEOREM 4.2.25. Let k,{ € Ny. Then:
VfeO(k), Vge OF), f-geOk+10) and
VfeOk), Vgeoll), f-geolk+?) and
Vieo(k), Vge OW), f-geolk+10) and
Vfeo(k),Vgeo(l), f-geolk+{).

Some of the following theorem fails when k£ = 0 or ¢ = 0, so note the

requirement that k, ¢ € N.

THEOREM 4.2.26. Let k,¢ € N. Then:
VfeOk), Yge OK), fogeO(- k) and

Since |y| < p, by choice of u, we get: |g,| <
<
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VfeO(k), Vgeo(l), fogeo(l-k) and
Vfeo(k), Vge O), fogeo(l- k) and
VfE(’)(k), VgEO(g), ngEO(ﬁ'k).
We define
agreement, near a point, of two partial functions on R:

DEFINITION 4.2.27. Let f and g be two functions, q € R.
Assume Dy < R and D, < R.
By near q, f = g, we mean: 3B € B(q) s.t. on B, f = g.

4.3. Polynomials R — R.

DEFINITION 4.3.1. Vk € Ny, |H(k)|:= {c- (¢)*|c € R}.
= H(0), = H(1), = H(2), = H(3).

Elements of C are called constant.

Elements of £ are called (homogeneous) linear.
Elements of Q are called (homogeneous) quadratic.
Elements of I are called (homogeneous) cubic.

For any k € Ny, elements of H (k) are called
(homogenous) polynomials R — R of degree £, or
k-polynomials R — R.

We may sometimes omit “R — R”.

THEOREM 4.3.2. VC € C, C is Lipschitz-0.

Proof. Want: Vz,y e R, |C, — Cy| <

Given z,y e R.  Want: |C, — C\<O lz —yl.

Choose a € R s.t. C' = CE.

Then C, = a and Cy = a

Then |C, — Cyl =]a—a| =0 =0 |z —y|. O

DEFINITION 4.3.3. VL e L, |[L]|:= L;.

Let m € R and let L :=m - (o).
Then [L] = Ly =m -1 =m, so [L] is just the slope of L.
Also, |[L]| is the absolute value of the slope of L,

which we might call the “absolute slope” of L.
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We next show: Fach linear function is Lipschitz,
with Lipschitz constant equal to the absolute slope:

THEOREM 4.3.4. VL € L, L is Lipschitz-|[L]].

Proof. Choose me R s.t. L =m - (e).

Then [L] =Ly =m-1=m. Let a := |m|.

Then a = |[L]|. Want: L is Lipschitz-a.

Want: Vr,ye Dy, |L, — L,| <a-|z—vyl|

Given z,y € D,. Want: |L, — L,| <a- |z —yl|

We have L, — Ly, =m-z—m-y=m- (v —y).

Then |Lo — Ly| = |- |z — 4l = @ |z — gl, 50 | Lo — Ly| = a- |z — g,
Then |L, — L,| < a-|z—yl| O

THEOREM 4.3.5. Let F e (H(0)) U (H(1)) U (H(2)) U (HB) u....

Then F' 1s continuous.

Idea of proof:
If F'e H(0), then F is constant, hence Lipschitz-0,

hence Lipschitz, hence uniformly continuous, hence continuous.
If F e #H(1), then F is linear, hence Lipschitz-[ F],

hence Lipschitz, hence uniformly continuous, hence continuous.
If e H(2), then F is quadratic,

hence a product of two linear functions,

hence a product of two continuous functions, hence continuous.
If Fe H(3), then F is cubic,

hence a product of three linear functions,

hence a product of three continuous functions, hence continuous.
Etc.
End of idea of proof.

The next result says that every k-polynomial has order k.
In particular, C <€ O(0) and £ < O(1) and Q < O(2) and K < O(3).

THEOREM 4.3.6. Let k€ No. Then H(k) < O(k).
Proof. Want: VP € H(k), P e O(k).

Given P e H(k). Want: Pe O(k).
Want: 4C > 0, 36 > 0 s.t., Vo € R,

(lz] <6) = (|P:| < C-Jaf*).
Since P € H(k), choose a e R s.t. P =a - (o).
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Let C :=|a|, 6 :=1. Then C >0 and § > 0.

Want: Vo e R, (|z|<d) = (|B] <C-|z|*).

Given r e R.  Assume: |z| <. Want: |[P,| < C - |z~

We have |P,| = |a - z*| = |a| - |z|F = C - |z|*.

Then |P,| = C - |z|*, so |P| < C - |z|*. O

DEFINITION 4.3.7. [0]:= CF.

THEOREM 4.3.8. Let k€ Ny. Then: 0 € o(k) and 0 € O(k).
THEOREM 4.3.9. Let ke Ny.  Then (H(k)) n (o(k)) = {0}.
Proof. 0 =0-(e)k e H(k Also, 0 € o(k).

)-
Then 0 € (H(k)) n (o(k)), so {0} = (H(k)) n (o(k)).
Want: (H(k)) n (o(k)) = {0}.
Want: Vf e (H(k)) n (o(k)), fe{0}.
Given f € (H(k)) n (o(k)). Want:f € {0}.

Since f € H(k), choose ce Rs.t. f =c- ()"
Since 0 - (o)k = 0 € {0}, it suffices to show: ¢ = 0.
Assume ¢ # 0. Want: Contradiction.
Since c € R and ¢ # 0, we get: |¢|] > 0.
Let € := |¢|/2.  Then ¢ > 0.
So, since f € o(k), choose 0 > 0 s.t., Yz € R,
(le] <d) = (Ifol <& |2f*).
Since 0 > 0, we get: 6/2 > 0, and 0/2 < J.
Since §/2 > 0, we get: |0/2| = /2.
Let x :=§/2.  Then |z| = |0/2] =6/2 > 0, so |z| > 0.
Also, |z] = 10/2| = 6/2 < 4, so |z| < 0.
So, by choice of 6, we get: |f,| <e- |z~
Since f = c- (o)*, we get: f, = c-aF.
Then || - [2[* = |c- 2| = |fol <&~ [z]", s0 |c| - [2]* < e |2f".
Since |z| > 0 and k € Ny, we get. lz|* > 0.
So, since |c| - |z|* < e - |z|¥, we get |¢| <
Then2~€=2-(\c|/2) ] <e,802-e<¢e,502-e—e<e—e¢,
soe <0,s00>
Then 0 > ¢ >0, s00 > 0. Contradiction. O

4.4. Linearizations and derivatives.

THEOREM 4.4.1. Let f:R--+ R, ge R.
Assume f is defined near q.  Then, near q, we have: f — f = 0.
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THEOREM 4.4.2. Let f: R > R, ge D;. Then:
( f is defined near q ) = ( f;r is defined near 0 ).

DEFINITION 4.4.3. Let f : R --» R, a e R.
Then |LINS,f| := {Le L|fFf—-Leo(l)}.

Let f:R --» R, a€Dy.
Elements of LINS, f are called linearizations of f at a.

We next show that (e)? has a linearization at 3:

THEOREM 4.4.4. Define f : R — R by: Vx e R, f, = 22
Define L e L by: Vhe R, L, =6h. Then L € LINS;f.

Proof. Want: f3 — L € o(1).
Since (o)2€ Q = H(2) = O(2) < o(1),
it suffices to show: f] — L = (e)2.
Want: Vhe R, (f3 — L)y = ((¢)*)5.
Given he R.  Want: (f] — L), =
We have:  (ff — L), =
£ fayn— f3— Ly
2 (34 h)2— 32— 6h
= 9+ 6h+h*>—9—6h
h= ((9)*)h O

We next show that | e | has no linearization at 0:
THEOREM 4.4.5. Let f:=|e|.  Then LINS,f = &.

Idea of proof: Want: VL € L, L ¢ LINSyf.
Given L € L. Want: L ¢ LINS,f.
Choose a € Rs.t. L =a- (o).
In general, we would handle a = 0 and a < 0 separately.
We looked only at a = 1. Want: fJ — (o) ¢ o(1).
Since fo = 0] = 0, we know: fj = f.
Want: [ — (o) ¢ o(1).
We graphed f — (o), and saw that, near 0,
that graph is not in the envelope semi-between —| o | and | e |.
So, since the graph is not in every linear envelope, we get: f—(e) ¢ o(1).
We leave it to the reader to formalize this argument.
We leave it to the reader to generalize the proof to all a > 0.
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We leave it to the reader, then to consider the case a < 0.
End of idea of proof.

THEOREM 4.4.6. Let f: R --+ R, a e R. Assume LINS,f # .
Then: 3LeL,3IReo(l) s.t. ff =L+ R.

Proof. Since LINS, f # J, choose L s.t. L € LINS,f.

Then L € LINS,f < £ and fI — L e o(1).

Let R:= fI — L. Then Reo(l). Want: fI =L+ R.

Since L € L, we get —L + L = 0.

Then ff=fY-L+L=R+L=L+R, O

THEOREM 4.4.7. Let f: R --+ R, a e R. Assume LINS,f # .
Then: fYeO() and f is defined near a
and  f is continuous at a.

Proof. By Theorem 4.4.6, choose L € £, Re€ o(1) s.t. fI = L+ R.
Since L e £ = H(1) = O(1) and R € o(1) = O(1),
we conclude that R+ Le O(1).  Then fT = R+ Le O(1).
Want: f is defined near ¢« and  f is continuous at a.
Since fT e O(1) < 0(0), we see that
f¥is defined near 0 and  fI is continuous at 0.
Then: f is defined near & and  f is continuous at a. O

We next show that
no function R --+ R can have two linearizations at one point:

THEOREM 4.4.8. Let f :R--+ R, aeR.
Let L, M € LINS, f. Then L = M.

Proof. By assumption, LINS, f # .

Let R:= fI —L,S:=fFf — M.

Since R, S € o(1), we get: R— S € o(1).

Since f We have R — S = (ff — fI)+ (M - L)

By Theorem 4.4.7, fT is defined near 0.

Then: near 0, fr—fr=o0.

Then: near 0, R—S=M-— L.

So, since R — S € o(1), we get: M — L € o(1).

Since L, M € L = H(1), we get: M — L € H(1).

Then M — L e (H(1)) n (o(1)).

So, since (H(1)) n (o(1)) = {0}, we get: M — L € {0}.
Then M — L =0, and so L = M. O
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DEFINITION 4.4.9. Let f : R --> R, a € R.
Then, := UB(LINS,f).

In the preceding, D, f is the D-derivative at a of f.

THEOREM 4.4.10. Let f :R--> R, a€ R, Le L. Then:
(Dof =L) < (LeLINS,f) < (ff—Leo(l)).

Idea of proof:
By definition of LINS, f, we have:
LeLINS,f iff fF—Leo(l).
We therefore need only show: LeLINS,f iff L=D,f.
By Theorem 4.4.8, we have:
L e LINS,f iff {L}=LINS,f.
Then:  LeLINS,f iff L= UE(LINS,f).
Then: LeLINS,f iff L=D,f.
End of idea of proof.

By Theorem 4.4.4, we get D3((¢)?) =6 - (o),
or, in other words:

THEOREM 4.4.11. Let f = ()2, L:= 6 - (o). Then Dsf = L.

Proof. By Theorem 4.4.4, we have: L € LINS;f.
Then by Theorem 4.4.10, we get: Dsf = L. U

THEOREM 4.4.12. Let f = |e|. Then Dof = @.

DEFINITION 4.4.13. Let f : R --» R.

Then | f'|: Dy --» R is defined by: Va € Dy, f = [Duf].
Also, Dy :=Dyr.

In the preceding, f’ is called the prime derivative of f.
Sometimes we simply call f’ the derivative of f.

Let f:= ()2, L:=6- (o). By Theorem 4.4.11, D3f = L.
Then f§ =[Dsf] =[6-(e)] =(6-(e)); =6-1=06.
Unassigned HW: Show: Vx e R, f! = 2.

Let g :=| o |. Then, since Dog = @, we get: g; = .
Unassigned HW: Show: Vz <0, ¢, = —1.
Unassigned HW: Show: Vz > 0, ¢/ = 1.
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THEOREM 4.4.14. Let g:= | o |. Then D, = R} < R = D,
Let f := (#)?[[7;9]. Then f is not defined near 7, so 7 ¢ ;.
In fact, we have:
THEOREM 4.4.15. Let f := (¢)%[7;9]. Then D} — (7;9).
THEOREM 4.4.16. Let f : R --» R, a e R.
Then: (aeD}) < (fi# @) < (Dof # ®) = (LINS,f # &).

For any f: R --» R, for any a € R,
by f is differentiable at a, we mean: a € ;.

For any f: R --+ R, for any S € R,
by f is differentiable on S, we mean: S < ;.

For any f: R --» R,
by f is differentiable, we mean: f is differentiable on Dy.
This is equivalent to: Dy = D'}.

By the preceding theorem and Theorem 4.4.7, we have:

THEOREM 4.4.17. Let f :R-->R, a € ]D}.
Then: fYe O(1) and f is defined near a
and  f is continuous at a.
DEFINITION 4.4.18. Vf: R --» R, we define:
'] = () and f"]= (£ and[f"]= ((£'))) and
D/],c = ]D)f// cmd ]D)l; = Df/// and DI}” = Df////.

I

Forany f:R --» R, D;2D, 2D} 2D} 2D}.

Let S:={f|f:R --» R} be the set of partial functions R --» R.
Define @ : S — S by: Vfe S, &(f) = f'.
For any f € S, for all k € Ny, we define | f®) |:= ®F(f).
For any f € S, we have f© = f and f) = " and f® = f”
and f(3) _ f/// and f(4) _ f””-
For any f € S, we have: Vk € Ny, f+1) = (fRY,

For any f € S, for all k € Ny, we define Dgck) = Dyw.

For any f € S, for all k € Ny, we have ]D)Sck’) - ]D)Sck-i-l).

Then: V¥feS, DY 2DV oDP opP oo
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4.5. Derivatives of Polynomials.
THEOREM 4.5.1. Let C€C, ae R. Then C) = 0.

Idea of proof: Choose b e R s.t. C = CE. For any h € R, we have
(G?zr)h = Oa-‘rh _Ca = (CI]F)aJ,-h_ (GII)R)a =b—-b =0 = 0y,.
End of idea of proof.

THEOREM 4.5.2. Let C'eC, aeR. Then D,C = 0.

Proof. Since 0 € L, it suffices to show: CI — 0 € o(1).
We have CT —0=0-0=0¢€ o(1).

THEOREM 4.5.3. Let C € C. Then C' = 0.

Idea of proof: For any z € R, we have
! = [D,C|] = [0] = 0, = 0.
End of idea of proof.

THEOREM 4.5.4. Let Le L, a€R. Then LY = L.

Proof. Want: Vhe R, (L), = L.
Given h € R. Want: (LY), = Lj,.
Since L is algebraically linear, we have: L,y = L, + Lp.
Then (Lg)h =Logwp—Ly=Ly+ Ly, — L, = Ly.
Since (o) =1- (o)l € Hy = L,
the preceding theorem gives: Va € R, (o)} = (o).

a

THEOREM 4.5.5. Let Le L, ae R. Then D,L = L.

Proof. We have LT — L =L — L =0¢€ o(1), so L € LINS,L.
Then, by uniqueness of linearization, we get: LINS,L = {L}.
Then D,L = UE(LINS,L) = UE{L} = L.

THEOREM 4.5.6. Let me R, L :=m - (e). Then L' = CX.

Proof. Want: Vae R, L, = (C%),.
Given a € R. Want: L/ = (C®),.
We have L/, = [D,L] = [L] = Li=m-1=m = (CR),.

THEOREM 4.5.7. Vj e N, ((¢)))T — j.a/71. (o) € 0(1).
Proof. This is HW#12-1.

THEOREM 4.5.8. Let j € N. Then ((¢)7) = j- (o)i7L.
Proof. This is HW#12-2.
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4.6. Sub-k versus order k vanishing.

Let f: R --» R. Recall that fo=0 ifft
f is defined near 0 and  f is continuous at 0 and f, = 0.
Then: fo=0 < fe0(0),
but fo=0 = feo0(0).
So: subconstant implies vanishes at zero, but not conversely.
We will show below that
fi=fi=0 < feo(l).
That is, sublinear iff vanishes to order 1 at zero.
We will also show below (after the MVT) that
fo=fi=/=0 = [feo2),
but fo=fl=f1=0 <= feo(2),
So: vanishes to order 2 at zero implies subquadratic, but not conversely.
Unassigned HW: show, for all k € [2..00), that
vanishes to order k at zero implies sub-£, but not conversely.

THEOREM 4.6.1. Let f : R --» R. Then:
feo(1) < fo=fy=0.
Proof. Proof of =:
Assume: f e o(1) Want: f, = f| =0.
Since f € o(1) < 0(0), it follows that:
f is defined near 0 and  f is continuous at 0 and f, = 0.
Since fo = 0, it remains to show: f] = 0.
Since fo = 0, we get: fg = f.
Then f§ — 0= fT = feo(l), and so 0 € LINSy f.
Then, by uniqueness of linearization, LINSy f = {0}.
Then Dy f = UE(LINS,f) = UE{0} = 0.
Then £} = [Dof] = [0] = 0, = 0.
End of proof of =.

Proof of <:

Assume: fo = fi=0 Want: f e o(1).

Since f] # ®, we get Dof # @, s0 Dof € LINSyf. Let L:= Dyf.
Then L € LINSyf, so fy —Leo(l). Want: fi — L = f.

Since fo =0, we get: fi = f. Want: f—L=f.  Want: L =0.
Want: Vh e R, L, = 0. Given he R.  Want: L, = 0,,.

Since L € LINSyf < L, we see that L is algebraically linear.

Then Lpqy =h-Ly. Wehave Ly = [L] = [Dof] = f} = 0.
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ThenLthhAl Zh'Ll Zh'0=0=0h.
End of proof of <. U

DEFINITION 4.6.2. Let f : R - R, a e R.

By f is continuous near a, we mean: 3B € B(a) s.t. f is continuous
on B.

By f is differentiable near a, we mean: 3B € B(a) s.t. B < .

Recall: Vg : R --» R, 0eDj implies:
go € @(1) and g¢ is defined near 0 and g¢ is differentiable at 0.

Let A:={1,1/2,1/3,...} and let f:= x5 -|e]>.
Then f € (5(3) < 0(2). Also, f is not continuous near 0.
Since f € 0(2) < o(1), by Theorem 4.6.1, we get: fo = f) = 0.
Let a := 0. Then this function f shows:
differentiable at a does not imply continuous near a.
Since f is not continuous near 0,
it follows that f is not differentiable near 0.
Then f’ is not defined near 0.
Let g := f'. Then g is not defined near 0. ~ Then 0 ¢ .
Then 0 ¢ Dy = D}, = Df.
So this function f shows:
subquadratic does not imply vanishes to order 2 at zero.
Note that the counterexample f fails to vanish to order 2 at zero
because f is not twice differentiable at zero.
This begs the question:

Let h: R --» R be twice differentiable at zero.

Then do we have: ho=hiy=hj=0 < heo(2) 7
The answer is yes, and, in fact, we’ll eventually prove:
THEOREM 4.6.3. Let h: R --» R, k€ Ny. Assume 0 e D).

Then:  heo(k) <  ho=hy,=---=hP =0

4.7. Algebraic linearity of the D-derivative.

THEOREM 4.7.1. Let f = |o|, g:= —| o].
Then Do(f + g) = 0.  Also, (Dof) + (Dog) = ©.

Proof. We have f+g=0¢€C,so Do(f +g)=0.
Want: (Dof) + (Dog) = Q.
Since Dy f = @, it follows that (Dof) + (Dog) = ®. O
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THEOREM 4.7.2. Let f,g:R --» R, a € R.
Then Do(f +¢9) =* (Dof) + (D,g).

Proof. Want: ( (Dof) +(Dag) #© ) = ( Du(f + ) = (Duf) + (Dag)
).
Assume (D, f) + (D,g) # ©.  Want: D,(f + g) = (D.f) + (D,g).
Let L:= D,f, M := D,g. Then L+ M # ®,s0 L # @ # M.
Then L,M € £ and I — L,gF — M € o(1).
Want: D,(f +g) =L+ M.
Since L is linearly closed and L, M € L, we get: L + M € L.
By uniqueness of linearization, want: (f + g)r — (L + M) € o(1).
Since fI — L,gX — M € o(1) and since o(1) is linearly closed,
we conclude: (fF — L)+ (gF — M) € o(1).
Then ( + )7 — (L + M) = 74 67— L~ M
(T L) + (gF - M) € o). n

THEOREM 4.7.3. Let f := | o |.
Then Do(0- f) =0.  Also, 0- (Dof) = ©.

Proof. We have 0- f =0€C, so Dy(0- f) =0.
Want: 0 (Dyf) = ©.
Since Dy f = @, it follows that 0 (Dyf) = ®. O

THEOREM 4.7.4. Let f : R -+ R, a,c € R.
Then Dy(c- f) =* c-(Duf).

Proof. This is HW#10-5. 0

THEOREM 4.7.5. Let f 1R -—» R, ae R, ce RY.
Then Dy(c- f) = ¢ (Duf).

Proof. By Theorem 4.7.4, we have: Dy(c- f) =
Want: D,(c- f) *= c-(D.f).
Want: ¢- (D,f) =* Dy(c- f).

Let ¢ :=c- f and let v := 1/c.

By Theorem 4.7.4, D,(v - ¢) =* - (Dy0).

Then c- (Da(7 ) Cb)) =" ¢y (Da¢)'
So, since v-¢ = (1/c)-¢- f = f and since ¢ -y = c¢- (1/c) = 1, we get:
C'(Daf) = 1(Da¢)
Thenc'(Daf) =" 1<Da¢) = Da¢ = Da(c'f)' O
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4.8. The D-product and chain rules.

The following is the D-product rule:

THEOREM 4.8.1. Let f,g : R --+ R, a e R.
Then Da(f : g) =* (Daf) “Ga + fa- (Dag)'

Proof. Want: ( (Duf) - ga + fo-(Dag) # ® )
( (f g) ( af)'ga+fa'(Dag) )
Assume (D, f) - go + fo- (Dag) # ©.
Want: Do(f - 9) = (Daf) 9o + fa (Dag).
Let L:=D,f, M := D,g, y := fo, 2 := ga.
Then L-z+y - M #®, s0L#0&z#0&y#0 &M # 0.
Then y,2€ Rand L, M € £ and fF — L,g> — M € o(1).
Want: D,(f-g) = L-z + y- M.
Since L is linearly closed and L, M € L, we get: L -z + y- M € L.
By uniqueness of linearization, want: (f - g)X — (L-z+1y- M) € o(1).
By the Precalculus Product Rule, (f - ¢)f = fX-go + fo- 9> + fX-gT.
Then (f-g)y —(L-z+y-M) = (fy —L)-ga+ fa- (g5 — M)+ f} - g3
Wants ()50 + Jo-lof =00+ gy € o)
Want: (fz;]r_ ) Ya, ( )7 fgl‘_g?ll‘ € 0(1)'
Since fI — L € o(1) and since o(1) is linearly closed,
we get: (fF —L)-g, € o(1).
Since g! — M € o(1) and since o(1) is linearly closed,
we get: f,- (g — M) € o(1).
Want: fI-g' € o(1). Since fI gT € (5(1), we get: fl.gt e @(2)
Then fT- g € O(2) < o(1). O

T
Ya
T
Ya

THEOREM 4.8.2. Let f and g be functionals. Let h be a function.
Then (f +g)oh = (foh)+ (goh).

Proof. Want: Vz, ((f+g)oh), ((foh)+ (goh)),.
Given z. Want: ((f + g) oh)y = ((foh)+(goh))..
We have ((f +g)oh)e = (F+Dhe = Jro + e
= (foh)s+(goh)
= ((foh)+(goh). O

THEOREM 4.8.3. Let L € L. Then:
[ Ve,x€R, L.y, =c- L, |
& [ Vw,z€R, Lyye =Ly+ Ly |
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The proof of the preceding theorem is left as an unassigned HW.
The preceding theorem can be used to prove the next two:

THEOREM 4.8.4. Let L e L and let c € R and let f be a function.
Then Lo (c-f)=c- (Lo f).

THEOREM 4.8.5. Let L € L and let f,g be functions.
Then Lo (f+g)= (Lo f)+ (Log).

Theorem 4.8.2 is sometimes expressed by saying
o is linear on the left.
Theorem 4.8.4 and Theorem 4.8.5 are sometimes expressed by saying
o is linear on the right, PROVIDED the left function is linear.
However, if the left function is, say, a quadratic @),
then we get different formulas for Q o (f + ¢) and Q(c- f):

THEOREM 4.8.6. Let Q € Q. Let f and g be functions.
Then Qo (f+g)=(Qof)+2 - f-g+(Qog).

THEOREM 4.8.7. Let Q€ Q. Let ce R. Let f be a function.
Then Qo (c- f)=c*-(Qo f).

The next theorem expresses that L is closed under composition.
It also says that the slope of the composite is the product of the slopes.

THEOREM 4.8.8. Let L, M € L. Then:
MoLeCL and [MoL]=[M]-[L].

Proof. Since L, M € £ = H(1), we get M o Le H(1-1) = H(1).
Want: [M o L] =[M]-[L].

Let a:=[L], b:= [M]. Want: [MoL]|=10-a.

We have a = [L] = Ly, so a = L.

We have b = [M] = M, so b= M.

By algebraic linearity of M, we have M, = a - M.

Then [MoL] = (MoL); = M, = M, = M1 =a-M; =ab=ba O

We will be using two properties of O and o
Vae O(1),V8eo(l), Boaco(l 1) =o(l) and
Vaeo(l),V8e O(1), Boaco(l-1)=o(1).
The following is the D-chain rule:
THEOREM 4.8.9. Let f,g: R --» R, a e R. Then:
Da(go f) =" (Dg.g)o(Daf)
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Proof. Want: ( (Dy,g) o (D.f) # ® )
~ (Dalgo f) = (Dg)o (Daf) ).

Assume (Dy,g) o (Do f) # ®.
Want: D,(go f) = (Dy,9) ° (Daf).
Let L := D,f, M := Dy,g.
Then M oL # ®, soL #® # M.
Then L,M € L and f,; — L,g; — M € o(1).
Let R:= fi — L, S:=g; —M. Then R,S € o(1).
Also L+ R = f] and M + S = g} .
Want: D,(go f) = Mo L.
Since L is closed under composition, and L, M € L, we get: M oL € L.
By uniqueness of linearization, want: (go f)I — (Mo L) € o(1).
By the Precalculus Chain Rule, (go f); = g7, © f,.
Want: g} o fi —(MoL)eo(l).
We have g; o fo = (M +S)o f]

= Mo fg + Soff

= Mo(L+R)+ Sofr

= MoL+ MoR + So fL
Then gy o ff —(MoL)=MoR + So f,.
Want: MoR + So fleo(l).
Want: MoR, Sofreo(l).
Since M € £ = H(1) = O(1) and R € o(1), we get: M o R € o(1).
Want: So fI e o(1).
Since S € o(1) and fT e O(1), we get: So fT e o(1). O

4.9. Properties of the prime derivative.

Unassigned HW:
VeeR,VL e L, [c- L] =c-[L] and
VL, M € L, [L+ M]=[L]+ [M].
THEOREM 4.9.1. Let f,g: R - R, a e R.
Then:  (f+9)a =" fa+ 9
Proof. We have (f + g)!, = [Do(f +9)] =" [Daf + Dayg]
= [Daf]+[Dag] = fclz+g(/1‘ O
THEOREM 4.9.2. Let f: R--+ R, a,ce R.
Then:  (c- f), =* c-fl.

Proof. We have (c¢- f)!, = [Da(c-f)] =* [c¢- D.f]
= C'[Daf] :C'fé,' [
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The preceding two theorems can be summarized as:
the prime derivative is algebraically linear.
The following is the prime product rule:

THEOREM 4.9.3. Let f,g: R --> R, a e R.

Then: (fg)g =* fé'ga + fa'g;'

Proof. (f-g9)a = [Da(f - 9)]
=" [Daf'ga + fa'Dag]
= [Daf]'ga + fa'[Dag]
= fo 9a + fa G

The following is the prime chain rule:

THEOREM 4.9.4. Let f,g: R --+ R, a e R.
Then: (go f), =* g}a o fr.
Proof. (go f), = [D.(go f)]
=* [Dfag © Daf]
= [Dy.9] - [Daf]
= 95, ° fa
The following is the prime quotient rule:

THEOREM 4.9.5. Let f,g: R --+ R, a e D} nDy.

, . / —_— . ,
Assume g, # 0. Then: N 2 afam e Ja
9/ 9a

Proof. This is HW#11-3.
4.10. The Mean Value Theorem.

DEFINITION 4.10.1. We define ‘R — {—1,0,1} by:

-1, fx <0
Vr e R, sgn, = <0, ifx =0
1, if £ > 0.

The function sgn is read “sign”,

not to be confused with the trignonometric function “sine”,

which is not defined in this course.

THEOREM 4.10.2. (sgng = 1) & (sgn_, = —1) & (sgn, =0).

™

The function sgn is multiplicative:

123
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THEOREM 4.10.3. YVw,z € R, sgn,, = sgn, -sgn,.
The function sgn is “robust”, in the sense that

small perturbations to an input don’t affect the output:

THEOREM 4.10.4. Let a,be R.
Assume |a| < |b]/2. Then sgn,,, = sgn,,.

Proof. Exactly one of the following must be true:
(1H)b<0 (2)b=0 (3) b> 0.

Case (1): Since b < 0, we get: sgn, = —1 and b/2 < 0.
We have |a| < |b]/2 = —b/2, s0 b/2 < a < —b/2.

Since a < —b/2, we get b+ a < b— (b/2).

Since b+a <b—(b/2) =b/2 <0, we get sgn,,, = —1.
Then sgn,,, = —1 = sgn,.

End of Case (1).

~—

Case (2): Since b = 0, we get: sgn, = 0 and b/2 = 0.
We have |a| < [b|/2 =0, 50 =0 < a < 0.
Thena=0,s0b+a=0+0=0,sosgn,,,=0.
Then sgn,,, = 0 = sgn,.

End of Case (2).

Case (3): Since b > 0, we get: sgn, = 1 and 0 < b/2.
We have |a| < |b]/2 = /2, s0o —b/2 < a < b/2.

Since —b/2 < a, we get b — (b/2) < b + a.

Since 0 < b/2 = b— (b/2) < b+ a, we get sgn,,, = L.
Then sgn,,, = 1 = sgn,.

End of Case (3).

DEFINITION 4.10.5. Let S be a set, f a functional, b € R.
By |on S, f< we mean: NVreS, f,<b.

By |on S, f>
By |onS, f<
on S, f =
By |on S, b<
By |onS,b>f

<

we mean: VYrelS, f,>0b.

<

we mean: YxelS, f,<b.

<

we mean: VxelS, f,=b.

we mean: VYrelS, b< f,.

<

we mean: VYreS, b> f,.

<

oy
<
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By |onS)b <
we mean: Vv eSS, b= f,

By |on S, b

N

f
f

DEFINITION 4.10.6. Let S be a set and let f, g be functionals.

, we mean: VYxelS, f.<g..

we mean: NVxre S, b

<

\%

<

o
<
Q
3
92)
&"
A
Q

on S, we mean: NVreS, f,> g

oy
<
—

V
)

By |on S, f<g|, wemen: VxelS, f,<g,.

By |onS, f>g| wemean: VreS, f,=g..

\

There are many theorems like the next one.
All are unassigned HW, and may be used without comment, in proofs.

THEOREM 4.10.7. Let f :R - R, SCR, aeD;, beR.
Then: [on S, f<b]
< [onS—a, fF<b—1f.]

THEOREM 4.10.8. Let f: R --» R, ae€ Dy, ¢ := fr.
Then LINS,f = LINSy¢.

Proof. Want: VYL e L, (L e LINS,f) < (LeLINSyp).
Given Le £.  Want: (L e LINS,f) < (L e LINSyp).
Since a € Dy,  we get (fo)s =0. Then ¢9 =0. Then ¢ = ¢.
Then f7 = 6 = ¢f.
Then: (L e LINS.f) < (fT— Leo(1))
< (¢ —Leo(l)) & (LeLINSyp). O

THEOREM 4.10.9. Let f: R --» R, ae Dy, ¢ := fI.
Then: D.f = Doyp and f, = ¢.

Proof. From the preceding theorem, LINS, f = LINSy¢.

Then: D,f = UE(LINS,f) = UE(LINS;¢) = Dgo.

Want: f, = ¢;.

We have: f! = [D.f] = [Dop] = o¢y. O

DEFINITION 4.10.10. Let f be a functional, a € Dy.
By f has a global semi-maximum at a, we mean:
VeeDs, fi</fa
By f has a global strict-maximum at a, we mean:
Ve e (Dy)x, fo<fa
By f has a global semi-minimum at a, we mean:

VeeDs, fo2=fa
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By f has a global strict-minimum at a, we mean:
Ve e (Dp)x, fo> fa

DEFINITION 4.10.11. Let f : R --» R, a € Dy.
By f has a global semi-extremum at a, we mean:

f has a global semi-maximum at a

or f has a global semi-minimum at a.
By f has a global strict-extremum at a, we mean:

f has a global strict-maximum at a

or [ has a global strict-minimum at a.

DEFINITION 4.10.12. Let f: R --» R, a € Dy.

By f has a local semi-maximum at a, we mean:
iBe B(a) s.t.,Vxre B, f, < fa.

By f has a local strict-maximum at a, we mean:
iB e B(a) s.t., Yre B, f. = fa.

By f has a local semi-minimum at a, we mean:
iB e B(a) s.t., Vx e BY,  fo < fa.

By f has a local strict-minimum at a, we mean:
iB e B(a) s.t., Vx e BY,  fo> fa.

DEFINITION 4.10.13. Let f be a functional, a € Dy.
By f has a local semi-extremum at a, we mean:
f has a local semi-mazimum at a
or f has a local semi-minimum at a.
By f has a local strict-extremum at a, we mean:
f has a local strict-mazimum at a
or  f has a local strict-minimum at a.

THEOREM 4.10.14. Let f : R --» R, a € Dy.
Assume:  f has a local strict-maximum at a.
Then: IE has a local strict-mazimum at 0.

Proof. This is HW#12-4.

The preceding theorem is one of many:
You can change “local” to “global”.
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You can change “strict” to “semi”.
You can change “maximum” to “minimum” or to “extremum”.
Thus there are 2 - 2 - 3 = 12 different results.

There are also 12 converses:

THEOREM 4.10.15. Let f: R --» R, a € Dy.
Assume:  fT has a local strict-mazimum at 0.
Then: f has a local strict-mazximum at a.

Proof. Unassigned HW. U

The preceding theorem is one of many:

You can change “local” to “global”.

You can change “strict” to “semi”.

You can change “maximum” to “minimum” or to “extremum”.
Thus there are 2 -2 -3 = 12 different results.

THEOREM 4.10.16. Let f : R --+ R, a € D). Assume f, > 0.
Then 36 > 0 s.t. [on(a—0d;a), f</fal
and [on (a;a+96), f>fa]

Proof. Let L := D,f, m:=[L]. Then m = [D,f] = f. > 0, so m > 0.
We have: VheR, Ly = Lpy=h-Li=h-[L]=h-m=m-h.
Let R:=fI— L. Then L+ R = f].
Since L € LINS, f, we get L € £ and R € o(1).
Since R € o(1), choose § > 0 s.t., Yh e R,
(Ihl <6) = (Rl < (1/2)-m-[n]").

Then 6 > 0. Want: [on (a—6;a), f<fa]

and [on (a;a+9), f>fa]

Want: [on (a—6;a)—a, fg<fa_fa]
and [on (a;a+6)—a, fi>fo—fal
Want: [on (—=0;0), fi<0]
and [on (0;6), fF>0].
Want: [Vhe(=0;0), (fi)n<0]
and  [Vhe(0;0), (fi)n>0].
Want: [Vhe (=050), sgu((fi)n) =—1]

and  [Vhe (0:8), sen((fD) =11
Want: [Vhe (=0;0), sen((fF)y) =sgn(h) ]
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and [ Vhe (0:0), sen((fz)n) = sen(h) .

Want: Vhe (—§; ), sen((fI),) = sgn(h).
Given h e (—=§; 9). Want: sgn((f1),) = sgn(h).
We have |h| < 4, so, by the choice of §, we get: |Ry| < (1/2) - m - |h|".
So, since |Ly| = |m-h| = |m|-|h| = |m|-|h|}, we have: |Ry| < (1/2)-|Lx|.
Let b:= L, and a := R,.  Then |a| < |b]/2.
So, by Theorem 4.10.4, we get: sgn,,, = sgn,.
That is, sgn(Ly, + Ry) = sgn(Ly).  Since m > 0, we get: sgn,, = 1.
Then sgn((f)n) = sgn((L+ R)n) = sgn(Ly + Ry) = sgn(Ly

= sgn(m-h) = sgn,,-sgn, = 1-sgn, = sgn(h). O

THEOREM 4.10.17. Let f : R --+ R, a € D). Assume f, <0.
Then 36 > 0 s.t. [on(a—6;a), f>fi]
and [ on (a;a+96), f<fa]

Proof. Let L := D,f, m := [L]. Then m = [D,f] = f, <0, so m < 0.
We have: Yhe R, L, =Ly =h-Ly=h-[L]=h-m=m-h.
Let R:= ff — L. Then L+ R= fI.
Since L € LINS, f, we get L € £ and R € o(1).
Since R € o(1), choose § > 0 s.t., Vh e R,
(11 < 6) = (IRal < (1/2) - []").

Then 6 > 0. Want: [on (a—0d5a), [f>fa]

and [on (a;a+9), f<fal]

Want: [on (a—68;a)—a, fo>fo—fa]
and [on (a;a+0)—a, fI<fo—fa]
Want: [on (=6;0), fi>0]
and [on (0;0), fI<0].
Want: [Vhe (=d;0), (fi)r>0]
and [Vhe (0;0), (fHn<0].
Want: [Vhe (=0;0), sgu((fi)n) =1]
and [Vhe (0;0), sgn((fy)n) =—11]
Want: [ Vhe (=6;0), sen((f5),) = —sen(h) ]

and  [Vhe (0:0), sgn((fD)n) = —sgn(h) ]

Want: Vhe (=§; ), segn((fI),) = —sgn(h).
Given h e (—=6; 9). Want: sgn((f1),) = —sgn(h).
We have |h| < 4, so, by the choice of §, we get: |Ry| < (1/2) - m - |h|".
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So, since |Ly,| = |m-h| = |m|-|h| = |m|-|h|}, we have: |Ry| < (1/2)-|Ly|.
Let b:= Lj and a := R;,. Then |a| < |b/2.
S0, by Theorem 4.10.4, we get: sgn,. , = sgn,.

That is, sgn(Ly, + Rp,) = sgn(Ly).  Since m > 0, we get: sgn,, = —1.
Then sgn((fX),) = sgn((L+ R)n) = sgn(Ly, + Ry) = sgn(Ly)
= sgn(m-h) = sgn,,-sgn, = —1l-sgn, = —sgn(h). O

THEOREM 4.10.18. Let f:R --» R, a € D.
Assume:  f has a local semi-mazimum at a.
Then: fi=0.

Proof. Assume f! # 0. Want: Contradiction.
Exactly one of the following is true:
(1) f1>0 or (2) fI <O.

Case (1):
By Theorem 4.10.16, choose ¢ > 0 s.t.
[on(a—d;a), f<fu] and [on (a;a+d), f>f.]
Since f has a local semi-maximum at a, choose B € B(a) s.t.
VeeB, f.<f,.
Choose p > 0s.t. B = B(a,p). Let yu:= min{J, p}.
Since pu < 4§, we get: (a; a+ pu) € (a; a+9).
Since u < p, we get: B(a,pu) < B(a, p).
Let z:=a+ (p/2). Thena <z <a+p. Thenze(a;a+ p).
Since z € (a; a+ p) < (a; a+9),
by choice of 9, we have f, > f,, andso f, < f..
Since z € (a; a + p) € B(a,u) < B(a, p) = B,
by choice of B, we have f, < f,.
Then f, < fr < fa, 80 fo < fo.  Contradiction.
End of Case (1).

Case (2):

By Theorem 4.10.17, choose § > 0 s.t.
[on(a—d;5a), f>f,] and [on (a;a+d), f<fal]

Since f has a local semi-maximum at a, choose B € B(a) s.t.
Vee B, f.</fa

Choose p > 0s.t. B= B(a,p). Let u:=min{J, p}.

Since p < §, we get: (a —p; a) € (a—0; a).

Since pu < p, we get: B(a,pu) < B(a, p).
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Let z:=a— (p/2). Thena—p<x<a. Thenze(a—p;a).
Since x € (a —p;a) € (a—0; a),
by choice of §, we have f, > f,, and so f, < f,.
Since z € (a; a + p) € B(a,u) < B(a, p) = B,
by choice of B, we have f, < f,.
Then f, < f. < fa, 50 fo < fo.  Contradiction.
End of Case (2).

The following is called Fermat’s Theorem:

THEOREM 4.10.19. Let f:R --» R, a € D.
Assume:  f has a local semi-extremum at a.
Then: f, =0.

Proof. At least one of the following is true:
(1) f has a local semi-maximum at a.
(2) f has a local semi-minimum at a.

Case (1):
By Theorem 4.10.18, we get: f! = 0.
End of Case (1).

Case (2):

Since f has a local semi-minimum at a,

it follows that — f has a local semi-maximum at a,
so, by Theorem 4.10.18, we get: (—f), = 0.

Since a € D}, we get: (—f), = —fa.

Then f, = —(—£) = —(—f)1) = —0 = 0.

End of Case (2).

The following theorem does not require differentiability of f:

THEOREM 4.10.20. Let f:R-->R, a e R b > a.
Assume f is continuous on [a;b].  Assume f, = fp.
Then 3c € (a;b) s.t. f has a local semi-extremum at c.

Proof. Let V := f[a;b], y :=minV, z := max V.
By the EVT, y # ® # z.

Then Yz € [a;b], we have y < f, < z.

In particular, y < f, < z.

At least one of the following must be true:
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(Dy=fo=2z or (2 y#fa or (3)z# fa

Case (1): Let ¢ := (a +b)/2.  Since b > a, we get: c € (a;b).
Want: f has a local semi-extremum at c.
Want: f has a local semi-maximum at c.
Want: 36 > 0 s.t., Vo € B(c,0), fr < fe.
Let § := (b —a)/2. Since b > a, we get: § > 0.
Want: Vz € B(c,9), fo < [
Given x € B(c, 9). Want: f, < f..
We have c—d =aand c+ 6 = b,
so B(c,d) = (a;b). Then B(c,d) < [
Since f is continuous on [a; b], we get: [a;b] < Dy.
We have z,c € B(c,d) < [a;b], so z,c € [a;b].
Then z,c € [a;b] < Dy, so x,c € Dy.
Since z, c € [a;b] and x,c € Dy, we get fy, f. € fi[a;b].
Since f,, f. € f«la;b] =V, it follows that:
minV < f, <maxV and minV < f, < maxV.
Then: y<f, <z and y<f. <z
So, since y = f, =z, we get:  fo < fo<f, and f, < f.< fa.
Then f, = f, and f. = f,. Then f, = f.. Then f, < f..
End of Case (1).

Case (2): Since y € V' = f,[a;b], choose c € [a;b] s.t. f. =v.
Since f. =y # f,, we get f, # f,, and so ¢ # a.

By hypothesis, f, = f.

Since f. =1y # fo = fp, we get f. # fp, and so ¢ # b.

Then ¢ € [a;b]\{a,b} = (a;b).

Want: f has a local semi-extremum at c.

Want: f has a local semi-minimum at c.

Want: 3§ > 0 s.t., Vo € B(c,0), fp = fe.

Since (a;b) is open and ¢ € (a;b), choose 6 > 0 s.t. B(c,d) < (a;b).
Then § > 0. Want: Vz € B(c,9), fr = fe..

Given x € B(c,d). Want: f, > f..

Since x € [a;b] and since [a;b] < Dy, we get: x € Dy.

Since z € [a;b] and x € Dy, we get: f, € fi[a;b].

Since f, € fy«la;0] =V and y = min V', we get: f, > y.
Then fw =Y = fc-

End of Case (2).
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Case (3):

Since z € V = f,[a;b], choose c € [a;b] s.t. f. = 2.

Since f. =z # f,, we get f. # f,, and so ¢ # a.

By hypothesis, f, = f».

Since f. =z # f, = fy, we get f. # fp, and so ¢ # b.

Then c € [a;b]\{a,b} = (a;b).

Want: f has a local semi-extremum at c.

Want: f has a local semi-maximum at c.

Want: 30 > 0 s.t., Yz € B(c,0), fo < fe.

Since (a;b) is open and c € (a;b), choose 6 > 0 s.t. B(c,d) < (a;b).
Then 6 > 0. Want: Vz € B(c,9), f. < fe.

Given x € B(c,d). Want: f, < f..

Since z € [a;b] and since [a;b] < Dy, we get: x € Dy.

Since z € [a;b] and x € Dy, we get: f, € fila;b].

Since f, € fyla;0] =V and 2z = max V', we get: f, < z.

Then f, < z = f..

End of Case (3). O

DEFINITION 4.10.21. Let f : R --» R, S < R.
By f isc/d on S, we mean:  f is continuous on S and IntS <
D’
Let a € R and let b > a.
Recall: Int[a;b] = (a;b).
So, for any f: R --+ R, we have: fisc/d on [a;b] iff
f is continuous on [a;b] and  f is differentiable on (a;b).

Let f:R --» R and let S < R.
If S < DY, then f is continuous on S and Int S < 5 < DY,

and so f is ¢/d on S. However, the converse is not necessarily true:
A function might be

continuous on [0;00) and  differentiable on (0; o)
but NOT differentiable at 0.

The following is Rolle’s Theorem:

THEOREM 4.10.22. Let f: R --» R, let a € R and let b > a.
Assume:  fis c/d on [a;b]  and  fo = fp.
Then: dc e (a;b) s.t. fl=0.
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Proof. By Theorem 4.10.20,
choose ¢ € (a;b) s.t. f has a local semi-extremum at c.
Then c € (a;b). Want: f. =0.
By assumption, f is ¢/d on [a;b], and so Int[a;b] < D).
Then c € (a;b) = Int[a; b] < D'
Then, by Fermat’s Theorem, we have f. = 0. O

The following is the Mean Value Theorem or MVT:

THEOREM 4.10.23. Let f:R--» R, ae R, b > a.
Assume:  f is ¢/d on [a;b].
Then: dce (a;b) s.t. fi =DQ;(a,b).

Proof. Let m := DQ,(a,b), L :=m - (e).

Then L/ = C®. In particular, D} = R, and so [a;b] < D.
It follows that L is ¢/d on [a;b].

By assumption, f is also ¢/d on [a;b].

Then f — L is ¢/d on [a;b].

Let g:= f — L. Then gisc/d on [a;b].

By HW#6-3, we have: g, = gp.

Then, by Rolle’s Theorem, choose ¢ € (a;b) s.t. g. = 0.
Then ce (a;b). Want: f, =DQ(a,b).

Since L' = C® we get L, =m

Since f is ¢/d on [a;b], we get: Int[a;b] = ;.

Since c € (a;b) = Int[a;b] = D’ and c € R = D7, we get:

(f = L) =fi—
Then 0 =g, = (f — L), = f. — L., and so f. =
Then f. = L, =m =DQ,(a,b). O

DEFINITION 4.10.24. Let I < R. By I is an interval, we mean:
Va,be I, [alb] 1.

THEOREM 4.10.25. ([1;3] u [5;7] is not an interval)

(4;9] is an interval)

[0; 0) is an interval)

& is an interval )

is an interval )

(
(
(
(
(
(

&“&“8“8“8“

R
R

o 1s mot an interval).
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THEOREM 4.10.26. Let I < R be a nonempty interval.
Let a:=infl, b:=supl.
Then: (I =[a;b]) v (I =[a;b)) v (I=1(a;b]) v (I=(a;d)).
DEFINITION 4.10.27. Let f : R --» R, S < Dy.
Then: DQ7 | == {DQs(a,b)|a,be S, a+b}.

The set DQJ‘? represents the set of “secant slopes for f over S”,
or the set of “slopes of secant lines for f over S”.

DEFINITION 4.10.28. Let f be a function. By f is constant,
we mean: Va,be Dy, fo=fo.

THEOREM 4.10.29. 5 is constant.

THEOREM 4.10.30. Let f be a function.
Assume: #Dy = 1. Then: f is constant.

THEOREM 4.10.31. Let f : R --»R.  Then:
(#I; < 1) < (f is constant) < (DQ]?f < {0} ).

The preceding theorem shows, for functions R --+ R, that
a precalculus concept such as “constant”

is equivalent to
a statement about secant slopes.

The following theorem contains six such equivalences:

THEOREM 4.10.32. Let f (R - R, ScD;.  Then:
[ (f|S is constant) < (DQ]‘? < {0})]

f|S is one-to-one) < (0¢ DQ?)]

f|S is strictly-increasing) < (DQ? >0)]

f|S is semi-increasing) < (DQ? >0)]

f|S is strictly-decreasing) < (DQ? <0)]

& [ (f]S is semi-decreasing) < (DQ? <0)].

THEOREM 4.10.33. Let f : R --> R, S < Dy, m € DQ7.
Then: 3Ja,be S st (a<b) & (m=DQ(a,b)).

& [(
& [(
& [(
& [(

Proof. Since m € DQ?, choose a, f € S s.t.
(a#3) & (m=DQ(a, 8)).

Let a := min{a, 8}, b := max{a,8}. Then a,be S.

Want: (a<b) & (m=DQ(a,b)).

Since a # 3, we get: either a < f or § < «.
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Then: either ((a<B)&(a=a)&(b=7))
or  ((B<a)&(a=p)&(b=a))
Then a <b.  Want: m = DQ,(a,b).
Since m = DQ(a, 8) and since DQ(a, 8) = DQ(8, @),
it follows that m = DQ(a,b). O

THEOREM 4.10.34. Let f : R --» R and let I be an interval.
Assume:  fis ¢/d on 1.
Then: DQ} < fi(Int ).

Proof. Want: Ym € DQ]IC, m € fi(Int I).

Given m € DQ;. Want: m e f,(Int I).

By Theorem 4.10.33, choose a,be I'st. (a <b) & (m =DQ,(a,b)).
Since a,b € I and since [ is an interval, it follows that [a|b] < 1.

Since a < b, it follows that [a|b] = [a;b].  Then [a;b] < I.

By assumption, fis ¢/d on I.  Then fisc/d on I.

Then, by the MVT, choose c € (a;b) s.t. f. = DQ,(a,b).

Since [a;b] < I, we get Int[a;b] < Int 1.

We have c € (a;b) = Int[a;b] € Int I, so c € Int I.

Since f is ¢/d on I, it follows that Int I < I.

We have ce Int ] < D, = Dy, so c€ Dy,

Since c € Int I and c € Dy, we get: fl e fi(Int ).

Then m = DQ;(a,b) = fl e fi(Int I). O

Combining Theorem 4.10.32 with Theorem 4.10.34,
we get six applications to the MV'T,
as follows:

THEOREM 4.10.35. Let f: R --» R. Let I be an interval.
Assume f is ¢/d on I.  Then:
(i) [ ( f|I is constant) < ( fL(IntI) < {0} )]
& (i) [ ( f|I is one-to-one) <= (0 ¢ fi(Int 1)) ]
& (i) | ( f|I is strictly-increasing) < ( fi(IntI) > 0)]
& () [(fII is semi-increasing) < ( fi(IntI) =0)]
& (v) [ (fI is strictly-decreasing) < ( fi(IntI) <0)]
& (vi) [ (f|I is semi-decreasing) < ( fi(Int ) <0)].

Let f:= (¢)3 and let I := R.
Then f is one-to-one and strictly-increasing.
Also, 0 = fye fi(R) = fi(IntI), so —(fi(IntI)>0).

This provides a counterexample to the converse of (ii) in Theorem 4.10.35
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and provides a counterexample to the converse of (iii) in Theorem 4.10.35.

Let f:= —(e)% and let [ := R.

Then f is strictly-decreasing.

Also, 0 = fye fi(R) = fi(IntI), so —(fi(IntI)<0).

This provides a counterexample to the converse of (v) in Theorem 4.10.35.

Unassigned HW:
The converses to (i), (iv) and (vi) in Theorem 4.10.35 are all true:

THEOREM 4.10.36. Let f : R --» R. Let I be an interval.
Assume f is ¢/d on I.  Then:

[(f|I is constant) < ( fi(IntI) < {0})]
& [(f|I is semi-increasing) < (fi(IntI) > 0)]
& [(f|I is semi-decreasing) < ( fL(Int 1) <0)].

4.11. Taylor’s Theorem.
Here is another form of the MVT:

THEOREM 4.11.1. Let f:R - R, a,b e R.
Assume:  [a[b] < D).
Then: dee [alb] s.t. fo— fo=f.-(b—a).

Proof. We have a,b € [a|b] < D < Dy. Then f,, f, € Iy = R.
Exactly one of the following is true:
(H)a<b or (2)a=b or (3)a>hb.

Case (1): Since a < b, we have [a|b] = [a; b].

Then [a;b] = [a[b] € DY, and so f is ¢/d on [a;b].

By Theorem 4.10.23, choose c € (a;b) s.t. f. = DQ;(a,b).

Then c € (a;b) < [a;b] = [alb]. Want: f, — f, = f.-(b—a).
By defnition of DQ;(a,b), we have f, — f, = (DQ/(a,b)) - (b — a).
Then f, — f, = (DQy(a,))- (b= a) = f.- (b~ a).

End of Case (1).

Case (2):

Since a = b, we get b—a =0 and f, — f, = 0.

Let c:=a. Then ce [alb]. Want: f, — f, = f.-(b—a).
We have ¢ = a € [alb] = DY, so fielp SR, s00 = f.-0.
fo—Ja=0=f-0=fl-(b—a).
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End of Case (2).

Case (3):

Since a < b, we have [a|b] = [b; a].

Then [b;a] = [a[b] = D%, and so f is ¢/d on [b; a].

By Theorem 4.10.23, choose c € (b;a) s.t. f. = DQ,(b,a).

Then ce (b;a) < [b;a] = [alb]. Want: f, — f, = f.- (b—a).

By defnition of DQ(b, a), we have f, — f, = (DQ;(b,a)) - (b — a).
Then fy — f, = (DQ(b.a) - (b5— ) = £1- (b~ a).

End of Case (3). O

The following is Unassigned HW:
THEOREM 4.11.2. Yz,h e R, (z € [0|h]) = (|z| < |h]).

THEOREM 4.11.3. Let f : R --» R, k € Ny.
Assume:  (fo=0)&(f eo(k)).
Then: feolk+1).

Proof. This is Problem 1 from the Final Exam. 0

THEOREM 4.11.4. Let f: R --» R, ke Ny.
Assume:  fo = fi=fl=0.
Then: feo(2).

Proof. This is Problem 2 from the Final Exam. U
The following is Unassigned HW:
THEOREM 4.11.5. Let f: R --+ R, a € D). Then D.f = f - (o).

DEFINITION 4.11.6. Let f : R --—> R, ae R, k€ Ny. Then
1
Daf|i= - 13- (o).

Note: DYf = C’}i, Dlf = D.f, D2f ==-fr (o)

Note that D¥f *e H(k).

N =

Let f:R--»R, keN, aeDy.
The philosophy of Taylor’s theorem is that the best
approximation of fI by
a general (not necessarily homogeneous) kth order polynomial

is (Daf) + (D2f) + (D3f) +--- + (Dif),
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and the error
fi = ((Daf) + (DLf) + (D3f) + -+ (Dgf)),
is “sub-k”, or, in other words, the error is an element of o(k).
We will only prove the Taylor Theorem at second order, i.e., for k = 2,
but the proof we give easily generalizes to all k.
Note: The first order Taylor Theorem is just the assertion that
fa — (Daf) € of1),
which follows from the definition of D, f.

DEFINITION 4.11.7. Let X be a set, f :R --+ X, aeR.
Then | fore|: R -=» X s defined by: Vh e R,

(.fa-&-t)h = fa+h-

THEOREM 4.11.8. Let f : R --» R, a € R.
Then fX = fore — C}i.

THEOREM 4.11.9. Let f,g:R--> R, C e C.
Assume: f=g—C.
Then: fl=4dq.

Proof. Want: Vhe R, f; = ¢).

Given he R.  Want: f, = g.

Since C'e C, we get C" = 0. Then C} = 0.

Since f = g—C, we get f; =* ¢, —C; =g, —0=g,.
Want: g, =" f;.

Since C' € C, we get —C'+ C = 0.

Wehave f+C=g—-C+C=g+0=g.

Since g = f+ C, we get g, =* f, +C; =fl +0=f. O
THEOREM 4.11.10. Let f - R -—-»> R, a, h € R.
Then: (faJrO)qIE = E—&-h'

Proof. Want: Yk € R, ((fare)n)k = (farn)n-
Given k € R. Want: ((fore)i)e = (foin)k-

We have ((fa+0)’]]£)k = (faJrO)thk - (faJro)k
= fa+h+k - fa+k = (fEJrh)k- U

We can express the next theorem by saying
differentiation commutes with (horizontal) translation.
It implies that f;, is unambiguous; in principle, it might mean
(fars)" or  (farte,

but, according to the theorem, these are equal.
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THEOREM 4.11.11. Let f: R --> R, a e R.
Then (fa+o ( )a+°

) =
Proof. Want: Vh € R, ((fore) ) = ((f)aze)n-
Given he R.  Want: ((fore))n = ((f)as .))

Want: ((fa+o),)h = (f/)a-i-h Want: (fa+o
By Theorem 4.11.10, (fase)} = fiop-

Then LINS,fore ={L € L] (fa+.) — Leo(l)}
={LeLl|fL,—Leo(l)} =LINS,4f,

50 LINS, fuse = LINS,; 1. 7.

Then Dy, fose = UE(LINS}, fase) = UE(LINS.:p f) = Dusnf,

S0 tha+o = Da+hf'

Then (faJr.);L = [tha+o] = [Da+hf] = f(lz-‘rh'

THEOREM 4.11.12. Let f : R --» R, a € D}.
Th@n (fT)/ = C/l+o'

Proof. (fc;]r), = (fate — Cfa) are — 0= fo o

THEOREM 4.11.13. Let f :R --» R, a € D}.
Then (f2)" = f1,..

Proof. (fs)" = ((f)")' = (fasa) = fie.

The next theorem is Unassigned HW:

THEOREM 4.11.14.
(VmeR, (m-(s) =CE)
(VeceR, (c- (0)2)’22-0- (o) ).

We have a quantified equivalence for g 2 f:

THEOREM 4.11.15. Let f and g be functions.

Then: (g=2f) < (V, g.

When a superdomain for f is known,

we have another quantified equivalence for g 2 f:

THEOREM 4.11.16. Let f and g be functions. Let S be a set.

Assume: Dy S.

Then: (g=2f) < (VzesS, g,
THEOREM 4.11.17. Let f,g: R --» R, a e R.

Assume: neara, f =g.

Then: fl =4

h-
[
h

a+h

and

=* fx )

=" fa )

139
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Proof. We have:  near 0, fI = g_.
Then, VL € £, we have: near 0, ff — L =gF — L,
andso (ff—Leo(l)) < (gf—Leo(l)).
Then LINS,f = LINS,g.
Then f, — [Daf] = [UE(LINS,f)]
= [UE(LINS.9)] = [Dagl = g O

THEOREM 4.11.18. Let f,g: R --» R, a e R.
Assume: (g2 f) & (f is defined near a).
Then: g = f near a.

Proof. Unassigned HW. U

THEOREM 4.11.19. Let f,g: R --» R.
Assume: g2 f.
Then: g =2f.

Proof. Want: Yae R, g, = f..

Given a e R.  Want: ¢, = fI.

Want: (f, # @) = (g, = /o).

Assume f! # ®. Want: g, = f..

Since f, # ®, we get a € D, and so f is defined near a.

So, since g 2 f, by Theorem 4.11.18, we conclude: g = f near a.
Then, by Theorem 4.11.17, ¢! = f..

So, since f! # @, we conclude that g, = f/. O

THEOREM 4.11.20. Let f,g: R -->R. Then (f +g9) 2 f +4.

Proof. We have: VzeR, (f+g), =" fi+4qd, = (+7 ).
Then: (f+g9))2f+47. O

THEOREM 4.11.21. Let f,g: R --> R. Then (f + ¢)" 2 f" + ¢".

Proof. (f+9)"=((f+g))2(f+9)=2f"+7" O

THEOREM 4.11.22. Let f,g: R --» R, a € R.
Then (f +9)a =" fi + 9a-

Proof. Since (f + g)" 2 f" + ¢”,
it follows that (f + ¢)? =* (f"+ ¢")a.
Then (f +g)s =" (f"+9")a = [ +9, O

We can now state and prove the Taylor Theorem, second order:
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THEOREM 4.11.23. Let f: R --> R, ae DY}, L= D, f, Q := D2f.
Then: fI—L—Qeo(2).

Proof. Let R:= ff — L —Q. Want: Re o(2).
By Final Exam Problem 2, we want: Ry = R = Rj = 0.
By hypothesis, a € Df.  Then a € D} = D}.  Then, Vh € R,

Ly = Lpa = h-Ly = h-[L] = h-[D,f]

= hefo = fo-ho= (fo- (o)

Then L = f! - (o). Then L' = C’}i. Then L” = 0.
Then Ly = 0 and Lj = f, and Lj = 0.
By hypothesis, a € Df.
We have Q = D2f = (1/2) - f/ - ()%
Then Q = (1/2) f7 - (o). Then Q' = (1/2) - f1 -2+ (#) = f- (o)
Then ' = f7-(e). Then Q" = C;I%,.
Then Qo = 0 and @ = 0 and Q) = f7.
By hypothesis, a € D}.  Then a € D} < Dy.
Then (fI)y = 0. So, since Ly = Qo = 0, we get (fF — L —Q)o = 0.
Then Ry = (ff —L—Q)y=0. Want: R, =R} = 0.
By hypothesis, a € 4. Then a € D} < D.  Then (f;,.)o = f;-
We have (£7) = f1,.. Then (1) = (fiiuo = firs0 (11 = f1
So, since Ly = f! and Q) = 0, we get (fT — L —Q)y = f, — f. —0.
Then Ry = (ff —L—-Q)y=f.—f —0=0. Want: Rj =0.
By hypothesis, a € D}.  Then (f;,,)o = fa.
We have (£1)" = f7,.. Then (/) = (f1o)o = fi,s0 (/7 = f1.
So, since Ly = 0 and Q) = f”, we get (fX —L—-Q)y=f'—0— f".
Then R = (f7 — L— Q) = {1~ 0— f! =0. s

4.12. The Second Derivative Test.
THEOREM 4.12.1. Let f:R--+ R, a € ]D);’c.

Assume:  (fI=0)&(f/>0).
Then: f has a local strict-minimum at a.

Proof. This is Problem 3 on the Final Exam. U

THEOREM 4.12.2. Let f: R --» R, a e D}.
Assume:  (fl=0)&(f) <0).

Then: f has a local strict-mazimum at a.

Proof. Unassigned HW. U
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4.13. The Inverse Function Theorem.

THEOREM 4.13.1. Let f : R --» R be one-to-one. Let g := f~1.
Assume:  (fo=0)&(fi=3)&(go€ 0(0)).
Then: g = 1/3.

Proof. This is Problem 4 on the Final Exam. 0

THEOREM 4.13.2. Let f : R --» R be one-to-one. Let g := f~1.
Assume:  (fo=0)&(f#0)& (g€ 0(0)).
Then: g = 1/(f}).

Proof. Unassigned HW. O

The next theorem is the Precalculus Inverse Function Theorem:

THEOREM 4.13.3. Let f : R --» R be one-to-one. Let g := f~1.
Let aeDy.  Letb:= f,.
Then:  fr is one-to-one and (fF)~' = g;.

Proof. Unassigned HW. U

The next theorem is called Invariance of Domain, R --» R.

THEOREM 4.13.4. Let f : R --» R be one-to-one. Let g := f~1.
Let a e Dy.  Letb:= f,.
Assume:  f is continuous near a.
Then: g 18 continuous near b.

Proof. To be proved in spring semester. O

Let f: R --» R be one-to-one. Let g := f~L.
Let a € Dy.  Let b:= f,.
Then the following are all equivalent:
fTis continuous near 0.
f is continuous near a.
g is continuous near b.
gi is continuous near 0.
There are many theorems called the Inverse Function Theorem.
There’s the Precalculus Inverse Function Theorem mentioned above.
There are topological inverse function theorems,
but they're usually called “Open Mapping Theorems”
and we covered one of them above, Theorem 3.11.1.
Finally, there are a variety of differentiable inverse function theorems.
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We will call the following theorem
the Inverse Function Theorem, first order, R — R.

THEOREM 4.13.5. Let f : R --» R be one-to-one. Let g := f~1.
Letae D} Letb:= f,.
Assume:  (fl #0)& ( f is continuous near a).

Then: gy = 1/(f1).

Proof. Unassigned HW. Uses Theorem 4.13.2.
Uses Theorem 4.13.3, the Precalculus Inverse Function Theorem.
Uses Theorem 4.13.4, Invariance of Domain, R --» R. 0

The disadvantage of Theorem 4.13.2 is:
it assumes that g € 0(0).
In a typical inverse problem, much is known about the function f,
and the GOAL is to understand g.
In that context, an assumption about g might be difficult to verify.
Theorem 4.13.5 uses Invariance of Domain to trade in
an assumption that ¢ is continuous near b
for
an assumption that f is continuous near a.

5. INTEGRABILITY OF FUNCTIONS R --» R

5.1. Outer measure.

We define =00 and |00 — (—00) | := o0.

For all x € R, we define

(%)= o0 and [E 2] = o0 and [£=7] =

For all x € R, we define

’T—i—x‘::—ooand'T—m‘::—

We define |00 + (—o0) |:= @ and | (—w0) + w0 |:= @.
For all ¢ € (0; o], we define = o0 and = 0.

For all ¢ € (0; 0], we define | c - (—oo) := —o0 and | (=) - ¢|:= —00.
For all ¢ € [—0;0), we define ;= —o0 and = —00.
For all ¢ € [—0; 0) we define |c ( ) |:= o0 and |(—00) - ¢|:= o0.

We define = ® and = 0.

We define |0 - (—oo) = ® and ( ) 0]:=06.

For all a € R*, we define - Q.
For all a,b e R*, we defein a+ (D).
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DEFINITION 5.1.1. Let a € [0;0|N. Then we define:

da :zsup{i aj\keN}.

jeN j=1

DEFINITION 5.1.2. .= {(a;) | a,b e R}.

That is, OZ is the set of bounded open intervals.
Note that @5 € OZ. We consider ¢ to be an interval.
We define the length of any interval I:

DEFINITION 5.1.3. Let I be an interval.
If I = &, then |L;|:= 0.
If I # &, then |L;|:= (sup ) — (inf I).

THEOREM 5.1.4. L3 = 3— 1 =2 and
L(—oo;4] =4 — (-OO) = 0.

We define the
total length TL; and support supp U
of any sequence U of bounded open intervals:

DEFINITION 5.1.5. Let U € OZ". Then
TLU = ZjeN LU]-

and = {jeN|U; # &}

We next define various kinds of open covers of S:

DEFINITION 5.1.6. Let S < R.  Then:

:= {(UeOT"| Iy 2S5}  and

= {UeOI" | (UIy 2 8) & (#suppU < o) }.
Also, Yk € N,
JOCk| == {Ue OV | (UIy 2 ) & (#suppU < k) }.

We next define various kinds of overmeasures of S

DEFINITION 5.1.7. Let S < R.  Then:

TLOCs| := {TLy|U e LOCs} and
TJOCS = {TLU‘UEJOCS}

Also, Yk € N,
TJOCE| .= {TLy|U e JOCE}.
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For any S <€ R, we now define

the Lebesgue outer measure LOg of S and

the Jordan outer measure JOg of S and

for any k € N, the Jordan outer k-measure JO% of S
as follows:

DEFINITION 5.1.8. Let S < R.  Then:
LOg| := inf TLOCg and
:= inf TJOCg.

Also, Yk € N, we define:

JOE| := inf TJOCE.

THEOREM 5.1.9. Let SC R, V e OT".
Assume: | JIy 2 5.
Then: TLV = LOS

THEOREM 5.1.10. Let SC R, V e OT".
Assume: | JIy 25  and #suppV < .
Then: TLy = JOg.

THEOREM 5.1.11. Let SC R, Ve OI", ke N.
Assume: | JIy 2S5  and F#suppV < k.
Then: TLy = JO%.

THEOREM 5.1.12. Let S < R be unbounded. Then JOg = co.

Proof. We have: VI € OZ, I is bounded.

Then YU € OV, if #supp U < oo, then | JI is bounded.

So, since S is unbounded, we get JOCg = &J, and so Then TJOCg = 7.
Then JOg = inf TJOCg = inf ¢ = 0. O

The preceding theorem shows, in particular, that JOz = oo.
Unassigned HW: Show that LOz = 0.
Thus JO and LO are different.

THEOREM 5.1.13.
Va,beR, JOppy = |b—al.

Proof. Unassigned HW. U

THEOREM 5.1.14. Vk € N,
Va,beR, JO[, = |b—al.
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Proof. Let S :={k e N|Va,be R, JO lap] = 10— al}.

Want: S =N. By Theorem 5.1.13, 1 € S.

By the PMI, want: Vke S, k+ 1€ S.

Given ke S. Want: k+ 1€ S.

Know: Ya,b e R, JO lap] = 10— al.

Want: Va,be R, JOLL, = [b—al.

Know: Vy,z € R, JO e = v — 2|

Want: Vo, 5 € R, OkJrl > |8 —al

Given a, B € R. Want JO’EJé] > |B—al

Let a := min{a, f}, b := max{a, 5}. Want: JO][“afbl] > b—a.
Let Q := TJOCY,,.  Then inf @ = JO[ .

Want: inf() >b—a. Want: (Q >b—a.

Want: Vge ), g = b— a.

Given ge (). Want: ¢ > b —a.

Since g€ Q = TJOC'“H choose U € JOC]‘“rl s.t. g = TLy.
Since U € JOCkH we know Uy 2 [a; b] and #suppU < k + 1.

Since b € [a;b] < U]IU_UUJ’ choose j € Ns.t. be Uj.

jeN
Since U € OI", we get U; € OZ.  Choose s,t € R s.t. U; = (s;t).
Since b e U; = (s;t), it follows that (s;t) # .  Then s < t.
Since b e U; = (s;t), we conclude that s < b < t.

Recall: Vy, z € R, JO'[“W] > |y — z|. Then: JOI[“G;S] > |s —al.
So, since |s — a| = s — a, we get: JO'[“(I;S] > s—a.

Uy, ifi#j
Define V e O by: VieN, V, — e

o, ifi=j.

Then TLy = TLy — Ly, and  [JIy 2 [a; 5]
and  F#suppV = (#suppU) —1< (k+1)—1=kF.
Since |JIy 2 [a;s] and #supp V' < k, we get: V € JOC’[“a;s].
Since V' € JOCIEQ;S], we get TLy € TJOCk , 50 TLy > inf TJOC’[“G;S].
Then TLy > inf TJOCY, ; = JOf,.g, so TLV > JOp,
Since TLy = TLy — Ly;, we get: TLU = Ly, + TLV
Since U; = (s;t) and s < t, we get: Ly, =t —s.
So, since TLy > JOIEQ;S] > s—a, we get: Ly, + TLy = (t —s) + (s —a).
Since b < t, we get: t —a > b — a.
Then TLy = Ly, + TLy = (t —s) + (s —a) =t —a > b —a,
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so TLy >b—a, soTLy >=b—a.
Then ¢ = TLy = b — a. U

THEOREM 5.1.15. Let a,be R. Then JOpp = |b— al.

Proof. Let @ := TJOCq.  Then inf Q) = JOqy).
Want: inf@ > |b—al. Want: Q > |b—al.
Want: Vge @), ¢ = b —a.
Given ge ). Want: ¢ > b—a.
Since g € Q = TJOC,)), choose U € JOCy s.t. ¢ = TLy.
Since U € JOCqp}, we get #supp U < 0, so #supp U € Np.
Let k := #suppU. Then k € Nj.
Since U € JOCyq, we get: Iy = [alb].
Since a € [a|b], we get: [alb] # &.
So, since | JIy 2 [alb], we get | JIy # .
Since U U; = U]IU # &, we conclude: 35 e Ns.t. U; # .
jeN
Then ]SuppU # . Then #supp U # 0.
Since k € Ny and since k = #supp U # 0, we get: ke N.
So, since k = #supp U and since | JIy 2 [a|b], we get: U e JOC'[“QU,].
Then TLy € TJOC}, ;- Then TLy > inf TJOCE, .
So, since JO’[“a‘b] = inf TJOCIfalb], we get TLy > JO’[“a‘b].
By Theorem 5.1.14, we get: JOp, ;) = |b— al.
Then TLy = JOp,,) = b —al. O

THEOREM 5.1.16. Let ae R, b > a. Then JOp,y = b — a.

Proof. By Theorem 5.1.15, JOpq5) = |b — al.

Then JOpap) = JOpp = [b—al =b—a.  Want: JOp < b—a.
Want: Ve > 0, JOpp < b—a+e.

Given € > 0. Want: JOy <b—a+ec.

Let I :=(a—(g/2); b+ (¢/2)). Then I 2 [a;b].

LetU = (I, 0., 3.3,.3,3,...)

Then Ue OI" and Iy = Tu o Fu--=12][a;b].

Also, since supp U = {1}, we get #suppU < .  Then U € JOC,y.
Then TLy € TJOC 4. Then TLy = inf TJOC ).

So, since JO[q) inf TJOC 4y, we get TLy = JOqy), and so JOpg <
TLy.

Then JOpp < TLy =b—a +e. L]

THEOREM 5.1.17. Let a € R. Then JOy,; = 0.
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Proof. By the preceding theorem, JO[u, = a — a.
Then JO{a} = JO[a;a] =a—a=0. ]

We next show that JO is monotonic:

THEOREM 5.1.18. Let S,T < R.
Assume: T 2 S. Then: JOr = JOg.

Proof. Since T" 2 S, it follows that JOCy < JOCg, so TJOCy <
TJOCs.

We have TJOCr <€ TJOCg = inf TJOCg = JOg.

Since TJOCr = JOg, it follows that inf TJOCy > JOg.

Then JO7 = inf TJOCy = JOg. O

We next show that JO is subadditive:

THEOREM 5.1.19. Let S, T <R. Then JOgor < JOg + JO7.
Proof. This is HW#13-1. U
The next two theorems are Unassigned HW:

THEOREM 5.1.20. Let [ € OZ, a :=inf I, b:=sup . Then:
(I=g) = ((a=0)&((b=—x0)) and
(I+#J)=(—0o<a<b<w) and
I = (a;b) and Cl; = [a; b].

THEOREM 5.1.21. Let [ € OZ, a:=infI, b:=supl, v > 0.
Let J := (a —y;b+ 7). Then:
(I=0) < (J=g) and
Cl; ¢ J and Ly<L;+2-7.

THEOREM 5.1.22. Let U € OZV, ¢ > 0.
Then 3V € OI" s.t.
supp U = supp V' and
VjeN, Cly, =V and
TLy < TLy + €.

Proof. Define a,b e [—o0; 0] by: Vj e N,
a; :==infU; and b; :=supU;.
Define s,t € [—o0; 0]N by: Vj € N,

e/2 e/2
sjzzaj—% and tj::bj“—%.

Then, Vj € N, we have: (U; =) = ((s; =) & (t; = —0)).
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Then, Vj € N, we have: (U; = &) = ((s;:t;) = ).
Define V e OI" by: Vj e N, V; = (s;;¢;). Then Ve OT".
Want: suppU = supp V' and
VieN, Cly, €V and
TLy < TLy + &.
We have: VjeN,
(Uj=02) < (V;=9J)
and Cly, = CI( (inf Uj;sup U;) ) = CI( (a;;b;))
= [az; b5] = (s;:t5) =Vj
and LVj gLUj+2'E2@.
Then: suppU = supp V' and
VjeN, Cly, = Vj.
Want: TLy, < TLy + ¢.
We have TLy < TLy +2- (Z %>
jeN 2

= TLU+2(€/2) = TLy + . O

THEOREM 5.1.23. Let U € OI". Assume #suppU < 0.
Define U € (2%)N by: Vje N, U; = C1U;.
Then | JIi is closed.

Proof. We have: Vi e N, U, is closed.

Let F' :=suppU. Then F is finite.

Then | J,.» U, is closed.

Since F' = supp U, we get: Vie N\F, U; = &.
Then VieN\F, U;=ClU;=Clg=.

Then UieN U; = UieF Ui.
Since Iy = U,en U, = Uier U;, and since U,er U, is closed,
we conclude that U I7 is closed. O

THEOREM 5.1.24. Let S < R. Then JOS = JOCIS-

Proof. Let S:=ClS. Want: JOg = JOg.

Since S < C1S = S, we get JOg < JOg.

Want: JOg < JOg.  We have: JOg = inf TJOCg.
Want: JOg <inf TJOCgs. Want: JOg < TJOCg.
Want: Va e TJOCg, JOg < a.

Given a € TJOCg. Want: JOg < a.

Since a € TJOCg, choose U € JOCg s.t. a = TLy.
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Want: JOg < TLy. Want: Ve >0, JOg < TLy +¢.

Given € > 0. Want: JOg < TLy +¢.

By Theorem 5.1.22, choose V € OZ" s.t. (suppU = supp V)
and (VjeN,ClU,<V;) and (TLy <TLy+¢).

Want: JOg < TLy.

Define U € (28)N by: Vje N, U; = C1U;.

Since U € JOCg, we get: | JIy 2 S and #supp U < .

By Theorem 5.1.23, | JI is closed, and so Cl(|JIy) = Iy

Since VieN, U, c ClU; = U;, we get: Iy < (J Iy

Since VieN, U; = ClU; €V, we get: (JIy < JIv.

Since S < | JIy < Iy, we get: C1S < ClL(|Iy).

Then S = C1S < C1(UIy) = UIy < UIy.

S0, since #supp V = #supp U < o0, we get: V e JOCg.

Then TLy € TJOCg.  Then TLy > inf TJOCs.

Then JOg = inf TJOCg < TLy. O

For any sets A and S,
{SnA, S\A} is a partition of S,
and this would lead us to expect that
JOg~a + JOS\A = JOg,
but we will soon see that this is not always true.
We capture the equation JOg~4 + JOgia = JOg in a definition:

DEFINITION 5.1.25. Let A, S < R.
By A splits S well, we mean:  JOgna + JOgia = JOg.

Our focus here is on Jordan measure theory,
but we can do something similar for Lebesgue measure:

DEFINITION 5.1.26. Let A, S < R.
By A splits S L-well, we mean: LOg~s + LOg 4 = LOg.

Since CI([0;1] n Q) = [0; 1],
from the preceding theorem, we get: JO(.1j~q = JO[0;1]-
So, since JO[p,1) = 1 — 0, we conclude: JOjp,1)~q = 1.
Since CI([0; 1\Q) = [0; 1],
from the preceding theorem, we get: JOp.11.0 = JOpo.1].
So, since JOpp,;) = 1 — 0, we conclude: JOp,1pq = 1.
Then { [0;1] nQ , [0;1]\Q} is a partition of [0; 1], but, paradoxically,
JOpne + JOpane # JOp-
So @ does NOT split [0; 1] well.
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In this sense, Q is not a good set
from the point of view of Jordan measure.
Note that Q n [7; 8] splits [0; 1] well, because
[0;1]n (Qn[7:8]) =& and  [0;1\(Qn [7;8]) = [0;1].
However, there’s a different set that Q n [7; 8] does NOT split well.
Specifically, Q n [7;8] does NOT split [7; 8] well.
In this sense, Q N [7; 8] is another bad set
from the point of view of Jordan measure.
In the next definition, we will formalize the idea that a “good” set,
from the point of view of Jordan measure,
is one which splits every subset of R well.

DEFINITION 5.1.27. Let A < R.

By A is Carathéodory-Jordan measurable or CJ-measurable,
we mean: VS <R, A splits S well.

DEFINITION 5.1.28. Let A < R.
By A is Carathéodory-Lebesgue measurable or CL-measurable,
we mean: VS <R, A splits S L-well.

We won’t be developing Lebesgue measure theory,
but we comment that,
every CJ-measurable set is CL-measurable,
so the Lebesgue theory
has fewer paradoxical decompositions than the Jordan theory,
and is, in that sense, a better theory. However, it is not perfect:
there do exist subsets of R that are not CL-measurable,
but proof of their existence is known to require the Axiom of Choice.
So subsets of R that are not CL-measurable are very obscure.
By contrast, it is not hard to describe
subsets of R (like Q) that are not CJ-measurable.
However, we will eventually show that
there is a broad enough collection of CJ-measurable sets
to suffice for most applications in the natural sciences.
In that sense, Jordan measure theory
and the corresponding integration theory,
which we will soon be describing
are good enough for government work.

We develop some of the theory of CJ-measurable sets,
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then use it in showing that every interval is CJ-measurable.
We begin by showing that
Jordan outer measure is pairwise-additive on CJ-measurable sets:

THEOREM 5.1.29. Let A, B < R.
Assume A is CJ-measurable.
Assume An B = (. Then JO g = JO4 + JOp.

The preceding theorem expresses that Jordan measure is pairwise ad-
ditive.

Proof. Let S :=Au B.

Then, because A n B = ¢, it follows that S n A = A and S\A = B.

Since A is CJ-measurable, A splits S well, so JOg = JOga + JOg\4.

Then JO4_B =JOSZJOSQA-FJOS\A:JOA-FJOB. U

Unassigned HW: Use Theorem 5.1.29 and induction on #Q to prove
the following.

THEOREM 5.1.30. Let S < R.
Let Q be a finite partition of S by CJ-measurable sets.
Then  JOg= ) JOa.
AeQ

The preceding theorem expresses that Jordan measure is finitely ad-
ditive.

DEFINITION 5.1.31. VA C R, [A°]:= R\A.

For any A, S € R, we have: S\A = 5 n A°, and so
A splits S well iff JOg = JOgqa + JOgnAac.

THEOREM 5.1.32. Let A < R be CJ-measurable.
Then A€ is CJ-measurable.

Proof. Want: VS < R, A° splits S well.
Given S € R.  Want: A° splits S well.
Want: JOg = JOg~ac + JOgA gce.
Since A is CJ-measurable,
we conclude that A splits S well,
and so JOg = JOgra + JOgn ac.
So, since A = A%, we get JOg = JOgnacc + JOgnac.
Then JOS = JOSmAC + JOSmACC. ]



CLASS NOTES 153

Unassigned HW. Show: Let A, B < R. Then
{AnB, AnB°, A°nB, A°n B¢}

is a partition of R.

THEOREM 5.1.33. Let A, B < R both be CJ-measurable.
Let W' :=AnB, X :=AnB¢
Y':=A°nB, Z' :=A°n B-.
Let WcW, XcX, YcVY', ZcZ.
Then JOWUXUYUZ=J0W+JOX+JOy+JOZ.

Proof. Let S:=W uXuY uZ. Want: JOg = JOy +JOx +JOy +
JOZ.
Since W € W', we get W W' =W.
We have: { W' | X' | Y’ Z'} is pairwise-disjoint.
So,since W < W', weget: WnX =WnY =WnZ=¢g.
Then SAW' =WuXuYuZ)nW
=WAaW)yuoWnX)uo(WnY)u(WnZ)
=Wovgugug=W.

Similarly, SN X' =X and SnY' =Y and Sn Z' = Z.
Want: JOg = JOg~w' + JOg~x' + JOgnay’ + JOgA2:.
Because A is CJ-measurable, A splits S well,

$s0 JOg = JOgqa + JOgnac.
Because B is CJ-measurable, B splits S n A well,

S0 JOgna = JOg~anB + JO5AanBe-
Then JOg~a = JOg~w+ + JOg~x7.
Because B is CJ-measurable, B splits S n A¢ well,

80 JOgnac = JOgnacnn + JOsAacnBe.
Then JOgqac = JOgnayr + JOgA 7.
Then JOg = JOg~a + JOgA4c

= JOg~w' + JOgnx' + JOg~y + JOgnz. O

THEOREM 5.1.34. Let A, B < R both be CJ-measurable.
Then A n B is CJ-measurable.

Proof. Let W':=AnB, X :=An B
Y':=A°nB, Z :=A°n B

Want: W' is CJ-measurable.

Want: VS < R, W’ splits S well.

Given S € R.  Want: W’ splits S well.

Want: JOg = JOg~w + JOS\W/.
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Let W:=8nW, X:=8nX,
Y =SnY', Z=8nZ.
Since (W', X" Y" Z'} is a partition of R,
weget: {W , X | Y | Z }isa partition of S.

Then S\W =X uY uZ. Also, S\W = S\(SnW') =S\W".
We get: JOSQW/ = JOW and JOS\W/ = JOS\W = JOXuyuz.
Want: JOg = JOw + JOxoyoz-
By Theorem 5.1.33, we get:

both JOWUXUYUZZJOW+JOX+JOy+JOZ

and JO@uXuYuZ ZJO@ +JOx + JOy + JO4.
Then: both JOg = JOw + JOx + JOy + JO4

and JOxoyuz = 0 4+ JOx 4+ JOy +JOg.
Then JOg = JOw + JOx + JOy + JO4

= JOw + (04 JOx + JOy + JOy)

=JOw + JOxoLyuz. U

THEOREM 5.1.35. Let A, B < R both be CJ-measurable.
Then An B, Au B, A\B are all CJ-measurable.

Proof. By Theorem 5.1.34, A n B is CJ-measurable.
Want: A u B, A\B are both CJ-measurable.
By Theorem 5.1.32, we get: A¢, B¢ are both CJ-measurable.
Since A, B¢ are both CJ-measurable, by Theorem 5.1.34,
A n B¢ is CJ-measurable.
So, since A\B = A n B¢, we see that A\B is CJ-measurable.
Want: A u B is CJ-measurable.
Since A° and B¢ are both CJ-measurable, by Theorem 5.1.34,
A¢ n B¢ is CJ-measurable.
Then, by Theorem 5.1.32, (A¢ n B)¢ is CJ-measurable.
So, since Au B = (A°n B)¢, we see that Au B is CJ-measurable. [

THEOREM 5.1.36. Let A, B < R.
Assume: A is CJ-measurable and JO, < 0.
Then: JOB\A = JOB—JOA.

Proof. Since A is CJ-measurable, A splits B well,
so JOp =JOpgna + JOB\A.
Since A< B, weget BnA=A. Then JOp = JO4 + JOp4.
So, since JO4 < 0, we get: JOp —JO4 = JOp4.
Then JOp4 = JOp — JO4. O
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We have developed a certain amount of theory about CJ-measurable
sets.
However, we have yet to produce examples.
Our next goal is to show that all intervals are CJ-measurable.
We begin by showing, that: Va € R, YU € OZ,
the sets (—o0;a) and (a; ) split U well, in length:

THEOREM 5.1.37. Let U e OZ, ae R, A := (—w:a), B = (a; ).
Then (UnAUNBeOI) & (Ly=Ly~a+ Lu~s)-

Idea of proof:

There are two cases: (U =) v (U # &).

The case where U = J is an exercise for the reader.

We concentrate on the case where U # (7.

Choose s,t € Rs.t. s <tand U = (s;1).

We have Ly = Lgy) = SUP(g,p) — infey) =1 —5,80 Ly =1 — s.

There are three subcases: (a <s) v (s<a<t) v(t<a).

The subcases where a < s or t < a are exercises for the reader.

We concentrate on the case where s < a < t.

Then U n A = (s;a) and U n B = (a;t).

Then UnA,UnB e OZ. 1t remains toshow: Ly = Ly a+Ly~s.
We have Ly~a = Lsa) = SUD(5;0) — inf(gq) = a— 5,50 Ly~a = a— s.
We have Lynp = L) = Supgy) — inf,y =t —a,s0 Ly~p =t —a.
Then Lynp + Lyqa = (t—a)+(a—s)=t—s= Ly.

Then LU = LUmA + LUmB- QED

THEOREM 5.1.38. Let A, S < R.
Assume JOg = oo.  Then A splits S well.

Proof. By subadditivity of JO, we get: JOg < JOgna + JOg\4.
Want: JOg~4 + JOS\A < JOg.
We have JOSmA+JOS\A€R* < oo = JOg. ]

Because of the preceding theorem,
to show that a set A is CJ-measurable,
it suffices to show that it splits all
sets of finite outer Jordan measure
well; the sets of infinite measure are split well for free.

THEOREM 5.1.39. Let S € R. Then: S is CJ-measurable iff
VScR, (JOs<w) = (A splits S well).
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THEOREM 5.1.40. Let ae R.  Then (—o0;a) is CJ-measurable.

Proof. Let A := (—;a), B :=(a;0). Want: A is CJ-measurable.
Want: VS S R, ( JOg < o0 ) = (A splits S well ).
Given S € R.  Assume JOg < 0. Want: A splits S well.
Want: JOg = JOg~4 + JOS\A.
By HW 13-1, JOg < JOgn~a + JOS\A.
Want: JOg~4 + JOS\A < JOg.
Want: Ve > 0, JOSQA+JOS\A < JOg + .
Given ¢ > 0. Want: JOg~4 +JOg 4 < JOg +¢.
Since JOg = inf TJOCg, we get —(JOg + ¢ < TJOCy).
Choose c € TJOCg s.t. JOg + ¢ > c.
Want: JOg~4 + JOS\A < c.
Since ¢ € TJOCg, choose U € JOCg s.t. ¢ = TLy.
Since U € JOCg, we get:
U e OI" and #suppU < o and (JIy 2 S.
Define V,W € OZ" by: Vj e N,
Vi=U;jnA and W;=U;nB.
Since supp V < supp U, we get #supp V < #suppU.
We have (JIv = Ujen Vi = Ujen (Ui 0 4)
— (Usen W) n A= (U} n A28 n A,
Then [ JIy 2 S n A. We also have #supp V < #supp U < w0,
and so we get: V € JOCgna.
Then TLy € TJOCg,4 = inf TJOCg~4 = JOgqa, so TLy = JOgAa.
Since supp W < supp U, we get #supp W < #supp U.
We have UHW = UjeN VV] = UjeN (U] A B)
— (UjenUs) 0 B=(UIy) n B2 S B,
Then JIw 2 S n B. We also have, #supp W < #supp U < o,
and so we get: W e JOCgnp.
Then TLy € TJOCg,p = inf TJOCg~5 = JOg~p5, so TLy = JOgAB.
We have both TLy > JOg~4 and TLy > JOg~5,
and so JOg~a + JOg~p < TLy + TLyy.
By Theorem 5.1.37, we get: Vj € N, Ly, = Ly,na + Lu,~B-
Then TLy = 2y Lo, = 2ien (Lvina + Luins) = 2oy (Lvi + L)
= (ZieN LVL) + (ZieN LW@') = TLy + TLw.
We have: S\A=5nA°=S5n[a;0)=5n ({a} U (a;0))
=Sn({a}uB)=(Sn{a}) v (SnB)
< {a} U (SN B).
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Then JOg\4 < JOa30(5~B)-
So, by subadditivity of JO, we get: JOg\a < JOyq + JOgnB.
We have JO{a} = JO[a;a] =a—a=0. Then JOS\A < JOgnB.

Then JOg~4+JO0g\4 < JOg,a+J0s~p < TLy +TLy = TLy = c.

THEOREM 5.1.41. Let a € R. Then [a; o) is CJ-measurable.

Proof. By Theorem 5.1.40, (—o0;a) is CJ-measurable.
Then (—o0; a)¢ is CJ-measurable.
So, since (—o0;a)® = [a; ), we get: [a;00) is CJ-measurable.

THEOREM 5.1.42. Let a € R. Then (a; ) is CJ-measurable.

Proof. Unassigned HW. Similar to Theorem 5.1.40.

THEOREM 5.1.43. Let a € R. Then (—0;al is CJ-measurable.

Proof. By Theorem 5.1.42, (a; ) is CJ-measurable.
Then (a;00)¢ is CJ-measurable.
So, since (a; 0)¢ = (—o0; a], we get: (—oo;a] is CJ-measurable.

THEOREM 5.1.44. Let a,be R. Then [a;b] is CJ-measurable.

Proof. Since (—o0;b] and [a; 00) are CJ-measurable,
we get: (—oo;b] N [a;0) is CJ-measurable.

So, since (—o0;b] N [a; 0) = [a;b], we get: [a;b] is CJ-measurable.

THEOREM 5.1.45. Let a,be R. Then [a;b) is CJ-measurable.

Proof. Since (—o0;b) and [a; o) are CJ-measurable,
we get: (—o0;b) N [a;00) is CJ-measurable.

So, since (—0;b) N [a; 0) = [a;b), we get: [a;b) is CJ-measurable.

THEOREM 5.1.46. Let a,be R. Then (a;b] is CJ-measurable.

Proof. Since (—o0;b] and (a; o) are CJ-measurable,
we get: (—o0;b] N (a;00) is CJ-measurable.

So, since (—o0;b] N (a;0) = (a;b], we get: (a;b] is CJ-measurable.

THEOREM 5.1.47. Let a,be R. Then (a;b) is CJ-measurable.

Proof. Since (—o0;b) and (a;0) are CJ-measurable,
we get: (—o0;b) N (a;00) is CJ-measurable.

So, since (—o0;b) N (a;0) = (a;b), we get: (a;b) is CJ-measurable.

157
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Since ¥ = (0;0), we get: J is CJ-measurable.
So, since J° = R, we get: R is CJ-measurable.
We have now proved: every interval is CJ-measurable.
A set of sets is called a ring of sets if it is closed under
pairwise intersection, pairwise union and set subtraction.
A set is constructible if it is in the ring of sets generated by intervals.
Sets of use in the natural sciences are typically constructible,
and we now know: every constructible set is CJ-measurable.

THEOREM 5.1.48. Letae R, b>a. Then:
JOfap) = JOpwp) = JO@p = JO@p = b—a.

Idea of proof: =~ We already proved JOpp = b — a.
Want: JO[a;b) = JO(a;b] = JO(a;b) = b—a.

We have JOgy = JOpy = b—b =0 and [a;b) = [a; b]\{b}.
By Theorem 5.1.36, JO[a) = JOpqp) — JOgy.

Then JO[a;b) = JO[a;b] — JO{b} =b—a+0=0b—a.

Want: JO(a;b] = JO(a;b) = b—a.

The rest is left as unassigned Homework. QED

5.2. Jordan integration.
Addition is associative, and so we have:

THEOREM 5.2.1. Let P, F be finite sets, « : P >R, §: P — F.

Then Z Z op 220@.

yel' \ Pef*{y} PeP

In Theorem 5.2.1, for any y € F,
the sum Z ap is the “fiber sum” of a over y.
Pep*{y}
Also, Z ap is the “total sum” of a.

PeP
Then, informally, Theorem 5.2.1 asserts:

The sum of the fiber sums is equal to  the total sum.
That is, the total sum can be “grouped” into fiber sums, and,
by the associative law, the sum is unchanged by that grouping.

DEFINITION 5.2.2. Let s be a function. Let Q be a partition of D.
By s is subordinate to Q, we mean:
VQ e Q, s|Q is constant.
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THEOREM 5.2.3. Let s be a function.
Let P and Q be partitions of Ds.

Assume s is subordinate to @  and P is a refinement of Q.
Then s is subordinate to P.

DEFINITION 5.2.4. Let s: R --» R.
By s is J-simple, we mean:
dfinite partition Q of Dy s.t. s is subordinate to Q
and s.t. VQ e Q, Q is CJ-measurable.

DEFINITION 5.2.5. Let s: R --» R.
By s is L-simple, we mean:
dcountable partition Q of D, s.t. s is subordinate to Q
and s.t. VQ e Q, Q is CL-measurable.

We read “J-simple” as “Jordan simple”.
We read “L-simple” as “Lebesgue simple”.
Any J-simple function R --» R is L-simple.

THEOREM 5.2.6. Let s: R --» R be J-simple. Then I, is finite.
THEOREM 5.2.7. Lets : R --+ R be L-simple. Then I, is countable.

We now define
the simple integral of a simple function s,
denoted S, as follows:

DEFINITION 5.2.8. Letae R, b>a, s: [a;b] — R.

Assume s is J-simple.  Then:

= Z (JOS*{y} : y).
yels
THEOREM 5.2.9. Let a€R, b>a, s:[a;b]—R.
Let P be a finite partition of [a;b].
Assume: s is subordinate to P.
Assume: YP e P, P is CJ-measurable and nonempty.
Define B : P — 1, by: YP e P, fp = UE,, p.
Then: Vyel,, JOug = >, JOp.
Pep*{y}

Idea of Proof:  Given y € I,. Want: JO,x, = 2 JOp.

Pep*{y}
We leave it as an exercise to show that §*{y} is a partition of s*{y}.
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Then, by finite additivity of Jordan measure,

we get the desired result: JOgxqy = Z JOp. QED

Pep*{y}
THEOREM 5.2.10. Let a€R, b>a, s:|a;b]—R.
Let P be a finite partition of [a;b].
Assume: s is subordinate to P.
Assume: VP e P, P is CJ-measurable and nonempty.
Then: JI, = > (JOp-UE,,p).
PeP

Proof. Define a: P — R by: VP e P, ap = JOp - UE,,p.
Want: JI, = Z ap.

PeP
Define 5 : P — I by: VP € P, Bp = UE;, p.

By Theorem 5.2.9,
Vyel, JOwy = Y, JOp.

Pep*{y}
Then JI, = > JOugy - y
yels
- X (% gor)
yels ™ Pef*{y}

=2 ) (JOp-y).

yels Pep*{y}

We have: Vy el, VP e p*{y}, PBpe{y}, sopfp=uy.
Then JI, = > > (JOp - Bp).

yels Pef*{y}
By definition of 8, we have: VP e P, [p = UE,,p.

Then JI, = Y > (JOp - UE,p).
yels Pep*{y}
By definition of o, we have: VP e P, ap = JOp - UE,, p.

Then JI, = 2 Z
vel. PeB*{y)

Then, by Theorem 5.2.1, we get: JI, = Z ap.
PeP

THEOREM 5.2.11. Letae R, b > a.
Let s,t : [a;b] — R both be J-simple.
Then: s+t is J-simple and

sy = I + JL;.

Proof. Choose a finite partition P of [a;b] s.t.
VP e P, P isCJ-measurable and
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s is subordinate to P.

Choose a finite partition Q of [a;b] s.t.
VQ e Q, (@ is CJ-measurable and
t is subordinate to Q.

Let R:={PnQ|PeP, Qe Q}.

Then R is a finite partition of [a;b] s.t.
VReR, R isnonempty and CJ-measurable and
both s and t are subordinate to P.

Since both s and ¢ are subordinate to R,

it follows that s + t is subordinate to R.

Then s + t is J-simple. ~ Want: JI,,, = JI, + JI;.

We have: VReR, UE(s+t)*R = UES*R + UEt*R.

Then: VRER, JOR'UE(S+t)*R = JOR'UES*R + JOR'UEt*R.

Then: Y (JOg - UE(sti),n)
ReR
= [Z (JOg - UES*R)] + | ) (JOg - UEt*R)].
ReR ReR
Then, by Theorem 5.2.10, we get:  Jl;,, = JI; + JI,.

THEOREM 5.2.12. Letae R, b> a, ce R.
Let s : [a;b] — R be J-simple.
Then: c¢-sis J-simple and Jl., = c- Jl.

Proof. Unassigned HW. O

The preceding two theorems can be summarized by saying:
Jordan simple integration, JI, is algebraically linear.
The next theorem says:
Jordan simple integration, JI, is monotonic.

THEOREM 5.2.13. Letae R, b > a, I :=[a;b].
Let s,t : [a;b] — R both be J-simple.
Assume: on I, s <t. Then JI, < J1,.

Proof. By algebraic linearity of JI, we conclude:
t —sis J-simple and JI,_,=JI, — JI,.

On I, we have t — s > 0. So, since D;_, = I, we see:  I;_, = 0.
Then, by definition of JI,_,, we get:  JI,_, > 0.
Then JI; — JI; = JI,_s >0, soJI;, = JI,, so JI, < JI,. O

The upper simple functions and lower simple functions
for f on I are
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those that majorize f and those majorized by f
on [, as follows:

DEFINITION 5.2.14. Letae R, b>a, I := [a;b].
Let f:R-->R.  Assume I < Dy.

Then USf,v = {J-simplet: I > Rl|onl, f<t}.
Also, |LST | := { J-simple s : T - R|on I, s < f}.

The upper simple integrals and lower simple integrals
for f on I are the Jordan integrals of the

upper simple functions and lower simple functions
for fon I, as follows:

DEFINITION 5.2.15. Letae R, b > a, I := [a;b].
Let f:R--»>R.  Assume I < Dy.

Then |USI!| := {JI,|t e USS}.
Also, |LSI] | := {JI,|seLS]}.

The Jordan upper integral and Jordan lower integral
for f on I are the infimum and supremum of the

upper simple integrals and lower simple integrals
for fon I, as follows:

DEFINITION 5.2.16. Let a€ R, b > a, I := [a;b].
Let f:R-->R.  Assume I < Dy.
Then |JUJ| := inf USI) and |JL}|:= sup LST/.

THEOREM 5.2.17. Let A, B < R.
Assume: VYVae A,Vbe B, a<b.
Then: sup A < inf B.

Proof. We have: Vae A, a < B, hencea <infB.
Then: A <inf B, and so sup A < inf B.

THEOREM 5.2.18. Letae R, b > a, I :=[a;].
Let f :R--—»R.  Assume I < Dy.
Then JL} < JUJ.

Proof. Want: sup LSIJ < inf UST/.
By Theorem 5.2.17, it suffices to show:
Va e LSI,, Vb e USL{, a<b.
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Given a € LSI, be USI).  Want a < b.

Since a € LSIY, choose s € LSS s.t. a = JL,.

Since b € USI{, choose t € US{ s.t. b= JI.

Since s € LS}E, we have: on [, s < f.

Since t € US}C, we have: on I, f <t.

Then onl, s<t.

So, by monotonicity of Jordan simple integration, JI, < JI,.

Then a = JI, < JI; = b. O

The next theorem says that JL and JU are monontonic:

THEOREM 5.2.19. LetaeR, b>a, I :=[a;b], f,g: R --»R.
Assume: onl, f <g.
Thene: JLI < JLY  and JUJ < JUY.

Proof. Monotonicity of JL is Problem 5 on the Final exam.
Monotonicity of JU is Unassigned HW. U

When the Jordan upper and lower integrals of f on I agree,
that common integral is called the Jordan integral of f on I:

DEFINITION 5.2.20. Leta € R, b > a, I := [a;b].
Let f :R--»R.  Assume I < Dy.

Then: Jf .= UE{JLJ, JUI}.
I

5.3. Jordan integrability of continuous functions.

We next show that continuity implies Jordan integrability.

This is one of two deep theorems we will cover in Jordan integration,
the other being the Fundamental Theorem of Calculus,

which will be proved later.

THEOREM 5.3.1. Letae R, b > a, I :=[a;b].
Let f :R--»R.  Assume f is continuous on I.
Then: Jf # ©.
I
Proof. Want: JLJ = JUJ. By Theorem 5.2.18, JL} < JUJ.
It suffices to show: JUJ < JL/.  Want: Ve > 0, JUJ < JLI +¢.
Given e > 0. Want: JUJ < JL +¢.
Since I = [a;b], we see that I is closed and bounded.
Then [ is compact.
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Since f is continuous on I, it follows that f|/ is continuous.

Let g := f|I. Then g is continuous.

So, since I is compact, by Theorem 3.12.1, ¢ is uniformly continuous.

By hypothesis b > a. Then b —a > 0. Then ¢/(b—a) > 0.

By uniform continuity of g, choose § > 0 s.t., Yw, z € Dy,
(lw—=2]<d) = (lgw — gl <&/(b—a)).

By the AP, choose N e Ns.t. N > (b—a)/d. Then (b—a)/N < 6.

Let v := (b—a)/N. Then vy <.

We have a+ N -y =a+ (b—a) =0.

For all j € [0.N], let z; :==a+j - 7.

Then g = a and xy = b.

Also, Vj € [1..N], we have z; — x;_1 = 7.

For all j € [1.N], let K := [xj_1; %]

We have: Vj € [1..N], Kj is closed and bounded, hence compact.

Let Q1 := [zo;1].  Also, Vj € [2..N], let Q; := (z_1;2;].

By hypothesis, I = [a;b]. Then {Q1,...,Qn} is a partition of I.

Moreover, Vj € [1..N], Q; is an interval, so @), is CJ-measurable.

So, by finite additivity of Jordan measure, Z;il JOgq, = JO;.

Also, Vj € [1..N], we have: JOq, = z; — z;_1.

Then, Vj € [1..N], we have: JOq, = 7.

We have: Vj e [1.N], C1Q; = [z,_1;z;] = K;.

For all j € [1..N], let y; := min f, Kj.

For all j € [1..N], by the EVT, y; # @, so choose u; € K s.t. f,, = y;.

For all j € [1..N], let z; := max f. K.

For all j € [1..N], by the EVT, z; # ®, so choose v; € Kj s.t. f,, = 2;.

Claim 1:  VYje[l.N], z —y; <¢e/(b—a).

Proof of Claim 1: Given j € [1.N]. Want: z; —y; <¢e/(b—a).

We have: u;,v; € K; = [z;_1;2;].  Thenwj,v; € [zo;zn] = [a;b] = 1.
Then uj,v; € [xj_1; ;] and u;,v; € 1.

Since g = f|I and since u;,v; € I, we get g,, = fu, and g,; = fo,.
Since y; = min [, K; < max f.K; = z;, we get |y; — z;| = z; — yj.
Want: |y; — z;| <e/(b—a).

Since uj,v; € [xj_1; 5], we get:  |u; —v;| < x; — 1z

Then |u; —vj| < x; —z;o1 =7 <.

Also, uj,vj € I = Dy = D,.

Then, by choice of §, we have: |g,, — gu,| <&/(b— a).
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So, since y; = fu, = gu; and z; = f,, = gu;, We get: |y;—z;| <e/(b—a).

End of proof of Claim 1.

Define s,¢: I — R by: Vj € [1..N], Vz € Q;,

sy =y; and ;= z;.
Then s and ¢ are both subordinate to {Q1,...,Qn}.
Recall: Vj € [1..N], Q; is CJ-measurable.
Then s and ¢ are both J-simple.
Also, JI, = )| (JOq, - y;) and JI, = 37 (JOg, - ).
Then JI, — JI, = 3} (JOq,) - (25 — ¥))-
Then, by Claim 1, JI, - JI, < 3} ((JOg,) - (¢/(b — a))).
So, since Z;V:I JOq, = JO;, we conclude:

JI, = JI, < (JOy) - (¢/(b— a)).

So, since JO; = JOp4p) = b — a, we get: JI, — JI; <e.

Claim 2: OnlI, s< f<t.

Proof of Claim 2: Want: Vr e I, s, < f, < t,.

Given x € I.  Want: s, < f, <t,.

Since {@1,...,Qn} is a partition of I and since x € I,
choose j € [1..N] s.t. z € Q.

Then, by definition of s and ¢, we get s, = y; and ¢, = z;.

We have 1€ Q; < Cl1Q,; = K;, soxe€ Kj.

Since z € K, we get min f,. K; < f,.

Then s, = y; = min fu K; < fz, 0 8; < f,. ~Want: f, <t,.

Since = € K, we get f, < max f. K.

Then f, < max f,. K; = z; = t,, so fy <t,.

End of proof of Claim 2.

By Claim 2, we have: on I, s < f.
So, since s is J-simple, we get s € LS{.
Then JI, € LSI}, so JI, < sup LSI/.
Then JI, < sup LSIJ = JLJ.
So, since JI; — JI, < €, we get:

JI, + (JI, = JI,) < JLS + &
Then JI, < JLJ +¢.
By Claim 2, we have: on I, f <t.
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So, since t is J-simple, we get t € US’;.

Then JI, € USI,, so JI, = inf USIJ.

Then JI, > inf USI) = JUY. Then JUJ < JI,.
So, since JI; < JL}C + ¢, we get: JU{ < JL}C +e.

5.4. Cocycle formulas.

DEFINITION 5.4.1. Let f :R--s R, a,be R, I := [a|b].

ff, ifa <b
b I
Assume I < Dy. Then f fl = 0, ifa=>.
—ff, ifa>"b
I

THEOREM 5.4.2. LetacR, b>a, f:R --» R.
Assume [a;b] < Dy, Let s, t,u € [a;b]. Assume s <t <u.

me [ ()= (000)
Proof. Unassigned HW.

The assumption that s <t < u can be relaxed:

THEOREM 5.4.3. LetacR, b>a, f:R —-» R.
Assume [a;b] € Dy.  Let s,t,u€ [a;b]. Assume s < u.

e ()
Proof. Unassigned HW.

The assumption that s < u can be removed:

THEOREM 5.4.4. LetacR, b>a, f:R --» R.
Assume [a;b] < Dy. Let s,t,u € [a;b].

mf 7 () ()
Proof. Unassigned HW.

THEOREM 5.4.5. Letac€R, b>a, f: R --» R,
Assume [a; b] = D", Let s,t,u € |a;b].

mf 7= () (1)
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Proof. By Theorem 5.4.4, we have:
u t u
=)= ()
s s t

t u
By Theorem 5.3.1, f f # © # f f
t

s = (15 +([ 1) :

5.5. The Fundamental Theorem of Calculus.

b
THEOREM 5.5.1. Let a,b,y € R. Then: f Cy = (b—a)-y.

a

Proof. Unassigned HW. U
DEFINITION 5.5.2. Let f : R -=» R, y € R. Then =
f—CE.

THEOREM 5.5.3. Let f :R--+ R, a,ye R, b > a.
b b
Assume [a; b] < DP". Thenf (f—vy) = (f f> —y-(b—a).

Proof Lb(f—y) - [u-ep - Ubf) —y b-a. O

a a

THEOREM 5.5.4. Leta,e R, b>a, f,g: R --» R.
Assume:  ([a;b] € DY n D™ ) & (on [a;b], f<g).

b b
Then: J [ < J g.

Proof. Let I := [a;0].
b b
By Theorem 5.3.1, f f # © # J g.

a
b b

Then: f f = JLf and J g = JL;g.
By Theorem 5.2.19, JL; f < JL;g.
b

b
Thean=JL1f<Jng=Jg. O
The following is the Fundamental Theorem of Calculus:

THEOREM 5.5.5. Let acR, b>a, f:R --» R.
Assume:  [a;b] < DP".
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Define g : [a;b] = R by:  Vx € [a;b], g, = f f.
Then: Vo e (a;b), ¢, = fo. ’

Proof. Given z € (a;b). Want: ¢, = f,.
We have [D,g] = g¢,. Want: [D,g]| = f..
Let y := f,. Want: [D,g] =v.
Let L:=y- (o). Then Le Land [L] =Ly =y-1=y.
Want: [D,g| = [L]. Want: D,g = L.
We have UE(LINS,g) = D,g. Want: UE(LINS,g) = L.
Want: LINS,g = {L}.
By uniqueness of linearlization, it suffices to show: L € LINS,g.
Want: ¢g° — L € o(1).
Want: Ve > 0, 36 > 0 s.t., Vh e R,

(Ih| <8) = ([(gr = L)n| <e-[n]").
Given € > 0. Want: 30 > 0 s.t., Vh e R,

(1hl < 8) = (g% = L)ul <=+ "),
Since x € (a;b) and since (a;b) is open,

choose A > 0 s.t. B(z,\) < (a;b).

By hypothesis, [a;b] < D"
Since x € (a;b) < [a;b] < DY, we get:  f is continuous at z.
Then choose p1 > 0 s.t., Vw € Dy,

(=2 <p) = (Jfu—ful <2).
Let 6 := min{\, u}. Then § < X and 6 < g and 6 > 0.
Want: Vhe R, (|h]<6) = (|(¢F —L)u| <e-|h|').
Given heR.  Assume |h| <46. Want: |(¢7 — L)y < e |h|".
Exactly one of the following is true:

() h>0 or (2)h=0 or (3)h<0.

Case (1):
We have |(z + h) — x| = |h| < §, so x + h € B(z, ).
Then x,z + h € B(z,9).
Since 6 < A and § < p, it follows that:

B(z,0) € B(z,\) and B(z,d) < B(z,p).
Then: x,x+he B(x,\) and z,2+ he B(x,pu).
We have z,x + h € B(x,\) € (a;b) S [a;b], so x,x + h € [a;b].
Then z,x + h € [a;b] =D, and z,2 + he R =Dy,

0 (gp — L)h = Gash — Yo — Lin.
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We have Lzh f= ( f) + (Lj f),
o)=L

x+h
By Theorem 5.5.1, f y = ((z+h)—2)- vy

x+h *
ThenJ y = ((z+h)—xz)-y =y-h = (y-(e), = Ly.
+hg +h
(L)L) )
J;Lac-i-h J;x-&-h J;

(-

Sinceh>$0, we get |[h| = h.  Then |h|* = |h| = h.

z+h

Want: J (f—y)| < e-h

Then (gE—L)h = Gat+h — Gz — Ly,
z+h
- y> - [ -
xz+h *
Want: J (f—y)| < e-]h"

z+h

Want: —5-h<J (f—y) < e-h.

xT

z+h z+h z+h
Want: (—e) < J (f—y) < J E.

Want: on [z;2+h], —e < f—y < e
Want: Vw e [z;2+h], —e < (f—y)w < &
Given w € [x;x + h]. Want: —¢ < (f—y)y < &
Want: —¢ < f,—y < e Want: |f, —y| < e
Recall that z,x + h € B(z, ).
Since B(z,d) = (v — d;x + ), we see that B(x,d) is an interval.
Then [z|z + h] < B(z,9).
Since h > 0, we get [z|z + h] = [z;2 + h].
Then w € [z;x + h] = [z|z + h] < B(z,9), so w € B(z,9).
Recall:  B(z,6) < B(x,\) and B(z,d) < B(z,p).
By choice of A\, we have: B(z, \) < (a;b).
By assumption, [a;b] < D{".
Since w € B(z,6) € B(x,A) € (a;b) < [a;b] = DY < Dy,

we concude that w e Dy.
Since w € B(x,0) € B(x, p), we get: |w — z| < p.
Then, by the choice of u, we get: |f, — fz] < p.
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So, since y = f,, we get: |f, —y| < p.
End of Case (1).

Case (2):
Unassigned HW. End of Case (2).

Case (3):
Unassigned HW. End of Case (3).
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linear operations, 107
linearizations, 112

linearly closed, 108

local semi-extremum, 126
local semi-maximum, 126
local semi-minimum, 126
local strict-extremum, 126
local strict-maximum, 126
local strict-minimum, 126
lower simple functions, 161
lower simple integrals, 162

Mean Value Theorem, 133
monomial on R, 93
monotonicity of closure, 62
monotonicity of interior, 62

MVT, 133
Naive Product Rule, 10

object, 6
one-to-one, 30
open, 59

open ball, 52
open cover, 144
overmeasure, 144
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pairwise additive, 152

pairwise-disjoint, 49

partition, 49

PMI, 15

PMI template, 16

pointwise convergence, 102

polynomial on R, 93

polynomials, 109

polynomials R — R of degree
k, 109

power function on R, 93

pre-image of A, 33

Precalculus Chain Rule, 105

Precalculus Inverse Function
Theorem, 142

Precalculus Product Rule, 105

prime derivative, 114

primitive ordered pair, 26

Principle of Mathematical
Induction, 15

product rule, 120, 123

punctured open ball, 94

quadratic, 109
quantifier, 22
quotient rule, 123

RAP, 17

refinement, 49

relation, 26

restriction of f to a subset of
Dy, 35

restriction, f < g, 35

ring of sets, 158

Rolle’s Theorem, 132

Schroeder-Bernstein Theorem,
43
semi-t-bounded, 55

semi-decreasing, 70
semi-forward-orbit, 41
semi-increasing, 70
semi-monotone, 70
sequence, 40
sequentially-closed, 98
simple integral, 159
singleton, 10
singleton set, 10
splits S L-well, 150
splits S well, 150
strict-forward-orbit, 41
strictly-t-bounded, 55
strictly-decreasing, 69
strictly-increasing, 69
strictly-monotone, 69
subconvergent, 76
subconvergent in X, 76
subordinate, 158
subsequence, 73
Subset Recentering Theorem,
52
Superset Recentering Theorem,
53
support, 144

tail, 63

Taylor Theorem, second order,
140

The Reciprocal Archimedean
Principle, 17

total length, 144

Triangle Inequality, 22

u.c., 85
unbound, 4
unbounded, 53
uncountable, 44
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uniform convergence, 102 vertical line, 27
universal quantifier, 23 ) )
) ) Well-Ordering Axiom, 14
upper simple functions, 161

upper simple integrals, 162 zero-sequence, 40
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