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1. Preliminaries

1.1. What is math?

Math is truth.

1.2. Bound and unbound variables.

First, a word about the English language:

The past participle of “to bound” is “bounded”.

So, if you bound something, it becomes bounded.

There is a completely different verb, “to bind”,

and its past participle is, confusingly, “bound”.

So, if you bind something, it becomes bound, NOT bounded.

At any point in any definition, theorem or proof, every variable is

either bound or unbound. To see how binding and unbinding works

exactly, read the beginning of the exposition handout, up to the text

“General rules of argument” that appears in the middle of Page 3.

Note: A free variable is exactly the same thing as an unbound variable.

In class (Lec 01, Slide 18), we went through several examples of

binding and freeing of variables. The most common mistake students

make on early homework is not being careful about binding of variables.

A free variable cannot be used, except in a binding statement. If you

use a free variable, it is sometimes a small problem, but often much

larger, and can result in no credit being given at all. So: Understanding

the “scope” of each variable (where it becomes bound, and where, later,

it becomes free) is crucial.

Also, some variables are integers, some variables are sets, some are

real numbers, etc. Understanding the “type” of each variable is also

crucial.

If you have questions about these topics, it’s important to come and

talk to me. It is hard to explain these topics in written form; typically

a conversation is needed.

1.3. The object /.

AXIOM 1.3.1. @set S, / R S.

AXIOM 1.3.2. @x, x{0 “ /.

THEOREM 1.3.3. 1{0 “ /.
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We wish to set things up so that / is “infective”, meaning:

If some expression contains a subexpression is equal to /,

then the entire expression equal to /.

Toward that end, we make the following axioms:

AXIOM 1.3.4.

@x, x`/ “ /` x “ /.

@x, x´/ “ /´ x “ /.

@x, x ¨/ “ / ¨ x “ /.

@x, x{/ “ /{x “ /.

Also, using ă or ą, / cannot be compared to any object.

AXIOM 1.3.5.

@x,  p/ ă xq.

@x,  p/ ą xq.

@x,  px ă /q.
@x,  px ą /q.

Let a and b be strings of characters.

The notation a “
˚ b is short for pb “ /q _ pa “ bq.

The notation a ˚
“ b is short for pa “ /q _ pa “ bq.

Note that 0{0 “ /, and so  p@x P R, x{x “ 1q.

That is, it is NOT correct to say that, for all x P R, we have x{x “ 1,

because it doesn’t work for x “ 0.

We could say @x P Rˆ0 , x{x “ 1.

The following theorems illustrate the notation described above:

THEOREM 1.3.6. @x P R, x{x ˚“ 1.

THEOREM 1.3.7. @x P R, x2 “˚ x7{x5.

THEOREM 1.3.8. @x P R, x5{x3 “ x4{x2.

1.4. Some logic and set theory.

We use “@” for “for every”.

We use “D” for “there exists”.

We use “&” for “and”.

We use “_” for “or”.

We use “ ” for “not”.
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We use “6” for “therefore”.

We use “ñ” for “implies”.

Let A and B be statements. Then “A ô B” is a statement, and

means “pAñ Bq&pB ñ Aq”; here, the parentheses are crucial.

An extended real number or, more succinctly, an extended real,

is any of the following:

a real number or the symbol8 or the two symbol string´8.

Sometimes “`8” is used to mean “8”.

DEFINITION 1.4.1. R˚ :“ t´8u
Ť

R
Ť

t8u.

It is our convention that no extended real is considered to be a set:

AXIOM 1.4.2.

@set A, @x P R˚, x ‰ A.

We will use / to mean “does not exist”.

So, for example, 1{0 “ /. See §1.3 for more information about /.

An object is any of the following:

an extended real number or a set or /.

The notation “@x,” means “for any object x”.

The notation “Dx s.t.” means “there exists an object x s.t.”.

We use ε for the Greek letter epsilon.

We use P as an abbreviation for “is an element of”.

We use φ for the Greek letter phi.

We use H to mean the empty set. Then H “ t u.

Note that: @x, x R H.

Also, @x P H, x “ 2, because:

there is no element of H that is NOT equal to 2.

Also, @x P H, x ‰ 2, because:

there is no element of H that is equal to 2.

Also, @x P H, px “ 2q& px ‰ 2q, because:

there is no element of H that fails to be

both equal to 2 and not equal to 2 at the same time.

According to some formal systems for writing mathematics

@x P H, x “ 2

is not a properly formed statement, because: “@” should always be
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followed by a variable, then a comma, then “p”, and, moreover, the

corresponding “q” should appear at the end of the @ statement. If we

believe in such a formatting rule, then

@x P H, x “ 2

is bad, and would be better written as

@x, ppx P Hq ñ px “ 2qq.

Note that, no matter which object x is, it is NOT true that x P H,

and so it IS true that ppx P Hq ñ px “ 2qq,

because any false assertion DOES imply any other assertion,

and it doesn’t matter whether the second assertion is true or false.

An implication that is true because

the assertion on the left of the symbol “ñ” is false

is said to be “null true”. So

@x, ppx P Hq ñ px “ 2qq.

is an example of a null true statement.

More precisely, we should probably say that, for every object x,

px P Hq ñ px “ 2q

is null true, but we’ll allow a certain level of sloppiness here.

Using our more informal way of writing, we would say that

@x P H, x “ 2

is null true. Following “@x P H,”, we could put any assertion about x,

and the resulting statement would be true, and, in fact, null true.

By R , we mean the set of all real numbers.

By Q , we mean the set of all rational numbers.

By Z , we mean the set of all integers.

By N0 , we mean the set of all semi-positive (i.e. nonnegative integers.

By N , we mean the set of all positive integers.

Then Z “ t. . . ,´3,´2,´1, 0, 1, 2, 3, . . .u and

N0 “ t0, 1, 2, 3, . . .u and N “ t1, 2, 3, . . .u.
Note that 0 P N0. On the other hand, 0 R N, or, equivalently,  p0 P Nq.

DEFINITION 1.4.3. Let A and B be sets.

Then A Ď B means: @x P A, x P B.

Also, B Ě A means the same thing: @x P A, x P B.

THEOREM 1.4.4. N Ď N0 Ď Z Ď Q Ď R.
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THEOREM 1.4.5. t1, 2, 3u Ď t1, 2, 3, 7u Ě t2, 3, 7u Ě H.

Note that t2, 3, 7u Ě H is null true. That is, because there is NO

element of H that is NOT an element of t2, 3, 7u, we conclude that

every element of H is an element of t2, 3, 7u, and so t2, 3, 7u Ě H. In

fact, the same logic shows that H is a subset of every set:

THEOREM 1.4.6. @set X, H Ď X.

The following is called the Axiom of Extensionality:

AXIOM 1.4.7. Let A and B be sets. Then:

pA “ Bq ô ppA Ď Bq&pB Ď Aqq.

DEFINITION 1.4.8. Let A and B be sets. Then:

A
ď

B :“ tx | px P Aq _ px P Bqu and

A
č

B :“ tx | px P Aq & px P Bqu and

AzB :“ tx | px P Aq & px R Bqu.

THEOREM 1.4.9. Let A :“ t1, 2, 3u and B :“ t3, 4, 5u. Then:

A
Ť

B “ t1, 2, 3, 4, 5u and

A
Ş

B “ t3u and

AzB “ t1, 2u.

1.5. Intervals.

DEFINITION 1.5.1.

@a, b P R˚, pa; bq :“ tx P R˚ | a ă x ă bu and

ra; bq :“ tx P R˚ | a ď x ă bu and

pa; bs :“ tx P R˚ | a ă x ď bu and

ra; bs :“ tx P R˚ | a ď x ď bu.

Note that ´8 R p´8;8s and that ´7.5, 0, 10100,8 P p´8;8s.

Note that R “ p´8;8q.

DEFINITION 1.5.2. Z˚ :“ t´8u
Ť

Z
Ť

t8u. Also:

@a, b P R˚, pa..bq :“ tx P Z˚ | a ă x ă bu and

ra..bq :“ tx P Z˚ | a ď x ă bu and

pa..bs :“ tx P Z˚ | a ă x ď bu and

ra..bs :“ tx P Z˚ | a ď x ď bu.
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THEOREM 1.5.3. r1..7s “ t1, 2, 3, 4, 5, 6, 7u and

r2..1s “ H and

r´8..4q “ t´8u
Ť

t. . . ,´2,´1, 0, 1, 2, 3u and

r´8..4s “ t´8u
Ť

t. . . ,´2,´1, 0, 1, 2, 3, 4u.

DEFINITION 1.5.4. Let A be a set and let z be an object. Then:

A`z :“ A
Ť

tzu and Aˆz :“ Aztzu.

In class, we graphed r1; 2q`3 and p1; 3sˆ2 on number lines.

1.6. Manipulation of inequalities.

THEOREM 1.6.1. Let a, b, A,B P R.

Assume p a ă A q& p b ă B q. Then a` b ă A`B.

THEOREM 1.6.2. Let a, b, A,B P R.

Assume p 0 ď a ă A q& p 0 ď b ă B q. Then ab ă AB.

THEOREM 1.6.3. Let a, b, A,B P R.

Assume p a ď A q& p b ď B q. Then a` b ď A`B.

THEOREM 1.6.4. Let a, b, A,B P R.

Assume p 0 ď a ď A q& p 0 ď b ď B q. Then ab ď AB.

If we have mixed inequalities (strict and semi), then we get strict for

addition:

THEOREM 1.6.5. Let a, b, A,B P R.

Assume p a ă A q& p b ď B q. Then a` b ă A`B.

For positive numbers, the product of a the product of a strict in-

equality with a semi-inequality is a strict inequality:

THEOREM 1.6.6. Let a, b, A,B P R.

Assume p 0 ă a ă A q& p 0 ă b ď B q. Then ab ă AB.

It is a common mistake to think that, for nonnegative numbers, the

product of a strict inequality with a semi-inequality should give a strict

inequality. In fact, if we have mixed inequalities (strict and semi), then

we get semi for multiplication:

THEOREM 1.6.7. Let a, b, A,B P R.

Assume p 0 ă a ă A q& p 0 ď b ď B q. Then ab ď AB.

Note that, in the conclusion of the preceding theorem, we cannot

write ab ă AB because of the possibility that 0 “ b “ B.
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1.7. Basic algebraic facts.

The following is called the Naive Product Rule:

THEOREM 1.7.1. Let a, b, A,B P R. Then:

A ¨B ´ a ¨ b “ pA´ aq ¨ b ` a ¨ pB ´ bq ` pA´ aq ¨ pB ´ bq.

1.8. The Axiom of Choice.

We imagine that at the beginning of time,

the Grand Oracle has chosen,

from every nonempty set A, an element denoted CHA.

This is embodied in the Axiom of Choice:

AXIOM 1.8.1. @nonempty set S, CHS P S.

We also make the convention that CHH “ /.

Alternate notation for CHS : CHpSq or CHS .

Then: @set S, we have: CHS
˚P S.

THEOREM 1.8.2. CHt4u “ 4 and CH t t1, 2, 3 u u “ t1, 2, 3u.

For sets with more than one element, we do not know which is chosen,

but we do know that one of them is:

THEOREM 1.8.3. pCHt2, 3u “ 2 q _ pCHt2, 3u “ 3 q.

THEOREM 1.8.4.

pCHt2, 3, 5u “ 2 q _ pCHt2, 3, 5u “ 3 q _ pCHt2, 3, 5u “ 5 q.

1.9. Unique element of a set.

DEFINITION 1.9.1. Let A be an object.

By A is a singleton or singleton set, we mean:

A is a nonempty set and @x, y P A, x “ y.

THEOREM 1.9.2.

p t3u is a singleton q and

p t t1, 2, 3u u is a singleton q and

p pt1, 2, 3u is a singletonq q and

p pH is a singletonq q.
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DEFINITION 1.9.3.

For set A, UEA :“

#

CHA, if A is a singleton

/, if A is not a singleton.

Alternative notations: UEA and UEpAq .

THEOREM 1.9.4.

UEt3u “ 3 and

UEt t1, 2, 3u u “ t1, 2, 3u and

UEt1, 2u “ / and

UEt1, 2, 3u “ / and

UEH “ /.

For any objects a and B, the notation a ˚
P B means:

pa “ /q _ pa P Bq.

THEOREM 1.9.5.

UEt1u ˚P t1u and

UEt t1, 2, 3u u ˚P t t1, 2, 3u u and

UEt1, 2, 3u ˚P t1, 2, 3u and

UEH ˚P H.

THEOREM 1.9.6. @A, UEA
˚P A.

1.10. Well-ordering and completeness axioms.

DEFINITION 1.10.1. Let S Ď R˚, a P R˚.
Then S ą a means: @x P S, x ą a.

Also, S ě a means: @x P S, x ě a.

Also, S ă a means: @x P S, x ă a.

Also, S ď a means: @x P S, xlea.

Also, a ă S means: @x P S, a ă x.

Also, a ď S means: @x P S, a ď x.

Also, a ą S means: @x P S, a ą x.

Also, a ě S means: @x P S, a ě x.

THEOREM 1.10.2.

pN ą 0q& pN0 ě 0q& p1 ď Nq& p´3 ă N0q& p p0 ă N0qq.

THEOREM 1.10.3. @x P H, 5 ď x.

THEOREM 1.10.4. 5 ď H.
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THEOREM 1.10.5. p7 ď Hq& p´8 ď Hq& p8 ď Hq.

THEOREM 1.10.6. @x P R˚, x ď H.

THEOREM 1.10.7. @x P R˚, x ă H.

THEOREM 1.10.8. @x P R˚, x ě H.

THEOREM 1.10.9. @x P R˚, x ą H.

In the next definition, LB stands for “Lower Bounds”,

and UB stand for “Upper Bounds”.

DEFINITION 1.10.10. Let S Ď R˚. Then:

LBS :“ tx P R˚ |x ď Su and

UBS :“ tx P R˚ |x ě Su.

Alternate notations for LBS are: LBpSq and LBS .

Alternate notations for UBS are: UBpSq and UBS .

THEOREM 1.10.11. LBt3, 4, 5u “ r´8; 3s and LBt3, 4, 5u “ r5;8s.

By Theorem 1.10.6 and Theorem 1.10.8 above, we get:

THEOREM 1.10.12. pLBH “ R˚q& pUBH “ R˚q.

DEFINITION 1.10.13. Let S Ď R˚. Then:

minS :“ UEpS X LBSq and maxS :“ UEpS X UBSq.

Alternate notations for minS are: minpSq and min S .

Alternate notations for maxS are: maxpSq and max S .

We have LBr1; 2q “ r´8; 1s and UBr1; 2q “ r2;8s. Then:

THEOREM 1.10.14.

minr1; 2q “ UEpr1; 2q
Ş

r´8; 1sq “ 1 and

maxr1; 2q “ UEpr1; 2q
Ş

r2;8sq “ /.

We have LBH “ R˚ and UBH “ R˚. Then:

THEOREM 1.10.15.

minH “ UEpH
Ş

R˚q “ / and

maxH “ UEpH
Ş

R˚q “ /.

THEOREM 1.10.16. Let S Ď R˚. Then:

pminS ˚P S q& pmaxS ˚P S q.
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Proof. We have minS “ UEpS X LBSq
˚P S X LBS Ď S,

so minS ˚P S.

It remains to show: maxS ˚P S.

We have maxS “ UEpS X UBSq
˚P S X UBS Ď S,

so maxS ˚P S. �

THEOREM 1.10.17. Let S Ď R˚, x, y P S X LBS. Then x “ y.

Proof. Since x, y P LBS, we get: px ď S q& p y ď S q.

Since x P S ě y, we get x ě y. Since y P S ě x, we get y ě x.

Since x ě y and y ě x, we get x “ y. �

The preceding theorem says that S X LBS cannot have two unequal

elements; equivalently, that set is empty or singleton:

THEOREM 1.10.18. Let S Ď R˚.
Then pS X LBS “ Hq _ pS X LBS is a singleton q.

THEOREM 1.10.19. Let S Ď R˚, a P R˚. Then:

p a “ minS q ô p p a P S q& p a ď S q q.

Notes on proof: We leave ñ as an exercise; it follows from the def-

initions. For ð, from p a P S q& p a ď S q, we get a P S X LBS, which

shows that S X LBS ‰ H. Then, by Theorem 1.10.18, S X LBS is

a singleton. So, since a P S X LBS, we get S X LBS “ tau. Then

minS “ UEpS X LBSq “ UEtau “ a, so a “ minS.

Similar reasoning gives:

THEOREM 1.10.20. Let S Ď R˚, a P R˚. Then:

p a “ maxS q ô p p a P S q& p a ě S q q.

By a ˚
ď b , we mean: p a “ / q _ p a ď b q,

or, equivalently, p a ‰ / q ñ p a ď b q.

By a ď
˚ b , we mean: p b “ / q _ p a ď b q,

or, equivalently, p b ‰ / q ñ p a ď b q.

By a ˚
ě b , we mean: p a “ / q _ p a ě b q,

or, equivalently, p a ‰ / q ñ p a ě b q.

By a ě
˚ b , we mean: p b “ / q _ p a ě b q,

or, equivalently, p b ‰ / q ñ p a ě b q.

THEOREM 1.10.21. Let S Ď R˚. Then minS ˚ď S.
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Proof. We wish to show: pminS ‰ / q ñ pminS ď S q.

Assume minS ‰ /. Want: minS ď S.

We have minS “ UEpS X LBSq
˚P S X LBS Ď LBS,

so, contracting, we get minS P LBS.

Then, by definition of LBS, we conclude: minS ď S. �

A similar proof yields:

THEOREM 1.10.22. Let S Ď R˚. Then S ď˚ maxS.

DEFINITION 1.10.23. Let S Ď R˚. Then:

infS :“ maxpLBSq and supS :“ minpUBSq.

Alternate notations for infS are: infpSq and inf S .

Alternate notations for supS are: suppSq and sup S .

The inf is sometimes called the “greatest lower bound”.

The sup is sometimes called the “least upper bound”.

THEOREM 1.10.24.

infr1; 2q “ maxr´8; 1s “ 1 and supr1; 2q “ minr2,8s “ 2.

THEOREM 1.10.25.

infH “ maxR˚ “ 8 and supH “ minR˚ “ ´8.

The following is the Well-Ordering Axiom.

AXIOM 1.10.26. @nonempty S Ď N0, minS ‰ /.

The following is the Completeness Axiom.

AXIOM 1.10.27. @S Ď R˚, infS ‰ / ‰ supS.

THEOREM 1.10.28. Let S Ď R˚.
Then infS ě LBS and supS ď UBS.

Proof. By Axiom 1.10.27, infS ‰ / ‰ supS/

We have infS “ maxpLBSq
˚ě LBS.

So, since infS ‰ /, we get: infS ě LBS.

It remains to prove: supS ď UBS.

We have supS “ minpUBSq
˚ď UBS.

So, since supS ‰ /, we get: supS ď UBS. �

THEOREM 1.10.29. Let S Ď R˚. Then S ě infS and S ď supS.
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Proof. By Axiom 1.10.27, infS ‰ / ‰ supS.

We have infS “ maxpLBSq
˚P LBS.

So, since infS ‰ /, we get: infS P LBS.

Then, by definition of LBS, we get: infS ď S. Then S ě infS.

It remains to prove: S ď supS.

We have supS “ minpUBSq
˚P UBS.

So, since supS ‰ /, we get: supS P UBS.

Then, by definition of UBS, we get: supS ě S. Then S ď supS. �

THEOREM 1.10.30. Let A Ď R˚, z P R˚.
Assume A ď z. Then supA ď z.

Proof. Since z ě A, we get: z P UBA.

Then z P UBA ě supA, so z ě supA, so supA ď z. �

THEOREM 1.10.31. Let A Ď R˚, z P R˚.
Assume A ě z. Then infA ě z.

Proof. Since z ď A, we get: z P LBA.

Then z P LBA ď infA, so z ď infA, so infA ě z. �

THEOREM 1.10.32. Let S Ď R˚. Then infS “˚ minS.

Proof. Know: minS “ UEpS
Ş

LBSq.

Want: pminS ‰ / q ñ p infS “ minS q.

Assume minS ‰ /. Want: infS “ minS.

Since minS ‰ / and minS “ UEpS
Ş

LBSq,

we conclude: minS “ UEpS
Ş

LBSq.

Since minS “ UEpS
Ş

LBSq
˚P S

Ş

LBS,

we get minS P S
Ş

LBS, and so minS P S and minS P LBS.

We have minS P S ě infS and minS P LBS ď infS,

so minS ě infS and minS ď infS, and so infS “ minS. �

THEOREM 1.10.33. Let S Ď R˚, z P LBS, a P r´8; zs.

Then a P LBS.

Proof. Since a ď z ď S, we get a ď S. Then a P LBS. �

1.11. Mathematical induction.

The following theorem is called the Principle of Mathematical In-

duction or PMI:
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THEOREM 1.11.1. Let S Ď N. Assume 1 P S.

Assume: @k P S, k ` 1 P S. Then: S “ N.

The intuitive idea that S is closed under “successor”, meaning that

whenever a positive integer k is in S, then its successor k ` 1 is also

in S. So, since 1 P S, we see that 2 P S. Then, since 2 P S, we see

that 3 P S. Then, since 3 P S, we see that 4 P S. And so on. For any

integer, we can eventually show that that integer is in S. Then N Ď S.

So since S Ď N, we conclude, from the Axiom of Extensionality, that

S “ N.

We omit a formal proof for Theorem 1.11.1, but it would involve the

Well-Ordering Axiom, described earlier. We focus instead on how to

use Theorem 1.11.1, using the PMI template, see EH (20).

THEOREM 1.11.2. @k P N, 1` 2` 3` ¨ ¨ ¨ ` k “
kpk ` 1q

2
.

Proof. Let S :“

"

k P N
ˇ

ˇ

ˇ

ˇ

1` 2` 3` ¨ ¨ ¨ ` k “
kpk ` 1q

2

*

.

Want: S “ N. Since 1 “
1 ¨ p1` 1q

2
, we see that 1 P S.

By the PMI, it suffices to prove: @k P S, k ` 1 P S.

Given k P S. Want: k ` 1 P S.

Know: 1` 2` 3` ¨ ¨ ¨ ` k “
kpk ` 1q

2
.

Want: 1` 2` 3` ¨ ¨ ¨ ` k ` pk ` 1q “
pk ` 1qppk ` 1q ` 1q

2
.

We have: 1` 2` 3` ¨ ¨ ¨ ` k ` pk ` 1q “
kpk ` 1q

2
` pk ` 1q

“
k

2
¨ pk ` 1q ` 1 ¨ pk ` 1q “

ˆ

k

2
` 1

˙

¨ pk ` 1q

“

ˆ

k ` 2

2

˙

¨ pk ` 1q “
pk ` 2qpk ` 1q

2

“
pk ` 1qpk ` 2q

2
“

pk ` 1qppk ` 1q ` 1q

2
. �

The following theorem is called the 0-PMI:

THEOREM 1.11.3. Let S Ď N0. Assume 0 P S.

Assume: @k P S, k ` 1 P S. Then: S “ N0.
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Idea of proof: The set S is closed under succesor. So, since 0 P S, it

follows that 1 P S, and then that 2 P S and then that 3 P S, etc.

Here is an example of how to use the 0-PMI:

THEOREM 1.11.4. @k P N0, 2k ě k ` 1.

Proof. Let S :“ tk P N0 | 2
k ě k ` 1u. Want: S “ N0.

Since 20 “ 1 ě 0` 1, we see that 0 P S.

By the 0-PMI, it suffices to show: @k P S, k ` 1 P S.

Given k P S. Want: k ` 1 P S.

Know: 2k ě k ` 1. Want 2k`1 ě pk ` 1q ` 1.

Since k P S Ď N0 ě 0, we get k ě 0, so pk`1q`pk`1q ě pk`1q`p0`1q.

Then 2k`1 “ 2k ¨ 2 “ 2k ¨ p1` 1q “ 2k ¨ 1` 2k ¨ 1 “ 2k ` 2k

ě pk ` 1q ` pk ` 1q ě pk ` 1q ` p0` 1q “ pk ` 1q ` 1. �

1.12. The Archimedean Principle.

The following is The Archimedean Axiom:

AXIOM 1.12.1. sup N “ 8.

The following is The Archimedean Principle or AP:

THEOREM 1.12.2. @x P R, Dj P N s.t. j ą x.

Proof. Given x P R. Want: Dj P N s.t. j ą x.

Assume  p Dj P N s.t. j ą x q. Want: Contradiction.

Then @j P N, j ď x, so N ď x.

Then supN ď x.

Since supN ď x P R ă 8, we get supN ă 8, so supN ‰ 8.

However, by Axiom 1.12.1, we have: supN “ 8. Contradiction. �

It is a theorem in propositional logic that, for any mathematical

statements P and Q,

pP _Q q ô p p P q ñ Q q.

It follows, for any two objects a and b, that

p a “˚ b q ô p p b ‰ / q ñ p a “ b q q.

Next is The Reciprocal Archimedean Principle or RAP:

THEOREM 1.12.3. @ε ą 0, Dj P N s.t. 1{j ă ε.

Proof. Given ε ą 0. Want: Dj P N s.t. 1{j ă ε.

Since ε ą 0, we see that p 1{ε P R q& p 1{ε ą 0 q& p 1{p1{εq “ ε q.
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By the AP, choose j P N s.t. j ą 1{ε. Then j P N. Want: 1{j ă ε.

Since j ą 1{ε ą 0, we get 1{j ă 1{p1{εq. Then 1{j ă 1{p1{εq “ ε. �

We can restate the preceding theorem as:

@ε ą 0,  p@j P N, 1{j ă ε q.

Equivalently,

@ε ą 0,  p t1, 1{2, 1{3, . . .u ě ε q.

Equivalently,

@ε ą 0,  p ε P LBt1, 1{2, 1{3, . . .u q.

The following expresses the same thing:

THEOREM 1.12.4. @ε ą 0, ε R LBt1, 1{2, 1{3, . . .u.

In the preceding theorem, ε is a real variable, by convention. How-

ever the theorem would even be true if we use 8 for ε:

THEOREM 1.12.5. 8 R LBt1, 1{2, 1{3, . . .u.

THEOREM 1.12.6. LBt1, 1{2, 1{3, . . .u “ r´8; 0s.

Proof. We have 0 ď t1, 1{2, 1{3, . . .u, so 0 P LBt1, 1{2, 1{3, . . .u.

Then, by Theorem 1.10.33, r´8; 0s Ď LBt1, 1{2, 1{3, . . .u.

It remains to show: LBt1, 1{2, 1{3, . . .u Ď r´8; 0s.

Want: @ε P LBt1, 1{2, 1{3, . . .u, ε P r´8; 0s.

Given ε P LBt1, 1{2, 1{3, . . .u. Want: ε P r´8; 0s.

By Theorem 1.12.4 and Theorem 1.12.5, ε R r0;8s, so ε P R˚zr0;8s.

Then ε P R˚zr0;8s “ r´8; 0s. �

Unassigned HW: Show that LBr´8; 0s “ r0;8s.

We use that unassigned HW in the following proof.

THEOREM 1.12.7.

mint1, 1{2, 1{3, . . .u “ / and inft1, 1{2, 1{3, . . .u “ 0.

Proof. By Theorem 1.12.6, LBt1, 1{2, 1{3, . . .u “ r´8; 0s.

Then mint1, 1{2, 1{3, . . .u “ UEp t1, 1{2, 1{3, . . .u
Ş

r´8; 0s q

“ UEpH q,

so, since UEpHq “ /, we get mint1, 1{2, 1{3, . . .u “ /.

It remains to show: inft1, 1{2, 1{3, . . .u “ 0.

We have maxr´8; 0s “ UEp r´8; 0s
Ş

r0;8s q

“ UEp t0u q “ 0,

so maxr´8; 0s “ 0.

We have inft1, 1{2, 1{3, . . .u “ max pLBt1, 1{2, 1{3, . . .u q

“ maxr´8; 0s “ 0. �
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The preceding theorems show the process by which we can prove com-

putations of

LB, UB, min, max, inf, sup.

As you can see, these proofs can be laborious, and, generally, we

will omit them. If you understand the definitions, then they become

straightforward, even if they can be, at first, somewhat intimidating.

In any case, they belong in a course on the foundations of the real

number system, a prerequisite to real analysis.

1.13. Translating and reflecting sets of real numbers.

DEFINITION 1.13.1. Let S Ď R. Then:

´S :“ t´y | y P Su.

THEOREM 1.13.2. ´t2, 5, 9u “ t´2,´5,´9u.

DEFINITION 1.13.3. Let S Ď R, x P R. Then:

x` S :“ tx` y | y P Su and S ` x :“ ty ` x | y P Su.

THEOREM 1.13.4. 4` t1, 2, 5u “ t5, 6, 9u “ t1, 2, 5u ` 4.

THEOREM 1.13.5. @S Ď R, @x P R, x` S “ S ` x.

DEFINITION 1.13.6. Let S Ď R, x P R. Then:

x´ S :“ tx´ y | y P Su and S ´ x :“ ty ´ x | y P Su.

THEOREM 1.13.7.

8´ t2, 9u “ t6,´1u “ ´t´6, 1u “ ´pt2, 9u ´ 8q.

THEOREM 1.13.8. @S Ď R, @x P R, x´ S “ ´pS ´ xq.

DEFINITION 1.13.9. Let S Ď R, x P R. Then:

x ¨ S :“ tx ¨ y | y P Su and S ¨ x :“ ty ¨ x | y P Su.

Note that, by general sloppiness, ¨ is often omitted in multiplication,

and we might write: @S Ď R, @x P R,

xS :“ txy | y P Su and Sx :“ tyx | y P Su.

THEOREM 1.13.10. 2 ¨ t1, 3, 4u “ t2, 6, 8u “ t1, 3, 4u ¨ 2.

THEOREM 1.13.11. @S Ď R, @x P R, x ¨ S “ S ¨ x.

DEFINITION 1.13.12. Let S Ď R, x P Rˆ0 . Then:

S{x :“ ty ¨ x | y P Su.
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DEFINITION 1.13.13. Let S Ď Rˆ0 , x P R. Then:

x{S :“ tx{y | y P Su.

THEOREM 1.13.14. Let S Ď Rˆ0 , x P Rˆ0 . Then:

x{S “ 1{pS{xq and S{x “ 1{px{Sq.

THEOREM 1.13.15. 2N :“ t2, 4, 6, 8, . . .u and 2N´1 “ t1, 3, 5, 7, . . .u.

1.14. Roots and powers of real numbers.

It is our convention that 00 “ 1. In fact:

THEOREM 1.14.1. @x P R, x0 “ 1.

Also, @x P R, @j P N0, xj`1 “ xj ¨ x.

DEFINITION 1.14.2. Let x P R. Then
?
x :“ maxtw P R |w2 “

xu.

THEOREM 1.14.3.
?

25 “ maxr´5; 5s “ 5.

THEOREM 1.14.4.
?

2 R Q.

We have tw P R |w2 ď ´1u “ H, so
?
´1 “ maxH.

So, since maxH “ /, we get:

THEOREM 1.14.5.
?
´1 “ /.

THEOREM 1.14.6. @x ě 0,
?
x ‰ /.

THEOREM 1.14.7. @x ă 0,
?
x “ /.

THEOREM 1.14.8. @x ě 0, p
?
xq2 “ x “

?
x2.

DEFINITION 1.14.9. @x P R, |x| :“
?
x2.

THEOREM 1.14.10. | ´ 5| “
a

p´5q2 “
?

25 “ 5.

DEFINITION 1.14.11. Let k P N, x P R. Then:
k
?
x :“ maxtw P R |wk ď xu.

THEOREM 1.14.12. @k P 2N, @x ě 0, k
?
x ‰ /.

THEOREM 1.14.13. @k P 2N´ 1, @x P R, k
?
x ‰ /.

THEOREM 1.14.14. @k P 2N, @x ă 0, k
?
x “ /.

THEOREM 1.14.15. @k P 2N, @x ě 0, p k
?
xqk “ x “

k
?
xk.
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THEOREM 1.14.16. @k P 2N´ 1, @x P R, p k
?
xqk “ x “

k
?
xk.

THEOREM 1.14.17. @x P R, 1
?
x “ x.

THEOREM 1.14.18. @x ě 0, 2
?
x “

?
x.

THEOREM 1.14.19. @x P R, 2
?
x “

?
x.

THEOREM 1.14.20. @x P R, 3
?
x “ maxtw P R |w3 ď xu.

We have tw P R |w3 ď 8u “ p´8; 2s. Then:

THEOREM 1.14.21. 3
?
´8 “ maxp´8; 2s “ 2.

THEOREM 1.14.22. @x P R, p 3
?
xq3 “ x “ 3

?
x3.

1.15. Properties of absolute value.

THEOREM 1.15.1. @a, b P R, |a´ b| “ |b´ a|.

It is crucial to us to take a statement like

When x is close to 2, x2 is close to 4

and give it a rigorous meaning.

This requires us to find a rigorous way of talking about “closeness”.

To say

a is close to b

is to say

the distance from a to b is close to zero.

Making this rigorous requires us to rigorize both

distance and close to zero.

We do not formally define distance in this course,

but we have an intuitive sense of distance, and:

the distance from 2 to 5 is 5´ 2.

Also,

the distance from 9 to 1 is 9´ 1.

The general rule is: @a, b P R,

the distance from a to b is |b´ a|.

(NOTE: @a, b P R, |a´ b| “ |b´ a|.)

So, when you see an expression of the form |b´ a|,

you can interpret it, geometrically as a statement about

the distance from a to b.

This geometric intuition is indispensable.
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Since absolute value plays such a big role,

we record a number of its properties, like:

THEOREM 1.15.2. @a, b P R, we have: |a ¨ b| “ |a| ¨ |b|

and |a` b| ď |a| ` |b|.

The next theorem is called the Triangle Inequality.

THEOREM 1.15.3. Let a, b, c P R. Then: |a´ c| ď |a´ b| ` |b´ c|.

Proof. |a´ c| “ |pa´ bq ` pb´ cq| ď |a´ b| ` |b´ c|. �

THEOREM 1.15.4. @a, b, c P R, |abc| “ |a| ¨ |b| ¨ |c| and

|a` b` c| ď |a| ` |b| ` |c|.

In the conclusion of the following theorem, we cannot write

|x´ 2| ¨ |x3 ´ 8x2 ` 7x| ă δ ¨ p|x|3 ` 8 ¨ |x|2 ` 7 ¨ |x|q

because of the possibility that x “ 0.

THEOREM 1.15.5. Let x P R, δ ą 0. Assume |x´ 2| ă δ.

Then |x´ 2| ¨ |x3 ´ 8x2 ` 7x| ď δ ¨ p|x|3 ` 8 ¨ |x|2 ` 7 ¨ |x|q.

Proof. We have:

|x3 ´ 8x2 ` 7x| “ |x3 ` p´8x2q ` 7x|

ď |x3| ` | ´ 8x2| ` |7x|

“ |x|3 ` | ´ 8| ¨ |x|2 ` |7| ¨ |x|

“ |x|3 ` 8 ¨ |x|2 ` 7 ¨ |x|.

So, since 0 ď |x´ 2| ď δ, we get:

|x´ 2| ¨ |x3 ´ 8x2 ` 7x| ď δ ¨ p|x|3 ` 8 ¨ |x|2 ` 7 ¨ |x|q. �

THEOREM 1.15.6. Let a, b P R, ε ą 0. Then:

p |b´ a| ă ε q ô p a´ ε ă b ă a` ε q and

p |b´ a| ă ε q ô p b´ ε ă a ă b` ε q and

p |b´ a| ď ε q ô p a´ ε ď b ď a` ε q and

p |b´ a| ď ε q ô p b´ ε ď a ď b` ε q.

1.16. A doubly quantified theorem.

In this course, there are exactly two symbols that are called quan-

tifiers. The first is “@”, the second “D”. They both appear in the

following theorem.

THEOREM 1.16.1. @ε ą 0, Dδ ą 0 s.t. δ6 ` 5δ4 ` δ ď ε.
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The stream of characters above is an example of a “mathematical

statement”. We will often just say “statement” to mean “mathematical

statement”. This has a technical definition which we will not go into

here, but the intuition is that a statement is a stream of characters

that has a mathematical meaning.

A character stream that is not a statement, like

gyre and gimbel in the wabe

cannot be analyzed mathematically, and so will be ignored in this

course. While you are not expected to know the technical definition

of a statement, there are some rules you should know for how to build

complex statements out of simpler ones. For example, for any two state-

ments A and B, the character stream “pAq ñ pBq” is also a statement,

though, in practice, we are often sloppy and leave off those parenthesis

and simply write “Añ B”. So, not only will we not give any technical

definition of a statement, we will not even be purists about following

that technical definition exactly.

Incidentally, similar remarks hold for “A&B” and “A_B”.

Let A and B be statements. Then the character stream “A ñ B”

is a statement, and is considered equivalent to saying “if A, then B”.

There is a difference of usage between “A 6 B” and “A ñ B”: The

statement “A ñ B” means, intuitively, “I am unsure of whether A is

true, but, if it is, then B is also true”. The statement “A 6 B” means,

intuitively, “I am completely sure that A is true, and it follows that B

is true as well”.

As mentioned above, Theorem 1.16.1 above involves two quantifiers.

First is the universal quantifier “@”, which means “for all” or, some-

times, “for any”. Second is the existential quantifier “D” which

means “there exists”.

Because it has two quantifiers, Theorem 1.16.1 is “doubly quanti-

fied”.

We turned Theorem 1.16.1 into a game: You give me ε ą 0. I give

you δ ą 0. We check to see if δ6 ` 5δ4 ` δ ď ε is true. If it is, then I

win. If not, then you win.

We played the game, and it was clear that I would win every time.

We developed a strategy: Once you give me ε ą 0, I could find δ ą 0

such that all three of the following hold:

δ6 ď ε{3 and 5δ4 ď ε{3 and δ ď ε{3.

This suggests setting
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δ :“ mint 6
a

ε{3 , 4
a

ε{15 , ε{3 u.

We can structure the proof of Theorem 1.16.1:

Proof. Given ε ą 0.

Want: Dδ ą 0 s.t. δ6 ` 5δ4 ` δ ď ε.

Want: δ6 ` 5δ4 ` δ ď ε.

�

It remains to fill in the δ-strategy and finish:

Proof. Given ε ą 0.

Want: Dδ ą 0 s.t. δ6 ` 5δ4 ` δ ď ε.

Let δ :“ mint 6
a

ε{3 , 4
a

ε{15 , ε{3 u.

Then δ ą 0.

Want: δ6 ` 5δ4 ` δ ď ε.

We know 0 ď δ ď 6
a

ε{3, so δ6 ď ε{3.

We also know 0 ď δ ď 4
a

ε{15, so δ4 ď ε{15, so 5δ4 ď ε{3.

Finally, we know δ ď ε{3.

Since δ6 ď ε{3 and 5δ4 ď ε{3 and δ ď ε{3,

we conclude: δ6 ` 5δ4 ` δ ď pε{3q ` pε{3q ` pε{3q.

Then δ6 ` 5δ4 ` δ ď ε. �

We can state Theorem 1.16.1 in a slightly different format, and the

change makes the proof a little simpler because ε is bound within the

statement of the theorem in a way that keeps the binding valid until

the end of the proof:

THEOREM 1.16.2. Let ε ą 0. Then Dδ ą 0 s.t. δ6 ` 5δ4 ` δ ď ε.

Proof. Let δ :“ mint 6
a

ε{3 , 4
a

ε{15 , ε{3 u.

Then δ ą 0.

Want: δ6 ` 5δ4 ` δ ď ε.

We know 0 ď δ ď 6
a

ε{3, so δ6 ď ε{3.

We also know 0 ď δ ď 4
a

ε{15, so δ4 ď ε{15. Then 5δ4 ď ε{3.

Finally, we know δ ď ε{3.

Since δ6 ď ε{3 and 5δ4 ď ε{3 and δ ď ε{3,



CLASS NOTES 25

we conclude: δ6 ` 5δ4 ` δ ď pε{3q ` pε{3q ` pε{3q.

Then δ6 ` 5δ4 ` δ ď ε. �

Another similar theorem, and similar proof:

THEOREM 1.16.3. @ε ą 0, Dδ ą 0 s.t. 4δ8 ` 7δ2 ` 5δ ď 9ε.

Proof. Given ε ą 0.

Want: Dδ ą 0 s.t. 4δ8 ` 7δ2 ` 5δ ď 9ε.

Let δ :“ mint 8
a

3ε{4 ,
a

3ε{7 , 3ε{5 u.

Then δ ą 0.

Want: 4δ8 ` 7δ2 ` 5δ ď 9ε.

We know 0 ď δ ď 8
a

3ε{4, so δ8 ď 3ε{4. Then 4δ8 ď 3ε.

We also know 0 ď δ ď
a

3ε{7, so δ2 ď 3ε{7. Then 7δ2 ď 3ε.

Finally, we know δ ď 3ε{5. Then 5δ ď 3ε.

Since 4δ8 ď 3ε and 7δ2 ď 3ε and 5δ ď 3ε,

we conclude: 4δ8 ` 7δ2 ` 5δ ď 3ε{3` 3ε` 3ε.

Then 4δ8 ` 7δ2 ` 5δ ď 9ε. �

1.17. Triply quantified theorems with implication.

THEOREM 1.17.1.

@M P R, Dδ ą 0 s.t., @x P R,

p 0 ă x ă δ q ñ p 1{x ąM q.

Proof. Given M P R.

Want: Dδ ą 0 s.t., @x P R,

p 0 ă x ă δ q ñ p 1{x ąM q.

Let δ :“ 1{pmaxtM, 1uq. Then δ ą 0.

Want: @x P R, p 0 ă x ă δ q ñ p 1{x ąM q.

Given x P R. Assume 0 ă x ă δ. Want: 1{x ąM .

Since 0 ă x ă δ, it follows that 1{x ą 1{δ.

Then 1{x ą 1{δ “ maxtM, 1u ěM . �

THEOREM 1.17.2. @ε ą 0, Dδ ą 0 s.t. @x P R,

p |x´ 2| ă δ q ñ p |x4 ´ 5x2 ` 2x| ă ε q.

Proof. Given ε ą 0.

Want: Dδ ą 0 s.t. @x P R,

p |x´ 2| ă δ q ñ p |x4 ´ 5x2 ` 2x| ă ε q.

Let δ :“ mint1, ε{49u. Then δ ă 1 and δ ă ε{49 and δ ą 0.

Want: @x P R, p |x´ 2| ă δ q ñ p |x4 ´ 5x2 ` 2x| ă ε q.
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Given x P R. Assume |x´ 2| ă δ. Want: |x4 ´ 5x2 ` 2x| ă ε.

We have |x| ď |px´ 2q ` 2| ď |x´ 2| ` |2| “ |x´ 2| ` 2 ă δ ` 2,

so, since δ ă 1, we conclude that |x| ă 3.

Since 48{49 ă 1 and ε ą 0, we get 48 ¨ ε{49 ă ε.

Since x4 ´ 5x2 ` 2x “ px´ 2q ¨ px3 ` 2x2 ´ xq,

we get |x4 ´ 5x2 ` 2x| “ |x´ 2| ¨ |x3 ` 2x2 ´ x|.

Then |x4´ 5x2` 2x| “ |x´ 2| ¨ |x3` 2x2´ x| ď δ ¨ p|x|3` 2 ¨ |x|2` |x|q.

So, since |x| ă 3, this gives |x4 ´ 5x2 ` 2x| ď δ ¨ p33 ` 2 ¨ 32 ` 3q.

So, since 33 ` 2 ¨ 32 ` 3 “ 48, this gives |x4 ´ 5x2 ` 2x| ď 48 ¨ δ.

So, since δ ă ε{49, this gives |x4 ´ 5x2 ` 2x| ď 48 ¨ ε{49.

Then |x4 ´ 5x2 ` 2x| ď 48 ¨ ε{49 ă ε. �

1.18. Primitive ordered pairs.

THEOREM 1.18.1. t1, 2u “ t2, 1u “ t1, 1, 2, 2, 2u.

THEOREM 1.18.2. t5, 5u “ t5u and t t5u , t5u u “ t t5u u.

THEOREM 1.18.3. t t5u , t5, 5u u “ t t5u u.

DEFINITION 1.18.4. @x, y, xxx, yyy :“

#

t txu , tx, yu u, if x ‰ / ‰ y

/, if ppx “ /q _ py “ /qq.

The notation xxx, yyy is read “the primitive ordered pair x, y”.

THEOREM 1.18.5. xx1, 2yy “ t t1u , t1, 2u u and

xx6, t7, 8uyy “ t t6u , t6, t7, 8uu u and

xx5, 5yy “ t t5u , t5, 5u u “ t t5u u and

xx/, 5yy “ xx/,/yy “ xxt2, 1u,/yy “ /.

THEOREM 1.18.6. xx1, 2yy “ t t1u , t1, 2u u and

xx2, 1yy “ t t2u , t2, 1u u.

THEOREM 1.18.7. xx1, 2yy ‰ xx2, 1yy.

THEOREM 1.18.8. @non-/ a, b, x, y,

p xxa, byy “ xxx, yyy q ô p pa “ xq & pb “ yq q.

1.19. Relations.

DEFINITION 1.19.1. Let R be a set. Then R is a relation means:

@z P R, Dx, y s.t. z “ xxx, yyy.
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In other words, a relation is a set of primitive ordered pairs.

Since / “ xx/,/yy, we see that, technically, / is a primitive ordered

pair. However, / is never an element of any set, and so it cannot be an

element of a relation. So, even if it’s somewhat redundant, it’s possibly

clearer to say that a relation is a set of non-/ primitive ordered pairs.

More generally, any set is a set of non-/ objects.

THEOREM 1.19.2. t xx1, 2yy , xx1, 3yy , xx4, 5yy u is a relation.

THEOREM 1.19.3.

t xx1, t2, 3uyy , xx1, 9yy , xx7, 6yy u is a relation.

Since @x, y, xxx, yyy ‰ t1, 2, 3u, we conclude:

THEOREM 1.19.4.

t t1, 2, 3u , xx1, 9yy , xx7, 6yy u is NOT a relation.

The following is null true:

THEOREM 1.19.5. H is a relation.

DEFINITION 1.19.6. Let R be a relation. Then:

DR :“ t x | Dy s.t. xxx, yyy P R u and

IR :“ t y | Dx s.t. xxx, yyy P R u.

We call DR the domain of R.

We call IR the image of R.

Unassigned HW: Show that DH “ H and RH “ H.

DEFINITION 1.19.7. Let R be a relation, x an object. Then:

VLRx :“ t y | xxx, yyy P R u.

We call VLRx the vertical line through x in R.

We justified the following theorem by graphing R.

THEOREM 1.19.8. Let R :“ t xx1, 2yy , xx1, 3yy , xx4, 5yy u.

Then DR “ t1, 4u and IR “ t2, 3, 5u and

VLR1 “ t2, 3u and VLR4 “ t5u and VLR3 “ H.

We justified the following two theorems by looking at the graph of the

relation of the preceding theorem.
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THEOREM 1.19.9. Let R be a relation and let x be an object.

Then: px P DR q ô pVLRx ‰ Hq.

THEOREM 1.19.10. Let R be a relation and let y be an object.

Then: p y P IR q ô p Dx P DR s.t. xxx, yyy P R q.

Some relations cannot be graphed, and yet we can still study domain,

range and vertical lines for them. For example:

THEOREM 1.19.11. Let R :“ t xx1, t2, 3uyy , xx1, 9yy , xx6, 7yy u.

Then DR “ t1, 6u and IR “ t t2, 3u , 7 , 9 u and

VLR1 “ t t2, 3u , 9u and VLR6 “ t7u and VLR3 “ H.

THEOREM 1.19.12. Let R be a relation. Then VLR/ “ H.

Proof. Assume VLR/ ‰ H. Want: Contradiction.

Choose y P VLR/. Then xx/, yyy P R.

By Definition 1.18.4, we have: xx/, yyy “ /.

Since / “ xx/, yyy P R, we get: / P R.

Since R is a set, by Axiom 1.3.1, we have: / R R.

Contradiction. �

1.20. Functions.

DEFINITION 1.20.1. For any object f , by f is a function we mean:

p f is a relation q & p @x P Df , VLfx is a singleton q.

In other words, a function is a relation for which each of its vertical

lines, through points in its domain, is a singleton.

THEOREM 1.20.2. t xx1, 2yy , xx1, 3yy , xx4, 5yy u is NOT a function.

THEOREM 1.20.3. t xx3, 7yy , xx2, 7yy , xx1, 8yy u IS a function.

The function t xx3, 7yy , xx2, 7yy , xx1, 8yy u will typically be written:

¨

˝

3 ÞÑ 7

2 ÞÑ 7

1 ÞÑ 8

˛

‚.

Generally, for any n P N, for any objects x1, . . . , xn, for any objects

y1, . . . , yn, we define
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¨

˚

˝

x1 ÞÑ y1
...

xn ÞÑ yn

˛

‹

‚

:“ t xxx1, y1yy , . . . , xxxn, ynyy u.

We are eventually going to cease use of xx‚, ‚yy in favor of higher-level

notation, and this is an example.

THEOREM 1.20.4.

¨

˚

˚

˝

2 ÞÑ t3, 5u

8 ÞÑ 9

6 ÞÑ ´1

4 ÞÑ t6u

˛

‹

‹

‚

“

¨

˚

˚

˝

2 ÞÑ t3, 5u

4 ÞÑ t6u

6 ÞÑ ´1

8 ÞÑ 9

˛

‹

‹

‚

.

THEOREM 1.20.5. Let f be a relation. Then:

p f is a function q ô p @x, y, z, p xxx, yyy, xxx, zyy P f q ñ p y “ z q q.

THEOREM 1.20.6. H is a function.

THEOREM 1.20.7. p DH “ H “ IH q & p @x, VLHx “ H q.

DEFINITION 1.20.8. Let f be a function and let x be an object.

Then we define:

fx :“ UEpVLfxq.

Alternate notation for fx is fpxq .

THEOREM 1.20.9.

Let f :“

¨

˝

2 ÞÑ 3

5 ÞÑ 8

7 ÞÑ 6

˛

‚. Then: p fp5q “ 8 q& p fp2q “ 3 q& p fp9q “ / q.

THEOREM 1.20.10.

Let f :“

¨

˚

˚

˝

2 ÞÑ t3, 5u

4 ÞÑ t6u

6 ÞÑ ´1

8 ÞÑ 9

˛

‹

‹

‚

. Then: pf6 “ ´1q&pf2 “ t3, 5uq&pf3 “ /q.

THEOREM 1.20.11. @x, Hx “ /.

THEOREM 1.20.12. Let f be a function and let x be an object.

Then: p x P Df q ô p VLfx is a singleton q ô p fx ‰ / q.
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THEOREM 1.20.13. Let f be a function and let x, y be objects.

Then: p xxx, yyy P f q ô p y P VLfx q ô p fx “ y q.

The next axiom is part of the general philosophy that

“/ is infective.”

AXIOM 1.20.14. For all q, /q “ / and q/ “ /.

THEOREM 1.20.15. Let S :“

" ˆ

1 ÞÑ 1

2 ÞÑ 2

˙ *

.

Let f :“ UES. Then: f1 “ 1 and f2 “ 2 and f3 “ / and

f/ “ /.

THEOREM 1.20.16. Let S :“

" ˆ

1 ÞÑ 1

2 ÞÑ 2

˙

,

ˆ

1 ÞÑ 2

2 ÞÑ 1

˙ *

.

Let f :“ UES. Then: f1 “ / and f2 “ /.

DEFINITION 1.20.17. Let A and B be sets. Then:

f : A 99K B means p f is a function q& pDf Ď A q& p If Ď B q and

f : A Ñ B means p f is a function q& pDf “ A q& p If Ď B q and

f : AÑą B means p f is a function q& pDf “ A q& p If “ B q.

THEOREM 1.20.18. Let f :“

¨

˝

2 ÞÑ 3

5 ÞÑ 8

7 ÞÑ 6

˛

‚. Then:

f : t2, 5, 7u Ñ t3, 4, 6, 8u and

f : t2, 5, 7u Ñ t1, 3, 4, 6, 8, 9u and

f : t2, 4, 5, 7u 99K t3, 4, 6, 8u and

f : t1, 2, 4, 5, 7u 99K t1, 3, 4, 6, 8u and

f : t2, 5, 7u Ñą t3, 6, 8u.

DEFINITION 1.20.19. Let f be a function. Then:

by f is one-to-one or 1-1, we mean:

@w, x P Df , p fw “ fx q ñ pw “ x q.

THEOREM 1.20.20. Let f :“

¨

˝

2 ÞÑ 3

5 ÞÑ 8

7 ÞÑ 6

˛

‚. Then f is 1-1.

THEOREM 1.20.21. Let f :“

¨

˝

2 ÞÑ 5

5 ÞÑ 8

7 ÞÑ 5

˛

‚. Then f is NOT 1-1.
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We graphed the function f from the next theorem.

It was the graph of y “ x3.

THEOREM 1.20.22. Let f :“ t xxx, yyy | p x, y P R q& p y “ x3 q u.

Then f is 1-1.

We graphed the function f from the next theorem.

It was the parabola given by y “ x2.

THEOREM 1.20.23. Let f :“ t xxx, yyy | p x, y P R q& p y “ x2 q u.

Then f is NOT 1-1.

DEFINITION 1.20.24. Let A and B be sets. Then:

f : A ãÑ B means p f : A Ñ B q& p f is 1-1 q and

f : A ãÑą B means p f : AÑą B q& p f is 1-1 q.

THEOREM 1.20.25. Let f :“

¨

˝

2 ÞÑ 3

5 ÞÑ 8

7 ÞÑ 6

˛

‚. Then:

f : t2, 5, 7u ãÑ t3, 4, 6, 8u and

f : t2, 5, 7u ãÑ t1, 3, 4, 6, 8, 9u and

f : t2, 5, 7u ãÑą t3, 6, 8u.

We have now introduced enough notation that, going forward,

we can avoid writing xx‚, ‚yy.

For example, instead of writing xxx, yyy P f ,

we will write fx “ y or fpxq “ y.

Instead of, for example, writing

Let f :“ t xxx, yyy |x, y P R , y “ x3 u,

please write

Let f : RÑ R be defined by: @x P R, fpxq “ x3

or Define f : RÑ R by: @x P R, fpxq “ x3.

One of the advantages of this is that,

because fpxq is given by a formula,

it is clear that f is a function.

That is, each x corresponds to exactly one y, namely x3.

We will see this, in the proof of (a) in the next theorem.

We graphed the function f from the next theorem.

It was the parabola given by y “ x2.
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THEOREM 1.20.26. Define f : RÑ R by: @x P R, fx “ x2.

Then f : RÑą r0;8q.

We graphed the function f from the next theorem.

It was the graph of y “ x3.

THEOREM 1.20.27. Define f : RÑ R by: @x P R, fx “ x3.

Then f : R ãÑą R.

Proof. Want: (α) f : RÑ R and (β) f is 1-1.

Proof of (α):

Want: (a) f is a function and (b) Df “ R and (c) If “ R.

Proof of (a):

Want:@x, y, z, p pfx “ yq& pfx “ zq q ñ p y “ z q.

Given x, y, z. Assume: pfx “ yq& pfx “ zq. Want: y “ z.

We have y “ fx “ z.

End of proof of (a).

Proof of (b):

Since f : RÑ R, we get Df “ R.

End of proof of (b).

Proof of (c):

Since f : RÑ R, we get If Ď R.

It remains to show that R Ď If .
Want: @y P R, y P If .
Given y P R. Want: y P If .
Want:Dx P Df s.t. y “ fx.

Since f : RÑ R, we get Df “ R.

Let x :“ 3
?
y. Then x P R “ Df . Want: y “ fx.

We have y “ p 3
?
yq3 “ x3 “ fx.

End of proof of (c).

End of proof of (α).

Proof of (β):

Want:@w, x P Df , p fw “ fx q ñ pw “ x q.

Given w, x P Df . Assume fw “ fx. Want: w “ x.
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We have w “ 3
?
w3 “ 3

?
fw “

3
?
fx “

3
?
x3 “ x.

End of proof of (β). �

The next two theorems are quantified equivalences for equality of func-

tions. In the first, we assume we have a common domain. In the

second, we only assume we have a common superdomain.

THEOREM 1.20.28. Let A be a set. Let φ and ψ be functions.

Assume Dφ “ A and Dψ “ A.

Then p φ “ ψ q ô p @x P A, φx “ ψx q.

THEOREM 1.20.29. Let S be a set. Let φ and ψ be functions.

Assume Dφ Ď S and Dψ Ď S.

Then p φ “ ψ q ô p @x P S, φx “
˚ ψx q.

It a basic property of the real numbers that:

@x P R, x2{x “ x3{x2.

This property is used in the proof of the following theorem:

THEOREM 1.20.30. Define f, g : R 99K R by:

@x P R, fpxq “ x2{x and gpxq “ x3{x2.

Then f “ g.

Proof. Since f, g : R 99K R, we get Df Ď R and Dg Ď R.

Want: @x P R, fx “ gx.

Given x P R. Want: fx “ gx.

We have fx “ x2{x “ x3{x2 “ gx. �

We talked about various ways of picturing functions.

DEFINITION 1.20.31. Let f be a function, A a set. Then:

f˚A :“ tfx |x P AX Dfu and

f˚A :“ tx P Df | fx P Au.

Alternate notation: f˚pAq and f˚pAq .

We do NOT use fpAq and f´1pAq.

We discussed how to picture f˚A and f˚A.

The set f˚A is called the f -forward-image of A.

The set f˚A is called the f -pre-image of A
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THEOREM 1.20.32. Let f :“

¨

˚

˚

˝

1 ÞÑ 4

2 ÞÑ 6

3 ÞÑ 8

9 ÞÑ 8

˛

‹

‹

‚

.

Then f˚t0, 1, 2u “ t4, 6u and f˚t6, 7, 8u “ t2, 3, 9u.

DEFINITION 1.20.33. @a, b, by a ” b , we mean: a “ b ‰ /.

THEOREM 1.20.34. @a, b, p a ” b q ñ p a ‰ / ‰ b q.

We have quantified equivalences for y P f˚S:

THEOREM 1.20.35. Let f be a function, S a set, y an object. Then:

p y P f˚S q ô p Dx P SXDf s.t. fx “ y q ô p Dx P S s.t. fx ” y q.

We have an equivalence for y P f˚S:

THEOREM 1.20.36. Let f be a function, S a set, x an object. Then:

px P f˚S q ô p fx P S q.

We omitted formal proofs of the preceding two theorems, but used

pictures to motivate them.

In the following, the set f˚tyu is called the f -fiber over y.

We justified that terminology with a picture.

THEOREM 1.20.37. Let f be a function, x, y objects. Then:

px P f˚tyu q ô p fx “ y q.

Proof. We have px P f˚tyu q ô p fx P tyu q ô p fx “ y q. �

We define agreement, on a set, of two functions:

DEFINITION 1.20.38. Let f and g be functions and let S be a set.

By on S, f “ g, we mean: @x P S, fx “ gx.

Note that, for any two functions f and g, for any set S,

if on S, f “ g, then S Ď Df X Dg.

THEOREM 1.20.39. Let f be a function. Then f/ “ /.

Proof. By definition, we have f/ “ UEpVLf/q.

By Theorem 1.19.12, VLf/ “ H. Then f/ “ UEpHq “ /. �
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1.21. Restriction of functions.

We next define the restriction of f to a subset of Df :

DEFINITION 1.21.1. Let f be a function, S Ď Df .

Then f |S : S Ñ If is defined by: @x P S, pf |Sqx “ fx.

We defined f : RÑ R by @x P R, fx “ x2.

We graphed f and noted that f is NOT 1-1.

We graphed f |r0;8q and noted that f |r0;8q IS 1-1.

We next define restriction, f Ď g:

DEFINITION 1.21.2. Let f and g be functions.

By f Ď g , we mean: p Df Ď Dg q & p g|Df “ f q.

We next define extension, g Ě f :

DEFINITION 1.21.3. Let f and g be functions.

By g Ě f , we mean: p Df Ď Dg q & p g|Df “ f q.

Note: p f Ď g q ô p g Ě f q.

Unassigned HW:

THEOREM 1.21.4. @function g, @S Ď Dg, g|S Ď g.

1.22. Composition of functions.

DEFINITION 1.22.1. Let f and g be functions. Then:

g ˝ f is the function defined by:

@x, pg ˝ fqx :“ gfx

We read g ˝ f as “f then g” or g compose f”.

The function g ˝ f is called the composition of g and f .

THEOREM 1.22.2. Let f :“

¨

˚

˚

˝

1 ÞÑ 7

3 ÞÑ 3

8 ÞÑ 6

9 ÞÑ 2

˛

‹

‹

‚

and g :“

¨

˝

2 ÞÑ 0

3 ÞÑ 9

4 ÞÑ 5

˛

‚.

Then g ˝ f “

ˆ

3 ÞÑ 9

9 ÞÑ 0

˙

.

THEOREM 1.22.3. Let f and g be functions. Then:

Dg˝f “ f˚pDgq and Ig˝f “ g˚pIf q.
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THEOREM 1.22.4. Let A, B, C be sets, f , g be functions. Then:

(1) r p p f : A 99K B q& p g : B 99K C q q ñ p g ˝ f : A 99K C q s and

(2) r p p f : A Ñ B q& p g : B Ñ C q q ñ p g ˝ f : A Ñ C q s and

(3) r p p f : A ãÑ B q& p g : B ãÑ C q q ñ p g ˝ f : A ãÑ C q s and

(4) r p pf : A Ñą B q& p g : B Ñą C q q ñ p g ˝ f : AÑą C q s and

(5) r p pf : A ãÑą B q& p g : B ãÑą C q q ñ p g ˝ f : A ãÑą C q s.

1.23. Identity and inverse and characteristic functions. The func-

tion idA in the next definition is called the identity function on A.

DEFINITION 1.23.1. Let A be a set.

Then idA : AÑ A is defined by: @x P A, idAx “ x.

THEOREM 1.23.2. idt2,4,6u “

¨

˝

2 ÞÑ 2

4 ÞÑ 4

6 ÞÑ 6

˛

‚.

THEOREM 1.23.3. id
t2,4,6u
7 “ / and id

t2,4,6u
4 “ 4.

THEOREM 1.23.4. idR
4 “ 4 and idR

t4u “ /.

THEOREM 1.23.5. id
Rˆ0
4 “ 4 and id

Rˆ0
0 “ /.

THEOREM 1.23.6. Let f :“

¨

˝

1 ÞÑ 4

2 ÞÑ 6

3 ÞÑ 8

˛

‚ and g :“

¨

˝

4 ÞÑ 1

6 ÞÑ 2

8 ÞÑ 3

˛

‚.

Then: g ˝ f “

¨

˝

1 ÞÑ 1

2 ÞÑ 2

3 ÞÑ 3

˛

‚“ idt1,2,3u “ idDf and

f ˝ g “

¨

˝

4 ÞÑ 4

6 ÞÑ 6

8 ÞÑ 8

˛

‚“ idt4,6,8u “ idDg .

THEOREM 1.23.7. Let A,B be sets. Let f : AÑ B, g : B Ñ A.

Assume g ˝ f “ idA. Then: (1) f : A ãÑ B and (2) g : B Ñą A.

Proof. Proof of (1):

Want:@w, x P Df , pfw “ fxq ñ pw “ xq.

Given w, x P Df . Assume fw “ fx. Want: w “ x.

Since w, x P Df “ A, we get pg ˝ fqw “ idAw and pg ˝ fqx “ idAx .

Then w “ idAw “ pg ˝ fqw “ gfw “ gfx “ pg ˝ fqx “ idAx “ x.

End of proof of (1).
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Proof of (2):

Want:Ig “ A. Since g : B Ñ A, we know: Ig Ď A. Want: A Ď Ig.
Want:@x P A, x P Ig. Given x P A. Want: x P Ig.
Since x P A “ Df , we get fx P If .
Let y :“ fx. Then y P If .
Then y P If Ď B “ Dg. Then gy P Ig.
We have gy “ gfx “ pg ˝ fqx “ idAx “ x. Then gy “ x.

Then x “ gy P Ig.
End of proof of (2). �

THEOREM 1.23.8. Let A,B be sets, f : AÑ B.

Assume: Dg : B Ñ A s.t. p g ˝ f “ idA q & p f ˝ g “ idB q.

Then f : A ãÑą B.

Proof. Since g ˝ f “ idA, by (1) of Theorem 1.23.7, f : A ãÑ B.

Want: f : AÑą B.

Since f ˝ g “ idB, by (2) of Theorem 1.23.7, f : AÑą B. �

The function f´1 below is called the inverse function of f .

DEFINITION 1.23.9. Let f be a 1-1 function.

Then f´1 : If Ñ Df is defined by: @y P If , f´1y “ UEpf˚tyuq.

THEOREM 1.23.10. Let f :“

¨

˝

1 ÞÑ 4

2 ÞÑ 6

3 ÞÑ 8

˛

‚.

Then: f´14 “ UEpf˚t4uq “ UEt1u “ 1.

THEOREM 1.23.11. Let f :“

¨

˝

1 ÞÑ 4

2 ÞÑ 6

3 ÞÑ 8

˛

‚ and g :“

¨

˝

4 ÞÑ 1

6 ÞÑ 2

8 ÞÑ 3

˛

‚.

Then: g “ f´1 and f “ g´1.

THEOREM 1.23.12. Let f be a 1-1 function.

Then: @x P Df , f´1fx “ x.

Also: @y P If , ff´1
y
“ y.

DEFINITION 1.23.13. Let S be a set and let A Ď S.

Then χSA : S Ñ t0, 1u is defined by:
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@q P S, χSApqq “

#

1, if q P A

0, if q R A.

The function χSA, from the preceding definition, is called the char-

acteristic function of A in S.

1.24. The axiom of choice.

We imagine that at the beginning of time,

the Grand Oracle has chosen,

from every nonempty set A, an element denoted CHA.

This is embodied in the Axiom of Choice:

AXIOM 1.24.1. @nonempty set S, CHS P S.

We also make the convention that CHH “ /.

Alternate notation for CHS: CHpSq or CHS.

Then: @set S, we have: CHS
˚P S.

THEOREM 1.24.2. CHt4u “ 4 and CH t t1, 2, 3 u u “ t1, 2, 3u.

The chosen element of any singleton set is its unique element:

THEOREM 1.24.3. @x, CHtxu “ x “ UEtxu.

For sets with more than one element, we do not know which is chosen,

but we do know that one of them is:

THEOREM 1.24.4. pCHt2, 3u “ 2 q _ pCHt2, 3u “ 3 q.

THEOREM 1.24.5.

pCHt2, 3, 5u “ 2 q _ pCHt2, 3, 5u “ 3 q _ pCHt2, 3, 5u “ 5 q.

1.25. The world of sets - part 1.

THEOREM 1.25.1. Let A be a set.

Then idA : A ãÑą A.

THEOREM 1.25.2. Let A,B be sets, f : A ãÑą B.

Then f´1 : B ãÑą A.

By (5) of Theorem 1.22.4, we have:
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THEOREM 1.25.3. Let A,B,C be sets, f : A ãÑą B, g : B ãÑą C.

Then g ˝ f : A ãÑą C.

DEFINITION 1.25.4. Let A,B be sets. Then:

DA ãÑ B means: Da function f s.t. f : A ãÑ B and

DAÑą B means: Da function f s.t. f : AÑą B and

DA ãÑą B means: Da function f s.t. f : A ãÑą B.

THEOREM 1.25.5.

@set A, DA ãÑą A.

@sets A,B, p DA ãÑą B q ñ p DB ãÑą A q.

@sets A,B,C, p p DA ãÑą B q& p DB ãÑą C q q ñ p DA ãÑą C q.

THEOREM 1.25.6. Let A,B be sets, g : B Ñą A.

Then Df : AÑ B s.t. g ˝ f “ idA.

Proof.

Claim: @x P A, g˚txu ‰ H.

Proof of claim:

Given x P A. Want: g˚txu ‰ H.

Since g : B Ñ A, we get Ig “ A.

Since x P A “ Ig, we get x P Ig.
Since x P Ig, choose y P Dg s.t. gy “ x.

Since gy “ x, we get y P g˚txu. Then g˚txu ‰ H.

End of proof of claim.

Since g : B Ñ A, we get Dg “ B.

Then: @set S, g˚pSq Ď B.

So, from the claim and the axiom of choice, we conclude:

@x P A, CHg˚txu P g
˚txu.

Then: @x P A, CHg˚txu P g
˚txu Ď B.

Define f : AÑ B by: @x P A, fx “ CHg˚txu.

Then f : AÑ B. Want: g ˝ f “ idA.

Since f : AÑ B and g : B Ñ A, we get g ˝ f : AÑ A.

Then Dg˝f “ A. Also, DidA “ A. Want: @x P A, pg ˝ fqx “ idAx .

Given x P A. Want: pg ˝ fqx “ idAx . Want: gfx “ x.

Let y :“ fx. Want: gy “ x.

Since y “ fx “ CHg˚txu P g
˚txu, we get y P g˚txu.

Since y P g˚txu, we get gy P txu. Then gfx “ x. �
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THEOREM 1.25.7. Let A,B be sets. Assume: DB Ñą A.

Then: DA ãÑ B.

Proof. Want:Dfunction f s.t. f : A ãÑ B.

Since DB Ñą A, choose a function g s.t. g : B Ñą A.

By Theorem 1.25.6, choose f : AÑ B s.t. g ˝ f “ idA.

Then f is a function. Want: f : A ãÑ B.

By (1) of Theorem 1.23.7, f : A ãÑ B. �

THEOREM 1.25.8. Let A,B be sets, f : A ãÑ B.

Assume A ‰ H. Then Dg : B Ñ A s.t. g ˝ f “ idA.

Proof. Since f is 1-1, we know: @x P Df , f´1fx “ x.

Since A ‰ H, choose w s.t. w P A.

Define g : B Ñ A by: @y P B, gy “

#

f´1y , if y P If
w, if y R If .

Then g : B Ñ A. Want: g ˝ f “ idA.

Since f : AÑ B and g : B Ñ A, we get g ˝ f : AÑ A.

Then Dg˝f “ A. Also, DidA “ A. Want: @x P A, pg ˝ fqx “ idAx .

Given x P A. Want: pg ˝ fqx “ idAx . Want: gfx “ x.

Let y :“ fx. Want: gy “ x.

Since x P A “ Df , we get fx P If and f´1fx “ x.

Since y “ fx P If , by definition of g, we get gy “ f´1y .

Then gy “ f´1y “ f´1fx “ x. �

THEOREM 1.25.9. Let A,B be sets. Assume: DA ãÑ B.

Assume A ‰ H. Then: DB Ñą A.

Proof. Want:Dfunction g s.t. g : B Ñą A.

Since DA ãÑ B, choose a function f s.t. f : A ãÑ B.

By Theorem 1.25.8, choose g : B Ñ A s.t. g ˝ f “ idA.

Then g is a function. Want: g : B Ñą A.

By (2) of Theorem 1.23.7, g : B Ñą A. �

1.26. Sequences and zero-sequences.

DEFINITION 1.26.1. Let s be an object.

By s is a sequence, we mean:

s is a function and Ds “ N.

By s is a zero-sequence, we mean:

s is a function and Ds “ N0.
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Let s be a sequence. Then s is denoted ps1, s2, s3, . . .q .

To say “Let s :“ p1, 1{2, 1{3, 1{4, . . .q”

is equivalent to saying “Define s : NÑ R by: @j P N, sj “ 1{j”.

Let s be a zero-sequence. Then s is denoted 0ps0, s1, s2, s3, . . .q .

To say “Let s :“ 0p1, 2, 4, 8, 16, 32, 64, . . .q”

is equivalent to saying “Define s : N0 Ñ R by: @j P N0, sj “ 2j”.

DEFINITION 1.26.2. Let f be a function, j P N0. Then:

f j˝ :“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

idDf , if j “ 0

f, if j “ 1

f ˝ f, if j “ 2

f ˝ f ˝ f, if j “ 3

f ˝ f ˝ f ˝ f, if j “ 4
... .

DEFINITION 1.26.3. Let A be a set, f : AÑ A, x P A.

Define s : N0 Ñ A by: @j P N0, sj “ f j˝ pxq.

Then s is called the semi-forward-orbit of x under f .

THEOREM 1.26.4. Define f : RÑ R by: @x P R, fx “ 2x.

Let s be the semi-forward-orbit of 1 under f .

Then s “ 0p 1 , 2 , 4 , 8 , 16 , 32 , . . . q.

THEOREM 1.26.5. Let A be a set, f : AÑ A, x P A.

Let s be the semi-forward-orbit of x under f .

Then: p s0 “ x q & p @j P N0, sj`1 “ fsj q.

DEFINITION 1.26.6. Let A be a set, f : AÑ A, x P A.

Let s be the strict-forward-orbit of
?

5 under f .

Then s is called the strict-forward-orbit of x under f .

THEOREM 1.26.7. Define f : RÑ R by: @x P R, fx “ x` 1.

Define s P RN by: @j P N, sj “ f j˝ p
?

5q.

Then s “ p
?

5`1 ,
?

5`2 ,
?

5`3 ,
?

5`4 ,
?

5`5 ,
?

5`6 , . . . q.
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THEOREM 1.26.8. Let A be a set, f : AÑ A, x P A.

Let s be the semi-forward-orbit of x under f .

Then: p s0 “ x q & p @j P N0, sj`1 “ fsj q.

1.27. Size of a set.

DEFINITION 1.27.1. Let A be a set. Then:

#A :“ suptk P N0 | Dr1..ks ãÑ Au.

We have:

r1..0s “ H. @k P N, r1..ks “ t1, 2, 3, . . . , ku.
Dr1..0s ãÑH.

@k P N, Er1..ks ãÑH.

THEOREM 1.27.2. #H “ 0.

We have: @k P N, r1..ks “ t1, 2, 3, . . . , ku.

2 ¨ N “ t2, 4, 6, 8, . . .u.
@k P r0..4s, Dr1..ks ãÑ t1, 5, 8, 9u.

@k P r5..8q, Er1..ks ãÑ t1, 5, 8, 9u.

@k P r0..50s, Dr1..ks ãÑ t2, 4, 6, 8, . . . , 100u.

@k P r51..8q, Er1..ks ãÑ t2, 4, 6, 8, . . . , 100u.

@k P N0, Dr1..ks ãÑ 2 ¨ N.

THEOREM 1.27.3.

#t1, 5, 8, 9u “ 4 and

#t2, 4, 6, 8, . . . , 100u “ 50 and

#2 ¨ N “ 8.

THEOREM 1.27.4. #N “ #N0 “ #Z “ #Q “ #R “ 8.

DEFINITION 1.27.5. Let A be a set.

By A is finite, we mean: #A ă 8.

By A is infinite, we mean: #A “ 8.

1.28. The world of sets - part 2.

THEOREM 1.28.1. Let S and T be sets.

Then: DS ãÑ T or DT ãÑ S.

We omit the proof of the preceding theorem.

We organize “The World of Sets” in such a way that

for any two sets S and T ,
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( S appears above T ) iff ( DS ãÑ T but not DT ãÑ S )

and

( T appears above S ) iff ( DT ãÑ S but not DS ãÑ T )

and

( S appears side-by-side with T ) iff ( DS ãÑ T and DT ãÑ S ).

According to our next result, that last condition

DS ãÑ T and DT ãÑ S

is equivalent to

DS ãÑą T .

So two sets appear side-by-side iff they are bijective.

The following is called the Schroeder-Bernstein Theorem,

THEOREM 1.28.2. Let S and T be sets.

Assume: p DS ãÑ T q & p DT ãÑ S q.

Then: DS ãÑą T .

We omit the proof of the preceding theorem.

We picture The World of Sets, starting with H at the bottom.

By itself, it occupies the lowest level in The World of Sets.

Then the singleton sets are all side-by-side, just above the lowest level.

On the next level up are all sets with two elements.

On the next level up are all sets with three elements.

Next is an ellipsis,
... indicating all the levels of finite sets.

Next is a horizontal line dividing finite sets from infinite sets.

Somewhere above that line appears N.

First question: Are there any infinite sets that are strictly below N.

The next theorem answers that in the negative:

THEOREM 1.28.3. @set S, pS is infiniteq ô pDN ãÑ Sq.

We omit the proof of the preceding theorem.

So, in The World of Sets, the level with N is the lowest level that

is above the dividing line between finite and infinite sets. We draw a

line just above that level. Any set below that line is referred to as a

countable set, and any set above that line is said to be uncountable.

Any set on the same level with N is called countably infinite. Formally:
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DEFINITION 1.28.4. Let S be a set. Then:

S is countable means: DS ãÑ N and

S is uncountable means: ES ãÑ N and

S is countably infinite means: DS ãÑą N.

Note that, by Schroeder-Bernstein, a set is countably infinite iff it is

both countable and infinite.

Next question: Where do we place Q?

We first look at the set QX p0;8q of positive rational numbers:

THEOREM 1.28.5. DNÑą QX p0;8q.

Proof. The sequence

p 1{1 , 2{1, 1{2 , 3{1, 2{2, 1{3 , 4{1, 3{2, 2{3, 1{4, , . . . q

is a surjection NÑą S. Then DNÑą QX p0;8q. �

By Theorem 1.25.7, in The World of Sets,

there are no surjections from a set to a set on a higher level.

Then Theorem 1.28.5 says that

QX p0;8q is either at the countable level with N, or else below.

Unassigned HW: Show that QX p0;8q is countably infinite.

We next show that we place Q on the same level with N,

that is, Q belongs on the level of countably infinite sets.

THEOREM 1.28.6. The set Q is countable.

Proof. By Theorem 1.28.5, choose a function s s.t. s : NÑą QXp0;8q.

Then the sequence

p 0 , s1,´s1 , s2,´s2 , s3,´s3 , . . . q

is a surjection NÑą Q. Then, by Theorem 1.25.7, DQ ãÑ N.

Since idN : N ãÑ Q, we get DN ãÑ Q.

Then, by Schroeder-Bernstein, DN ãÑą Q. �

Next question: Where do we place N0 and Z?

The next theorem says that if three sets admit a cycle of injections,

then they admit a cycle of bijections:
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THEOREM 1.28.7. Let A,B,C be sets.

Assume p DA ãÑ B q & p DB ãÑ C q & p DC ãÑ A q.

Then p DA ãÑą B q & p DB ãÑą C q & p DC ãÑą A q.

Proof. By composition, since p DB ãÑ C q & p DC ãÑ A q,

we see that DB ãÑ A.

So, since DA ãÑ B, by Schroeder-Bernstein, we get: DA ãÑą B.

By composition, since p DC ãÑ A q & p DA ãÑ B q,

we see that DC ãÑ B.

So, since DB ãÑ C, by Schroeder-Bernstein, we get: DB ãÑą C.

It remains to show: DC ãÑą A.

By composition, since p DA ãÑ B q & p DB ãÑ C q,

we see that DA ãÑ C.

So, since DC ãÑ A, by Schroeder-Bernstein, we get: DC ãÑą A. �

THEOREM 1.28.8. Let A,B,C be sets.

Assume p A Ď B Ď C q & p DA ãÑą C q.

Then p DA ãÑą B q & p DB ãÑą C q.

Proof. Since A Ď B Ď C, we see that

idA : A ãÑ B and idB : B ãÑ C.

Then DA ãÑ B and DB ãÑ C.

Since DA ãÑą C, by inversion, we get DC ãÑą A. Then DC ãÑ A.

Then, by Theorem 1.28.7, p DA ãÑą B q & p DB ãÑą C q. �

THEOREM 1.28.9. The sets N0 and Z are both countably infinite.

Proof. By Theorem 1.28.6, DN ãÑą Q.

Since N Ď N0 Ď Q and DN ãÑą Q,

we conclude, from Theorem 1.28.8 that DN ãÑą N0.

Then N0 is countably ininite. Want: Z is countably infinite.

Since N Ď Z Ď Q and DN ãÑą Q,

we conclude, from Theorem 1.28.8 that DN ãÑą Z.

Then Z is countably infinite. �

In The World of Sets, we now see that

N,N0,Z,Q are all on the countably infinite level.

Next question: Where do we place R?

DEFINITION 1.28.10. Let A,B be sets. Then:

BA :“ tfunctions f | f : AÑ Bu.
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DEFINITION 1.28.11. Let T be a set. Then:

2T :“ tsets S |S Ď T u.

THEOREM 1.28.12. t3, 4, 5ut1,2u “

" ˆ

1 ÞÑ 3

2 ÞÑ 3

˙

,

ˆ

1 ÞÑ 3

2 ÞÑ 4

˙

,

ˆ

1 ÞÑ 3

2 ÞÑ 5

˙

,
ˆ

1 ÞÑ 4

2 ÞÑ 3

˙

,

ˆ

1 ÞÑ 4

2 ÞÑ 4

˙

,

ˆ

1 ÞÑ 4

2 ÞÑ 5

˙

,
ˆ

1 ÞÑ 5

2 ÞÑ 3

˙

,

ˆ

1 ÞÑ 5

2 ÞÑ 4

˙

,

ˆ

1 ÞÑ 5

2 ÞÑ 5

˙ *

.

THEOREM 1.28.13. Let A,B be finite sets. Then #pBAq “ p#Bq#A.

THEOREM 1.28.14. t0, 1ut7,8,9u “

"

¨

˝

7 ÞÑ 0

8 ÞÑ 0

9 ÞÑ 0

˛

‚ ,

¨

˝

7 ÞÑ 0

8 ÞÑ 0

9 ÞÑ 1

˛

‚ ,

¨

˝

7 ÞÑ 0

8 ÞÑ 1

9 ÞÑ 0

˛

‚ ,

¨

˝

7 ÞÑ 0

8 ÞÑ 1

9 ÞÑ 1

˛

‚ ,

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 0

˛

‚ ,

¨

˝

7 ÞÑ 1

8 ÞÑ 0

9 ÞÑ 1

˛

‚ ,

¨

˝

7 ÞÑ 1

8 ÞÑ 1

9 ÞÑ 0

˛

‚ ,

¨

˝

7 ÞÑ 1

8 ÞÑ 1

9 ÞÑ 1

˛

‚

*

.

THEOREM 1.28.15. Let S be a set.

Then f ÞÑ f˚t1u : t0, 1uS ãÑą 2S.

We omit the proof.

Applying Theorem 1.28.15 to the case S “ t7, 8, 9u, we see:

f ÞÑ f˚t1u : t0, 1ut7,8,9u ãÑą 2t7,8,9u.

Since, in Theorem 1.28.14, we calculated t0, 1ut7,8,9u,

in order to calculate 2t7,8,9u, we can simply, for each f P t0, 1ut7,8,9u,

calculate f˚t1u, and assemble the resulting sets into a set of sets:

THEOREM 1.28.16. 2t7,8,9u “

"

H , t9u , t8u , t8, 9u ,

t7u , t7, 9u , t7, 8u , t7, 8, 9u

*

.

The following is a consequence of Theorem 1.28.15:

THEOREM 1.28.17. Let S be a set.

Then D t0, 1uS ãÑą 2S.



CLASS NOTES 47

THEOREM 1.28.18. Let S be a set.

Then x ÞÑ txu : S ãÑ 2S.

The preceding theorem is left as Unassigned HW.

The following is a consequence of the preceding theorem.

THEOREM 1.28.19. Let S be a set.

Then DS ãÑ 2S.

THEOREM 1.28.20. Let S be a set.

Then E2S ãÑ S.

The preceding theorem is proved by “Cantor diagonalization”.

That proof is omitted.

The preceding two theorems tell us that, in The World of Sets,

for any set S, 2S must be placed strictly higher than S.

As a consequence, while H is at the bottom of the World of Sets,

there is no top to The World of Sets; that is,

for any set S, the set 2S is higher; moreover,

by Theorem 1.28.17, 2S is side-by-side with t0, 1uS.

For any two bijective sets A and B,

2A and 2B are bijective as well:

THEOREM 1.28.21. Let A,B be sets.

Assume DA ãÑą B.

Then D2A ãÑą 2B.

The proof is an Unassigned HW.

In The World of Sets, we create a level

called the “continuum cardinality” level,

into which we place the sets 2N, 2N0 , 2Z, 2Q.

This level also has the sets t0, 1uN, t0, 1uN0 , t0, 1uZ, t0, 1uQ.

NOTE: There is an Axiom of Set Theorem called the “Continuum Hy-

pothesis”, which states that there are no sets strictly between countably

infinite and continuum cardinality. Some set-theorists may adopt this

axiom, while others adopt its negation as an axiom. In this course, we

are agnostic about this question.

We now turn to proving that R has continuum cardinality.
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THEOREM 1.28.22. Dt0, 1uN ãÑ R.

Idea of proof: The mapping which sends

f P t0, 1uN to the base ten number 0.f1f2f3 ¨ ¨ ¨ P R
is an injection.

NOTE: It is not surjective because 0.2 is not in the image. The only

digits allowed are 0 and 1.

NOTE: Because we do not allow the digit 9, the map is 1-1.

THEOREM 1.28.23. Dt0, 1uN Ñą r0; 1s.

Idea of proof: The mapping which sends

f P t0, 1uN to the base two number 0.f1f2f3 ¨ ¨ ¨ P r0; 1s

is a surjection.

NOTE: It is not injective because, in base two, 0.01111 ¨ ¨ ¨ “ 0.10000 ¨ ¨ ¨ .

NOTE: The number 1 is in the image because 1 “ 0.1111 ¨ ¨ ¨ .

THEOREM 1.28.24. Dr´1; 1s ãÑ t0, 1uN.

Proof. By Theorem 1.28.23, Dt0, 1uN Ñą r0; 1s.

So, since x ÞÑ 2x´ 1 : r0; 1s Ñą r´1; 1s,

by composing, we get Dt0, 1uN Ñą r´1; 1s.

Then, by Theorem 1.25.7, we get Dr´1; 1s ãÑ t0, 1uN. �

THEOREM 1.28.25. DR ãÑ r´1; 1s.

Proof. Define f : RÑ p´1; 1q by: @x P R, fx “ x{
?

1` x2.

Define g : p´1; 1q Ñ R by: @y P R, gy “ y{
a

1´ y2.

Then g ˝ f “ idR and f ˝ g “ idp´1;1q, so, by Theorem 1.23.8,

we see that f : R ãÑą p´1; 1q.

Then f : R ãÑ p´1; 1q. Then DR ãÑ p´1; 1q. �

The next theorem asserts that, in The World of Sets,

R belongs on the continuum cardinality level, with 2N.

THEOREM 1.28.26. D2N ãÑą R.

Proof. By Theorem 1.28.17, want: Dt0, 1uN ãÑą R.

By Theorem 1.28.22, Dt0, 1uN ãÑ R.
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By Theorem 1.28.25, DR ãÑ r´1; 1s.

By Theorem 1.28.24, Dr´1; 1s ãÑ t0, 1uN.

Then, by Theorem 1.28.7, Dt0, 1uN ãÑą R. �

1.29. Partitions.

DEFINITION 1.29.1. Let S be a set of sets.

By S is pairwise-disjoint, we mean:

@A,B P S, pA ‰ B q ñ pAXB “ Hq.

We have t r1; 3s , r3; 5s u is NOT pairwise-disjoint,

because r1; 3s X r3; 5s “ t3u ‰ H.

By contrast, t r1; 3q , r3; 5q u IS pairwise-disjoint.

Note also that we may put in the empty set:

t r1; 3q , r3; 5q , H u IS pairwise-disjoint.

DEFINITION 1.29.2. Let X be a set and let S be a set of sets.

By S is a partition of X, we mean:

S is pairwise-disjoint and
Ť

S “ X.

Let X :“ r1; 5q, S :“ t r1; 3q , r3; 5q , Hu.

Then S is a partition of X.

However, the empty set really plays very little role here,

so we can remove it, as follows:

We have SˆH “ SztHu “ t r1; 3q , r3; 5q u,

and SˆH is also a partition of X.

More generally, we have:

THEOREM 1.29.3. Let X be a set and let S be a partition of S.

Then SˆH is a partition of X.

DEFINITION 1.29.4. Let X be a set.

Let P and Q be two partitions of X.

By P is a refinement of Q, we mean:

@P P P, DQ P Q s.t. P Ď Q.

LetX :“ r1; 5q, Q :“ t r1; 3q , r3; 5q u, P :“ t r1; 2q , r2; 3q , r3; 4q , r4; 5q u.

Then P is a refinement of Q.

Note that t r1; 2q , r2; 3q u is a partition of r1; 3q

and that t r3; 4q , r4; 5q u is a partition of r3; 5q,

so each element of Q is partitioned by a subset of P .

More generally, we have:



50 SCOT ADAMS

THEOREM 1.29.5. Let X be a set.

Let P and Q be two partitions of X.

Assume that P is a refinement of Q.

Let Q P Q. Let S :“ tP P P |P Ď Qu.

Then S is a partition of Q.

DEFINITION 1.29.6. Let X be a set.

Let P and Q be two partitions of X.

By P and Q are comparable, we mean:

P is a refinement of Q or Q is a refinement of P.

By P and Q are incomparable, we mean:

P and Q are not comparable.

Let X :“ r1; 7q, P :“ t r1; 4q , r4; 7q u, Q :“ t r1; 3q , r3; 5q , r5, 7q u.

Then P and Q are incomparable.

However, by intersecting each element of P with each element of Q,

we can find a partition of X that is

simultaneously a refinement of P and a refinement of Q,

as follows. We compute:

r1; 4qX r1; 3q “ r1; 3q, r1; 4sX r3; 5q “ r3; 4q, r1; 4qX r5; 7q “ H,

r4; 7qX r1; 3q “ H, r4; 7sX r3; 5q “ r4; 5q, r4; 7qX r5; 7q “ r5; 7q.

Let S :“ t r1; 3q , r3; 4q , H , H , r4; 5q , r5; 7q u.

Then S is a partition of X and, also,

S is a common refinement of P and Q.

More generally, we have:

THEOREM 1.29.7. Let X be a set.

Let P and Q be two partitions of X.

Let S :“ tP XQ |P P P , Q P Qu.
Then: S is a partition of X and

S is a refinement of P and S is a refinement of Q.

1.30. Algebra of functionals.

DEFINITION 1.30.1. Let f be an object.

By f is a functional, we mean: p f is a function q& p If Ď R q.

That is, a functional is a real-valued function.

DEFINITION 1.30.2. Let f be a functional.

Then ´f is the functional defined by:

@x, p´fqx “ ´fx.
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THEOREM 1.30.3. @functional f , D´f “ Df .

THEOREM 1.30.4. ´p1, 2, 3, . . .q “ p´1,´2,´3, . . .q.

DEFINITION 1.30.5. Let f be afunctional, c P R.

Then c ¨ f and f ¨ c are the functionals defined by:

@x, pc ¨ fqx “ c ¨ fx and

@x, pf ¨ cqx “ fx ¨ c.

The “¨” is often omitted.

THEOREM 1.30.6. 2 ¨ p1, 2, 3, . . .q “ p2, 4, 6, . . .q “ p1, 2, 3, . . .q ¨ 2.

THEOREM 1.30.7. @ functional f , @c P R, c ¨ f “ f ¨ c and Dc¨f “

Df “ Df ¨c.

THEOREM 1.30.8. @ functional f , 1 ¨ f “ f and p´1q ¨ f “ ´f .

DEFINITION 1.30.9. Let f and g be functionals.

Then f ` g and f ´ g and f ¨ g and f{g are the functionals

defined by:

@x, pf ` gqx “ fx ` gx and

@x, pf ´ gqx “ fx ´ gx and

@x, pf ¨ gqx “ fx ¨ gx and

@x, pf{gqx “ fx{gx.

The “¨” is often omitted. We sometimes write
f

g
instead of f{g.

THEOREM 1.30.10. Let f and g be functionals. Then:

f ` g “ g ` x and f ´ g “ ´pg ´ fq and f ¨ g “ g ¨ f and

Df`g “ Df´g “ Df`g “ Df X Dg and Df{g “ Df X rg
˚pR˚0qs.

DEFINITION 1.30.11. Let f be a functional, c P R. Then:

c{f and f{c are the functionals defined by:

@x, pc{fqx “ c{fx and

@x, pf{cqx “ fx{c.

We sometimes write
c

f
instead of c{f and

f

c
instead of f{c.

THEOREM 1.30.12. Let s P RN, t P RN. Then s ¨ p1{tq “ s{t.

Proof. We have Ds¨p1{tq Ď N and Ds{t Ď N.

Want: @j P N, ps ¨ p1{tqqj “ ps{tqj.
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Given j P N. Want: ps ¨ p1{tqqj “ ps{tqj.

We have ps ¨ p1{tqqj “ sj ¨ p1{tqj “ sj ¨ p1{tjq

“˚ sj{tj “ ps{tqj. �

1.31. Balls in R.

In the next definition, Bpa, εq is called

the open ball about a of radius ε.

We are sometimes sloppy and forget to say “open”.

By default, in this course, a “ball” is an open ball.

DEFINITION 1.31.1. Let a P R, ε P R.

Then Bpa, εq :“ tx P R s.t. |x´ a| ă εu.

THEOREM 1.31.2. Let a P R, ε ą 0.

Then Bpa, εq “ pa´ ε; a` εq.

THEOREM 1.31.3. Bp0, 1{6q “ p´1{6; 1{6q.

DEFINITION 1.31.4.

@a P R, Bpaq :“ tBpa, rq | r ą 0u.

BR :“ tBpa, rq | a P R, r ą 0u.

The next theorem is the Subset Recentering Theorem:

THEOREM 1.31.5. Let C P BR, x P C.

Then DB P Bpxq s.t. B Ď C.

Proof. Choose a P R, r ą 0 s.t. C “ Bpa, rq.

Since x P C “ Bpa, rq, we get |x´ a| ă r.

Let ε :“ r ´ |x´ a|. Then ε ą 0. Let B :“ Bpx, εq.

Then B P Bpxq. Want: B Ď C.

Want: @z P B, z P C.

Given z P B. Want: z P C.

Since z P B “ Bpx, εq, we get |z ´ x| ă ε.

Then |z ´ x| ă ε “ r ´ |a´ x|, so |z ´ x| ` |x´ a| ă r.

Then |z ´ a| ď |z ´ x| ` |x´ a| ă r.

Then |z ´ a| ă r, so z P Bpa, rq.

Then z P Bpa, rq “ C. �

THEOREM 1.31.6. Let b P R, a ă b.

Let q P pa; bq. Then: Dε ą 0 s.t. Bpq, εq Ď pa; bq.
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Proof. Let c :“ pa` bq{2, r :“ pb´ aq{2.

Then Bpc, rq “ pc´ r; c` rq “ pa; bq.

Let C :“ Bpc, rq. Then C “ pa; bq and C P BR.

Since q P pa; bq “ C, by Theorem 1.31.5,

choose B P Bpqq s.t. B Ď C.

Since B P Bpqq, choose ε ą 0 s.t. B “ Bpq, εq.

Then ε ą 0. Want: Bpq, εq Ď pa; bq.

We have: Bpq, εq “ B Ď C “ pa; bq. �

The next theorem is the Superset Recentering Theorem:

THEOREM 1.31.7. Let B P BR, a P R.

Then DC P Bpaq s.t. B Ď C.

Proof. Choose α P R, ρ ą 0 s.t. B “ Bpα, ρq.

Let s :“ |α ´ a|. Let C :“ Bpa, ρ` sq.

Then C P Bpaq. Want: B Ď C.

Want: @x P B, x P C.

Given x P B. Want: x P C.

Since x P B “ Bpα, ρq, we get |x´ α| ă ρ.

We have |x´ a| ď |x´ α| ` |α ´ a| ă ρ` s, so |x´ a| ă ρ` s.

Then x P Bpa, ρ` sq “ C. �

1.32. Bounded sets in R.

DEFINITION 1.32.1. Let S Ď R.

By S is bounded, we mean: DB P BR s.t. S Ď B.

DEFINITION 1.32.2. Let S Ď R.

By S is unbounded, we mean: S is not bounded.

THEOREM 1.32.3.

r1; 2s is bounded.

r1;8q is unbounded.

t1 , 1{2 , 1{3 , . . .u is bounded.

t2 , 4 , 6 , 8 , . . .u is unbounded.

DEFINITION 1.32.4. Let X Ď R.

By X is bounded above, we mean: Dz P R s.t. X ď z.

By X is bounded below, we mean: Dz P R s.t. z ď X.
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THEOREM 1.32.5. Let t P RN.

Assume t is convergent. Then It is bounded above.

Proof. Want: Dz P R s.t. It ď z.

Since t is convergent, choose a P R s.t. tÑ a.

Since tÑ a, choose K P N s.t., @j P N,

p j ě K q ñ p |tj ´ a| ă 1 q.

Then: @j P rK..8q, a´ 1 ă tj ă a` 1.

Let b :“ maxtt1, . . . , tKu.

Then: @j P r1..Ks, tj ď b and @j P rK..8q, tj ă a` 1.

Let z :“ maxta` 1, bu. Then z P R. Want: It ď z.

Want: @y P It, y ď z.

Given y P It. Want: y ď z.

Since y P It, choose j P Dt s.t. y “ tj. Want: tj ď z.

At least one of the following is true:

(α) j P r1..Ks or (β) j P rK..8q.

Case (α): Since j P r1..Ks, we get tj ď b.

Then tj ď b ď maxta` 1, bu “ z, so tj ď z.

End of Case (α).

Case (β): Since j P rK..8q, we get tj ă a` 1.

Then tj ă a` 1 ď maxta` 1, bu “ z, so tj ď z.

End of Case (β). �

THEOREM 1.32.6. Let S Ď R. Then:

r S is bounded s ô r pS is bounded above q& pS is bounded below q s.

THEOREM 1.32.7. Let S, T Ď R.

Assume T is bounded and S Ď T .

Then S is bounded.

THEOREM 1.32.8. Let s and t be sequences.

Assume t is a subsequence of s and Is is bounded.

Then It is bounded.

Proof. Since Is is bounded and It Ď Is, it follow that It is bounded. �

THEOREM 1.32.9. @finite F Ď R, F is bounded.

Proof. Since minF ď F ď maxF ,

we see that F is bounded below and above.

Then f is bounded. �
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DEFINITION 1.32.10. Let S Ď R, t P R.

By S is strictly-t-bounded, we mean:

@a, b P S, |a´ b| ă t.

By S is semi-t-bounded, we mean:

@a, b P S, |a´ b| ď t.

THEOREM 1.32.11.

r´2; 5q is strictly-7-bounded.

r´2; 5s is NOT strictly-7-bounded, but IS semi-7-bounded.

@t P R, N is NOT strictly-t-bounded.

@t P R, H IS strictly-t-bounded.

THEOREM 1.32.12. @a P R, @r ą 0, Bpa, rq is strictly-2r-bounded.

THEOREM 1.32.13. Let S Ď R, t ą 0.

Assume s is strictly-t-bounded.

Then: @a P S, S Ď Bpa, tq.

The next theorem is UnHW:

THEOREM 1.32.14. Let S Ď R. Then:

pS is bounded q ô p Dt ą 0 s.t. S is strictly-t-bounded q.

THEOREM 1.32.15. Let a P R, C,D P Bpaq.
Then C XD,C YD P tC,Du.

Proof. Choose r, s ą 0 s.t. C “ Bpa, rq and D “ Bpa, sq.

Let t :“ mintr, su.

Then C XD “ Bpa, tq.

Also, t P tr, su, so Bpa, tq P tBpa, rq, Bpa, squ.

Then C XD “ Bpa, tq P tBpa, rq, Bpa, squ “ tC,Du.

Want: C YD P tC,Du.

Let u :“ maxtr, su.

Then C YD “ Bpa, uq.

Also, u P tr, su, so Bpa, uq P tBpa, rq, Bpa, squ.

Then C YD “ Bpa, uq P tBpa, rq, Bpa, squ “ tC,Du. �

THEOREM 1.32.16. Let X, Y Ď R.

Assume X and Y are both bounded. Then X Y Y is bounded.

Proof. Since X and Y are both bounded,

choose A,B P BR s.t. X Ď A and Y Ď B.

By Theorem 1.31.7, choose C,D P Bp0q s.t. A Ď C and B Ď D.
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By Theorem 1.32.15, C YD P tC,Du.

Then C YD P tC,Du Ď Bp0q Ď BR, so C YD P BR.

It therefore suffices to show: X Y Y Ď C YD.

We have X Y Y Ď AYB Ď C YD. �

THEOREM 1.32.17. Let A Ď R. Assume A is bounded.

Then Dr ą 0 s.t. A Ď Bp0, rq.

Proof. Since A is bounded, choose B P BR s.t. A Ď B.

By Theorem 1.31.7, choose C P Bp0q s.t. B Ď C.

Since C P Bp0q, choose r ą 0 s.t. C “ Bp0, rq. Then r ą 0.

Want: A Ď Bp0, rq. We have A Ď B Ď C “ Bp0, rq. �

1.33. Hausdorff property of the real numbers.

The next theorem is called the Hausdorff property of R.

THEOREM 1.33.1. Let a, b P R. Assume a ‰ b.

Then Dε ą 0 s.t. pBpa, εqq X pBpb, εqq “ H.

Proof. Since a ‰ b, we get b´ a ‰ 0, so |b´ a| ą 0.

Let ε :“ |b´ a|{2. Then ε ą 0.

Want: pBpa, εqq X pBpb, εqq “ H.

Assume pBpa, εqq X pBpb, εqq ‰ H. Want: Contradiction.

Choose x s.t. x P pBpa, εqq X pBpb, εqq.

Since x P Bpa, εq, we get |x´ a| ă ε.

Since x P Bpb, εq, we get |x´ b| ă ε. Then |b´ x| ă ε.

By the Triangle Inequality, |b´ a| ď |b´ x| ` |x´ a|.

Then |b´ a| ď |b´ x| ` |x´ a|

ă ε` ε “ 2ε “ |b´ a|,

so |b´ a| ă |b´ a|. Contradiction. �

1.34. Density of Q in R.

THEOREM 1.34.1. Let a, b P R.

Assume b´ a ą 1. Then Dk P Z s.t. a ă k ă b.

Proof. By the AP, choose j P N s.t. j ą ´a.

Let α :“ j ` a. Then α ą 0. Let β :“ j ` b.

By the AP, choose λ P N s.t. λ ą a.

Then λ P pα;8q and λ P N Ď Z.

Then λ P pα;8q X Z Then λ P pα;8q X Z ‰ H.

Since α ą 0, we get pα;8q Ď p0;8q.
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Then pα;8q X Z Ď p0;8q X Z.

So, since p0;8q X Z “ N, we get pα;8q X Z Ď N.

Then H ‰ pα;8q X Z Ď N.

Then, by the Well-Ordering Axiom, minp pα;8q X Z q ‰ /.

Let κ :“ minp pα;8q X Z q.
Then κ P pα;8q X Z. Then κ P Z. Then κ´ 1 P Z.

Moreover, since κ´ 1 ă κ “ minp pα;8q X Z q,
we get κ´ 1 ‰ pα;8q X Z.

So, since κ´ 1 P Z, it follows that κ´ 1 ‰ pα;8q.

So, since κ´ 1 P Z Ď R, we get κ´ 1 P Rzpα;8q.

Then κ´ 1 P Rzpα;8q “ p´8;αs ď α, so κ´ 1 ď α, so κ ď α ` 1.

So, since 1 ă β ´ α, we get κ ď α ` pβ ´ αq, and so κ ă β.

Also, κ P pα;8q X Z Ď pα;8q ą α, so κ ą α. Then α ă κ ă β.

Let k :“ κ´ j. Then k P Z´ j Ď Z. Want: a ă k ă b.

We have α ´ j ă κ´ j ă β ´ j, so a ă k ă b. �

The following is HW#7-2:

THEOREM 1.34.2. Let s, t P R.

Assume s ă t. Then Dx P Q s.t. s ă x ă t.

1.35. Some topology on R.

The boundary of a set X is denoted BX, ad is defined as follows:

DEFINITION 1.35.1. Let X Ď R.

Then BX :“ t q P R | p Ds P XN s.t. sÑ q q

& p Dt P pRzXqN s.t. tÑ q q u.

Thinking of X as “we”, of RzX is “they” and BX as “the wall”,

then the wall consists of the points that both we and they can approach.

THEOREM 1.35.2. Let X :“ p0; 1q. Then BX “ t0, 1u.

Proof. Define s, t, u, v P RN by: @j P N,

sj “
1

j ` 1
, tj “ ´

1

j
, uj “ 1´

1

j ` 1
, vj “ 1`

1

jh
.

Then s P XN and t P pRzXqN and sÑ 0 and tÑ 0, so 0 P BX.

Also, u P XN and v P pRzXqN and uÑ 1 and v Ñ 1, so 1 P BX.

Then t0, 1u Ď BX. Want: BX Ď t0, 1u.

Want: @q P BX, q P t0, 1u.
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Given q P BX. Want: q P t0, 1u. Want: q P r0; 1szp0; 1q.

Want: q P r0; 1s and q R p0; 1q.

Since q P BX, choose y P XN s.t. y Ñ q

and choose z P pRzXqN s.t. z Ñ q.

We have: @j P N, yj P Iy Ď X “ p0; 1q Ď r0; 1s, so 0 ď yj ď 1.

So, as y Ñ q, we get: 0 ď q ď 1. Then q P r0; 1s. Want: q R p0; 1q.

Assume q P p0; 1q. Want: Contradiction.

Let C :“ Bp1{2, 1{2q. Then C “ p0, 1q.

Since q P p0; 1q “ C, by the Subset Recentering Theorem,

choose B P Bpqq s.t. B Ď C.

Since B P Bpqq, choose ε ą 0 s.t. B “ Bpq, εq.

Since z Ñ q, choose K P N s.t., @j P N,

p j ě K q ñ p |zj ´ q| ă ε q.

Since z P pRzXqN, we have Iz Ď RzX.

Since K ě K, by choice of K, we get |zK ´ q| ă ε, so z P Bpq, εq.

Then zK P Bpq, εq “ B Ď C “ p0; 1q “ X, so zK P X.

Also zK P Iz Ď RzX, and so zK R X. Contradiction. �

The following is an unassigned HW:

THEOREM 1.35.3.

Br0; 1s “ Br0; 1q “ Bp0; 1s “ t0, 1u.

THEOREM 1.35.4. @X Ď R, BX “ BpRzXq.

Thinking of X as “we”, of RzX is “they” and BX as “the wall”,

then our wall is their wall.

Idea of proof: Keep in mind: RzpRzXq “ X.

If a point in R can be approached

both by a sequence in X and by a sequence in RzX,

then it can be approached

both by a sequence in RzX and by a sequence in RzpRzXq.
Thus any point in BX is a point in BpRzXq.
Then BX Ď BpRzXq. The reverse inclusion is similar. QED

The closure and interior of a set X are denoted ClX and IntX,

and defined as follows:
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DEFINITION 1.35.5. Let X Ď R.

Then ClX :“ X Y BX and

IntX :“ X z BX.

We also use ClX and ClpXq to denote ClX.

We also use IntX and IntpXq to denote IntX.

Any set is between its interior and closure:

THEOREM 1.35.6. Let S Ď R. Then IntS Ď S Ď ClS.

Unassigned HW:

Intp0; 1q “ Intr0; 1s “ Intr0; 1q “ Intp0, 1s “ p0; 1q and

Clp0; 1q “ Clr0; 1s “ Clr0; 1q “ Clp0, 1s “ r0; 1s.

In fact:

THEOREM 1.35.7. Let b P R and let a ă b. Then:

@S P t pa; bq , ra; bs , ra; bq , pa; bs u,

IntS “ pa; bq and ClS “ ra; bs.

DEFINITION 1.35.8. Let X Ď R.

By X is closed, we mean: ClX “ X.

By X is open, we mean: IntX “ X.

Note that:

r0; 1s is closed and

p0; 1q is open and

r0; 1q is neither and

p0; 1s is neither.

THEOREM 1.35.9. Let X Ď R. Then:

r pX is open q ô p BX Ď RzX q s and

r pX is closed q ô p BX Ď X q s.

Part of proof:

X is closed ô ClX “ X ô X Y BX “ X ô BX Ď X.

Thinking of X as “we”, of RzX is “they” and BX as “the wall”,

one could say:

we and they both have the same wall.

However,

we might own the wall OR
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they might own the wall OR

we both might own part of it.

In the first case, we are closed and they are open.

In the second case, we are open and they are closed.

In the third case, we are neither open nor closed

and they are also neither open nor closed.

Keep in mind that

showing that a set fails to be open

is NOT the same as

showing that it is closed.

Similarly

showing that a set fails to be closed

is NOT the same as

showing that it is open.

Many sets are neither open nor closed.

Closed an open are not opposites.

However they ARE complementary, in the following sense:

THEOREM 1.35.10. Let X Ď R. Then

rpX is open q ô pRzX is closed qs &

rpX is closed q ô pRzX is open qs.

Thinking of X as “we”, of RzX is “they” and BX as “the wall”,

then saying that we none of the wall (we are “open”)

is the same as saying they own all of it (they are “closed”).

Also, saying that we own all of the wall (we are “closed”)

is the same as saying they own none of it (they are “open”).

We know that some are closed and some are open,

but many sets are neither.

Question: Are any sets BOTH closed AND open.

DEFINITION 1.35.11. Let X Ď R.

By X is clopen, we mean: X is closed and open.

For us to be clopen, it would have to be true that

both we and they own all of the wall,

but, since we X they “ H, this would mean that

the wall simply doesn’t exist.
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That is,

@X Ď R, p X is clopen q iff p BX “ H q.

THEOREM 1.35.12. Let X Ď R. Then:

pX is clopen q ô p pX “ R q _ pX “ Hq q.

Idea of proof:

Since X is clopen, BX “ H.

Assume that X ‰ R and X ‰ H. Want: Contradiction.

Since X ‰ H, choose p s.t. p P X.

Since X Ď R and X ‰ R, choose q P R s.t. q R X.

Since p P X and q R X, we get p ‰ q, so either p ă q or q ă p.

Then either p P X X p´8; qq or p P X X pq;8q.

In the first case, let r :“ suppX X p´8; qqq.

In the second case, let r :“ infpX X pq;8qq.

In either case, one can show (with work) that r P BX.

Since r P BX, we get: BX ‰ H.

Then H ‰ BX “ H. Contradiction. QED

THEOREM 1.35.13. Let S Ď R, a P R.

Then: a P IntS ô Dδ ą 0 s.t. Bpa, δq Ď S.

Proof. Proof of ñ:

Assume a P IntS. Want: Dδ ą 0 s.t. Bpa, δq Ď S.

Assume  p Dδ ą 0 s.t. Bpa, δq Ď S q. Want: Contradiction.

We have: @δ ą 0, Bpa, δq Ę S.

Then: @δ ą 0, pBpa, δqqzS ‰ H.

For all j P N, let Qj :“ pBpa, 1{jqqzS.

Then: @j P N, we have: Qj ‰ H and Qj Ď RzS.

Define z P pRzSqN by: @j P N, zj “ CHQj
.

We have: @j P N, zj P Qj “ pBpa, 1{jqqzS Ď Bpa, 1{jq.

Then: @j P N, |zj ´ a| ă 1{j. Then z Ñ a.

Let y :“ pa, a, a, a, . . .q. Then y Ñ a.

Since a P IntS “ SzBS Ď S, we get: y P SN.

Since y P SN and y Ñ a and z P pRzSqN and z Ñ a,

we conclude that: a P BS.

Since a P IntS “ SzBS, we get: a R BS. Contradiction.

End of proof of ñ.
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Proof of ð:

Assume Dδ ą 0 s.t. Bpa, δq Ď S. Want: a P IntS.

Choose δ ą 0 s.t. Bpa, δq Ď S. Want: a P SzBS.

We have |a´ a| “ 0 ă δ, so a P Bpa, δq.

Since a P Bpa, δq Ď S, it remains to show: a R BS.

Assume a P BS. Want: Contradiction.

Since a P BS, choose z P pRzSqN s.t. z Ñ a.

Since z Ñ a, choose K P N s.t., @j P N,

p j ě K q ñ p |zj ´ a| ă δ q.

Since z P pRzSqN, we get: zK P RzS.

Since K ě K, by choice of K, we get |zK´a| ă δ, and so zK P Bpa, δq.

Then zK P Bpa, δq Ď S, so zK P S.

Since zK P RzS, we get zK R S. Contradiction.

End of proof of ð. �

Proof. Unassigned HW. �

The following is called monotonicity of interior:

THEOREM 1.35.14. Let S, T Ď R.

Assume S Ď T . Then IntS Ď IntT .

Proof. Unassigned HW. �

The following is called monotonicity of closure:

THEOREM 1.35.15. Let S, T Ď R.

Assume S Ď T . Then ClS Ď ClT .

Proof. Unassigned HW. �

For any U Ď R, we have IntU Ď U , and so:

U “ IntU iff U Ď IntU .

For any U Ď R, for any a P R, we have:

a P IntU iff Dδ ą 0 s.t. Bpa, δq Ď U

iff B P Bpaq s.t. B Ď U .

For any U Ď R, we have:

U is open iff U “ IntU

iff U Ď IntU

iff @a P U , a P IntU
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iff @a P U , Dδ ą 0 s.t. Bpa, δq Ď U

iff @a P U , B P Bpaq s.t. B Ď U .

It follows that the singleton set t0u is not open.

THEOREM 1.35.16. Let U P BR. Then U is open.

Proof. Want: @x P U , DB P Bpxq s.t. B Ď U .

Given x P U . Want: DB P Bpxq s.t. B Ď U .

By the Subset Recentering Theorem, DB P Bpxq s.t. B Ď U . �

THEOREM 1.35.17. Let U, V Ď R. Assume U , V are both open.

Then: U Y V and U X V are both open.

Proof. This is HW#11-4. �

THEOREM 1.35.18. Let C,D Ď R. Assume C, D are both closed.

Then: C XD and C YD are both closed.

Proof. Let U :“ RzC and V :“ RzD.

Then U and V are both open.

Then U Y V and U X V are both open.

Then RzpU Y V q and RzpU X V q are both closed.

We have RzpU Y V q “ pRzUq X pRzV q “ C XD

and RzpU X V q “ pRzUq Y pRzV q “ C YD.

Then C XD and C YD are both closed. �

2. Sequences in R

2.1. Limit of a sequence in R.

DEFINITION 2.1.1. Let s be a sequence, K P N.

Then the K-tail of s is psK , sK`1, sK`2, . . .q.

THEOREM 2.1.2. The 7 tail of p1, 1{2, 1{3, . . .q is p1{7, 1{8, 1{9, . . .q.

We next define limit of a sequence in R:

DEFINITION 2.1.3. Let s P RN, a P R. Then sÑ a means:

@ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p |sj ´ a| ă ε q.

We next define the constant function on S with value a:
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DEFINITION 2.1.4. Let S be a set, a an object. Then:

CS
a : S Ñ tau is defined by:

@x P S, CS
a pxq “ a.

THEOREM 2.1.5. @a, CN
a “ p a , a , a , a , a , a , . . .q.

THEOREM 2.1.6. Let a P R. Then CN
a Ñ a.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p |pCN
a qj ´ a| ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p |pCN
a qj ´ a| ă ε q.

Let K :“ 1. Then K P N.

Want: @j P N, p j ě K q ñ p |pCN
a qj ´ a| ă ε q.

Given j P N. Assume j ě K. Want: |pCN
a qj ´ a| ă ε.

We have |pCN
a qj ´ a| “ |a´ a| “ |0| “ 0 ă ε.

�

THEOREM 2.1.7. p1, 1{2, 1{3, . . .q Ñ 0.

Proof. Let s :“ p1, 1{2, 1{3, . . .q. @j P N, sj “ 1{j.

Want: sÑ 0.

Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p |sj ´ 0| ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p |sj ´ 0| ă ε q.

By the AP, choose K P N s.t. K ą 1{ε. Then K P N.

Want: @j P N, p j ě K q ñ p |sj ´ 0| ă ε q.

Given j P N. Assume j ě K. Want:|sj ´ 0| ă ε.

Since ε ą 0, we get: 1{ε ą 0 and 1{p1{εq “ ε.

Since j ě K ą 1{ε, we get j ą 1{ε.

Since j ą 1{ε ą 0, we get 1{j ă 1{p1{εq.

Since j P N ą 0, we get j ą 0, so 1{j ą 0, so |1{j| “ 1{j.

Then |sj ´ 0| “ |sj| “ |1{j| “ 1{j ă 1{p1{εq “ ε. �

DEFINITION 2.1.8. Let s P RN. Then sÑ 8 means:

@M P R, DK P N s.t., @j P N,

p j ě K q ñ p sj ąM q.

DEFINITION 2.1.9. Let s P RN. Then sÑ ´8 means:

@N P R, DK P N s.t., @j P N,

p j ě K q ñ p sj ă N q.
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THEOREM 2.1.10. Let s P RN, a, c P R.

Assume sÑ a. Then c ¨ sÑ c ¨ a.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p |pc ¨ sqj ´ c ¨ a| ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p |pc ¨ sqj ´ c ¨ a| ă ε q.

Let ρ :“ ε{p|c| ` 1q. Then ρ ą 0.

Since sj Ñ a, choose K P N s.t., @j P N,

p j ě K q ñ p |sj ´ a| ă ρ q.

Then K P N. Want: @j P N, p j ě K q ñ p |pc ¨ sqj ´ c ¨ a| ă ε q.

Given j P N. Assume j ě K. Want: |pc ¨ sqj ´ c ¨ a| ă ε.

Since j ě K, by the choice of K, we have |sj ´ a| ă ρ.

By definition of ρ, we have |c| ¨ ρ ă ε.

Then | pc ¨ sqj ´ c ¨ a | “ | c ¨ sj ´ c ¨ a |

“ | c ¨ psj ´ aq |

“ | c | ¨ | sj ´ a |

ď | c | ¨ ρ ă ε. �

THEOREM 2.1.11. Let s, t P RN, a, b P R.

Assume sÑ a and tÑ b. Then s` tÑ a` b.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p |ps` tqj ´ pa` bq| ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p |ps` tqj ´ pa` bq| ă ε q.

Since sÑ a, choose L P N s.t., @j P N,

p j ě L q ñ p |sj ´ a| ă ε{2 q.

Since tÑ b, choose M P N s.t., @j P N,

p j ěM q ñ p |tj ´ b| ă ε{2 q.

Let K :“ maxtL,Mu. Then K P N.

Want: @j P N, p j ě K q ñ p |ps` tqj ´ pa` bq| ă ε q.

Given j P N. Assume j ě K. Want: |ps` tqj ´ pa` bq| ă ε.

Since j ě K ě L, by the choice of L, we have |sj ´ a| ă ε{2.

Since j ě K ěM , by the choice of M , we have |tj ´ b| ă ε{2.

Then |ps` tqj ´ pa` bq| “ |psj ` tjq ´ pa` bq|

“ |psj ´ aq ` ptj ´ bq|

ď |sj ´ a| ` |tj ´ b|

ă pε{2q ` pε{2q “ ε. �
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THEOREM 2.1.12. Let s, t P RN, a, b P R.

Assume sÑ a and tÑ b. Then s ¨ tÑ a ¨ b.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p |ps ¨ tqj ´ pa ¨ bq| ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p |ps ¨ tqj ´ pa ¨ bq| ă ε q.

Let ρ :“ min t 1 , ε { p|b| ` |a| ` 2q u. Then ρ ą 0.

Since sÑ a, choose L P N s.t., @j P N,

p j ě L q ñ p |sj ´ a| ă ρ q.

Since tÑ b, choose M P N s.t., @j P N,

p j ěM q ñ p |tj ´ b| ă ρ q.

Let K :“ maxtL,Mu. Then K P N.

Want: @j P N, p j ě K q ñ p |ps ¨ tqj ´ pa ¨ bq| ă ε q.

Given j P N. Assume j ě K. Want: |ps ¨ tqj ´ pa ¨ bq| ă ε.

Since j ě K ě L, by the choice of L, we have |sj ´ a| ă ρ.

Since j ě K ěM , by the choice of M , we have |tj ´ b| ă ρ.

By definition of ρ, we have: ρ ď 1 and ρ ¨ p|b| ` |a| ` 1q ă ε.

By the Naive Product Rule,

psj ¨ tjq ´ pa ¨ bq “ psj ´ aq ¨ b` a ¨ ptj ´ bq ` psj ´ aq ¨ ptj ´ bq.

Then |ps ¨ tqj ´ pa ¨ bq| “ |psj ¨ tjq ´ pa ¨ bq|

“ |psj ´ aq ¨ b` a ¨ ptj ´ bq ` psj ´ aq ¨ ptj ´ bq|

ď |sj ´ a| ¨ |b| ` |a| ¨ |tj ´ b| ` |sj ´ a| ¨ |tj ´ b|

ď ρ ¨ |b| ` |a| ¨ ρ` ρ ¨ ρ

“ ρ ¨ p|b| ` |a| ` ρq

ď ρ ¨ p|b| ` |a| ` 1q ă ε. �

THEOREM 2.1.13. Let s P pRˆ0 qN, a P Rˆ0 .

Assume sÑ a. Then 1{sÑ 1{a.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p |p1{sqj ´ p1{aq| ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p |p1{sqj ´ p1{aq| ă ε q.

Since a P Rˆ0 , we get |a| ą 0 and a2 ą 0.

Let ρ :“ min t |a|{2 , ε ¨ a2{2 u. Then ρ ą 0.

Since sÑ a, choose K P N s.t., @j P N,

p j ě K q ñ p |sj ´ a| ă ρ q.

Let K :“ maxtL,Mu. Then K P N.

Want: @j P N, p j ě K q ñ p p1{sqj ´ p1{aq q| ă ε q.
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Given j P N. Assume j ě K. Want: |p1{sqj ´ p1{aq| ă ε.

Since j ě K, by the choice of K, we have |sj ´ a| ă ρ.

By definition of ρ, we have: ρ ď |a|{2 and 2 ¨ ρ { a2 ď ε.

We have |a| ´ ρ ě |a| ´ p|a|{2q “ |a|{2, so |a| ´ ρ ě |a|{2.

Since | ‚ | is distance semi-decreasing, we get | |sj| ´ |a| | ď | sj ´ a |.

Since | |sj| ´ |a| | ď | sj ´ a | ă ρ, we get |a| ´ ρ ă |sj| ă |a| ` ρ.

Then |sj| ą |a| ´ ρ ě |a|{2, so |sj| ą |a|{2.

Then |p1{sqj ´ p1{aq| “

ˇ

ˇ

ˇ

ˇ

a´ sj
a ¨ sj

ˇ

ˇ

ˇ

ˇ

“
|a´ sj|

|a| ¨ |sj|

ă
|sj ´ a|

|a| ¨ p|a|{2q

ă
ρ

|a|2{2
“

ρ

a2{2
“ 2 ¨ ρ { a2 ď ε. �

THEOREM 2.1.14. Let s P RN, t P pRˆ0 qN, a P R, b P Rˆ0 .

Assume sÑ a and tÑ b. Then s{tÑ a{b.

Proof. By Theorem 2.1.13, 1{tÑ 1{b.

So, since sÑ a, by Theorem 2.1.12, we get s ¨ p1{tq Ñ a ¨ p1{bq.

By Theorem 1.30.12, s ¨ p1{tq “ s{t. Also a ¨ p1{bq “ a{b.

Then s{tÑ a{b. �

THEOREM 2.1.15. Let s P RN, a P R, ε ą 0.

Assume sÑ a. Then DK P N s.t., @j P N, sj P Bpa, εq.

Proof. Since sÑ a, choose K P N s.t., @j P N,

p j ě K q ñ p |sj ´ a| ă ε q.

Then K P N. Want: @j P rK..8q, sj P Bpa, εq.

Given j P rK..8q. Want: sj P Bpa, εq.

We have j P rK..8q Ď N and j P rK..8q ě K,

so, by choice of K, we get |sj ´ a| ă ε, and so sj P Bpa, εq. �

THEOREM 2.1.16. Let s :“ p1,´1, 1,´1, 1,´1, . . .q.

Then, @a P R,  psj Ñ aq.

Proof. Given a P R. Want:  psj Ñ aq.

Assume sj Ñ a. Want: Contradiction.
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Claim: @j P N, |sj`1 ´ sj| “ 2.

Proof of claim: Given j P N. Want: |sj`1 ´ sj| “ 2.

We have: (1) j P 2N or (2) j P 2N` 1.

Case (1):

We have sj “ ´1 and sj`1 “ 1, so sj`1 ´ sj “ 2, so |sj`1 ´ sj| “ 2.

End of Case (1).

Case (2):

We have sj “ 1 and sj`1 “ ´1, so sj`1 ´ sj “ ´2, so |sj`1 ´ sj| “ 2.

End of Case (2).

End of proof of claim.

Since sj Ñ a, choose K P N s.t., @j P N
p j ě K q ñ p |sj ´ a| ă 1 q.

Let j :“ K. By the claim |sj`1 ´ sj| “ 2.

Since j ě K, by the choice of K, we get |sj´a| ă 1. Then |a´sj| ă 1.

Since j ` 1 ě K, by the choice of K, we get |sj`1 ´ a| ă 1.

Then 2 “ |sj`1 ´ sj| ď |sj`1 ´ a| ` |a´ sj| ă 1` 1 “ 2.

Then 2 ă 2. Contradiction �

The preceding theorem shows some sequences that have no limit.

DEFINITION 2.1.17. Let s P RN. Then LIMSs :“ ta P R | sÑ au.

Alternate notations: LIMS s and LIMSpsq.

The preceding theorem asserts that LIMSp1,´1, 1,´1, 1,´1, . . .q “ H.

The next theorem asserts that, @s P RN, #LIMSs ď 1.

THEOREM 2.1.18. Let s P RN, a, b P R.

Assume sÑ a and sÑ b. Then a “ b.

Proof. Assume a ‰ b. Want: Contradiction.

By the Hausdorff property of R, choose ε ą 0 s.t.

pBpa, εqq X pBpb, εqq “ H.

By Theorem 2.1.15, choose K P N s.t., @j P rK..8q, sj P Bpa, εq.

By Theorem 2.1.15, choose L P N s.t., @j P rL..8q, sj P Bpb, εq.

Let j :“ maxtK,Lu. Then j P rK..8q and j P rL..8q.

Since j P rK..8q, by choice of K, we get sj P Bpa, εq.

Since j P rL..8q, by choice of L, we get sj P Bpb, εq.
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Then sj P pBpa, εqq X pBpb, εqq.

Then pBpa, εqq X pBpb, εqq ‰ H. Contradiction. �

DEFINITION 2.1.19. Let s P RN. Then lim s :“ UEpLIMSsq.

Alternate notation: limpsq.

THEOREM 2.1.20. Let s P RN, a P R.

Then: p sÑ a q ô p lim s “ a q.

Proof.

Proof of ñ:

Assume sÑ a. Want: lim s “ a.

Since sÑ a, we get a P LIMS s.

Then, by Theorem 2.1.18, we have: @b P LIMS s, a “ b.

Then LIMS s “ tau. Then lim s “ UEtau “ a.

End of proof of ñ.

Proof of ð:

Assume lim s “ a. Want: sÑ a.

We have a “ lim s “ UEpLIMS sq ˚P LIMS s, so a P LIMS s.

Since a P LIMS s “ tx P R | sÑ xu, we get sÑ a.

End of proof of ð. �

2.2. Compact subsets of R.

DEFINITION 2.2.1. Let f : R 99K R. Then:

f is strictly-increasing means: @w, x P Df , pw ă xq ñ pfw ă fxq

and

f is strictly-decreasing means: @w, x P Df , pw ă xq ñ pfw ą fxq.

DEFINITION 2.2.2. Let f : R 99K R.

Then f is strictly-monotone means:

f is strictly-increasing or f is strictly-decreasing.

THEOREM 2.2.3. p1, 4, 9, 16, 25, 36, 49 . . .q is strictly-increasing.

If we reverse 1 and 4 in the sequence above, we get a new sequence,

p4, 1, 9, 16, 25, 36, 49, . . .q,

which is NOT strictly-increasing.



70 SCOT ADAMS

THEOREM 2.2.4. Let s P RN. Then:

r p s is strictly-increasing q ô p @j P N, sj ă sj`1 q s

and

r p s is strictly-decreasing q ô p @j P N, sj ą sj`1 q s.

DEFINITION 2.2.5. Let f : R 99K R. Then:

f is semi-increasing means: @w, x P Df , pw ď xq ñ pfw ď fxq,

and

f is semi-decreasing means: @w, x P Df , pw ď xq ñ pfw ě fxq.

DEFINITION 2.2.6. Let f : R 99K R.

Then f is semi-monotone means:

f is semi-increasing or f is semi-decreasing.

THEOREM 2.2.7.

p1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . .q is semi-increasing,

but NOT strictly-increasing.

THEOREM 2.2.8. Let s P RN. Then:

r p s is semi-increasing q ô p @j P N, sj ď sj`1 q s

and

r p s is semi-decreasing q ô p @j P N, sj ě sj`1 q s.

THEOREM 2.2.9. Let f, g : R 99K R. Then:

r p f is strictly-increasing q& p g is strictly-increasing q s

ñ r g ˝ f is strictly-increasing s.

THEOREM 2.2.10. Let f, g : R 99K R. Then:

r p f is strictly-decreasing q& p g is strictly-increasing q s

ñ r g ˝ f is strictly-decreasing s.

THEOREM 2.2.11. Let f, g : R 99K R. Then:

r p f is strictly-increasing q& p g is strictly-decreasing q s

ñ r g ˝ f is strictly-decreasing s.

THEOREM 2.2.12. Let f, g : R 99K R. Then:

r p f is strictly-decreasing q& p g is strictly-decreasing q s

ñ r g ˝ f is strictly-increasing s.

Recall that supH “ ´8. Also:
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THEOREM 2.2.13. Let X Ď R.

Assume X ‰ H. Then supX ‰ ´8.

Proof. We have X ď supX.

Since X ‰ H, choose z s.t. z P X

Since z P Z Ď R ą ´8, we get z ą ´8.

Then ´8 ă z P X ď supX, so ´8 ă supX. Then supX ‰ ´8. �

THEOREM 2.2.14. Let X Ď R.

Assume X is bounded above. Then supX ‰ 8.

Proof. Since X is bounded above, choose z P R s.t. X ď z.

Then z P UBX ě min UBX “ supX.

Then supX ď z P R ă 8. Then supX ă 8, so supX ‰ 8. �

THEOREM 2.2.15. Let X Ď R.

Assume X ‰ H and X is bounded above. Then supX P R.

Proof. We have supX P R˚. Want: supX ‰ ´8 and supX ‰ 8.

By Theorem 2.2.13, supX ‰ ´8. Want: supX ‰ 8.

By Theorem 2.2.14, supX ‰ 8. �

THEOREM 2.2.16. Let s P RN.

Assume: s is semi-increasing and Is is bounded above.

Then: sÑ sup IS.

Proof. Since Ds “ N ‰ H, it follows that Is ‰ H.

So, since Is is bounded above, by Theorem 2.2.15, we get: sup Is P R.

Let a :“ sup Is. Then a P R. Want sÑ a.

Want: @ε ą 0, Dδ ą 0 s.t., @j P N, p j ě K q ñ p |sJ ´ a| ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @j P N, p j ě K q ñ p |sJ ´ a| ă ε q.

Since a´ ε ă a “ sup Is, we see that  pa´ ε ě sup Isq.
Then  pa´ ε ě Isq, so choose x P Is s.t. a´ ε ă x.

Since x P Is, choose K P Ds s.t. x “ sK . Then K P Ds “ N.

Want: @j P N, p j ě K q ñ p |sJ ´ a| ă ε q.

Given j P N. Assume j ě K. Want: |sJ ´ a| ă ε.

Want: a´ ε ă sj ă a` ε.

Since sj P Is ď sup Is “ a ă a` ε, we get sj ă a` ε.

Want: a´ ε ă sj.

Since s is semi-increasing, since j,K P N “ Ds and since j ě K,

it follows that sj ě sK .

Then sj ě sK “ x, so x ď sj. Then a´ ε ă x ď sj. �
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THEOREM 2.2.17. Let s P RN.

Assume: s is semi-decreasing and Is is bounded below.

Then: sÑ inf IS.

Proof. Unassigned HW. �

THEOREM 2.2.18. Let s P RN.

Assume: s is semi-increasing and Is is not bounded above.

Then: sÑ 8.

Proof. Want: @M P R, DK P N s.t., @j P N,

p j ě K q ñ p sj ąM q.

Given M P R. Want: DK P N s.t., @j P N,

p j ě K q ñ p sj ąM q.

Since Is is not bounded above, we get:  pIs ďMq.

Choose a P Is s.t. a ąM .

Since a P Is, choose K P Ds s.t. a “ sK .

Since s P RN, we get Ds “ N. Then K P Ds “ N.

Want: @j P N, p j ě K q ñ p sj ąM q.

Given j P N. Assume j ě K. Want: sj ąM .

By hypothesis, s is semi-increasing, so, since j ě K, we get: sj ě sK .

By choice of K, we get: sK “ a. Then sj ě sK “ a. �

THEOREM 2.2.19. Let s P RN.

Assume: s is semi-decreasing and Is is not bounded below.

Then: sÑ ´8.

Proof. Unassigned HW. �

THEOREM 2.2.20. Let s P RN.

Assume s is semi-monotone and Is is bounded. Then s is convergent.

Proof. At least one of the following must be true:

(1) s is semi-increasing or (2) s is semi-decreasing.

Case (1): By Theorem 2.2.16, s is convergent. End of Case (1).

Case (2): By Theorem 2.2.17, s is convergent. End of Case (2). �

THEOREM 2.2.21. Let s be a sequence, k P NN.

Then s ˝ k “ psk1 , sk2 , sk3 , . . .q.

THEOREM 2.2.22.

p1, 1{2, 1{3, . . .q ˝ p1, 4, 9, 16, . . .q “ p1, 1{4, 1{9, 1{16, . . .q.
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THEOREM 2.2.23. @sequences s,

s ˝ p1, 4, 9, 16, . . .q “ ps1, s4, s9, s16, . . .q.

In the next theorem, we consider the sequence k : NÑ R defined by:

k1 “ 4 and k2 “ 1 and @j P r3..8q, kj “ j2.

Note that k “ p4, 1, 9, 16, . . .q.

THEOREM 2.2.24. @sequences s,

s ˝ p4, 1, 9, 16, . . .q “ ps4, s1, s9, s16, . . .q.

THEOREM 2.2.25.

p1, 1{2, 1{3, . . .q ˝ p4, 1, 9, 16, . . .q “ p1{4, 1, 1{9, 1{16, . . .q.

THEOREM 2.2.26.

p1,´1, 1,´1,´1, 1,´1, . . .q ˝ p1, 3, 5, 7, . . .q “ p1, 1, 1, 1, . . .q.

DEFINITION 2.2.27. Let s and t be sequences.

By t is a subsequence of s, we mean:

Dstrictly-increasing k P NN s.t. t “ s ˝ k.

THEOREM 2.2.28.

p1, 1{4, 1{9, 1{16, . . .q is a subsequence of p1, 1{2, 1{3, . . .q.

p1{4, 1, 1{9, 1{16, . . .q is NOT a subsequence of p1, 1{2, 1{3, . . .q.

p1, 1, 1, . . .q is a subsequence of p1,´1, 1,´1, 1,´1, 1,´1, . . .q.

THEOREM 2.2.29. Let s be a sequence.

Then s is a subsequence of s.

Proof. Since idN
P NN and idN is strictly-increasing and s ˝ idN

“ s,

we conclude that: s is a subsequence of s. �

THEOREM 2.2.30. Let s be a sequence and let t be a subsequence

of s.

Then It Ď Is.

Proof. Choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

Then It “ Is˝` Ď Is. �

THEOREM 2.2.31. Let A be a set, s P AN.

Let t be a subsequence of s. Then t P AN.

Proof. Choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

Since ` : NÑ N and s : NÑ A, we get s ˝ ` : NÑ A.

So, since t “ s ˝ `, we get t : NÑ A. Then t P AN. �
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DEFINITION 2.2.32. Let s P RN.

By s is convergent, we mean: Da P R s.t. sÑ a.

THEOREM 2.2.33.

p1, 1{2, 1{3, . . .q is convergent.

p1,´1, 1,´1, 1,´1, . . .q is not convergent.

The following is left as unassigned HW:

THEOREM 2.2.34. @s P RN,

p sÑ 8 q ñ p s is not convergent q.

THEOREM 2.2.35.

p2, 4, 6, 8, 10, 12, . . .q is NOT convergent.

While the set of extended reals R˚ does not have a standard “distance”,

as R does, it does have a standard topology, if you happen to know

what that means. We have:

p2, 4, 6, 8, 10, 12, . . .q is convergent in R˚, but NOT in R and

p1,´1, 1,´1, 1,´1, . . .q is NEITHER convergent in R˚ NOR in R.

For any s P RN, if we say s is convergent, and if we want to be com-

pletely clear, we should say “in R” or “in R˚”; however, in this course

we will always mean “in R”. We do not even assume the reader knows

what a topological space is, so “convergent in R˚” is not defined.

THEOREM 2.2.36. Let s, t, u be sequences.

Assume: u is a subsequence of t and t is a subsequence of s.

Then: u is a subsequence of s.

Proof. Since u is a subsequence of t,

choose a strictly-increasing ` P NN s.t. u “ t ˝ `.

Since t is a subsequence of s,

choose a strictly-increasing k P NN s.t. t “ s ˝ k.

Since k ˝ ` P NN and k ˝ ` is strictly-increasing and u “ s ˝ k ˝ `,

we conclude that: u is a subsequence of s. �

THEOREM 2.2.37. Let k P NN. Assume k is strictly increasing.

Then: @j P N, kj ě j.

An informal proof is as follows:

Since k is increasing, we have: k1 ă k2 ă k3 ă . . ..

Want: k1 ě 1, k2 ě 2, k3 ě 3, etc.

We have: k1 P N ě 1, so k1 ě 1.
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Then k2 ą k1 ě 1 and k2 P N, so k2 P p1..8q ě 2.

Then k3 ą k2 ě 2 and k3 P N, so k3 P p2..8q ě 3.

Then k4 ą k3 ě 3 and k4 P N, so k4 P p3..8q ě 4.

Etc.

A formal proof, by math induction, is left as unassigned HW.

THEOREM 2.2.38. Let s, t P RN, a P R.

Assume: sÑ a and t is a subsequence of s.

Then: tÑ a.

Proof. Want: @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p |tj ´ a| ă ε q.

Given ε ą 0. Want: DK P N s.t., @j P N,

p j ě K q ñ p |tj ´ a| ă ε q.

Since sÑ a, choose K P N s.t., @j P N,

p j ě K q ñ p |sj ´ a| ă ε q.

Then K P N. Want: @j P N, p j ě K q ñ p |tj ´ a| ă ε q.

Given j P N. Assume j ě K. Want: |tj ´ a| ă ε.

Since t is a subsequence of s,

choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

By Theorem 2.2.37, `j ě j.

Since `j ě j ě K, by the choice of K, we have |s`j ´ a| ă ε.

Then |tj ´ a| “ |ps ˝ `qj ´ a| “ |s`j ´ a| ă ε. �

The proof of the following two theorems are both

similar to that of the preceding theorem.

They are left as unassigned HWs.

THEOREM 2.2.39. Let s, t P RN.

Assume: sÑ 8 and t is a subsequence of s.

Then: tÑ 8.

THEOREM 2.2.40. Let s, t P RN.

Assume: sÑ ´8 and t is a subsequence of s.

Then: tÑ ´8.

Because of the following three theorems, we know:

Let s, t P RN, a P R˚.
Assume: sÑ a and t is a subsequence of s.

Then: tÑ a.

It is natural to wonder if there might be some way to prove this,
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without breaking the proof up into three cases:

a “ ´8 or a P R or a “ 8.

There IS such a proof, but it requires the reader to understand the

basics of topology.

DEFINITION 2.2.41. Let s P RN.

By s is subconvergent, we mean:

D subsequence t of s s.t. t is convergent.

In this course, for any s P RN, saying

s is subconvergent

will always mean

s is subconvergent in R.

By Theorem 2.2.36, convergent implies subconvergent.

THEOREM 2.2.42. @ convergent s P RN, s is subconvergent.

THEOREM 2.2.43. p1, 1{2, 1{3, . . .q is subconvergent.

THEOREM 2.2.44.

p1,´1, 1,´1, 1,´1, 1,´1, . . .q is subconvergent, but NOT convergent.

THEOREM 2.2.45. p2, 4, 6, 8, . . .q is NOT subconvergent.

THEOREM 2.2.46. p1, 2, 1, 4, 1, 6, 1, 8, . . .q is subconvergent.

DEFINITION 2.2.47. Let X Ď R, s P XN.

By s is convergent in X, we mean:

Dz P X s.t. sÑ z.

THEOREM 2.2.48. p1, 1{2, 1{3, . . .q is convergent in r0; 1s.

THEOREM 2.2.49. p1, 1{2, 1{3, . . .q is NOT convergent in p0; 1s.

DEFINITION 2.2.50. Let X Ď R, s P XN.

By s is subconvergent in X, we mean:

Dsubsequence t of s s.t. t is convergent in X.

By Theorem 2.2.36, convergent in X implies subconvergent in X.

THEOREM 2.2.51.

p1,´1, 1,´1, 1,´1, 1,´1, . . .q is subconvergent in r´1; 1s.

THEOREM 2.2.52. p1, 1{2, 1{3, . . .q is subconvergent in r0; 1s.

THEOREM 2.2.53. p1, 1{2, 1{3, . . .q is NOT subconvergent in p0; 1s.
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DEFINITION 2.2.54. Let K Ď R.

By K is compact, we mean:

@s P KN, s is subconvergent in K.

DEFINITION 2.2.55. Let a P R, r ě 0.

Then Bpa, rq :“ t x P R s.t. |x´ a| ď r u.

In the preceding definition, Bpa, rq is called

the closed ball about a of radius r.

Note: @a P R, @r ě 0, Bpa, rq “ ra´ r; a` rs.

Then: @r ě 0, Bp0, rq “ r´r; rs.

THEOREM 2.2.56. Let X Ď R.

Assume X is compact. Then X is bounded.

Proof. Assume X is not bounded. Want: Contradiction.

Claim 1: @j P N, XzpBp0, jqq ‰ H.

Proof of Claim 1: Given j P N. Want: XzpBp0, jqq ‰ H.

Since Bp0, jq Ď Bp0, j ` 1q, we see that Bp0, jq is bounded.

Since Bp0, jq is bounded and X is not bounded, X Ę pBp0, jqq.

Then Dx s.t. both x P X and x R Bp0, jq.

Then Dx s.t. x P XzpBp0, jqq. Then XzpBp0, jqq ‰ H.

End of proof of Claim 1.

By Claim 1, @j P N, XzpBp0, jqq ‰ H.

Define s P XN by: @j P N, sj “ CHXzpBp0,jqq.

Since s P XN and X is compact, s is subconvergent in X.

Choose a subsequence t of s s.t. t is convergent in X.

Then t is convergent, and so It is bounded.

By Theorem 1.32.17, choose r ą 0 s.t. It Ď Bp0, rq.

By the AP, choose j P N s.t. j ą r.

Since t is a subsequence of s,

choose a strictly-increasing ` P NN s.t. t “ s ˝ `.

Then `j ě j. Let m :“ `j. Then m ě j.

Claim 2: |sm| ą m.

Proof of Claim 2: By Claim 1, XzBp0,mq ‰ H.

By definition of s, we have sm “ CHXzpBp0,mqq.
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Then sm P XzpBp0,mqq.

Then  psm P Bp0,mqq. Then  p|sm| ď mq. Then |sm| ą m.

End of proof of Claim 2.

We have tj P It Ď Bp0, rq, so |tj| ă r.

We have sm “ s`j “ ps ˝ `qj “ tj, and so |tj| “ |sm|.

By Claim 2, |sm| ą m. Then |tj| “ |sm| ą m ě j ą r, so r ă |tj|.

Then r ă |tj| ă r, so r ă r. Contradiction. �

2.3. Maximizing compact subsets of R.

THEOREM 2.3.1. Let L Ď R.

Assume L is compact. Then L is bounded above.

Proof. This follows from Theorem 2.2.56. �

By HW#7-3 (The Squeeze Theorem), we have:

THEOREM 2.3.2. Let t P RN, a P R.

Assume: @j P N, a´ p1{jq ď tj ď a.

Then: tÑ a.

We restate the theorem with t replaced by s:

THEOREM 2.3.3. Let s P RN, a P R.

Assume: @j P N, a´ p1{jq ď sj ď a.

Then: sÑ a.

THEOREM 2.3.4. Let L Ď R.

Assume L is compact and nonempty. Then maxL ‰ /.

Proof. Since L is compact, L is bounded.

Since L is bounded and nonempty, supL P R.

Let a :“ supL. Then a P R. Want: maxL “ a.

Want: a P L and a ě L.

We have a “ supL ě L. Want: a P L.

For all j P N, let Xj :“ L X p a´ p1{jq ; 8q.

Claim 1: @j P N, Xj ‰ H.

Proof of Claim 1: Given j P N. Want: Xj ‰ H.

Because a´ p1{jq ă a “ supL,

we get  pa´ p1{jq ě supLq,

and so  pa´ p1{jq ě Lq,
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and so Dx P L s.t. a´ p1{jq ă x,

and so Dx P L s.t. x P p a´ p1{jq ; 8q,

and so L X p a´ p1{jq ; 8q ‰ H,

and so Xj ‰ H.

End of proof of Claim 1.

Define s P LN by: @j P N, sj “ CHXj
.

Claim 2: @j P N, a´ p1{jq ď sj ď a.

Proof of Claim 2: Given j P N. Want: a´ p1{jq ď sj ď a.

We have sj P Xj “ LX p a´p1{jq ; 8q Ď p a´p1{jq ; 8q ą a´p1{jq.

Want: sj ď a. sj P L ď supL “ a.

End of proof of Claim 2.

By Claim 2 and the Squeeze Theorem, we know that sÑ a.

Since s P LN and since L is compact,

it follows that s is subconvergent in L.

Choose a subsequence t of s such that t is convergent in L.

Choose b P L s.t. tÑ b.

Since sÑ a and t is a subsequence of s,

it follows that tÑ b.

Since tÑ a and Ñ b, it follows that a “ b.

Then a “ b P L. �

2.4. Sums of sequences.

THEOREM 2.4.1. Let a P r0;8qN.

Define s P RN by: @j P N, sj “ a1 ` ¨ ¨ ¨ ` aj.

Then: (i) if Is is bounded, then s is convergent and

(ii) if Is is unbounded, then sÑ 8.

Proof. Part (i) follows from Theorem 2.2.16.

Part (ii) follows from Theorem 2.2.18. �

2.5. Cauchy sequences and convergence.

DEFINITION 2.5.1. Let s P RN. By s is Cauchy, we mean:

@ε ą 0, DK P N s.t., @i, j P N,

p i, j ě K q ñ p |si ´ sj| ă ε q.
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We sometimes say:

“s is Cauchy iff,

for every ε ą 0, s has an strictly-ε-bounded tail.”

More accurately:

“s is Cauchy iff,

for every ε ą 0, s has a tail whose image is strictly-ε-bounded.”

THEOREM 2.5.2. Let s P RN. Assume s is Cauchy.

Then Is is bounded.

Proof. Choose K P N s.t., @i, j P N, p i, j ě K q ñ p |si ´ sj| ă 1 q.

Then: @i P N, p i ě K q ñ p |si ´ sK | ă 1 q.

Then: @i P tK,K ` 1, K ` 2, . . .u, |si ´ sK | ă 1.

Then: @i P tK,K ` 1, K ` 2, . . .u, si P BpsK , 1q.

Then tsK , sK`1, sK`2, . . .u Ď BpsK , 1q.

Then tsK , sK`1, sK`2, . . .u is bounded.

Also, ts1, . . . , sKu is finite, and therefore bounded.

Then ts1, . . . , sKu Y tsK , sK`1, sK`2, . . .u is bounded.

So, since Is “ ts1, s2, s3, . . . u “ ts1, . . . , sKu Y tsK , sK`1, sK`2, . . .u,
we conclude that Is is bounded. �

THEOREM 2.5.3. Let s P RN. Then:

p s is Cauchy q ô p s is convergent q.

Proof. This is HW#8-3 and HW#8-5. �

3. Continuity and limits of functions RÑ R

3.1. Continuity of functions R 99K R.

We next define continuity of function R 99K R at a point:

DEFINITION 3.1.1. Let f : R 99K R, a P Df .

By f is continuous at a, we mean:

@ε ą 0, Dδ ą 0 s.t., @x P Df ,

p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q.

It is our convention that, for any function f , for any object a,

if a R Df , then f is NOT continuous at a.

THEOREM 3.1.2. Let f : R 99K R, a P Df , ε ą 0, δ ą 0.

Then: p @x P Df , p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q q

ô p f˚pBpa, δqq Ď Bpfa, εq q.
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THEOREM 3.1.3. Let f : R 99K R, a P Df .

Then: p f is continuous at a q ô

p @ε ą 0, Dδ ą 0 s.t. f˚pBpa, δqq Ď Bpfa, εq q.

THEOREM 3.1.4. Define f : RÑ R by: @x P R, fx “ x2.

Then @a P R, f is continuous at a.

Proof. Given a P R. Want: f is continuous at a.

Want: @ε ą 0, Dδ ą 0 s.t., @x P Df ,

p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P Df ,

p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q.

Let δ :“ min t 1 , ε{p2` 2 ¨ |a|q u. Then δ ą 0.

Want: @x P Df , p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q.

Given x P Df . Assume |x´ a| ă δ. Want: |fx ´ fa| ă ε q.

We have δ ď 1 and δ ¨ p1` 2 ¨ |a|q ă ε.

We have |fx ´ fa| “ |x
2 ´ a2| “ |px´ aqpx` aq|

“ |x´ a| ¨ |x` a| ď δ ¨ p|x| ` |a|q.

Also, |x| “ |x´ a` a| ď |x´ a| ` |a| ă δ ` |a|,

so |x|`|a| ă δ`2 ¨ |a|. So, since δ ď 1, we get |x|`|a| ă 1`2 ¨ |a|.

Then |x2 ´ a2| ď δ ¨ p|x| ` |a|q ď δp1` 2 ¨ |a|q ă ε. �

THEOREM 3.1.5. Let f : R 99K R, a P Df , c P R.

Assume f is continuous at a. Then c ¨ f is continuous at a.

Proof. Want: @ε ą 0, Dδ ą 0 s.t., @x P Dc¨f ,

p |x´a| ă δ q ñ p |pc ¨ fqx´pc ¨ fqa| ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P Dc¨f ,

p |x´a| ă δ q ñ p |pc ¨ fqx´pc ¨ fqa| ă ε q.

Let ρ :“ ε{p1` |c|q. Then ρ ą 0 and |c| ¨ ρ ă ε.

Since f is continuous at a, choose δ ą 0 s.t., @x P Df ,

p |x´ a| ă δ q ñ p |fx ´ fa| ă ρ q.

Then δ ą 0. Want: @x P Dc¨f , p |x´ a| ă δ q ñ p |pc ¨ fqx´pc ¨ fqa| ă

ε q.

Given x P Dc¨f . Assume |x´ a| ă δ. Want: |pc ¨ fqx ´ pc ¨ fqa| ă ε.

We have x P Dc¨f “ Df and |x´ a| ă δ,

so, by the choice of δ, we get: |fx ´ fa| ă ρ.

Then |pc ¨ fqx ´ pc ¨ fqa| “ |c ¨ fx ´ c ¨ fa|

“ |c ¨ pfx ´ faq|

“ |c| ¨ |fx ´ fa| ď |c| ¨ ρ ă ε. �
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The following is HW#5-1:

THEOREM 3.1.6. Let f, g : R 99K R, a P R.

Assume f and g are both continuous at a.

Then f ` g is continuous at a.

THEOREM 3.1.7. Let f, g : R 99K R, a P R.

Assume f and g are both continuous at a.

Then f ¨ g is continuous at a.

Proof. Want: @ε ą 0, Dδ ą 0 s.t., @x P Df ¨g,

p |x´a| ă δ q ñ p |pf ¨gqx´pf ¨gqa| ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P Df ¨g,

p |x´a| ă δ q ñ p |pf ¨gqx´pf ¨gqa| ă ε q.

Let ρ :“ min t 1 , ε { p |ga| ` |fa| ` 2 q u.

Then ρ ą 0 and ρ ď 1 and ρ ¨ p |ga| ` |fa| ` 1 q ă ε.

Since f is continuous at a, choose λ ą 0 s.t., @x P Df ,

p |x´ a| ă λ q ñ p |fx ´ fa| ă ρ q.

Since g is continuous at a, choose µ ą 0 s.t., @x P Df ,

p |x´ a| ă µ q ñ p |gx ´ ga| ă ρ q.

Let δ :“ mintλ, µu. Then δ ą 0.

Want: @x P Df ¨g, p |x´ a| ă δ q ñ p |pf ¨ gqx ´ pf ¨ gqa| ă ε q.

Given x P Df ¨g. Assume |x´ a| ă δ. Want: |pf ¨ gqx ´ pf ¨ gqa| ă ε.

We have δ ď λ and δ ď µ.

We have x P Df ¨g “ Df

Ş

Dg Ď Df and |x´ a| ă δ ď λ,

so, by the choice of λ, we get: |fx ´ fa| ă ρ.

We have x P Df ¨g “ Df

Ş

Dg Ď Dg and |x´ a| ă δ ď µ,

so, by the choice of µ, we get: |gx ´ ga| ă ρ.

By the Naive Product Rule,

fx ¨gx ´ fa ¨ga “ pfx´faq ¨ga ` fa ¨ pgx´gaq ` pfx´faq ¨ pgx´gaq.

Recall: ρ ¨ p|ga| ` |fa| ` 1q ă ε.

Since ρ ď 1, we get ρ ¨ p |ga| ` |fa| ` ρ q ď ρ ¨ p |ga| ` |fa| ` 1 q.

Then | pf ¨ gqx ´ pf ¨ gqa | “ | fx ¨ gx ´ fa ¨ ga |

“ |pfx ´ faq ¨ ga ` fa ¨ pgx ´ gaq ` pfx ´ faq ¨ pgx ´ gaq|

ď |fx ´ fa| ¨ |ga| ` |fa| ¨ |gx ´ ga| ` |fx ´ fa| ¨ |gx ´ ga|

ď ρ ¨ |ga| ` |fa| ¨ ρ ` ρ ¨ ρ

“ ρ ¨ p |ga| ` |fa| ` ρ q ď ρ ¨ p |ga| ` |fa| ` 1 q ă ε. �

Unassigned HW:
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THEOREM 3.1.8. Let f, g : R 99K R, a P R.

Then: p a P Dg˝f q ô p fa P Dg q.

The following is HW#5-2:

THEOREM 3.1.9. Let f, g : R 99K R, a P R.

Assume: f is continuous at a and g is continuous at fa.

Then g ˝ f is continuous at a.

We next define continuity of function R 99K R on a subset of R:

DEFINITION 3.1.10. Let f : R 99K R, S Ď R.

By f is continuous on S, we mean:

@a P S, f is continuous at a.

We next define continuity of function R 99K R:

DEFINITION 3.1.11. Let f : R 99K R.

By f is continuous, we mean:

f is continuous on Df .

THEOREM 3.1.12. Let f : R 99K R, S Ď Df .

Assume f is continuous on S. Then f |S is continuous.

Proof. Want: @a P Df |S, f |S is continuous at a.

Given a P Df |S. Want: f |S is continuous at a.

Want: @ε ą 0, Dδ ą 0 s.t., @x P Df |S,

p |x´ a| ă δ q ñ p |pf |Sqx´ pf |Sqa| ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P Df |S,

p |x´ a| ă δ q ñ p |pf |Sqx´ pf |Sqa| ă ε q.

Since a P Df |S “ S and since f is continuous on S,

it follows that f is continuous at a.

Then choose δ ą 0 s.t., @x P Df , p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q.

Then δ ą 0.

Want: @x P Df |S, p |x´ a| ă δ q ñ p |pf |Sqx ´ pf |Sqa| ă ε q.

Given x P Df |S. Assume |x´ a| ă δ. Want: |pf |Sqx ´ pf |Sqa| ă ε.

We have Df |S “ S. By assumption, S Ď Df . Then x P Df |S “ S Ď Df .

So, as |x´ a| ă δ, by choice of δ, we get: |fx ´ fa| ă ε.

Since x, a P Df |S “ S, we get pf |Sqx “ fx and pf |Sqa “ fa.

Then |pf |Sqx ´ pf |Sqa| “ |fx ´ fa| ă ε. �

The following is HW#5-3:

THEOREM 3.1.13. Let f : R 99K R, s P pDf q
N, a P R.

Assume f is continuous at a and sÑ a. Then f ˝sÑ fa.
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3.2. Lipschitz and uniformaly continuous functions R 99K R.

The next two definitions explain Lipschitz, for functions R 99K R.

DEFINITION 3.2.1. Let f : R 99K R, L ě 0.

By f is L-Lipschitz, we mean:

@w, x, P Df , |fx ´ fw| ď L|x´ w|.

DEFINITION 3.2.2. Let f : R 99K R.

By f is Lipschitz, we mean:

DL ě 0 s.t. f is L-Lipschitz.

The next two theorems are left as unassigned exercises.

The first asserts that we need not check w and x when w “ x.

The second asserts that it’s okay to lable the smaller of the two as w.

THEOREM 3.2.3. Let f : R 99K R, L ě 0.

Then: f is L-Lipschitz if and only if

@w, x, P Df , pw ‰ x q ñ p |fx ´ fw| ď L|x´ w| q.

THEOREM 3.2.4. Let f : R 99K R, L ě 0.

Then: f is L-Lipschitz if and only if

@w, x, P Df , pw ă x q ñ p |fx ´ fw| ď L|x´ w| q.

We record a quadruply quantified equivalence to continuity:

THEOREM 3.2.5. Let f : R 99K R.

By f is continuous if and only if

@ε ą 0, @w P Df , Dδ ą 0 s.t., @x P Df ,

p |x´ w| ă δ q ñ p |fx ´ fw| ă ε q.

The preceding theorem is left as a unassigned HW.

The next definition covers

uniformly continuous, for functions R 99K R.

DEFINITION 3.2.6. Let f : R 99K R.

By f is uniformly continuous we mean:

@ε ą 0, Dδ ą 0 s.t., @w P Df , @x P Df ,

p |x´ w| ă δ q ñ p |fx ´ fw| ă ε q.

Note that

the quantified equivalence for continuity

is similiar to

the definition of uniform continuity;
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only the order of the quantified causes has been changed.

In the preceding definition, we sometimes replace

“@w P Df , @x P Df” by “@w, x P Df”,

for brevity. The reader must remember that

the single @ in “@w, x P Df” counts twice.

We sometimes abbreviate uniformly continuous by u.c.

The following is HW#5-4:

THEOREM 3.2.7. Let f : R 99K R.

Assume f is Lipschitz. Then f is uniformly continuous.

The following is HW#5-5:

THEOREM 3.2.8. Let f : R 99K R.

Assume f is uniformly continuous. Then f is continuous.

Thus, Lipschitz ñ u.c. ñ continuous.

We eventually show that neither of these implications can be reversed:

DEFINITION 3.2.9. Let f : R 99K R, w, x P Df . Assume w ‰ x.

Then DQf pw, xq :“
fx ´ fw
x´ w

.

Note that DQf pw, xq is equal to

the slope of the secant line between pw, fpwqq and px, fpxqq.

DEFINITION 3.2.10. Let f : R 99K R.

Then DQf :“ tDQf pw, xq | pw, x P Df q& pw ‰ x q u.

Thus DQf collects all of the slopes of secant lines for the graph of f .

THEOREM 3.2.11. Let f : RÑ R, L ě 0.

Then: f is L-Lipschitz if and only if

@w, x, P Df , pw ‰ x q ñ p |DQf pw, xq| ď L q.

THEOREM 3.2.12. Let f : RÑ R, L ě 0.

Then: f is L-Lipschitz if and only if

@w, x, P Df , pw ‰ x q ñ p´L ď DQf pw, xq ď L q.

THEOREM 3.2.13. Let f : RÑ R, L ě 0.

Then: f is L-Lipschitz if and only if ´L ď DQf ď L.
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That is, a function R 99K R is L-Lipschitz iff

the slopes of its secant lines are bounded above and below.

THEOREM 3.2.14. Define f : RÑ R by @x P R, fx “
x

?
1` x2

.

Then f is 1-Lipschitz.

An examination of the graph of the function f above indicates that

all secant line slopes are strictly between 0 and 1,

or, in other words,

0 ă DQf ă 1.

Proving this formally is left as an exercise for the reader.

By contrast, for the squaring function, the graph is a parabola, so

its secant line slopes are neither bounded above nor below.

This indicates that the squaring function is not Lipschitz;

in fact it is not even uniformly continuous:

THEOREM 3.2.15. Define f : RÑ R by @x P R, fx “ x2.

Then f is NOT uniformly continuous.

Proof. Assume that f is uniformly continuous. Want: Contradic-

tion.

Since f is uniformly continuous, choose δ ą 0 s.t., @w, x P Df ,

p |x´ w| ă δ q ñ p |fx ´ fw| ă 1 q.

Let w :“ 1{δ and let x :“ w ` pδ{2q. Then w ą 0.

Then w, x P R “ Df and |x´ w| “ |δ{2| “ δ{2 ă δ,

so, by choice of δ, we get |fx ´ fw| ă 1.

Since w ą 0 and δ ą 0, we get

w ¨ δ ` pδ{2q2 ą 0

and so |w ¨ δ ` pδ{2q2| “ w ¨ δ ` pδ{2q2.

Then 1 ą |fx ´ fw| “ |x
2 ´ w2| “ |pw ` pδ{2qq2 ´ w2|

“ |w2 ` 2 ¨ w ¨ pδ{2q ` pδ{2q2 ´ w2|

“ |w ¨ δ ` pδ{2q2| “ w ¨ δ ` pδ{2q2

ą w ¨ δ “ p1{δq ¨ δ “ 1,

so 1 ą 1. Contradiction. �

Define f : RÑ R by @x P R, fx “ x2.

By Theorem 3.1.4, f is continuous.

However, according to the preceding theorem,

f is not uniformly continuous.
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We therefore see that continuous does not imply uniformly continuous.

Now define f : RÑ R by @x P R, fx “ 3
?
x.

We will argue that f is uniformly continuous, but not Lipschitz.

The formal proof that f is not Lipschitz will be left to the reader,

but an examination of the graph of f will show that

if w is close to zero, then DQf p´w,wq is very large.

In fact the slopes of secant lines are not bounded above.

We will supply a formal proof that f is uniformly continuous:

THEOREM 3.2.16. Define f : RÑ R by @x P R, fx “ 3
?
x.

Then f is uniformly continuous.

Proof. Want: @ε ą 0, Dδ ą 0 s.t., @w, x P Df ,

p |x´ w| ă δ q ñ p |fx ´ fw| ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @w, x P Df ,

p |x´ w| ă δ q ñ p |fx ´ fw| ă ε q.

Let δ :“ ε2{8. Then δ ą 0.

Want: @w, x P Df , p |x´ w| ă δ q ñ p |fx ´ fw| ă ε q.

Given w, x P Df . Assume |x´ w| ă δ. Want: |fx ´ fw| ă ε.

We have 0 ď |x´ w| ă ε2{8.

Let s :“ mintw, xu and t :“ maxtw, xu.

Since s ď t, we get 3
?
s ď 3

?
t, and so fs ď ft.

Then |w ´ x| “ t´ s and |fx ´ fw| “ ft ´ fs.

Then 0 ď t´ s ă ε2{8. Want: ft ´ fs ă ε.

Let σ :“ fs and τ :“ ft. Want: τ ´ σ ă ε.

Assume τ ´ σ ą ε. Want: Contradiction.

Since τ ě σ ` ε, we get τ 3 ě pσ ` εq3.

Then τ 3 ě σ3 ` 3σ2ε` 3σε2 ` ε3.

Then τ 3 ´ σ3 ě 3σ2ε` 3σε2 ` ε3.

Then 3σ2ε` 3σε2 ` ε3 ď τ 3 ´ σ3 “ t´ s ă ε3{8.

Then 3σ2ε` 3σε2 ` ε3 ´ pε3{8q ă 0.

Then 3σ2ε` 3σε2 ` p7{8qε3 ă 0.

As 3ε3 ą 0, dividing by 3ε3, we get:
3σ2ε

3ε3
`

3σε2

3ε3
`

7

8
¨
ε3

3ε3
ă 0.

Then
σ2

ε2
`
σ

ε
`

7

24
ă 0. Then

ˆ

σ2

ε2
` 2 ¨

σ

ε
¨

1

2
`

1

4

˙

´
1

4
`

7

24
ă 0.

We have 0 ď

ˆ

σ

ε
`

1

2

˙2

, so ´
1

4
`

7

24
ď

ˆ

σ

ε
`

1

2

˙2

´
1

4
`

7

24
.
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Then
1

24
“ ´

6

24
`

7

24
“ ´

1

4
`

7

24
ď

ˆ

σ

ε
`

1

2

˙2

´
1

4
`

7

24

“

ˆ

σ2

ε2
` 2 ¨

σ

ε
¨

1

2
`

1

4

˙

´
1

4
`

7

24
ă 0.

Then
1

24
ă 0. Contradiction. �

3.3. Continuity and topological preimages.

THEOREM 3.3.1. Let f : R 99K R.

Assume: @closed C Ď R, we have: f˚C is closed.

Then: f is continuous.

Proof. Want: @a P Df , f is continuous at a.

Given a P Df . Want: f is continuous at a.

Want: @ε ą 0, Dδ ą 0 s.t., @x P Df ,

p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P Df ,

p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q.

By the Subset Recentering Theorem Bpfa, εq is open.

Let C :“ RzpBpfa, εqq. Then C is closed.

So, by assumption, f˚C is closed. Then Rzpf˚Cq is open.

We have |fa ´ fa| “ 0 ă ε, so fa P Bpfa, εq, so fa R C, so a R f˚C.

We have a P Df Ď R and a R f˚C, so a P Rzpf˚Cq.
So, since Rzpf˚Cq is open, by a class theorem,

choose δ ą 0 s.t. Bpa, δq Ď Rzpf˚Cq. Then δ ą 0.

Want: @x P Df , p |x´ a| ă δ q ñ p |fx ´ fa| ă ε q.

Given x P Df . Assume: |x´ a| ă δ. Want: |fx ´ fa| ă ε.

Since |x´ a| ă δ, we get: x P Bpa, δq.

Then x P Bpa, δq Ď Rzpf˚Cq. Then x R f˚C, and so fx R C.

We have x P Df , so fx P If . Since f : R 99K R, we get: If Ď R.

Since Bpfa, εq Ď R, we get: RzpRzpBpfa, εqqq “ Bpfa, εq.

Since fx P If Ď R and since fx R C “ RzpBpfa, εqq,
we conclude: fx P RzpRzpBpfa, εqqq.

Then fx P RzpRzpBpfa, εqqq “ Bpfa, εq. Then |fx ´ fa| ă ε. �

THEOREM 3.3.2. Let f : R 99K R.

Assume: @closed C Ď R, we have: f˚C is closed.

Then: f is continuous.
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Proof. This is HW#11-5. �

3.4. The Intermediate Value Theorem.

Recall: @S Ď R˚, pS ď supS ď UBS q& pLBS ď inf S ď S q.

THEOREM 3.4.1. Let a P R, b ě a, S Ď ra; bs.

Assume S ‰ H. Then supS P ra; bs.

Proof. Want: b ě supS ě a.

We have b ě ra; bs Ě S, so b P UBS. Then b P UBS ě supS.

Want: supS ě a.

Since S Ď ra; bs ě a, we get S ě a.

Then supS ě S ě a, so, since S ‰ H, we get supS ě a. �

THEOREM 3.4.2. Let f : R 99K R, a, b, c, v P R.

Assume a ă b and ra; bs Ď Df . Assume c P ra; bq and fc ă v.

Assume f is continuous at c.

Then Dδ ą 0 s.t., @x P rc; c` δq, p x P ra; bs q & p fx ă v q.

Proof. Let ε :“ v ´ fc. Since fc ă v, we get: ε ą 0.

Then, since f is continuous at c, choose α ą 0 s.t., @x P Df ,

p |x´ c| ă α q ñ p |fx ´ fc| ă ε q.

Since c P ra; bq ă b, we get b´ c ą 0.

Let δ :“ mintα, b´ cu. Then δ ą 0.

Want: @x P rc; c` δq, p x P ra; bs q & p fx ă v q.

Given x P rc; c` δq. Want: p x P ra; bs q & p fx ă v q.

We have x P rc; c` δq ě c P ra; bq ě a, so x ě a, so a ď x.

We have δ “ mintα, b´ cu ď b´ c, so δ ď b´ c, so c` δ ď b.

Then x P rc; c` δq ă c` δ ď b, so x ă b.

Since a ď x and x ă b, we see that x P ra; bq. Then x P ra; bq Ď ra; bs.

It remains to show: fx ă v.

Since x P rc; c` δq, we get both c ď x and x ă c` δ.

Since δ ą 0, we get c´ δ ă c.

Since c´ δ ă c ď x, we get c´ δ ă x.

Then c´ δ ă x ă c` δ, and so |x´ c| ă δ.

By definition of δ, we have δ ď α and δ ď b´ c.

By hypothesis, ra; bs Ď Df .
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Since x P ra; bs Ď Df , and |x´ c| ă δ ď α, by choice of α,

we conclude that |fx ´ fc| ă ε, and so fc ´ ε ă fx ă fc ` ε.

Then fx ă fc ` ε “ fc ` pv ´ fcq “ v. �

The proof of the following is similar to the proof of the preceding.

It is left as unassigned HW.

THEOREM 3.4.3. Let f : R 99K R, a, b, c, v P R.

Assume a ă b and ra; bs Ď Df . Assume c P pa; bs and v ă fc.

Assume f is continuous at c.

Then Dδ ą 0 s.t., @x P pc´ δ; cs, p x P ra; bs q & p v ă fx q.

THEOREM 3.4.4. Let f : R 99K R, a, b, v P R.

Assume a ă b. Assume f is continuous on ra; bs. Assume fa ď

v ď fb.

Then Dc P ra; bs s.t. fc “ v.

Proof. Exactly one of the following holds:

(A) v “ fa or (B) v “ fb or (C) fa ă v ă fb.

Case (A): Let c :“ a. Then c P ra; bs. Want: fc “ v.

We have fc “ fa “ v.

End of Case (A).

Case (B): Let c :“ b. Then c P ra; bs. Want: fc “ v.

We have fc “ fb “ v.

End of Case (B).

Case (C): Let S :“ tx P ra; bs | fx ă vu. Then c “ supS.

By hypothesis fa ă v. Since a P ra; bs and fa ă v, we get a P S.

Then S ‰ H. Then, by Theorem 3.4.1, supS P ra; bs.

Then c “ supS P ra; bs. Want: fc “ v.

We wish to show: (1) fc ě v and (2) fc ď v.

Proof of (1): Assume fc ă v. Want: Contradiction.

We have fc ă v. By hypothesis, v ă fb.

Then fc ă v ă fb, so fc ‰ fb, so c ‰ b.

So, since c P ra; bs, we get c P ra; bq.

Then, by Theorem 3.4.2, choose δ ą 0 s.t., @x P rc; c` δq,
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p x P ra; bs q & p fx ă v q.

Then rc; c` δq Ď tx P ra; bs | fx ă vu.

Then c` pδ{2q P rc; c` δq Ď tx P ra; bs | fx ă vu “ S ď supS “ c.

Then c` pδ{2q ď c, so δ{2 ď 0, so δ ď 0.

Then 0 ă δ ď 0, so 0 ă 0. Contradiction.

End of proof of (1).

Proof of (2): Assume fc ą v. Want: Contradiction.

We have v ă fc. By hypothesis, fa ă v.

Then fa ă v ă fc, so fa ‰ fc, so a ‰ c.

So, since c P ra; bs, we get c P pa; bs.

Then, by Theorem 3.4.3, choose δ ą 0 s.t., @x P pc´ δ; cs,

p x P ra; bs q & p v ă fx q.

Since δ ą 0, we get c´ δ ă c.

Since c´ δ ă c “ supS “ min UBS, we get c´ δ ă min UBS.

Then c´ δ R UBS, so  pS ď c´ δq, so  p@x P S, x ď c´ δq.

Then choose x P S s.t. x ą c´ δ.

Since x P S, by definition of S, we get fx ă v.

Since x P S ď supS “ c, we get x ď c.

Since x ą c´ δ, we get c´ δ ă x.

Since c´ δ ă x ď c, we get x P pc´ δ; cs.

Then, by choice of δ, we get p x P ra; bs q & p v ă fx q.

Then v ă fx ă v, so v ă v. Contradiction.

End of proof of (2).

End of Case (C). �

THEOREM 3.4.5. Let f : R 99K R, a, b, v P R.

Assume a ă b. Assume f is continuous on ra; bs. Assume fa ě

v ě fb.

Then Dc P ra; bs s.t. fc “ v.

Proof. Let g :“ ´f . Then ga ď ´v ď gb.

By Theorem 3.4.4, choose c P ra; bs s.t. gc “ ´v.

Then c P ra; bs. Want: fc “ v.

Since g “ ´f , it follows that gc “ p´fqc.

Then fc “ ´p´fcq “ ´pp´fqcq “ ´gc “ ´p´vq “ v. �
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DEFINITION 3.4.6. @a, b P R˚, we define:

ra|bs :“ rminta, bu ; maxta, bu s

and pa|bq :“ pminta, bu ; maxta, bu q.

THEOREM 3.4.7. r7|1s “ r1; 7s “ r1|7s and p7|1q “ p1; 7q “ p1|7q.

THEOREM 3.4.8. @a, b P R˚, p ra|bs “ rb|as q & p pa|bq “ pb|aq q.

THEOREM 3.4.9. Let f : R 99K R, α, β, v P R.

Assume α ă β. Assume f is continuous on rα; βs. Assume v P

rfα|fβs.

Then Dc P rα; βs s.t. fc “ v.

Proof. At least one of the following is true:

(1) fα ď fβ or (2) fβ ď fα.

Case (1): Since fα ď fβ, we get rfα|fβs “ rfα; fβs.

Then v P rfα|fβs “ rfα; fβs, so fα ď v ď fβ.

Then by Theorem 3.4.4, Dc P rα; βs s.t. fc “ v.

End of Case (1).

Case (2): Since fβ ď fα, we get rfα|fβs “ rfβ; fαs.

Then v P rfα|fβs “ rfβ; fαs, so fβ ď v ď fα.

Then by Theorem 3.4.5, Dc P rα; βs s.t. fc “ v.

End of Case (2). �

The following is the Intermediate Value Theorem or IVT:

THEOREM 3.4.10. Let f : R 99K R, a, b P R.

Assume f is continuous on ra|bs. Then rfa|fbs Ď f˚pra|bsq.

Proof. Want: @v P rfa|fbs, v P f˚pra|bsq.

Given v P rfa|fbs. Want: v P f˚pra|bsq.

Want: Dc P ra|bs s.t. fc “ v.

Exactly one the following is true:

(1) a “ b or (2) a ă b or (3) b ă a.

Case (1): v P rfa|fbs “ rfa|fas “ tfau, so v “ fa.

Let c :“ a. Then c P ra|bs. Want: fc “ v.

We have fc “ fa “ v.

End of Case (1).
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Case (2): Since a ă b, we get ra|bs “ ra; bs.

Let α :“ a, β :“ b.

Then α ă β, Also, rα; βs “ ra; bs “ ra|bs, so rα; βs “ ra|bs.

Want: Dc P rα; βs s.t. fc “ v.

Then f is continuous on rα; βs and v P rfa|fbs “ rfα|fβs.

Then, by Theorem 3.4.9, Dc P rα; βs s.t. fc “ v.

End of Case (2).

Case (3): Since b ă a, we get ra|bs “ rb; as.

Let α :“ b, β :“ a.

Then α ă β. Also, rα; βs “ rb; as “ ra|bs, so rα; βs “ ra|bs.

Want: Dc P rα; βs s.t. fc “ v.

Then f is continuous on ra|bs and rα; βs “ ra|bs, so f is continuous on

rα; βs. So, since v P rfa|fbs “ rfb|fas “ rfα|fβs,

by Theorem 3.4.9, Dc P rα; βs s.t. fc “ v.

End of Case (3). �

A power function on R is a power of idR,

e.g., x ÞÑ x4 : RÑ R.

A monomial on R is a scalar multiple of a power function on R,

e.g., x ÞÑ 7x4 : RÑ R.

The function f defined in the next proof is an example of

a polynomial on R,

i.e., a finite sum of monomials on R,

e.g., x ÞÑ 7x4 ` 2x3 ´ 5x` 8 : RÑ R.

We leave it as an exercise to show that any polynomial is continuous.

THEOREM 3.4.11. @a P R, Dx P R s.t. x5 ´ x3 ` x “ a.

Proof. Given a P R. Want: Dx P R s.t. x5 ´ x3 ` x “ a.

We have: @t P R, ´|t| ď t ď |t|. Then ´|a| ď a ď |a|.

Define f : RÑ R by @x P R, fx “ x5 ´ x3 ` x.

Then f is a polynomial on R, and so f is continuous.

Want: Dx P R s.t. fx “ a. Want: a P If .
Let b :“ maxt1, |a|u. Then b ě 1.

Also, b ě |a|. Negating this, we get ´b ď ´|a|.

Since b ě 1, we get b5 ě b3, and so b5 ´ b3 ě 0.

Then b5 ´ b3 ` b ě b. Negating this, we get ´b5 ` b3 ´ b ď ´b.

Then fb “ b5 ´ b3 ` b ě b ě |a| ě a,
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so a ď fb.

Also, f´b “ p´bq
5 ´ p´bq3 ` p´bq “ ´b5 ` b3 ´ b ď ´b ď ´|a| ď a,

so f´b ď a.

Then f´b ď a ď fb, so a P rf´b|fbs.

By the IVT, rf´b|fbs Ď f˚r´b|bs.

For any function g, for any set S, g˚S Ď Ig. Then f˚r´b|bs Ď If .
Then a P rf´b|fbs Ď f˚r´b|bs Ď If . �

3.5. Limits at extended real numbers of functions R 99K R.

DEFINITION 3.5.1. Let a P R, δ ą 0. Then Bˆpa, δq :“ pBpa, δqqˆa .

The set Bˆpa, δq is called

the punctured open ball about a of radius δ.

THEOREM 3.5.2. Let a P R, δ ą 0. Then:

p x P Bˆpa, δq q ô p 0 ă |x´ a| ă δ q.

DEFINITION 3.5.3. Let f : R 99K R, a, z P R.

By as xÑ a, fx Ñ z, we mean:

@ε ą 0, Dδ ą 0 s.t., @x P Df ,

p 0 ă |x´ a| ă δ q ñ p |fx´ z| ă ε q.

Let f : R 99K R, a, z P R, δ, ε ą 0. Then the quantified statement

@x P Df , p 0 ă |x´ a| ă δ q ñ p |fx ´ z| ă ε q

is equivalent to

f˚pB
ˆpa, δqq Ď Bpz, εq.

DEFINITION 3.5.4. Let f : R 99K R, a P R.

By as xÑ a, fx Ñ 8, we mean:

@M P R, Dδ ą 0 s.t., @x P Df ,

p 0 ă |x´ a| ă δ q ñ p fx ąM q.

DEFINITION 3.5.5. Let f : R 99K R, a P R.

By as xÑ a, fx Ñ ´8, we mean:

@N P R, Dδ ą 0 s.t., @x P Df ,

p 0 ă |x´ a| ă δ q ñ p fx ă N q.

DEFINITION 3.5.6. Let f : R 99K R, z P R.

By as xÑ ´8, fx Ñ z, we mean:

@ε ą 0, DN P R s.t., @x P Df ,

px ă N q ñ p |fx ´ z| ă ε q.



CLASS NOTES 95

DEFINITION 3.5.7. Let f : R 99K R, a P R.

By as xÑ 8, fx Ñ 8, we mean:

@M P R, DL P R s.t., @x P Df ,

px ą L q ñ p fx ąM q.

DEFINITION 3.5.8. Let f : R 99K R, a P R.

By as xÑ 8, fx Ñ ´8, we mean:

@N P R, DL P R s.t., @x P Df ,

px ą L q ñ p fx ă N q.

THEOREM 3.5.9. Let f : RÑ R, y P Rˆ0 .

Assume: as xÑ ´8, fx Ñ y.

Then: as xÑ ´8, p1{fqx Ñ p1{yq.

Proof. This is HW#12-3. �

3.6. Forward image of a compact set.

THEOREM 3.6.1. Let f : R 99K R, K Ď Df .

Assume f is continuous on K and K is compact.

Then f˚K is compact.

Proof. Want: @s P pf˚Kq
N, s is subconvergent in f˚K.

Given s P pf˚Kq
N. Want: s is subconvergent in f˚K.

Want: Dsubsequence t of s s.t. t is convergent in f˚K.

For all j P N, let Aj :“ pf˚tsjuq XK.

Claim 1: @j P N, Aj ‰ H.

Proof of Claim 1: Given j P N. Want Aj ‰ H.

Since s P pf˚Kq
N, we get sj P f˚K,

so choose x P K s.t. sj “ fx.

Since fx “ sj P tsju, we get x P f˚tsju.

So, since x P K, we get x P pf˚tsjuq XK.

So, since Aj :“ pf˚tsjuq XK, we get x P Aj. Then Aj ‰ H.

End of proof of Claim 1.

By definition of Aj, we have: @j P N, Aj Ď K.

By the Claim, we have: @j P N, Aj ‰ H.

Define σ P KN by @j P N, σj “ CHAj
.

By hypothesis K is compact, so σ is subconvergent in K.
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Choose a subsequence τ of σ s.t. τ is convergent in K.

Choose a strictly-increasing ` P NN s.t. τ “ σ ˝ `.

Let t :“ s ˝ `. Then t is a subsequence of s.

Want: t is convergent in f˚K.

Claim 2: f ˝ σ “ s.

Proof of Claim 2: Want: @j P N, pf ˝ σqj “ sj.

Given j P N. Want: pf ˝ σqj “ sj.

We have σj P Aj “ pf
˚tsjuqXK Ď f˚tsju, so σj P f

˚tsju, so fσj P tsju.

Then fσj “ sj. Then pf ˝ σqj “ fσj “ sj.

End of proof of Claim 2.

By Claim 2, f ˝ σ “ s. Then f ˝ σ ˝ ` “ s ˝ `.

So since τ “ σ ˝ ` and t “ s ˝ `, we get f ˝ τ “ t.

Since τ is convergent in K, choose ξ P K s.t. τ Ñ ξ.

By hypothesis f is continuous on K. Then f is continuous at ξ.

Then, by HW#6-2, f ˝ τ Ñ fξ.

So, since f ˝ τ “ t, we get tÑ fξ.

Since ξ P K and K Ď Df , we get fξ P f˚K.

So, since tÑ fξ, we see that t is convergent in f˚K. �

3.7. Semi-monotone subsequences of real-valued sequences.

Note that, in Case (1) of the proof of the following theorem,

` is the strict-forward-orbit of minP under f

and that, in Case (2) of the proof of the following theorem,

` is the strict-forward-orbit of pmaxP q ` 1 under f .

THEOREM 3.7.1. Let s P RN.

Then Dsubsequence t of s s.t. t is semi-monotone.

Proof. Let P :“ tj P N | @k P pj..8q, sk ă sju.

Then P Ď N, so PN Ď NN.

Exactly one of the following is true:

(1) P is infinite or (2) P is finite.

Case (1): Since P is infinite, we get: @j P N, H ‰ P zr1..js Ď N.

So, by the Well-Ordering Axiom, we get: @j P N, minpP zr1..jsq ‰ /.

Define f : P Ñ P by: @j P N, fpjq “ minpP zr1..jsq.
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Then, @j P N, fpjq P P zr1..js.

Define ` P PN by: @j P N, `j “ f j˝ pminP q.

Then, @j P N, we have fp`jq “ `j`1.

Then, @j P N, we have `j`1 “ fp`jq P P zr1..`js.

Claim A: ` is strictly increasing.

Proof of Claim A: Want: @j P N, `j`1 ą `j.

Given j P N. Want: `j`1 ą `j.

We have `j`1 P P zr1..`js Ď Nzr1..`js “ p`j..8q ą `j.

End of proof of Claim A.

We have ` P PN Ď NN, so, by Claim A,

s ˝ ` is a subsequence of s.

Let t :“ s ˝ `. Then t is a subsequence of s.

Want: t is semi-monotone.

It suffices to show: t is semi-decreasing.

It suffices to show: t is strictly-decreasing.

Want: @j P N, tj`1 ă tj.

Given j P N. Want: tj`1 ă tj.

By Claim A, `j`1 ą `j. Since ` P PN, we get `j`1 P P .

Since `j`1 ą `j and `j`1 P P Ď N, we get: `j`1 P p`j..8q.

Since ` P PN, we see that `j P P ,

so, by definition of P , we get: @k P p`j..8q, sk ă s`j .

So, since `j`1 P p`j..8q, we get: s`j`1
ă s`j .

Then tj`1 “ ps ˝ `qj`1 “ s`j`1
ă s`j “ ps ˝ `qj “ tj.

End of Case (1).

Case (2): Since P is finite, we get: maxP ‰ /.

Then maxP P P . Let m :“ maxP . Then m P P .

Since m P P Ď N, we get m P N. Then m` 1 P pm..8q.

For all j P N, let Xj :“ tk P pj..8q | sk ě sju.

Then, @j P N, Xj Ď pj..8q.

Claim B: @j P pm..8q, Xj ‰ H.

Proof of Claim B: Given j P pm..8q. Want: Xj ‰ H.

Since j ą m “ maxP , we see that j R P .

Then, by definition of P , choose k P pj..8q s.t. sk ě sj.

Then, by definition of Xj, we get: k P Xj. Then Xj ‰ H.
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End of proof of Claim B.

We have: @j P N, Xj Ď pj..8q Ď N, so Xj Ď N.

So, by Claim B, we have: @j P N, H ‰ Xj Ď N.

Then, by the Well-Ordering Axiom, we get: @j P N, minXj ‰ /.

Then, @j P N, minXj P Xj.

We have: @j P pm..8q, j ą m, so pj..8q Ď pm..8q.

We have: @j P pm..8q, minXj P Xj Ď pj..8q Ď pm..8q.

Then: @j P pm..8q, minXj P pm..8q.

Define f : pm..8q Ñ pm..8q by: @j P pm..8q, fpjq “ minXj.

Then, @j P N, fpjq P Xj.

We have: @j P N, fpjq P Xj Ď pj..8q, so fpjq P pj..8q.

Define ` P pm..8qN by: @j P N, `j “ f j˝ pm` 1q.

Then, @j P N, we have fp`jq “ `j`1.

Then, @j P N, we have `j`1 “ fp`jq P X`j , so `j`1 P X`j .

Also, @j P N, we have `j`1 “ fp`jq P p`j..8q ą `j.

Then ` is strictly-increasing.

So, as ` P PN Ď NN, we get: s ˝ ` is a subsequence of s.

Let t :“ s ˝ `. Then t is a subsequence of s.

Want: t is semi-monotone.

It suffices to show: t is semi-increasing.

Want: @j P N, tj`1 ě tj.

Given j P N. Want: tj`1 ě tj.

We have `j`1 P X`j “ tk P p`j..8q | sk ě s`ju. Then s`j`1
ě s`j .

Then tj`1 “ ps ˝ `qj`1 “ s`j`1
ě s`j “ ps ˝ `qj “ tj.

End of Case (2). �

3.8. Sequentially-closed subsets of R.

DEFINITION 3.8.1. Let A Ď R.

By A is sequentially-closed, we mean:

@s P AN, p s is convergent q ñ p s is convergent in A q.

THEOREM 3.8.2. Let A Ď R.

Then A is sequentially-closed if and only if:

@s P AN, @z P R, p sÑ z q ñ p z P A q.

THEOREM 3.8.3. Let a, z P R, t P RN.

Assume @j P N, tj ď a.

Assume tÑ z. Then z ď a.
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Proof. Assume z ą a. Want: Contradiction.

Let ε :“ z ´ a. Then ε ą 0.

Since tÑ z, choose K P N s.t., @j P N, p j ě K q ñ p |tj ´ z| ă ε q.

By assumption, tK ď a. By the choice of K, |tK ´ z| ă ε.

Since |tK ´ z| ă ε, we get z ´ ε ă tK ă z ` ε.

Then tK ď a “ z´pz´aq “ z´ε ă tK , so tK ă tK . Contradiction. �

THEOREM 3.8.4. Let a, z P R, t P RN.

Assume @j P N, a ď tj.

Assume tÑ z. Then a ď z.

Proof. Assume a ą z. Want: Contradiction.

Let ε :“ a´ z. Then ε ą 0.

Since tÑ z, choose K P N s.t., @j P N, p j ě K q ñ p |tj ´ z| ă ε q.

By assumption, a ď tK . By the choice of K, |tK ´ z| ă ε.

Since |tK ´ z| ă ε, we get z ´ ε ă tK ă z ` ε.

Then tK ă z`ε “ z`pa´zq “ a ď tK , so tK ă tK . Contradiction. �

THEOREM 3.8.5. Let a, b P R. Assume a ď b.

Then ra; bs is sequentially-closed.

Proof. Want: @s P ra; bsN, @z P R, p sÑ z q ñ p z P ra; bs q.

Given s P ra; bsN , z P R. Assume sÑ z. Want: z P ra; bs.

Since s P ra; bsN, we get: @j P N, sj P ra; bs.

Then @j P N, we have a ď sj ď b.

By Theorem 3.8.3, z ď b. By Theorem 3.8.4, a ď z.

Then a ď z ď b. Then z P ra; bs. �

THEOREM 3.8.6. Let X Ď R.

Then: pX is closed q ô pX is sequentially-closedq.

Proof. Proof of ñ:

Assume X is closed. Want: X is sequentially-closed.

Want: @s P XN, @q P R, p sÑ q q ñ p q P X q.

Given s P XN, q P R. Assume sÑ q. Want: q P X.

Assume q R X. Want: Contradiction.

Since q P R and q R X, we get: q P RzX.

Since S is closed, we get: BX Ď X.

Let t :“ pq, q, q, q, . . .q. Then t P pRzqN and tÑ q.

So, since s P XN and sÑ q, we conclude: q P BX.

Then q P BX Ď X, so q P X.
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Then q P X and q R X. Contradiction.

End of proof of ñ.

Proof of ð:

Assume X is sequentially-closed. Want: X is closed.

Want: BX Ď X.

Want: @q P BX, q P X.

Given q P BX. Want: q P X.

Since q P BX, we know: Ds P XN s.t. sÑ q.

So, since X is sequentially-closed, q P X.

End of proof of ð. �

THEOREM 3.8.7. Let X Ď R. Then:

p X is compact q ô p X is closed and bounded q.

Proof. Proof of ñ:

Assume: X is compact.

Want: X is closed and bounded.

By Theorem 2.2.56, X is bounded. Want: X is closed.

Want: X is sequentially-closed.

Want: @s P XN, @q P R, p sÑ q q ñ p q P X q.

Given s P XN, q P R. Assume sÑ q. Want: q P X.

Since X is compact and s P XN, we know: s is subconvergent in X.

Choose a subsequence t of s s.t. t is convergent in X.

Choose z P X s.t. tÑ z.

Since sÑ q and since t is a subsequence of s, we get: tÑ q.

Since tÑ q and tÑ z, we get: q “ z.

Since q “ z P X, we get: q P X.

End of proof of ñ.

Proof of ð:

Assume: X is closed and bounded.

Want: X is compact.

Want: @s P XN, s is subconvergent in X.

Given s P XN. Want: s is subconvergent in X.

Want: Dsubsequence t of s s.t. t is convergent in X.

Since s P XN Ď RN, by Theorem 3.7.1,

choose a subsequence t of s s.t. t is semi-monotone.

Then t is a subsequence of s. Want: t is convergent in X.
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Since X is closed, we know: X is sequentially-closed.

Want: t is convergent.

Since It Ď Is Ď X and since X is bounded,

we conclude: It is bounded.

So, since t is semi-monotone, t is convergent.

End of proof of ð. �

THEOREM 3.8.8. Let C,K Ď R.

Assume that C is closed and that K is compact.

Then C XK is compact.

Proof. Since K is compact, we get: K is closed and bounded.

Since C and K are both closed, we get: C XK is closed.

Since K is bounded and since C XK Ď K, we get: C XK is bounded.

Since C XK is closed and bounded, C XK is compact. �

3.9. Extreme values of continuous functionals on r0; 1s.

Our goal, in this section, is to prove:

@continuous f : r0; 1s Ñ R, max If ‰ /.

We indicated, in class, why

this is NOT true when r0; 1s is replaced by r0; 1q.

By Theorem 2.2.53, we see that p0; 1s is NOT compact.

THEOREM 3.9.1. Let a, b P R. Assume a ď b.

Then ra; bs is compact.

Proof. Want: @s P ra; bsN, s is subconvergent in ra; bs.

Given s P ra; bsN. Want: s is subconvergent in ra; bs.

Want: Dsubsequence t of s s.t. t is convergent in ra; bs.

By Theorem 3.7.1, choose a subsequence t of s s.t. t is semi-monotone.

Then t is a subsequence of s. Want: t is convergent in ra; bs.

Since It Ď Is Ď ra; bs Ď Bppa ` bq{2; pb ´ a ` 2q{2q, we see that It is

bounded.

Since t is semi-monotone and It is bounded, t is convergent.

By Theorem 3.8.5, ra; bs is sequentially-closed.

So, since t P ra; bsN and t is convergent,

it follows that t is convergent in ra; bs. �
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THEOREM 3.9.2. Let K Ď R, f : R 99K R.

Assume: f is continuous on K and K is compact and nonempty.

Then: max f˚K ‰ /.

Proof. Theorem 3.6.1, we get: f˚K is compact.

Since K is nonempty, f˚K is nonempty.

Let L :“ f˚K. Then L is compact and nonempty.

By Theorem 2.3.4, maxL ‰ /.

So, since L “ f˚K, we see that max f˚K ‰ /. �

Recall that our goal for this section was to prove:

@continuous f : r0; 1s Ñ R, max If ‰ /.

With the preceding three theorems, we are now ready to prove more:

THEOREM 3.9.3. Let a P R, b ą a. Let f : ra; bs Ñ R.

Assume f is continuous. Then max If ‰ /.

Proof. Let K :“ ra; bs. Then If “ f˚Df “ f˚ra; bs “ f˚K.

Also, K is nonempty and f is continuous on K.

By Theorem 3.9.1, K is compact.

Then, by Theorem 3.9.2, max f˚K ‰ /.

So, since If “ f˚K, we conclude that max If ‰ /. �

3.10. Uniform convergence of sequences of functions R 99K R.

DEFINITION 3.10.1. Let D and Y be sets, s P pY DqN, x P D.

Then s‚pxq P Y
N is defined by: @j P N, pps‚pxqqj “ sjpxq.

We define pointwise convergence.

DEFINITION 3.10.2. Let D Ď R, s P pRDqN, f P RD.

By sÑ f pointwise, we mean: @x P D, s‚pxq Ñ fpxq.

Let D Ď R, s P pRDqN, f P RD.

Then sÑ f pointwise iff

@x P D, @ε ą 0, DK P N s.t., @j P N,

p j ě K q ñ p | r sjpxq s ´ r fpxq s | ă ε q.

We define uniform convergence:

DEFINITION 3.10.3. Let D Ď R, s P pRDqN, f P RD.

By sÑ f uniformly, we mean: @ε ą 0, DK P N s.t., @j P N, @x P D,

p j ě K q ñ p | r sjpxq s ´ r fpxq s | ă ε q.
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THEOREM 3.10.4. Define φ : RÑ R by: @x P R, φpxq “ 1{p1`x2q.

Define s P pRRqN by: @j P N, @x P R, sjpxq “ φpj ¨ xq.

Let f : χR
t0u. Then sÑ f pointwise.

From the preceding theorem, we see that:

a pointwise limit of continuous functions can be discontinuous.

By contrast, uniform limits of continuous functions are continuous:

THEOREM 3.10.5. Let D Ď R, s P pRDqN, f P RD.

Assume: sÑ f uniformly and @j P N, sj is continuous.

Then: f is continuous.

Proof. This is HW#9-2. �

3.11. Open Mapping Theorem.

Let A :“ r1; 2s, B :“ p3; 4s, C :“ r5; 7s.

Define f : AYB Ñ C by: @x P A, fx “ x` 4

and @x P B, fx “ x` 3.

Then f : AYB ãÑą C and f is continuous.

However f´1 is not continuous at 6.

So the inverse of a continuous function is not always continuous.

Basically, f glues two intervals, A and B, together,

whereas, whereas f´1 tears C apart;

gluing is continuous, while tearing apart is discontinouus. Our goal

in this section is to show, that

if a continuous injection has compact domain,

then its inverse is continuous:

THEOREM 3.11.1. Let K Ď R, f : K ãÑ R.

Assume: K is compact and f is continuous.

Then: f´1 is continuous.

Proof. Since f : K ãÑ R, we get Df “ K.

By Theorem 3.3.1, want: @closed C Ď R, pf´1q˚C is closed.

Given a closed C Ď R. Want: pf´1q˚C is closed.

By Theorem 3.8.8, C XK is compact.

Then, by Theorem 3.6.1, f˚pC XKq is compact.

Then f˚pC XKq is closed.

So, since pf´1q˚C “ f˚C “ f˚pC X Df q “ f˚pC XKq,

we conclude: pf´1q˚C is closed. �
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3.12. Continuity and uniform continuity on a compact set.

THEOREM 3.12.1. Let f : R 99K R.

Assume f is continuous and Df is compact. Then f is uniformly con-

tinuous.

Proof. Assume f is not uniformly continuous. Want: Contradiction.

Choose ε ą 0 s.t., @δ ą 0, Dw, x P Df s.t.

p |w ´ x| ă δ q& p |fw ´ fx| ě ε q.

Let K :“ Df . Then K is compact.

Also, @δ ą 0, Dw, x P K s.t.

p |w ´ x| ă δ q& p |fw ´ fx| ě ε q.

Then: @j P N, Dw, x P K s.t.

p |w ´ x| ă 1{j q& p |fw ´ fx| ě ε q.

By the Axiom of Choice, choose w, x P KN s.t., @j P N,

p |wj ´ xj| ă 1{j q& p |fwj
´ fxj | ě ε q.

Since K is compact, w is subconvergent in K.

Choose a subsequence v of w s.t. v is convergent in K.

Choose q P K s.t. v Ñ q.

Choose a strictly-increasing ` P NN s.t. v “ w ˝ `.

Then w ˝ `Ñ q, so, by HW#10-1, x ˝ `Ñ q.

Since w ˝ `Ñ q and since f is continuous at q, we get: f ˝ w ˝ `Ñ fq.

Choose A P N s.t., @i P N, p i ě A q ñ p |pf ˝ w ˝ `qi ´ fq| ă ε{2 q.

Since x ˝ `Ñ q and since f is continuous at q, we get: f ˝ x ˝ `Ñ fq.

Choose B P N s.t., @i P N, p i ě B q ñ p |pf ˝ x ˝ `qi ´ fq| ă ε{2 q.

Let i :“ maxtA,Bu. Then i P N and i ě A and i ě B.

Since i ě A, we get: |pf ˝ w ˝ `qi ´ fq| ă ε{2.

Since i ě B, we get: |pf ˝ x ˝ `qi ´ fq| ă ε{2.

Let j :“ `i. Then |pf ˝ wqj ´ fq| ă ε{2 and |pf ˝ xqj ´ fq| ă ε{2.

Then |fwj
´ fq| ă ε{2 and |fxj ´ fq| ă ε{2.

Since ` P NN and j “ `i, we get: j P N.

Then, by the choice of w and x, we get: |fwj
´ fxj | ě ε.

Then ε ď |fwj
´ fxj | ď |fwj

´ fq| ` |fq ´ fxj |.

Then ε ď |fwj
´ fxj | ď |fwj

´ fq| ` |fxj ´ fq| ă pε{2q ` pε{2q “ ε.

Then ε ă ε. Contradiction. �

4. Differentiability of functions R 99K R

4.1. The double translate.
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The function fT
a in the next definition is called the Double Translate

of f based at a.

DEFINITION 4.1.1. Let f : R 99K R, a P R.

Then fT
a : R 99K R is defined by: @h P R, pfT

a qh “ fa`h ´ fa.

Note that: @f : R 99K R, @a P RzDf , we have: fT
a “ H.

By HW#6-4, we have:

THEOREM 4.1.2. Let f : R 99K R, a P Df .

Assume that fT
a is continuous at 0. Then f is continuous at a.

The following is HW#6-5. It is the Precalculus Chain Rule.

THEOREM 4.1.3. Let f, g : R 99K R, a P Dg˝f .

Then: pg ˝ fqTa “ gTfa ˝ fT
a .

The following is HW#7-5. It is the Precalculus Product Rule.

THEOREM 4.1.4. Let f, g : R 99K R, a P Df ¨g.

Then: pf ¨ gqTa “ fT
q ¨ gq ` fq ¨ g

T
q ` fT

q ¨ g
T
q .

4.2. pO and O.

DEFINITION 4.2.1.

p‚q : RÑ R is defined by: @x P R, p‚qx “ x.

| ‚ | : RÑ R is defined by: @x P R, | ‚ |x “ |x|.
?
‚ : R 99K R is defined by: @x P R,

?
‚x “

?
x.

DEFINITION 4.2.2. Let k P N0. Then

p‚q
k : RÑ R is defined by: @x P R, p‚qkx “ xk and

| ‚ |
k : RÑ R is defined by: @x P R, | ‚ |kx “ |x|

k.

THEOREM 4.2.3.

p‚q0 “ | ‚ |0 “ CR
1 and p‚q1 “ p‚q “ idR and | ‚ |1 “ | ‚ |.

THEOREM 4.2.4. @k P N0, | ‚ |
2k “ p‚q2k.

THEOREM 4.2.5. p‚q2|r0;8q : r0;8q ãÑą r0;8q.

THEOREM 4.2.6.
?
‚ “ pp‚q2|r0;8qq´1.

THEOREM 4.2.7.
?
‚ : r0;8q ãÑą r0;8q.
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DEFINITION 4.2.8. Let f : R 99K R, a P R.

Then f is defined at a means: a P Df .

Also, f is defined near a means:

DB P Bpaq s.t. B Ď Df .

Because D?‚ “ r0;8q, we get:

THEOREM 4.2.9.
?
‚ is defined near 0.01 and

?
‚ is defined at 0 and

?
‚ is NOT defined near 0.

Convention: Each of a ď b or a ă b or a ě b or a ą b,

implies that a ‰ / ‰ b.

THEOREM 4.2.10. Let f : R 99K R, a P R. Then:

p f is defined near a and continuous at a q ô

p @ε ą 0, Dδ ą 0 s.t., @x P R,

p |x´ a| ă δ q ñ p |fx ´ fa| ď ε q q.

DEFINITION 4.2.11. Let k P N0. Then:

Opkq :“ t f : R 99K R | @ε ą 0, Dδ ą 0 s.t. @x P R,
p |x| ă δ q ñ p |fx| ď ε ¨ |x|k q u.

Let k P N0 and f : R 99K R. Then: f P Opkq iff

@ε ą 0, near 0 we have ´ε ¨ | ‚ |k ď f ď ε ¨ | ‚ |k.

Let f : R 99K R. Then: f P Op7q iff

near 0 we have ´| ‚ |7 ď f ď | ‚ |7 and

near 0 we have ´| ‚ |7{2 ď f ď | ‚ |7{2 and

near 0 we have ´| ‚ |7{3 ď f ď | ‚ |7{3 etc.

Note that p‚q7 R Op7q and that | ‚ |7 R Op7q.

THEOREM 4.2.12. Let k P N0, f P Opkq.

Then: f0 “ 0 and f is defined near 0.

THEOREM 4.2.13. Let f P Opkq. Then: f P Op0q iff

p f is defined near 0 q& p f is continuous at 0 q& p f0 “ 0 q.

DEFINITION 4.2.14. @x P R, @k P N0, xk`p1{101q :“ xk ¨ 101
?
x.
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THEOREM 4.2.15.

@a P R, a1{101 “ 101
?
a and

@a P R, pa101q1{101 “ a “ pa1{101q101 and

@a P R, |a3`p1{101q| “ |a|3`p1{101q “ |a|3 ¨ |a|1{101 and

@a, b P R, p a ă b q ñ p a3`p1{101q ă b3`p1{101q q.

THEOREM 4.2.16.

(a) p‚q4 P Op3q and

(b) p‚q3`p1{101q P Op3q.

Proof. Unassigned HW. (Hint: Use Theorem 4.2.15.) �

DEFINITION 4.2.17. Let k P N0.

Then pOpkq :“ t f : R 99K R | DC ě 0, Dδ ą 0 s.t., @x P R,
p |x| ă δ q ñ p |fx| ď C ¨ |x|k q u.

NOTE: For any k P N0, for any f : R 99K R, we have:

r f P pOpkq s iff r near 0, ´C ¨ | ‚ |k ď f ď C ¨ | ‚ |k s.

Here, “near 0” means “on some ball in R centered at 0”.

THEOREM 4.2.18. @k P N, @f P pOpkq, f0 “ 0.

Note that the preceding theorem is not true when k “ 0: CR
1 P

pOp0q.

On the other hand the next result holds for all k P N0:

THEOREM 4.2.19. @k P N0, @f P pOpkq, f is defined near 0.

THEOREM 4.2.20. @k P N0, p‚qk, | ‚ |k P pOpkq.

The next result is called the chain of pO, O spaces:

THEOREM 4.2.21.
pOp1q Ě Op1q Ě pOp2q Ě Op2q Ě pOp3q Ě Op3q Ě pOp4q Ě Op4q Ě
pOp5q Ě Op5q Ě pOp6q Ě Op6q Ě pOp7q Ě Op7q Ě pOp8q Ě Op8q Ě ¨ ¨ ¨ .

THEOREM 4.2.22. Let k P N0. Then:

@f, g P Opkq, f ` g P Opkq and

@c P R, @f P Opkq, c ¨ f P Opkq.

The preceding and following theorem are both unassigned HW.

NOTE: The “linear operations” are: addition, scalar multiplication.
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The preceding theorem says that Opkq is closed under linear operations.

The phrase “Opkq is linearly closed” expresses that.

The set pOpkq is also linearly closed:

THEOREM 4.2.23. Let k P N0. Then:

@f, g P pOpkq, f ` g P pOpkq and

@c P R, @f P pOpkq, c ¨ f P pOpkq.

THEOREM 4.2.24. Let k, ` P N0, f P Opkq, g P Op`q.

Then g ˝ f P Op` ¨ kq.

Proof. Want: @ε ą 0, Dδ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |pg ˝ fqx| ď ε ¨ |x|`¨k q.

Given ε ą 0. Want: Dδ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |pg ˝ fqx| ď ε ¨ |x|`¨k q.

Since ε ą 0 and g P Op`q, choose µ ą 0 s.t., @y P R,

p |y| ă µ q ñ p |gy| ď ε ¨ |y|` q.

Let τ :“ mintµ{2, 1u. Then τ ą 0 and τ ď µ{2 and τ ď 1.

Since τ ą 0 and f P Opkq, choose λ ą 0 s.t., @x P R,

p |x| ă λ q ñ p |fx| ď τ ¨ |x|k q.

Let δ :“ mintλ, 1u. Then δ ą 0 and δ ď λ and δ ď 1.

Want: @x P R, p |x| ă δ q ñ p |pg ˝ fqx| ď ε ¨ |x|`¨k q.

Given x P R. Assume |x| ă δ. Want: |pg ˝ fqx| ď ε ¨ |x|`¨k.

Since |x| ă δ ď λ, by choice of λ, we get: |fx| ď τ ¨ |x|k.

Let y :“ fx. Then |y| “ |fx| ď τ ¨ |x|k, so |y| ď τ ¨ |x|k.

We have |x| ă δ ď 1, so, since k P N0, we get: |x|k ď 1.

Then |y| ď τ ¨ |x|k ď τ ¨ 1 “ τ ď µ{2 ă µ, so |y| ă µ.

Since |y| ă µ, by choice of µ, we get: |gy| ď ε ¨ |y|`.

Since |y| ď τ ¨ |x|k and τ ď 1, we get: |y| ď |x|k.

Then |pg ˝ fqx| “ |gfx | “ |gy| ď ε ¨ |y|` ď ε ¨ p|x|kq` “ ε ¨ |x|`¨k. �

THEOREM 4.2.25. Let k, ` P N0. Then:

@f P pOpkq, @g P pOp`q, f ¨ g P pOpk ` `q and

@f P pOpkq, @g P Op`q, f ¨ g P Opk ` `q and

@f P Opkq, @g P pOp`q, f ¨ g P Opk ` `q and

@f P Opkq, @g P Op`q, f ¨ g P Opk ` `q.

Some of the following theorem fails when k “ 0 or ` “ 0, so note the

requirement that k, ` P N.

THEOREM 4.2.26. Let k, ` P N. Then:

@f P pOpkq, @g P pOp`q, f ˝ g P pOp` ¨ kq and
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@f P pOpkq, @g P Op`q, f ˝ g P Op` ¨ kq and

@f P Opkq, @g P pOp`q, f ˝ g P Op` ¨ kq and

@f P Opkq, @g P Op`q, f ˝ g P Op` ¨ kq.

We define

agreement, near a point, of two partial functions on R:

DEFINITION 4.2.27. Let f and g be two functions, q P R.

Assume Df Ď R and Dg Ď R.

By near q, f “ g, we mean: DB P Bpqq s.t. on B, f “ g.

4.3. Polynomials RÑ R.

DEFINITION 4.3.1. @k P N0, Hpkq :“ tc ¨ p‚qk | c P Ru.
C :“ Hp0q, L :“ Hp1q, Q :“ Hp2q, K :“ Hp3q.

Elements of C are called constant.

Elements of L are called (homogeneous) linear.

Elements of Q are called (homogeneous) quadratic.

Elements of K are called (homogeneous) cubic.

For any k P N0, elements of Hpkq are called

(homogenous) polynomials RÑ R of degree k, or

k-polynomials RÑ R.

We may sometimes omit “RÑ R”.

THEOREM 4.3.2. @C P C, C is Lipschitz-0.

Proof. Want: @x, y P R, |Cx ´ Cy| ď 0 ¨ |x´ y|.

Given x, y P R. Want: |Cx ´ Cy| ď 0 ¨ |x´ y|.

Choose a P R s.t. C “ CR
a .

Then Cx “ a and Cy “ a.

Then |Cx ´ Cy| “ |a´ a| “ |0| “ 0 ¨ |x´ y|. �

DEFINITION 4.3.3. @L P L, rLs :“ L1.

Let m P R and let L :“ m ¨ p‚q.

Then rLs “ L1 “ m ¨ 1 “ m, so rLs is just the slope of L.

Also, |rLs| is the absolute value of the slope of L,

which we might call the “absolute slope” of L.
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We next show: Each linear function is Lipschitz,

with Lipschitz constant equal to the absolute slope:

THEOREM 4.3.4. @L P L, L is Lipschitz-|rLs|.

Proof. Choose m P R s.t. L “ m ¨ p‚q.

Then rLs “ L1 “ m ¨ 1 “ m. Let a :“ |m|.

Then a “ |rLs|. Want: L is Lipschitz-a.

Want: @x, y P DL, |Lx ´ Ly| ď a ¨ |x´ y|.

Given x, y P DL. Want: |Lx ´ Ly| ď a ¨ |x´ y|.

We have Lx ´ Ly “ m ¨ x´m ¨ y “ m ¨ px´ yq.

Then |Lx ´ Ly| “ |m| ¨ |x´ y| “ a ¨ |x´ y|, so |Lx ´ Ly| “ a ¨ |x´ y|.

Then |Lx ´ Ly| ď a ¨ |x´ y|. �

THEOREM 4.3.5. Let F P pHp0qqY pHp1qqY pHp2qqY pHp3qqY . . . .
Then F is continuous.

Idea of proof:

If F P Hp0q, then F is constant, hence Lipschitz-0,

hence Lipschitz, hence uniformly continuous, hence continuous.

If F P Hp1q, then F is linear, hence Lipschitz-rF s,

hence Lipschitz, hence uniformly continuous, hence continuous.

If F P Hp2q, then F is quadratic,

hence a product of two linear functions,

hence a product of two continuous functions, hence continuous.

If F P Hp3q, then F is cubic,

hence a product of three linear functions,

hence a product of three continuous functions, hence continuous.

Etc.

End of idea of proof.

The next result says that every k-polynomial has order k.

In particular, C Ď pOp0q and L Ď pOp1q and Q Ď pOp2q and K Ď pOp3q.

THEOREM 4.3.6. Let k P N0. Then Hpkq Ď pOpkq.

Proof. Want: @P P Hpkq, P P pOpkq.
Given P P Hpkq. Want: P P pOpkq.
Want: DC ě 0, Dδ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |Px| ď C ¨ |x|k q.

Since P P Hpkq, choose a P R s.t. P “ a ¨ p‚qk.
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Let C :“ |a|, δ :“ 1. Then C ě 0 and δ ą 0.

Want: @x P R, p |x| ă δ q ñ p |Px| ď C ¨ |x|k q.

Given x P R. Assume: |x| ă δ. Want: |Px| ď C ¨ |x|k.

We have |Px| “ |a ¨ x
k| “ |a| ¨ |x|k “ C ¨ |x|k.

Then |Px| “ C ¨ |x|k, so |Px| ď C ¨ |x|k. �

DEFINITION 4.3.7. 0 :“ CR
0 .

THEOREM 4.3.8. Let k P N0. Then: 0 P Opkq and 0 P pOpkq.

THEOREM 4.3.9. Let k P N0. Then pHpkqq X pOpkqq “ t0u.

Proof. 0 “ 0 ¨ p‚qk P Hpkq. Also, 0 P Opkq.

Then 0 P pHpkqq X pOpkqq, so t0u Ď pHpkqq X pOpkqq.
Want: pHpkqq X pOpkqq Ď t0u.
Want: @f P pHpkqq X pOpkqq, f P t0u.

Given f P pHpkqq X pOpkqq. Want:f P t0u.

Since f P Hpkq, choose c P R s.t. f “ c ¨ p‚qk.

Since 0 ¨ p‚qk “ 0 P t0u, it suffices to show: c “ 0.

Assume c ‰ 0. Want: Contradiction.

Since c P R and c ‰ 0, we get: |c| ą 0.

Let ε :“ |c|{2. Then ε ą 0.

So, since f P Opkq, choose δ ą 0 s.t., @x P R,

p |x| ă δ q ñ p |fx| ď ε ¨ |x|k q.

Since δ ą 0, we get: δ{2 ą 0, and δ{2 ă δ.

Since δ{2 ą 0, we get: |δ{2| “ δ{2.

Let x :“ δ{2. Then |x| “ |δ{2| “ δ{2 ą 0, so |x| ą 0.

Also, |x| “ |δ{2| “ δ{2 ă δ, so |x| ă δ.

So, by choice of δ, we get: |fx| ď ε ¨ |x|k.

Since f “ c ¨ p‚qk, we get: fx “ c ¨ xk.

Then |c| ¨ |x|k “ |c ¨ xk| “ |fx| ď ε ¨ |x|k, so |c| ¨ |x|k ď ε ¨ |x|k.

Since |x| ą 0 and k P N0, we get: |x|k ą 0.

So, since |c| ¨ |x|k ď ε ¨ |x|k, we get |c| ď ε.

Then 2 ¨ ε “ 2 ¨ p|c|{2q “ |c| ď ε, so 2 ¨ ε ď ε, so 2 ¨ ε´ ε ď ε´ ε,

so ε ď 0, so 0 ě ε.

Then 0 ě ε ą 0, so 0 ą 0. Contradiction. �

4.4. Linearizations and derivatives.

THEOREM 4.4.1. Let f : R 99K R, q P R.

Assume f is defined near q. Then, near q, we have: f ´ f “ 0.
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THEOREM 4.4.2. Let f : R 99K R, q P Df . Then:

p f is defined near q q ñ p fT
q is defined near 0 q.

DEFINITION 4.4.3. Let f : R 99K R, a P R.

Then LINSaf :“ tL P L | fT
a ´ L P Op1q u.

Let f : R 99K R, a P Df .

Elements of LINSaf are called linearizations of f at a.

We next show that p‚q2 has a linearization at 3:

THEOREM 4.4.4. Define f : RÑ R by: @x P R, fx “ x2.

Define L P L by: @h P R, Lh “ 6h. Then L P LINS3f .

Proof. Want: fT
3 ´ L P Op1q.

Since p‚q2 P Q “ Hp2q Ď pOp2q Ď Op1q,

it suffices to show: fT
3 ´ L “ p‚q

2.

Want: @h P R, pfT
3 ´ Lqh “ pp‚q

2qh.

Given h P R. Want: pfT
3 ´ Lqh “ pp‚q

2qh.

We have: pfT
3 ´ Lqh “ pfT

3 qh ´ Lh
“˚ f3`h ´ f3 ´ Lh
“˚ p3` hq2 ´ 32 ´ 6h

“ 9` 6h` h2 ´ 9´ 6h

“ h2 “ pp‚q2qh. �

We next show that | ‚ | has no linearization at 0:

THEOREM 4.4.5. Let f :“ | ‚ |. Then LINS0f “ H.

Idea of proof: Want: @L P L, L R LINS0f .

Given L P L. Want: L R LINS0f .

Choose a P R s.t. L “ a ¨ p‚q.

In general, we would handle a ě 0 and a ď 0 separately.

We looked only at a “ 1. Want: fT
0 ´ p‚q R Op1q.

Since f0 “ |0| “ 0, we know: fT
0 “ f .

Want: f ´ p‚q R Op1q.

We graphed f ´ p‚q, and saw that, near 0,

that graph is not in the envelope semi-between ´| ‚ | and | ‚ |.

So, since the graph is not in every linear envelope, we get: f´p‚q R Op1q.

We leave it to the reader to formalize this argument.

We leave it to the reader to generalize the proof to all a ě 0.
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We leave it to the reader, then to consider the case a ď 0.

End of idea of proof.

THEOREM 4.4.6. Let f : R 99K R, a P R. Assume LINSaf ‰ H.

Then: DL P L, DR P Op1q s.t. fT
a “ L`R.

Proof. Since LINSaf ‰ H, choose L s.t. L P LINSaf .

Then L P LINSaf Ď L and fT
a ´ L P Op1q.

Let R :“ fT
a ´ L. Then R P Op1q. Want: fT

a “ L`R.

Since L P L, we get ´L` L “ 0.

Then fT
a “ fT

a ´ L` L “ R ` L “ L`R. �

THEOREM 4.4.7. Let f : R 99K R, a P R. Assume LINSaf ‰ H.

Then: fT
a P

pOp1q and f is defined near a

and f is continuous at a.

Proof. By Theorem 4.4.6, choose L P L, R P Op1q s.t. fT
a “ L`R.

Since L P L “ Hp1q Ď pOp1q and R P Op1q Ď pOp1q,
we conclude that R ` L P pOp1q. Then fT

a “ R ` L P pOp1q.
Want: f is defined near a and f is continuous at a.

Since fT
a P

pOp1q Ď Op0q, we see that

fT
a is defined near 0 and fT

a is continuous at 0.

Then: f is defined near a and f is continuous at a. �

We next show that

no function R 99K R can have two linearizations at one point:

THEOREM 4.4.8. Let f : R 99K R, a P R.

Let L,M P LINSaf . Then L “M .

Proof. By assumption, LINSaf ‰ H.

Let R :“ fT
a ´ L, S :“ fT

a ´M .

Since R, S P Op1q, we get: R ´ S P Op1q.

Since f We have R ´ S “ pfT
a ´ f

T
a q ` pM ´ Lq

By Theorem 4.4.7, fT
a is defined near 0.

Then: near 0, fT
a ´ f

T
a “ 0.

Then: near 0, R ´ S “M ´ L.

So, since R ´ S P Op1q, we get: M ´ L P Op1q.

Since L,M P L “ Hp1q, we get: M ´ L P Hp1q.
Then M ´ L P pHp1qq X pOp1qq.
So, since pHp1qq X pOp1qq “ t0u, we get: M ´ L P t0u.

Then M ´ L “ 0, and so L “M . �
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DEFINITION 4.4.9. Let f : R 99K R, a P R.

Then Daf :“ UEpLINSafq.

In the preceding, Daf is the D-derivative at a of f .

THEOREM 4.4.10. Let f : R 99K R, a P R, L P L. Then:

pDaf “ L q ô pL P LINSaf q ô p fT
a ´ L P Op1q q.

Idea of proof:

By definition of LINSaf , we have:

L P LINSaf iff fT
a ´ L P Op1q.

We therefore need only show: L P LINSaf iff L “ Daf .

By Theorem 4.4.8, we have:

L P LINSaf iff tLu “ LINSaf .

Then: L P LINSaf iff L “ UEpLINSafq.

Then: L P LINSaf iff L “ Daf .

End of idea of proof.

By Theorem 4.4.4, we get D3pp‚q
2q “ 6 ¨ p‚q,

or, in other words:

THEOREM 4.4.11. Let f “ p‚q2, L :“ 6 ¨ p‚q. Then D3f “ L.

Proof. By Theorem 4.4.4, we have: L P LINS3f .

Then by Theorem 4.4.10, we get: D3f “ L. �

THEOREM 4.4.12. Let f “ | ‚ |. Then D0f “ /.

DEFINITION 4.4.13. Let f : R 99K R.

Then f 1 : Df 99K R is defined by: @a P Df , f 1a “ rDaf s.

Also, D1f :“ Df 1.

In the preceding, f 1 is called the prime derivative of f .

Sometimes we simply call f 1 the derivative of f .

Let f :“ p‚q2, L :“ 6 ¨ p‚q. By Theorem 4.4.11, D3f “ L.

Then f 13 “ rD3f s “ r6 ¨ p‚qs “ p6 ¨ p‚qq1 “ 6 ¨ 1 “ 6.

Unassigned HW: Show: @x P R, f 1x “ 2x.

Let g :“ | ‚ |. Then, since D0g “ /, we get: g10 “ /.

Unassigned HW: Show: @x ă 0, g1x “ ´1.

Unassigned HW: Show: @x ą 0, g1x “ 1.
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THEOREM 4.4.14. Let g :“ | ‚ |. Then D1g “ Rˆ0 Ĺ R “ Dg.

Let f :“ p‚q2|r7; 9s. Then f is not defined near 7, so 7 R D1f .
In fact, we have:

THEOREM 4.4.15. Let f :“ p‚q2|r7; 9s. Then D1f “ p7; 9q.

THEOREM 4.4.16. Let f : R 99K R, a P R.

Then: p a P D1f q ô p f 1a ‰ / q ô pDaf ‰ / q ô pLINSaf ‰ Hq.

For any f : R 99K R, for any a P R,

by f is differentiable at a, we mean: a P D1f .

For any f : R 99K R, for any S Ď R,

by f is differentiable on S, we mean: S Ď D1f .

For any f : R 99K R,

by f is differentiable, we mean: f is differentiable on Df .

This is equivalent to: Df “ D1f .

By the preceding theorem and Theorem 4.4.7, we have:

THEOREM 4.4.17. Let f : R 99K R, a P D1f .

Then: fT
a P

pOp1q and f is defined near a

and f is continuous at a.

DEFINITION 4.4.18. @f : R 99K R, we define:

f2 “ pf 1q1 and f 3
“ ppf 1q1q1 and f4 “ pppf 1q1q1q1 and

D2f :“ Df2 and D3f :“ Df3 and D4f :“ Df4.

For any f : R 99K R, Df Ě D1f Ě D2f Ě D3f Ě D4f .

Let S :“ tf | f : R 99K Ru be the set of partial functions R 99K R.

Define Φ : S Ñ S by: @f P S, Φpfq “ f 1.

For any f P S, for all k P N0, we define f pkq :“ Φk
˝pfq.

For any f P S, we have f p0q “ f and f p1q “ f 1 and f p2q “ f2

and f p3q “ f3 and f p4q “ f4.

For any f P S, we have: @k P N0, f
pk`1q “ pf pkqq1.

For any f P S, for all k P N0, we define Dpkqf :“ Df pkq .

For any f P S, for all k P N0, we have Dpkqf Ě Dpk`1qf .

Then: @f P S, Dp0qf Ě Dp1qf Ě Dp2qf Ě Dp3qf Ě ¨ ¨ ¨ .
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4.5. Derivatives of Polynomials.

THEOREM 4.5.1. Let C P C, a P R. Then CT
a “ 0.

Idea of proof: Choose b P R s.t. C “ CR
b . For any h P R, we have

pCT
a qh “ Ca`h ´ Ca “ pCR

b qa`h ´ pC
R
b qa “ b´ b “ 0 “ 0h.

End of idea of proof.

THEOREM 4.5.2. Let C P C, a P R. Then DaC “ 0.

Proof. Since 0 P L, it suffices to show: CT
a ´ 0 P Op1q.

We have CT
a ´ 0 “ 0´ 0 “ 0 P Op1q. �

THEOREM 4.5.3. Let C P C. Then C 1 “ 0.

Idea of proof: For any x P R, we have

C 1x “ rDxCs “ r0s “ 01 “ 0.

End of idea of proof.

THEOREM 4.5.4. Let L P L, a P R. Then LT
a “ L.

Proof. Want: @h P R, pLT
aqh “ Lh.

Given h P R. Want: pLT
aqh “ Lh.

Since L is algebraically linear, we have: La`h “ La ` Lh.

Then pLT
aqh “ La`h ´ La “ La ` Lh ´ La “ Lh. �

Since p‚q “ 1 ¨ p‚q1 P H1 “ L,

the preceding theorem gives: @a P R, p‚qTa “ p‚q.

THEOREM 4.5.5. Let L P L, a P R. Then DaL “ L.

Proof. We have LT
a ´ L “ L´ L “ 0 P Op1q, so L P LINSaL.

Then, by uniqueness of linearization, we get: LINSaL “ tLu.

Then DaL “ UEpLINSaLq “ UEtLu “ L. �

THEOREM 4.5.6. Let m P R, L :“ m ¨ p‚q. Then L1 “ CR
m.

Proof. Want: @a P R, L1a “ pC
R
mqa.

Given a P R. Want: L1a “ pC
R
mqa.

We have L1a “ rDaLs “ rLs “ L1 “ m ¨ 1 “ m “ pCR
mqa. �

THEOREM 4.5.7. @j P N, pp‚qjqTa ´ j ¨ aj´1 ¨ p‚q P Op1q.

Proof. This is HW#12-1. �

THEOREM 4.5.8. Let j P N. Then pp‚qjq1 “ j ¨ p‚qj´1.

Proof. This is HW#12-2. �



CLASS NOTES 117

4.6. Sub-k versus order k vanishing.

Let f : R 99K R. Recall that f0 “ 0 iff

f is defined near 0 and f is continuous at 0 and f0 “ 0.

Then: f0 “ 0 ð f P Op0q,

but f0 “ 0 œ f P Op0q.

So: subconstant implies vanishes at zero, but not conversely.

We will show below that

f0 “ f 10 “ 0 ô f P Op1q.

That is, sublinear iff vanishes to order 1 at zero.

We will also show below (after the MVT) that

f0 “ f 10 “ f20 “ 0 ñ f P Op2q,

but f0 “ f 10 “ f20 “ 0 ö f P Op2q,

So: vanishes to order 2 at zero implies subquadratic, but not conversely.

Unassigned HW: show, for all k P r2..8q, that

vanishes to order k at zero implies sub-k, but not conversely.

THEOREM 4.6.1. Let f : R 99K R. Then:

f P Op1q ô f0 “ f 10 “ 0.

Proof. Proof of ñ:

Assume: f P Op1q Want: f0 “ f 10 “ 0.

Since f P Op1q Ď Op0q, it follows that:

f is defined near 0 and f is continuous at 0 and f0 “ 0.

Since f0 “ 0, it remains to show: f 10 “ 0.

Since f0 “ 0, we get: fT
0 “ f .

Then fT
0 ´ 0 “ fT

0 “ f P Op1q, and so 0 P LINS0f .

Then, by uniqueness of linearization, LINS0f “ t0u.

Then D0f “ UEpLINS0fq “ UEt0u “ 0.

Then f 10 “ rD0f s “ r0s “ 01 “ 0.

End of proof of ñ.

Proof of ð:

Assume: f0 “ f 10 “ 0 Want: f P Op1q.

Since f 10 ‰ /, we get D0f ‰ /, so D0f P LINS0f . Let L :“ D0f .

Then L P LINS0f , so fT
0 ´ L P Op1q. Want: fT

0 ´ L “ f .

Since f0 “ 0, we get: fT
0 “ f . Want: f ´ L “ f . Want: L “ 0.

Want: @h P R, Lh “ 0h. Given h P R. Want: Lh “ 0h.

Since L P LINS0f Ď L, we see that L is algebraically linear.

Then Lh¨1 “ h ¨ L1. We have L1 “ rLs “ rD0f s “ f 10 “ 0.



118 SCOT ADAMS

Then Lh “ Lh¨1 “ h ¨ L1 “ h ¨ 0 “ 0 “ 0h.

End of proof of ð. �

DEFINITION 4.6.2. Let f : RÑ R, a P R.

By f is continuous near a, we mean: DB P Bpaq s.t. f is continuous

on B.

By f is differentiable near a, we mean: DB P Bpaq s.t. B Ď D1f .

Recall: @g : R 99K R, 0 P D1g implies:

gT0 P
pOp1q and g is defined near 0 and g is differentiable at 0.

Let A :“ t1, 1{2, 1{3, . . .u and let f :“ χR
A ¨ | ‚ |

3.

Then f P pOp3q Ď Op2q. Also, f is not continuous near 0.

Since f P Op2q Ď Op1q, by Theorem 4.6.1, we get: f0 “ f 10 “ 0.

Let a :“ 0. Then this function f shows:

differentiable at a does not imply continuous near a.

Since f is not continuous near 0,

it follows that f is not differentiable near 0.

Then f 1 is not defined near 0.

Let g :“ f 1. Then g is not defined near 0. Then 0 R D1g.
Then 0 R D1g “ D1f 1 “ D2f .
So this function f shows:

subquadratic does not imply vanishes to order 2 at zero.

Note that the counterexample f fails to vanish to order 2 at zero

because f is not twice differentiable at zero.

This begs the question:

Let h : R 99K R be twice differentiable at zero.

Then do we have: h0 “ h10 “ h20 “ 0 ô h P Op2q ?

The answer is yes, and, in fact, we’ll eventually prove:

THEOREM 4.6.3. Let h : R 99K R, k P N0. Assume 0 P Dpkqh .

Then: h P Opkq ô h0 “ h10 “ ¨ ¨ ¨ “ h
pkq
0 “ 0.

4.7. Algebraic linearity of the D-derivative.

THEOREM 4.7.1. Let f :“ | ‚ |, g :“ ´| ‚ |.

Then D0pf ` gq “ 0. Also, pD0fq ` pD0gq “ /.

Proof. We have f ` g “ 0 P C, so D0pf ` gq “ 0.

Want: pD0fq ` pD0gq “ /.

Since D0f “ /, it follows that pD0fq ` pD0gq “ /. �
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THEOREM 4.7.2. Let f, g : R 99K R, a P R.

Then Dapf ` gq “˚ pDafq ` pDagq.

Proof. Want: p pDafq ` pDagq ‰ / q ñ p Dapf ` gq “ pDafq ` pDagq

q.

Assume pDafq ` pDagq ‰ /. Want: Dapf ` gq “ pDafq ` pDagq.

Let L :“ Daf , M :“ Dag. Then L`M ‰ /, so L ‰ / ‰M .

Then L,M P L and fT
a ´ L, g

T
a ´M P Op1q.

Want: Dapf ` gq “ L`M .

Since L is linearly closed and L,M P L, we get: L`M P L.

By uniqueness of linearization, want: pf ` gqTa ´ pL`Mq P Op1q.

Since fT
a ´ L, g

T
a ´M P Op1q and since Op1q is linearly closed,

we conclude: pfT
a ´ Lq ` pg

T
a ´Mq P Op1q.

Then pf ` gqTa ´ pL`Mq “ fT
a ` g

T
a ´ L´M

“ pfT
a ´ Lq ` pg

T
a ´Mq P Op1q. �

THEOREM 4.7.3. Let f :“ | ‚ |.

Then D0p0 ¨ fq “ 0. Also, 0 ¨ pD0fq “ /.

Proof. We have 0 ¨ f “ 0 P C, so D0p0 ¨ fq “ 0.

Want: 0 ¨ pD0fq “ /.

Since D0f “ /, it follows that 0 ¨ pD0fq “ /. �

THEOREM 4.7.4. Let f : R 99K R, a, c P R.

Then Dapc ¨ fq “˚ c ¨ pDafq.

Proof. This is HW#10-5. �

THEOREM 4.7.5. Let f : R 99K R, a P R, c P Rˆ0 .

Then Dapc ¨ fq “ c ¨ pDafq.

Proof. By Theorem 4.7.4, we have: Dapc ¨ fq “˚ c ¨ pDafq.

Want: Dapc ¨ fq
˚“ c ¨ pDafq.

Want: c ¨ pDafq “˚ Dapc ¨ fq.

Let φ :“ c ¨ f and let γ :“ 1{c.

By Theorem 4.7.4, Dapγ ¨ φq “˚ γ ¨ pDaφq.

Then c ¨ pDapγ ¨ φqq “˚ c ¨ γ ¨ pDaφq.

So, since γ ¨ φ “ p1{cq ¨ c ¨ f “ f and since c ¨ γ “ c ¨ p1{cq “ 1, we get:

c ¨ pDafq “˚ 1 ¨ pDaφq.

Then c ¨ pDafq “˚ 1 ¨ pDaφq “ Daφ “ Dapc ¨ fq. �
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4.8. The D-product and chain rules.

The following is the D-product rule:

THEOREM 4.8.1. Let f, g : R 99K R, a P R.

Then Dapf ¨ gq “˚ pDafq ¨ ga ` fa ¨ pDagq.

Proof. Want: p pDafq ¨ ga ` fa ¨ pDagq ‰ / q

ñ p Dapf ¨ gq “ pDafq ¨ ga ` fa ¨ pDagq q.

Assume pDafq ¨ ga ` fa ¨ pDagq ‰ /.

Want: Dapf ¨ gq “ pDafq ¨ ga ` fa ¨ pDagq.

Let L :“ Daf , M :“ Dag, y :“ fa, z :“ ga.

Then L ¨ z ` y ¨M ‰ /, so L ‰ / & z ‰ / & y ‰ / & M ‰ /.

Then y, z P R and L,M P L and fT
a ´ L, g

T
a ´M P Op1q.

Want: Dapf ¨ gq “ L ¨ z ` y ¨M .

Since L is linearly closed and L,M P L, we get: L ¨ z ` y ¨M P L.

By uniqueness of linearization, want: pf ¨ gqTa ´ pL ¨ z ` y ¨Mq P Op1q.

By the Precalculus Product Rule, pf ¨ gqTa “ fT
a ¨ ga ` fa ¨ g

T
a ` f

T
a ¨ g

T
a .

Then pf ¨ gqTa ´ pL ¨ z ` y ¨Mq “ pf
T
a ´Lq ¨ ga ` fa ¨ pg

T
a ´Mq ` f

T
a ¨ g

T
a .

Want: pfT
a ´ Lq ¨ ga ` fa ¨ pg

T
a ´Mq ` fT

a ¨ g
T
a P Op1q.

Want: pfT
a ´ Lq ¨ ga, fa ¨ pg

T
a ´Mq, fT

a ¨ g
T
a P Op1q.

Since fT
a ´ L P Op1q and since Op1q is linearly closed,

we get: pfT
a ´ Lq ¨ ga P Op1q.

Since gTa ´M P Op1q and since Op1q is linearly closed,

we get: fa ¨ pg
T
a ´Mq P Op1q.

Want: fT
a ¨g

T
a P Op1q. Since fT

a , g
T
a P

pOp1q, we get: fT
a ¨g

T
a P

pOp2q.
Then fT

a ¨ g
T
a P

pOp2q Ď Op1q. �

THEOREM 4.8.2. Let f and g be functionals. Let h be a function.

Then pf ` gq ˝ h “ pf ˝ hq ` pg ˝ hq.

Proof. Want: @x, ppf ` gq ˝ hqx “ ppf ˝ hq ` pg ˝ hqqx.

Given x. Want: ppf ` gq ˝ hqx “ ppf ˝ hq ` pg ˝ hqqx.

We have ppf ` gq ˝ hqx “ pf ` gqhx “ fhx ` ghx
“˚ pf ˝ hqx ` pg ˝ hqx
“˚ ppf ˝ hq ` pg ˝ hqqx. �

THEOREM 4.8.3. Let L P L. Then:

r @c, x P R, Lc¨x “ c ¨ Lx s

& r @w, x P R, Lw`x “ Lw ` Lx s.
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The proof of the preceding theorem is left as an unassigned HW.

The preceding theorem can be used to prove the next two:

THEOREM 4.8.4. Let L P L and let c P R and let f be a function.

Then L ˝ pc ¨ fq “ c ¨ pL ˝ fq.

THEOREM 4.8.5. Let L P L and let f, g be functions.

Then L ˝ pf ` gq “ pL ˝ fq ` pL ˝ gq.

Theorem 4.8.2 is sometimes expressed by saying

˝ is linear on the left.

Theorem 4.8.4 and Theorem 4.8.5 are sometimes expressed by saying

˝ is linear on the right, PROVIDED the left function is linear.

However, if the left function is, say, a quadratic Q,

then we get different formulas for Q ˝ pf ` gq and Qpc ¨ fq:

THEOREM 4.8.6. Let Q P Q. Let f and g be functions.

Then Q ˝ pf ` gq “ pQ ˝ fq ` 2 ¨ f ¨ g ` pQ ˝ gq.

THEOREM 4.8.7. Let Q P Q. Let c P R. Let f be a function.

Then Q ˝ pc ¨ fq “ c2 ¨ pQ ˝ fq.

The next theorem expresses that L is closed under composition.

It also says that the slope of the composite is the product of the slopes.

THEOREM 4.8.8. Let L,M P L. Then:

M ˝ L P L and rM ˝ Ls “ rM s ¨ rLs.

Proof. Since L,M P L “ Hp1q, we get M ˝ L P Hp1 ¨ 1q “ Hp1q.
Want: rM ˝ Ls “ rM s ¨ rLs.

Let a :“ rLs, b :“ rM s. Want: rM ˝ Ls “ b ¨ a.

We have a “ rLs “ L1, so a “ L1.

We have b “ rM s “M1, so b “M1.

By algebraic linearity of M , we have Ma¨1 “ a ¨M1.

Then rM˝Ls “ pM˝Lq1 “ML1 “Ma “Ma¨1 “ a¨M1 “ a¨b “ b¨a. �

We will be using two properties of pO and O:

@α P pOp1q, @β P Op1q, β ˝ α P Op1 ¨ 1q “ Op1q and

@α P Op1q, @β P pOp1q, β ˝ α P Op1 ¨ 1q “ Op1q.

The following is the D-chain rule:

THEOREM 4.8.9. Let f, g : R 99K R, a P R. Then:

Dapg ˝ fq “˚ pDfagq ˝ pDafq.
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Proof. Want: p pDfagq ˝ pDafq ‰ / q

ñ p Dapg ˝ fq “ pDfagq ˝ pDafq q.

Assume pDfagq ˝ pDafq ‰ /.

Want: Dapg ˝ fq “ pDfagq ˝ pDafq.

Let L :“ Daf , M :“ Dfag.

Then M ˝ L ‰ /, so L ‰ / ‰M .

Then L,M P L and fT
a ´ L, g

T
fa
´M P Op1q.

Let R :“ fT
a ´ L, S :“ gTfa ´M . Then R, S P Op1q.

Also L`R “ fT
a and M ` S “ gTfa .

Want: Dapg ˝ fq “M ˝ L.

Since L is closed under composition, and L,M P L, we get: M ˝L P L.

By uniqueness of linearization, want: pg ˝ fqTa ´ pM ˝ Lq P Op1q.

By the Precalculus Chain Rule, pg ˝ fqTa “ gTfa ˝ f
T
a .

Want: gTfa ˝ f
T
a ´ pM ˝ Lq P Op1q.

We have gTfa ˝ f
T
a “ pM ` Sq ˝ fT

a

“ M ˝ fT
a ` S ˝ fT

a

“ M ˝ pL`Rq ` S ˝ fT
a

“ M ˝ L ` M ˝R ` S ˝ fT
a .

Then gTfa ˝ f
T
a ´ pM ˝ Lq “M ˝R ` S ˝ fT

a .

Want: M ˝R ` S ˝ fT
a P Op1q.

Want: M ˝R, S ˝ fT
a P Op1q.

Since M P L “ Hp1q Ď pOp1q and R P Op1q, we get: M ˝R P Op1q.

Want: S ˝ fT
a P Op1q.

Since S P Op1q and fT
a P

pOp1q, we get: S ˝ fT
a P Op1q. �

4.9. Properties of the prime derivative.

Unassigned HW:

@c P R, @L P L, rc ¨ Ls “ c ¨ rLs and

@L,M P L, rL`M s “ rLs ` rM s.

THEOREM 4.9.1. Let f, g : R 99K R, a P R.

Then: pf ` gq1a “˚ f 1a ` g
1
a.

Proof. We have pf ` gq1a “ rDapf ` gqs “˚ rDaf `Dags

“˚ rDaf s ` rDags “ f 1a ` g
1
a. �

THEOREM 4.9.2. Let f : R 99K R, a, c P R.

Then: pc ¨ fq1a “˚ c ¨ f 1a.

Proof. We have pc ¨ fq1a “ rDapc ¨ fqs “˚ rc ¨Daf s

“˚ c ¨ rDaf s “ c ¨ f 1a. �
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The preceding two theorems can be summarized as:

the prime derivative is algebraically linear.

The following is the prime product rule:

THEOREM 4.9.3. Let f, g : R 99K R, a P R.

Then: pf ¨ gq1a “˚ f 1a ¨ ga ` fa ¨ g
1
a.

Proof. pf ¨ gq1a “ rDapf ¨ gqs

“˚ rDaf ¨ ga ` fa ¨Dags

“ rDaf s ¨ ga ` fa ¨ rDags

“ f 1a ¨ ga ` fa ¨ g
1
a. �

The following is the prime chain rule:

THEOREM 4.9.4. Let f, g : R 99K R, a P R.

Then: pg ˝ fq1a “˚ g1fa ˝ f
1
a.

Proof. pg ˝ fq1a “ rDapg ˝ fqs

“˚ rDfag ˝Daf s

“ rDfags ¨ rDaf s

“ g1fa ˝ f
1
a. �

The following is the prime quotient rule:

THEOREM 4.9.5. Let f, g : R 99K R, a P D1f X D1g.

Assume ga ‰ 0. Then:

ˆ

f

g

˙1

a

“ ´
ga ¨ f

1
a ´ fa ¨ g

1
a

g2a
.

Proof. This is HW#11-3. �

4.10. The Mean Value Theorem.

DEFINITION 4.10.1. We define sgn : RÑ t´1, 0, 1u by:

@x P R, sgnx “

$

’

’

&

’

’

%

´1, if x ă 0

0, if x “ 0

1, if x ą 0.

The function sgn is read “sign”,

not to be confused with the trignonometric function “sine”,

which is not defined in this course.

THEOREM 4.10.2. p sgn3 “ 1 q& p sgn´π “ ´1 q& p sgn0 “ 0 q.

The function sgn is multiplicative:
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THEOREM 4.10.3. @w, x P R, sgnw¨x “ sgnw ¨ sgnx.

The function sgn is “robust”, in the sense that

small perturbations to an input don’t affect the output:

THEOREM 4.10.4. Let a, b P R.

Assume |a| ď |b|{2. Then sgna`b “ sgnb.

Proof. Exactly one of the following must be true:

(1) b ă 0 (2) b “ 0 (3) b ą 0.

Case (1): Since b ă 0, we get: sgnb “ ´1 and b{2 ă 0.

We have |a| ď |b|{2 “ ´b{2, so b{2 ď a ď ´b{2.

Since a ď ´b{2, we get b` a ď b´ pb{2q.

Since b` a ď b´ pb{2q “ b{2 ă 0, we get sgnb`a “ ´1.

Then sgnb`a “ ´1 “ sgnb.

End of Case (1).

Case (2): Since b “ 0, we get: sgnb “ 0 and b{2 “ 0.

We have |a| ď |b|{2 “ 0, so ´0 ď a ď 0.

Then a “ 0, so b` a “ 0` 0 “ 0, so sgnb`a “ 0.

Then sgnb`a “ 0 “ sgnb.

End of Case (2).

Case (3): Since b ą 0, we get: sgnb “ 1 and 0 ă b{2.

We have |a| ď |b|{2 “ b{2, so ´b{2 ď a ď b{2.

Since ´b{2 ď a, we get b´ pb{2q ď b` a.

Since 0 ă b{2 “ b´ pb{2q ď b` a, we get sgnb`a “ 1.

Then sgnb`a “ 1 “ sgnb.

End of Case (3). �

DEFINITION 4.10.5. Let S be a set, f a functional, b P R.

By on S, f ă b , we mean: @x P S, fx ă b.

By on S, f ą b , we mean: @x P S, fx ą b.

By on S, f ď b , we mean: @x P S, fx ď b.

By on S, f ě b , we mean: @x P S, fx ě b.

By on S, b ă f , we mean: @x P S, b ă fx.

By on S, b ą f , we mean: @x P S, b ą fx.
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By on S, b ď f , we mean: @x P S, b ď fx.

By on S, b ě f , we mean: @x P S, b ě fx.

DEFINITION 4.10.6. Let S be a set and let f, g be functionals.

By on S, f ă g , we mean: @x P S, fx ă gx.

By on S, f ą g , we mean: @x P S, fx ą gx.

By on S, f ď g , we mean: @x P S, fx ď gx.

By on S, f ě g , we mean: @x P S, fx ě gx.

There are many theorems like the next one.

All are unassigned HW, and may be used without comment, in proofs.

THEOREM 4.10.7. Let f : R 99K R, S Ď R, a P Df , b P R.

Then: r on S, f ă b s

ô r on S ´ a, fT
a ă b´ fa s.

THEOREM 4.10.8. Let f : R 99K R, a P Df , φ :“ fT
a .

Then LINSaf “ LINS0φ.

Proof. Want: @L P L, pL P LINSaf q ô pL P LINS0φ q.

Given L P L. Want: pL P LINSaf q ô pL P LINS0φ q.

Since a P Df , we get pfaq
T
0 “ 0. Then φ0 “ 0. Then φT

0 “ φ.

Then fT
a “ φ “ φT

0 .

Then: pL P LINSaf q ô p fT
a ´ L P Op1q q

ô pφT
0 ´ L P Op1q q ô pL P LINS0φ q. �

THEOREM 4.10.9. Let f : R 99K R, a P Df , φ :“ fT
a .

Then: Daf “ D0φ and f 1a “ φ10.

Proof. From the preceding theorem, LINSaf “ LINS0φ.

Then: Daf “ UEpLINSafq “ UEpLINS0φq “ D0φ.

Want: f 1a “ φ10.

We have: f 1a “ rDaf s “ rD0φs “ φ10. �

DEFINITION 4.10.10. Let f be a functional, a P Df .

By f has a global semi-maximum at a, we mean:

@x P Df , fx ď fa.

By f has a global strict-maximum at a, we mean:

@x P pDf q
ˆ
a , fx ă fa.

By f has a global semi-minimum at a, we mean:

@x P Df , fx ě fa.
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By f has a global strict-minimum at a, we mean:

@x P pDf q
ˆ
a , fx ą fa.

DEFINITION 4.10.11. Let f : R 99K R, a P Df .

By f has a global semi-extremum at a, we mean:

f has a global semi-maximum at a

or f has a global semi-minimum at a.

By f has a global strict-extremum at a, we mean:

f has a global strict-maximum at a

or f has a global strict-minimum at a.

DEFINITION 4.10.12. Let f : R 99K R, a P Df .

By f has a local semi-maximum at a, we mean:

DB P Bpaq s.t., @x P B, fx ď fa.

By f has a local strict-maximum at a, we mean:

DB P Bpaq s.t., @x P B, fx ě fa.

By f has a local semi-minimum at a, we mean:

DB P Bpaq s.t., @x P Bˆa , fx ă fa.

By f has a local strict-minimum at a, we mean:

DB P Bpaq s.t., @x P Bˆa , fx ą fa.

DEFINITION 4.10.13. Let f be a functional, a P Df .

By f has a local semi-extremum at a, we mean:

f has a local semi-maximum at a

or f has a local semi-minimum at a.

By f has a local strict-extremum at a, we mean:

f has a local strict-maximum at a

or f has a local strict-minimum at a.

THEOREM 4.10.14. Let f : R 99K R, a P Df .

Assume: f has a local strict-maximum at a.

Then: fT
a has a local strict-maximum at 0.

Proof. This is HW#12-4. �

The preceding theorem is one of many:

You can change “local” to “global”.
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You can change “strict” to “semi”.

You can change “maximum” to “minimum” or to “extremum”.

Thus there are 2 ¨ 2 ¨ 3 “ 12 different results.

There are also 12 converses:

THEOREM 4.10.15. Let f : R 99K R, a P Df .

Assume: fT
a has a local strict-maximum at 0.

Then: f has a local strict-maximum at a.

Proof. Unassigned HW. �

The preceding theorem is one of many:

You can change “local” to “global”.

You can change “strict” to “semi”.

You can change “maximum” to “minimum” or to “extremum”.

Thus there are 2 ¨ 2 ¨ 3 “ 12 different results.

THEOREM 4.10.16. Let f : R 99K R, a P D1f . Assume f 1a ą 0.

Then Dδ ą 0 s.t. r on pa´ δ ; aq, f ă fa s

and r on pa ; a` δq, f ą fa s.

Proof. Let L :“ Daf , m :“ rLs. Then m “ rDaf s “ f 1a ą 0, so m ą 0.

We have: @h P R, Lh “ Lh¨1 “ h ¨ L1 “ h ¨ rLs “ h ¨m “ m ¨ h.

Let R :“ fT
a ´ L. Then L`R “ fT

a .

Since L P LINSaf , we get L P L and R P Op1q.

Since R P Op1q, choose δ ą 0 s.t., @h P R,

p |h| ă δ q ñ p |Rh| ď p1{2q ¨m ¨ |h|
1 q.

Then δ ą 0. Want: r on pa´ δ ; aq, f ă fa s

and r on pa ; a` δq, f ą fa s.

Want: r on pa´ δ ; aq ´ a, fT
a ă fa ´ fa s

and r on pa ; a` δq ´ a, fT
a ą fa ´ fa s.

Want: r on p´δ ; 0q, fT
a ă 0 s

and r on p0 ; δq, fT
a ą 0 s.

Want: r @h P p´δ ; 0q, pfT
a qh ă 0 s

and r @h P p0 ; δq, pfT
a qh ą 0 s.

Want: r @h P p´δ ; 0q, sgnppfT
a qhq “ ´1 s

and r @h P p0 ; δq, sgnppfT
a qhq “ 1 s.

Want: r @h P p´δ ; 0q, sgnppfT
a qhq “ sgnphq s
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and r @h P p0 ; δq, sgnppfT
a qhq “ sgnphq s.

Want: @h P p´δ ; δq, sgnppfT
a qhq “ sgnphq.

Given h P p´δ ; δq. Want: sgnppfT
a qhq “ sgnphq.

We have |h| ă δ, so, by the choice of δ, we get: |Rh| ď p1{2q ¨m ¨ |h|
1.

So, since |Lh| “ |m¨h| “ |m|¨|h| “ |m|¨|h|
1, we have: |Rh| ď p1{2q¨|Lh|.

Let b :“ Lh and a :“ Rh. Then |a| ď |b|{2.

So, by Theorem 4.10.4, we get: sgnb`a “ sgnb.

That is, sgnpLh `Rhq “ sgnpLhq. Since m ą 0, we get: sgnm “ 1.

Then sgnppfT
a qhq “ sgnppL`Rqhq “ sgnpLh `Rhq “ sgnpLhq

“ sgnpm ¨ hq “ sgnm ¨ sgnh “ 1 ¨ sgnh “ sgnphq. �

THEOREM 4.10.17. Let f : R 99K R, a P D1f . Assume f 1a ă 0.

Then Dδ ą 0 s.t. r on pa´ δ ; aq, f ą fa s

and r on pa ; a` δq, f ă fa s.

Proof. Let L :“ Daf , m :“ rLs. Then m “ rDaf s “ f 1a ă 0, so m ă 0.

We have: @h P R, Lh “ Lh¨1 “ h ¨ L1 “ h ¨ rLs “ h ¨m “ m ¨ h.

Let R :“ fT
a ´ L. Then L`R “ fT

a .

Since L P LINSaf , we get L P L and R P Op1q.

Since R P Op1q, choose δ ą 0 s.t., @h P R,

p |h| ă δ q ñ p |Rh| ď p1{2q ¨m ¨ |h|
1 q.

Then δ ą 0. Want: r on pa´ δ ; aq, f ą fa s

and r on pa ; a` δq, f ă fa s.

Want: r on pa´ δ ; aq ´ a, fT
a ą fa ´ fa s

and r on pa ; a` δq ´ a, fT
a ă fa ´ fa s.

Want: r on p´δ ; 0q, fT
a ą 0 s

and r on p0 ; δq, fT
a ă 0 s.

Want: r @h P p´δ ; 0q, pfT
a qh ą 0 s

and r @h P p0 ; δq, pfT
a qh ă 0 s.

Want: r @h P p´δ ; 0q, sgnppfT
a qhq “ 1 s

and r @h P p0 ; δq, sgnppfT
a qhq “ ´1 s.

Want: r @h P p´δ ; 0q, sgnppfT
a qhq “ ´sgnphq s

and r @h P p0 ; δq, sgnppfT
a qhq “ ´sgnphq s.

Want: @h P p´δ ; δq, sgnppfT
a qhq “ ´sgnphq.

Given h P p´δ ; δq. Want: sgnppfT
a qhq “ ´sgnphq.

We have |h| ă δ, so, by the choice of δ, we get: |Rh| ď p1{2q ¨m ¨ |h|
1.
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So, since |Lh| “ |m¨h| “ |m|¨|h| “ |m|¨|h|
1, we have: |Rh| ď p1{2q¨|Lh|.

Let b :“ Lh and a :“ Rh. Then |a| ď |b|{2.

So, by Theorem 4.10.4, we get: sgnb`a “ sgnb.

That is, sgnpLh `Rhq “ sgnpLhq. Since m ą 0, we get: sgnm “ ´1.

Then sgnppfT
a qhq “ sgnppL`Rqhq “ sgnpLh `Rhq “ sgnpLhq

“ sgnpm¨hq “ sgnm¨sgnh “ ´1¨sgnh “ ´sgnphq. �

THEOREM 4.10.18. Let f : R 99K R, a P D1f .

Assume: f has a local semi-maximum at a.

Then: f 1a “ 0.

Proof. Assume f 1a ‰ 0. Want: Contradiction.

Exactly one of the following is true:

(1) f 1a ą 0 or (2) f 1a ă 0.

Case (1):

By Theorem 4.10.16, choose δ ą 0 s.t.

r on pa´ δ ; aq, f ă fa s and r on pa ; a` δq, f ą fa s.

Since f has a local semi-maximum at a, choose B P Bpaq s.t.

@x P B, fx ď fa.

Choose ρ ą 0 s.t. B “ Bpa, ρq. Let µ :“ mintδ, ρu.

Since µ ď δ, we get: pa ; a` µq Ď pa ; a` δq.

Since µ ď ρ, we get: Bpa, µq Ď Bpa, ρq.

Let x :“ a` pµ{2q. Then a ă x ă a` µ. Then x P pa ; a` µq.

Since x P pa ; a` µq Ď pa ; a` δq,

by choice of δ, we have fx ą fa, and so fa ă fx.

Since x P pa ; a` µq Ď Bpa, µq Ď Bpa, ρq “ B,

by choice of B, we have fx ď fa.

Then fa ă fx ď fa, so fa ă fa. Contradiction.

End of Case (1).

Case (2):

By Theorem 4.10.17, choose δ ą 0 s.t.

r on pa´ δ ; aq, f ą fa s and r on pa ; a` δq, f ă fa s.

Since f has a local semi-maximum at a, choose B P Bpaq s.t.

@x P B, fx ď fa.

Choose ρ ą 0 s.t. B “ Bpa, ρq. Let µ :“ mintδ, ρu.

Since µ ď δ, we get: pa´ µ ; aq Ď pa´ δ ; aq.

Since µ ď ρ, we get: Bpa, µq Ď Bpa, ρq.
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Let x :“ a´ pµ{2q. Then a´ µ ă x ă a. Then x P pa´ µ ; aq.

Since x P pa´ µ ; aq Ď pa´ δ ; aq,

by choice of δ, we have fx ą fa, and so fa ă fx.

Since x P pa ; a` µq Ď Bpa, µq Ď Bpa, ρq “ B,

by choice of B, we have fx ď fa.

Then fa ă fx ď fa, so fa ă fa. Contradiction.

End of Case (2). �

The following is called Fermat’s Theorem:

THEOREM 4.10.19. Let f : R 99K R, a P D1f .

Assume: f has a local semi-extremum at a.

Then: f 1a “ 0.

Proof. At least one of the following is true:

(1) f has a local semi-maximum at a.

(2) f has a local semi-minimum at a.

Case (1):

By Theorem 4.10.18, we get: f 1a “ 0.

End of Case (1).

Case (2):

Since f has a local semi-minimum at a,

it follows that ´f has a local semi-maximum at a,

so, by Theorem 4.10.18, we get: p´fq1a “ 0.

Since a P D1f , we get: p´fq1a “ ´f
1
a.

Then f 1a “ ´p´f
1
aq “ ´pp´fq

1
aq “ ´0 “ 0.

End of Case (2). �

The following theorem does not require differentiability of f :

THEOREM 4.10.20. Let f : R 99K R, a P R b ą a.

Assume f is continuous on ra; bs. Assume fa “ fb.

Then Dc P pa; bq s.t. f has a local semi-extremum at c.

Proof. Let V :“ f˚ra; bs, y :“ minV , z :“ maxV .

By the EVT, y ‰ / ‰ z.

Then @x P ra; bs, we have y ď fx ď z.

In particular, y ď fa ď z.

At least one of the following must be true:
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(1) y “ fa “ z or (2) y ‰ fa or (3) z ‰ fa.

Case (1): Let c :“ pa` bq{2. Since b ą a, we get: c P pa; bq.

Want: f has a local semi-extremum at c.

Want: f has a local semi-maximum at c.

Want: Dδ ą 0 s.t., @x P Bpc, δq, fx ď fc.

Let δ :“ pb´ aq{2. Since b ą a, we get: δ ą 0.

Want: @x P Bpc, δq, fx ď fc.

Given x P Bpc, δq. Want: fx ď fc.

We have c´ δ “ a and c` δ “ b,

so Bpc, δq “ pa; bq. Then Bpc, δq Ď ra; bs.

Since f is continuous on ra; bs, we get: ra; bs Ď Df .

We have x, c P Bpc, δq Ď ra; bs, so x, c P ra; bs.

Then x, c P ra; bs Ď Df , so x, c P Df .

Since x, c P ra; bs and x, c P Df , we get fx, fc P f˚ra; bs.

Since fx, fc P f˚ra; bs “ V , it follows that:

minV ď fx ď maxV and minV ď fc ď maxV .

Then: y ď fx ď z and y ď fc ď z.

So, since y “ fa “ z, we get: fa ď fx ď fa and fa ď fc ď fa.

Then fx “ fa and fc “ fa. Then fx “ fc. Then fx ď fc.

End of Case (1).

Case (2): Since y P V “ f˚ra; bs, choose c P ra; bs s.t. fc “ y.

Since fc “ y ‰ fa, we get fc ‰ fa, and so c ‰ a.

By hypothesis, fa “ fb.

Since fc “ y ‰ fa “ fb, we get fc ‰ fb, and so c ‰ b.

Then c P ra; bszta, bu “ pa; bq.

Want: f has a local semi-extremum at c.

Want: f has a local semi-minimum at c.

Want: Dδ ą 0 s.t., @x P Bpc, δq, fx ě fc.

Since pa; bq is open and c P pa; bq, choose δ ą 0 s.t. Bpc, δq Ď pa; bq.

Then δ ą 0. Want: @x P Bpc, δq, fx ě fc.

Given x P Bpc, δq. Want: fx ě fc.

Since x P ra; bs and since ra; bs Ď Df , we get: x P Df .

Since x P ra; bs and x P Df , we get: fx P f˚ra; bs.

Since fx P f˚ra; bs “ V and y “ minV , we get: fx ě y.

Then fx ě y “ fc.

End of Case (2).
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Case (3):

Since z P V “ f˚ra; bs, choose c P ra; bs s.t. fc “ z.

Since fc “ z ‰ fa, we get fc ‰ fa, and so c ‰ a.

By hypothesis, fa “ fb.

Since fc “ z ‰ fa “ fb, we get fc ‰ fb, and so c ‰ b.

Then c P ra; bszta, bu “ pa; bq.

Want: f has a local semi-extremum at c.

Want: f has a local semi-maximum at c.

Want: Dδ ą 0 s.t., @x P Bpc, δq, fx ď fc.

Since pa; bq is open and c P pa; bq, choose δ ą 0 s.t. Bpc, δq Ď pa; bq.

Then δ ą 0. Want: @x P Bpc, δq, fx ď fc.

Given x P Bpc, δq. Want: fx ď fc.

Since x P ra; bs and since ra; bs Ď Df , we get: x P Df .

Since x P ra; bs and x P Df , we get: fx P f˚ra; bs.

Since fx P f˚ra; bs “ V and z “ maxV , we get: fx ď z.

Then fx ď z “ fc.

End of Case (3). �

DEFINITION 4.10.21. Let f : R 99K R, S Ď R.

By f is c/d on S, we mean: f is continuous on S and IntS Ď

D1f .

Let a P R and let b ě a.

Recall: Intra; bs “ pa; bq.

So, for any f : R 99K R, we have: f is c/d on ra; bs iff

f is continuous on ra; bs and f is differentiable on pa; bq.

Let f : R 99K R and let S Ď R.

If S Ď D1f , then f is continuous on S and IntS Ď S Ď D1f ,
and so f is c/d on S. However, the converse is not necessarily true:

A function might be

continuous on r0;8q and differentiable on p0;8q

but NOT differentiable at 0.

The following is Rolle’s Theorem:

THEOREM 4.10.22. Let f : R 99K R, let a P R and let b ą a.

Assume: f is c/d on ra; bs and fa “ fb.

Then: Dc P pa; bq s.t. f 1c “ 0.
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Proof. By Theorem 4.10.20,

choose c P pa; bq s.t. f has a local semi-extremum at c.

Then c P pa; bq. Want: f 1c “ 0.

By assumption, f is c/d on ra; bs, and so Intra; bs Ď D1f .
Then c P pa; bq “ Intra; bs Ď D1f .
Then, by Fermat’s Theorem, we have f 1c “ 0. �

The following is the Mean Value Theorem or MVT:

THEOREM 4.10.23. Let f : R 99K R, a P R, b ą a.

Assume: f is c/d on ra; bs.

Then: Dc P pa; bq s.t. f 1c “ DQf pa, bq.

Proof. Let m :“ DQf pa, bq, L :“ m ¨ p‚q.

Then L1 “ CR
m. In particular, D1L “ R, and so ra; bs Ď D1L.

It follows that L is c/d on ra; bs.

By assumption, f is also c/d on ra; bs.

Then f ´ L is c/d on ra; bs.

Let g :“ f ´ L. Then g is c/d on ra; bs.

By HW#6-3, we have: ga “ gb.

Then, by Rolle’s Theorem, choose c P pa; bq s.t. g1c “ 0.

Then c P pa; bq. Want: f 1c “ DQf pa, bq.

Since L1 “ CR
m, we get Lc “ m.

Since f is c/d on ra; bs, we get: Intra; bs Ď D1f .
Since c P pa; bq “ Intra; bs Ď D1f and c P R “ D1L, we get:

pf ´ Lq1c “ f 1c ´ L
1
c.

Then 0 “ g1c “ pf ´ Lq
1
c “ f 1c ´ L

1
c, and so f 1c “ L1c.

Then f 1c “ L1c “ m “ DQf pa, bq. �

DEFINITION 4.10.24. Let I Ď R. By I is an interval, we mean:

@a, b P I, ra|bs Ď I.

THEOREM 4.10.25. p r1; 3s Y r5; 7s is not an interval q

& p p4; 9s is an interval q

& p r0;8q is an interval q

& pH is an interval q

& pR is an interval q

& pRˆ0 is not an interval q.
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THEOREM 4.10.26. Let I Ď R be a nonempty interval.

Let a :“ inf I, b :“ sup I.

Then: p I “ ra; bs q _ p I “ ra; bq q _ p I “ pa; bs q _ p I “ pa; bq q.

DEFINITION 4.10.27. Let f : R 99K R, S Ď Df .

Then: DQS
f :“ tDQf pa, bq | a, b P S, a ‰ b u.

The set DQS
f represents the set of “secant slopes for f over S”,

or the set of “slopes of secant lines for f over S”.

DEFINITION 4.10.28. Let f be a function. By f is constant,

we mean: @a, b P Df , fa “ fb.

THEOREM 4.10.29. H is constant.

THEOREM 4.10.30. Let f be a function.

Assume: #Df “ 1. Then: f is constant.

THEOREM 4.10.31. Let f : R 99K R. Then:

p#If ď 1 q ô p f is constant q ô pDQ
Df

f Ď t0u q.

The preceding theorem shows, for functions R 99K R, that

a precalculus concept such as “constant”

is equivalent to

a statement about secant slopes.

The following theorem contains six such equivalences:

THEOREM 4.10.32. Let f : R 99K R, S Ď Df . Then:

r p f |S is constant q ô pDQS
f Ď t0u q s

& r p f |S is one-to-one q ô p 0 R DQS
f q s

& r p f |S is strictly-increasing q ô pDQS
f ą 0 q s

& r p f |S is semi-increasing q ô pDQS
f ě 0 q s

& r p f |S is strictly-decreasing q ô pDQS
f ă 0 q s

& r p f |S is semi-decreasing q ô pDQS
f ď 0 q s.

THEOREM 4.10.33. Let f : R 99K R, S Ď Df , m P DQS
f .

Then: Da, b P S s.t. p a ă b q & pm “ DQf pa, bq q.

Proof. Since m P DQS
f , choose α, β P S s.t.

pα ‰ β q& pm “ DQf pα, βq q.

Let a :“ mintα, βu, b :“ maxtα, βu. Then a, b P S.

Want: p a ă b q & pm “ DQf pa, bq q.

Since α ‰ β, we get: either α ă β or β ă α.
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Then: either p pα ă β q& p a “ α q& p b “ β q q

or p p β ă α q& p a “ β q& p b “ α q q.

Then a ă b. Want: m “ DQf pa, bq.

Since m “ DQf pα, βq and since DQf pα, βq “ DQf pβ, αq,

it follows that m “ DQf pa, bq. �

THEOREM 4.10.34. Let f : R 99K R and let I be an interval.

Assume: f is c/d on I.

Then: DQI
f Ď f 1˚pInt Iq.

Proof. Want: @m P DQI
f , m P f 1˚pInt Iq.

Given m P DQI
f . Want: m P f 1˚pInt Iq.

By Theorem 4.10.33, choose a, b P I s.t. p a ă b q & pm “ DQf pa, bq q.

Since a, b P I and since I is an interval, it follows that ra|bs Ď I.

Since a ă b, it follows that ra|bs “ ra; bs. Then ra; bs Ď I.

By assumption, f is c/d on I. Then f is c/d on I.

Then, by the MVT, choose c P pa; bq s.t. f 1c “ DQf pa, bq.

Since ra; bs Ď I, we get Intra; bs Ď Int I.

We have c P pa; bq “ Intra; bs Ď Int I, so c P Int I.

Since f is c/d on I, it follows that Int I Ď D1f .
We have c P Int I Ď D1f “ Df 1 , so c P Df 1 .

Since c P Int I and c P Df 1 , we get: f 1c P f
1
˚pInt Iq.

Then m “ DQf pa, bq “ f 1c P f
1
˚pInt Iq. �

Combining Theorem 4.10.32 with Theorem 4.10.34,

we get six applications to the MVT,

as follows:

THEOREM 4.10.35. Let f : R 99K R. Let I be an interval.

Assume f is c/d on I. Then:

(i) r p f |I is constant q ð p f 1˚pInt Iq Ď t0u q s

& (ii) r p f |I is one-to-one q ð p 0 R f 1˚pInt Iq q s

& (iii) r p f |I is strictly-increasing q ð p f 1˚pInt Iq ą 0 q s

& (iv) r p f |I is semi-increasing q ð p f 1˚pInt Iq ě 0 q s

& (v) r p f |I is strictly-decreasing q ð p f 1˚pInt Iq ă 0 q s

& (vi) r p f |I is semi-decreasing q ð p f 1˚pInt Iq ď 0 q s.

Let f :“ p‚q3 and let I :“ R.

Then f is one-to-one and strictly-increasing.

Also, 0 “ f 10 P f
1
˚pRq “ f 1˚pInt Iq, so  p f 1˚pInt Iq ą 0 q.

This provides a counterexample to the converse of (ii) in Theorem 4.10.35
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and provides a counterexample to the converse of (iii) in Theorem 4.10.35.

Let f :“ ´p‚q3 and let I :“ R.

Then f is strictly-decreasing.

Also, 0 “ f 10 P f
1
˚pRq “ f 1˚pInt Iq, so  p f 1˚pInt Iq ă 0 q.

This provides a counterexample to the converse of (v) in Theorem 4.10.35.

Unassigned HW:

The converses to (i), (iv) and (vi) in Theorem 4.10.35 are all true:

THEOREM 4.10.36. Let f : R 99K R. Let I be an interval.

Assume f is c/d on I. Then:

r p f |I is constant q ô p f 1˚pInt Iq Ď t0u q s

& r p f |I is semi-increasing q ô p f 1˚pInt Iq ě 0 q s

& r p f |I is semi-decreasing q ô p f 1˚pInt Iq ď 0 q s.

4.11. Taylor’s Theorem.

Here is another form of the MVT:

THEOREM 4.11.1. Let f : R 99K R, a, b P R.

Assume: ra|bs Ď D1f .

Then: Dc P ra|bs s.t. fb ´ fa “ f 1c ¨ pb´ aq.

Proof. We have a, b P ra|bs Ď D1f Ď Df . Then fa, fb P If Ď R.

Exactly one of the following is true:

(1) a ă b or (2) a “ b or (3) a ą b.

Case (1): Since a ă b, we have ra|bs “ ra; bs.

Then ra; bs “ ra|bs Ď D1f , and so f is c/d on ra; bs.

By Theorem 4.10.23, choose c P pa; bq s.t. f 1c “ DQf pa, bq.

Then c P pa; bq Ď ra; bs “ ra|bs. Want: fb ´ fa “ f 1c ¨ pb´ aq.

By defnition of DQf pa, bq, we have fb ´ fa “ pDQf pa, bqq ¨ pb´ aq.

Then fb ´ fa “ pDQf pa, bqq ¨ pb´ aq “ f 1c ¨ pb´ aq.

End of Case (1).

Case (2):

Since a “ b, we get b´ a “ 0 and fb ´ fa “ 0.

Let c :“ a. Then c P ra|bs. Want: fb ´ fa “ f 1c ¨ pb´ aq.

We have c “ a P ra|bs Ď D1f , so f 1c P If 1 Ď R, so 0 “ f 1c ¨ 0.

fb ´ fa “ 0 “ f 1c ¨ 0 “ f 1c ¨ pb´ aq.
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End of Case (2).

Case (3):

Since a ă b, we have ra|bs “ rb; as.

Then rb; as “ ra|bs Ď D1f , and so f is c/d on rb; as.

By Theorem 4.10.23, choose c P pb; aq s.t. f 1c “ DQf pb, aq.

Then c P pb; aq Ď rb; as “ ra|bs. Want: fb ´ fa “ f 1c ¨ pb´ aq.

By defnition of DQf pb, aq, we have fb ´ fa “ pDQf pb, aqq ¨ pb´ aq.

Then fb ´ fa “ pDQf pb, aqq ¨ pb´ aq “ f 1c ¨ pb´ aq.

End of Case (3). �

The following is Unassigned HW:

THEOREM 4.11.2. @x, h P R, px P r0|hs q ñ p |x| ă |h| q.

THEOREM 4.11.3. Let f : R 99K R, k P N0.

Assume: p f0 “ 0 q& p f 1 P Opkq q.

Then: f P Opk ` 1q.

Proof. This is Problem 1 from the Final Exam. �

THEOREM 4.11.4. Let f : R 99K R, k P N0.

Assume: f0 “ f 10 “ f20 “ 0.

Then: f P Op2q.

Proof. This is Problem 2 from the Final Exam. �

The following is Unassigned HW:

THEOREM 4.11.5. Let f : R 99K R, a P D1f . Then Daf “ f 1a ¨ p‚q.

DEFINITION 4.11.6. Let f : R 99K R, a P R, k P N0. Then

Dk
af :“

1

k!
¨ f pkqa ¨ p‚q

k.

Note: D0
af “ CR

fa
, D1

af “ Daf , D2
af “

1

2
¨ f2a ¨ p‚q

2.

Note that Dk
af

˚P Hpkq.

Let f : R 99K R, k P N0, a P Dpkqf .

The philosophy of Taylor’s theorem is that the best

approximation of fT
a by

a general (not necessarily homogeneous) kth order polynomial

is pDafq ` pD
2
afq ` pD

3
afq ` ¨ ¨ ¨ ` pD

k
afq,
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and the error

fT
a ´ p pDafq ` pD

2
afq ` pD

3
afq ` ¨ ¨ ¨ ` pD

k
afq q,

is “sub-k”, or, in other words, the error is an element of Opkq.

We will only prove the Taylor Theorem at second order, i.e., for k “ 2,

but the proof we give easily generalizes to all k.

Note: The first order Taylor Theorem is just the assertion that

fT
a ´ pDafq P Op1q,

which follows from the definition of Daf .

DEFINITION 4.11.7. Let X be a set, f : R 99K X, a P R.

Then fa`‚ : R 99K X is defined by: @h P R,

pfa`‚qh “ fa`h.

THEOREM 4.11.8. Let f : R 99K R, a P R.

Then fT
a “ fa`‚ ´ C

R
fa

.

THEOREM 4.11.9. Let f, g : R 99K R, C P C.

Assume: f “ g ´ C.

Then: f 1 “ g1.

Proof. Want: @h P R, f 1h “ g1h.

Given h P R. Want: f 1h “ g1h.

Since C P C, we get C 1 “ 0. Then C 1h “ 0.

Since f “ g ´ C, we get f 1h “˚ g1h ´ C
1
h “ g1h ´ 0 “ g1h.

Want: g1h “˚ f 1h.

Since C P C, we get ´C ` C “ 0.

We have f ` C “ g ´ C ` C “ g ` 0 “ g.

Since g “ f ` C, we get g1h “˚ f 1h ` C
1
h “ f 1h ` 0 “ f 1h. �

THEOREM 4.11.10. Let f : R 99K R, a, h P R.

Then: pfa`‚q
T
h “ fT

a`h.

Proof. Want: @k P R, ppfa`‚q
T
hqk “ pfT

a`hqk.

Given k P R. Want: ppfa`‚q
T
hqk “ pfT

a`hqk.

We have ppfa`‚q
T
hqk “ pfa`‚qh`k ´ pfa`‚qk

“ fa`h`k ´ fa`k “ pfT
a`hqk. �

We can express the next theorem by saying

differentiation commutes with (horizontal) translation.

It implies that f 1a`‚ is unambiguous; in principle, it might mean

pfa`‚q
1 or pf 1qa`‚,

but, according to the theorem, these are equal.
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THEOREM 4.11.11. Let f : R 99K R, a P R.

Then pfa`‚q
1 “ pf 1qa`‚.

Proof. Want: @h P R, ppfa`‚q
1qh “ ppf 1qa`‚qh.

Given h P R. Want: ppfa`‚q
1qh “ ppf 1qa`‚qh.

Want: ppfa`‚q
1qh “ pf 1qa`h. Want: pfa`‚q

1
h “ f 1a`h.

By Theorem 4.11.10, pfa`‚q
T
h “ fT

a`h.

Then LINShfa`‚ “ tL P L | pfa`‚qTh ´ L P Op1qu

“ tL P L | fT
a`h ´ L P Op1qu “ LINSa`hf ,

so LINShfa`‚ “ LINSa`hf .

Then Dhfa`‚ “ UEpLINSh fa`‚q “ UEpLINSa`h fq “ Da`hf ,

so Dhfa`‚ “ Da`hf .

Then pfa`‚q
1
h “ rDhfa`‚s “ rDa`hf s “ f 1a`h. �

THEOREM 4.11.12. Let f : R 99K R, a P D1f .

Then pfT
a q
1 “ f 1a`‚.

Proof. pfT
a q
1 “ pfa`‚ ´ C

R
fa
q1 “ f 1a`‚ ´ 0 “ f 1a`‚. �

THEOREM 4.11.13. Let f : R 99K R, a P D1f .

Then pfT
a q
2 “ f2a`‚.

Proof. pfT
a q
2 “ ppfT

a q
1q1 “ pf 1a`‚q

1 “ f2a`‚. �

The next theorem is Unassigned HW:

THEOREM 4.11.14.

p @m P R, pm ¨ p‚qq1 “ CR
m q and

p @c P R, pc ¨ p‚q2q1 “ 2 ¨ c ¨ p‚q q.

We have a quantified equivalence for g Ě f :

THEOREM 4.11.15. Let f and g be functions.

Then: p g Ě f q ô p @x, gx “˚ fx q.

When a superdomain for f is known,

we have another quantified equivalence for g Ě f :

THEOREM 4.11.16. Let f and g be functions. Let S be a set.

Assume: Df Ď S.

Then: p g Ě f q ô p @x P S, gx “˚ fx q.

THEOREM 4.11.17. Let f, g : R 99K R, a P R.

Assume: near a, f “ g.

Then: f 1a “ g1a.
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Proof. We have: near 0, fT
a “ gTa .

Then, @L P L, we have: near 0, fT
a ´ L “ gTa ´ L,

and so p fT
a ´ L P Op1q q ô p gTa ´ L P Op1q q.

Then LINSaf “ LINSag.

Then f 1a “ rDaf s “ rUEpLINSafqs

“˚ rUEpLINSagqs “ rDags “ g1a. �

THEOREM 4.11.18. Let f, g : R 99K R, a P R.

Assume: p g Ě f q & p f is defined near a q.

Then: g “ f near a.

Proof. Unassigned HW. �

THEOREM 4.11.19. Let f, g : R 99K R.

Assume: g Ě f .

Then: g1 Ě f 1.

Proof. Want: @a P R, g1a “ f 1a.

Given a P R. Want: g1a “ f 1a.

Want: p f 1a ‰ / q ñ p g1a “ f 1a q.

Assume f 1a ‰ /. Want: g1a “ f 1a.

Since f 1a ‰ /, we get a P D1f , and so f is defined near a.

So, since g Ě f , by Theorem 4.11.18, we conclude: g “ f near a.

Then, by Theorem 4.11.17, g1a “ f 1a.

So, since f 1a ‰ /, we conclude that g1a “ f 1a. �

THEOREM 4.11.20. Let f, g : R 99K R. Then pf ` gq1 Ě f 1 ` g1.

Proof. We have: @x P R, pf ` gq1x “˚ f 1x ` g
1
x “ pf 1 ` g1qx.

Then: pf ` gq1 Ě f 1 ` g1. �

THEOREM 4.11.21. Let f, g : R 99K R. Then pf ` gq2 Ě f2 ` g2.

Proof. pf ` gq2 “ ppf ` gq1q1 Ě pf 1 ` g1q1 Ě f2 ` g2. �

THEOREM 4.11.22. Let f, g : R 99K R, a P R.

Then pf ` gq2a “˚ f2a ` g
2
a.

Proof. Since pf ` gq2 Ě f2 ` g2,

it follows that pf ` gq2a “˚ pf2 ` g2qa.

Then pf ` gq2a “˚ pf2 ` g2qa “ f2a ` g
2
a. �

We can now state and prove the Taylor Theorem, second order:
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THEOREM 4.11.23. Let f : R 99K R, a P D2f , L :“ Daf , Q :“ D2
af .

Then: fT
a ´ L´Q P Op2q.

Proof. Let R :“ fT
a ´ L´Q. Want: R P Op2q.

By Final Exam Problem 2, we want: R0 “ R10 “ R20 “ 0.

By hypothesis, a P D2f . Then a P D2f Ď D1f . Then, @h P R,

Lh “ Lh¨1 “ h ¨ L1 “ h ¨ rLs “ h ¨ rDaf s

“˚ h ¨ f 1a “ f 1a ¨ h “ pf 1a ¨ p‚qqh.

Then L “ f 1a ¨ p‚q. Then L1 “ CR
f 1a

. Then L2 “ 0.

Then L0 “ 0 and L10 “ f 1a and L20 “ 0.

By hypothesis, a P D2f .
We have Q “ D2

af “ p1{2q ¨ f
2
a ¨ p‚q

2.

Then Q “ p1{2q ¨ f2a ¨ p‚q
2. Then Q1 “ p1{2q ¨ f2a ¨ 2 ¨ p‚q “ f2a ¨ p‚q.

Then Q1 “ f2a ¨ p‚q. Then Q2 “ CR
f2a

.

Then Q0 “ 0 and Q10 “ 0 and Q20 “ f2a .

By hypothesis, a P D2f . Then a P D2f Ď Df .

Then pfT
a q0 “ 0. So, since L0 “ Q0 “ 0, we get pfT

a ´ L´Qq0 “ 0.

Then R0 “ pf
T
a ´ L´Qq0 “ 0. Want: R10 “ R20 “ 0.

By hypothesis, a P D2f . Then a P D2f Ď D1f . Then pf 1a`‚q0 “ f 1a.

We have pfT
a q
1 “ f 1a`‚. Then pfT

a q
1
0 “ pf 1a`‚q0 “ f 1a, so pfT

a q
1
0 “ f 1a.

So, since L10 “ f 1a and Q10 “ 0, we get pfT
a ´ L´Qq

1
0 “ f 1a ´ f

1
a ´ 0.

Then R10 “ pf
T
a ´ L´Qq

1
0 “ f 1a ´ f

1
a ´ 0 “ 0. Want: R20 “ 0.

By hypothesis, a P D2f . Then pf2a`‚q0 “ f2a .

We have pfT
a q
2 “ f2a`‚. Then pfT

a q
2
0 “ pf2a`‚q0 “ f2a , so pfT

a q
2
0 “ f2a .

So, since L10 “ 0 and Q10 “ f2a , we get pfT
a ´ L´Qq

2
0 “ f2a ´ 0´ f2a .

Then R20 “ pf
T
a ´ L´Qq

2
0 “ f2a ´ 0´ f2a “ 0. �

4.12. The Second Derivative Test.

THEOREM 4.12.1. Let f : R 99K R, a P D2f .

Assume: p f 1a “ 0 q& p f2a ą 0 q.

Then: f has a local strict-minimum at a.

Proof. This is Problem 3 on the Final Exam. �

THEOREM 4.12.2. Let f : R 99K R, a P D2f .

Assume: p f 1a “ 0 q& p f2a ă 0 q.

Then: f has a local strict-maximum at a.

Proof. Unassigned HW. �
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4.13. The Inverse Function Theorem.

THEOREM 4.13.1. Let f : R 99K R be one-to-one. Let g :“ f´1.

Assume: p f0 “ 0 q& p f 10 “ 3 q& p g0 P Op0q q.

Then: g10 “ 1{3.

Proof. This is Problem 4 on the Final Exam. �

THEOREM 4.13.2. Let f : R 99K R be one-to-one. Let g :“ f´1.

Assume: p f0 “ 0 q& p f 10 ‰ 0 q& p g0 P Op0q q.

Then: g10 “ 1{pf 10q.

Proof. Unassigned HW. �

The next theorem is the Precalculus Inverse Function Theorem:

THEOREM 4.13.3. Let f : R 99K R be one-to-one. Let g :“ f´1.

Let a P Df . Let b :“ fa.

Then: fT
a is one-to-one and pfT

a q
´1 “ gTb .

Proof. Unassigned HW. �

The next theorem is called Invariance of Domain, R 99K R.

THEOREM 4.13.4. Let f : R 99K R be one-to-one. Let g :“ f´1.

Let a P Df . Let b :“ fa.

Assume: f is continuous near a.

Then: g is continuous near b.

Proof. To be proved in spring semester. �

Let f : R 99K R be one-to-one. Let g :“ f´1.

Let a P Df . Let b :“ fa.

Then the following are all equivalent:

fT
a is continuous near 0.

f is continuous near a.

g is continuous near b.

gTb is continuous near 0.

There are many theorems called the Inverse Function Theorem.

There’s the Precalculus Inverse Function Theorem mentioned above.

There are topological inverse function theorems,

but they’re usually called “Open Mapping Theorems”

and we covered one of them above, Theorem 3.11.1.

Finally, there are a variety of differentiable inverse function theorems.
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We will call the following theorem

the Inverse Function Theorem, first order, RÑ R.

THEOREM 4.13.5. Let f : R 99K R be one-to-one. Let g :“ f´1.

Let a P D1f . Let b :“ fa.

Assume: p f 1a ‰ 0 q& p f is continuous near a q.

Then: g1b “ 1{pf 1aq.

Proof. Unassigned HW. Uses Theorem 4.13.2.

Uses Theorem 4.13.3, the Precalculus Inverse Function Theorem.

Uses Theorem 4.13.4, Invariance of Domain, R 99K R. �

The disadvantage of Theorem 4.13.2 is:

it assumes that g P Op0q.

In a typical inverse problem, much is known about the function f ,

and the GOAL is to understand g.

In that context, an assumption about g might be difficult to verify.

Theorem 4.13.5 uses Invariance of Domain to trade in

an assumption that g is continuous near b

for

an assumption that f is continuous near a.

5. Integrability of functions R 99K R

5.1. Outer measure.

We define 8`8 :“ 8 and 8´ p´8q :“ 8.

For all x P R, we define

x`8 :“ 8 and 8` x :“ 8 and 8´ x :“ 8.

For all x P R, we define

´8` x :“ ´8 and ´8´ x :“ ´8.

We define 8` p´8q :“ / and p´8q `8 :“ /.

For all c P p0;8s, we define c ¨ 8 :“ 8 and 8 ¨ c :“ 8.

For all c P p0;8s, we define c ¨ p´8q :“ ´8 and p´8q ¨ c :“ ´8.

For all c P r´8; 0q, we define c ¨ 8 :“ ´8 and 8 ¨ c :“ ´8.

For all c P r´8; 0q, we define c ¨ p´8q :“ 8 and p´8q ¨ c :“ 8.

We define 0 ¨ 8 :“ / and 8 ¨ 0 :“ /.

We define 0 ¨ p´8q :“ / and p´8q ¨ 0 :“ /.

For all a P R˚, we define ´a :“ p´1q ¨ a.

For all a, b P R˚, we defein a´ b :“ a` p´bq.
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DEFINITION 5.1.1. Let a P r0;8sN. Then we define:
ÿ

jPN

a :“ sup

#

k
ÿ

j“1

aj | k P N

+

.

DEFINITION 5.1.2. OI :“ tpa; bq | a, b P Ru.

That is, OI is the set of bounded open intervals.

Note that H P OI. We consider H to be an interval.

We define the length of any interval I:

DEFINITION 5.1.3. Let I be an interval.

If I “ H, then LI :“ 0.

If I ‰ H, then LI :“ psup Iq ´ pinf Iq.

THEOREM 5.1.4. Lr1;3q “ 3´ 1 “ 2 and

Lp´8;4s “ 4´ p´8q “ 8.

We define the

total length TLU and support suppU

of any sequence U of bounded open intervals:

DEFINITION 5.1.5. Let U P OIN. Then

TLU :“
ř

jPN LUj

and suppU :“ tj P N |Uj ‰ Hu.

We next define various kinds of open covers of S:

DEFINITION 5.1.6. Let S Ď R. Then:

LOCS :“ tU P OIN
|
Ť

IU Ě S u and

JOCS :“ tU P OIN
| p
Ť

IU Ě S q& p#suppU ă 8q u.

Also, @k P N,

JOCk
S :“ tU P OIN

| p
Ť

IU Ě S q& p#suppU ď k q u.

We next define various kinds of overmeasures of S:

DEFINITION 5.1.7. Let S Ď R. Then:

TLOCS :“ tTLU |U P LOCS u and

TJOCS :“ tTLU |U P JOCS u.

Also, @k P N,

TJOCk
S :“ tTLU |U P JOCk

S u.
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For any S Ď R, we now define

the Lebesgue outer measure LOS of S and

the Jordan outer measure JOS of S and

for any k P N, the Jordan outer k-measure JOk
S of S

as follows:

DEFINITION 5.1.8. Let S Ď R. Then:

LOS :“ inf TLOCS and

JOS :“ inf TJOCS.

Also, @k P N, we define:

JOk
S :“ inf TJOCk

S.

THEOREM 5.1.9. Let S Ď R, V P OIN.

Assume:
Ť

IV Ě S.

Then: TLV ě LOS.

THEOREM 5.1.10. Let S Ď R, V P OIN.

Assume:
Ť

IV Ě S and #suppV ă 8.

Then: TLV ě JOS.

THEOREM 5.1.11. Let S Ď R, V P OIN, k P N.

Assume:
Ť

IV Ě S and #suppV ď k.

Then: TLV ě JOk
S.

THEOREM 5.1.12. Let S Ď R be unbounded. Then JOS “ 8.

Proof. We have: @I P OI, I is bounded.

Then @U P OIN, if #suppU ă 8, then
Ť

IU is bounded.

So, since S is unbounded, we get JOCS “ H, and so Then TJOCS “ H.

Then JOS “ inf TJOCS “ infH “ 8. �

The preceding theorem shows, in particular, that JOZ “ 8.

Unassigned HW: Show that LOZ “ 0.

Thus JO and LO are different.

THEOREM 5.1.13.

@a, b P R, JO1
ra|bs ě |b´ a|.

Proof. Unassigned HW. �

THEOREM 5.1.14. @k P N,

@a, b P R, JOk
ra|bs ě |b´ a|.
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Proof. Let S :“ tk P N | @a, b P R, JOk
ra|bs ě |b´ a|u.

Want: S “ N. By Theorem 5.1.13, 1 P S.

By the PMI, want: @k P S, k ` 1 P S.

Given k P S. Want: k ` 1 P S.

Know: @a, b P R, JOk
ra|bs ě |b´ a|.

Want: @a, b P R, JOk`1
ra|bs ě |b´ a|.

Know: @y, z P R, JOk
ry|zs ě |y ´ z|.

Want: @α, β P R, JOk`1
rα|βs ě |β ´ α|.

Given α, β P R. Want: JOk`1
rα|βs ě |β ´ α|.

Let a :“ mintα, βu, b :“ maxtα, βu. Want: JOk`1
ra;bs ě b´ a.

Let Q :“ TJOCk`1
ra;bs. Then inf Q “ JOk`1

ra;bs.

Want: inf Q ě b´ a. Want: Q ě b´ a.

Want: @q P Q, q ě b´ a.

Given q P Q. Want: q ě b´ a.

Since q P Q “ TJOCk`1
ra;bs, choose U P JOCk`1

ra;bs s.t. q “ TLU .

Since U P JOCk`1
ra;bs, we know:

Ť

IU Ě ra; bs and #suppU ď k ` 1.

Since b P ra; bs Ď
ď

IU “
ď

jPN

Uj, choose j P N s.t. b P Uj.

Since U P OIN, we get Uj P OI. Choose s, t P R s.t. Uj “ ps; tq.

Since b P Uj “ ps; tq, it follows that ps; tq ‰ H. Then s ă t.

Since b P Uj “ ps; tq, we conclude that s ă b ă t.

Recall: @y, z P R, JOk
ry|zs ě |y ´ z|. Then: JOk

ra;ss ě |s´ a|.

So, since |s´ a| ě s´ a, we get: JOk
ra;ss ě s´ a.

Define V P OIN by: @i P N, Vi “

#

Ui, if i ‰ j

H, if i “ j.

Then TLV “ TLU ´ LUj
and

Ť

IV Ě ra; ss

and #suppV “ p#suppUq ´ 1 ď pk ` 1q ´ 1 “ k.

Since
Ť

IV Ě ra; ss and #suppV ď k, we get: V P JOCk
ra;ss.

Since V P JOCk
ra;ss, we get TLV P TJOCk

ra;ss, so TLV ě inf TJOCk
ra;ss.

Then TLV ě inf TJOCk
ra;ss “ JOk

ra;ss, so TLV ě JOk
ra;ss.

Since TLV “ TLU ´ LUj
, we get: TLU “ LUj

` TLV .

Since Uj “ ps; tq and s ă t, we get: LUj
“ t´ s.

So, since TLV ě JOk
ra;ss ě s´ a, we get: LUj

`TLV ě pt´ sq` ps´ aq.

Since b ă t, we get: t´ a ą b´ a.

Then TLU “ LUj
` TLV ě pt´ sq ` ps´ aq “ t´ a ą b´ a,
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so TLU ą b´ a, so TLU ě b´ a.

Then q “ TLU ě b´ a. �

THEOREM 5.1.15. Let a, b P R. Then JOra|bs ě |b´ a|.

Proof. Let Q :“ TJOCra|bs. Then inf Q “ JOra|bs.

Want: inf Q ě |b´ a|. Want: Q ě |b´ a|.

Want: @q P Q, q ě b´ a.

Given q P Q. Want: q ě b´ a.

Since q P Q “ TJOCra|bs, choose U P JOCra|bs s.t. q “ TLU .

Since U P JOCra|bs, we get #suppU ă 8, so #suppU P N0.

Let k :“ #suppU . Then k P N0.

Since U P JOCra|bs, we get:
Ť

IU Ě ra|bs.
Since a P ra|bs, we get: ra|bs ‰ H.

So, since
Ť

IU Ě ra|bs, we get
Ť

IU ‰ H.

Since
ď

jPN

Uj “
ď

IU ‰ H, we conclude: Dj P N s.t. Uj ‰ H.

Then suppU ‰ H. Then #suppU ‰ 0.

Since k P N0 and since k “ #suppU ‰ 0, we get: k P N.

So, since k “ #suppU and since
Ť

IU Ě ra|bs, we get: U P JOCk
ra|bs.

Then TLU P TJOCk
ra|bs. Then TLU ě inf TJOCk

ra|bs.

So, since JOk
ra|bs “ inf TJOCk

ra|bs, we get TLU ě JOk
ra|bs.

By Theorem 5.1.14, we get: JOk
ra|bs ě |b´ a|.

Then TLU ě JOk
ra|bs ě |b´ a|. �

THEOREM 5.1.16. Let a P R, b ě a. Then JOra;bs “ b´ a.

Proof. By Theorem 5.1.15, JOra|bs ě |b´ a|.

Then JOra;bs “ JOra|bs ě |b´ a| “ b´ a. Want: JOra;bs ď b´ a.

Want: @ε ą 0, JOra;bs ď b´ a` ε.

Given ε ą 0. Want: JOra;bs ď b´ a` ε.

Let I :“ p a´ pε{2q ; b` pε{2q q. Then I Ě ra; bs.

Let U :“ p I , H , H , H , H , H , . . . q.

Then U P OIN and
Ť

IU “ I YHYHY ¨ ¨ ¨ “ I Ě ra; bs.

Also, since suppU “ t1u, we get #suppU ă 8. Then U P JOCra;bs.

Then TLU P TJOCra;bs. Then TLU ě inf TJOCra;bs.

So, since JOra;bs inf TJOCra;bs, we get TLU ě JOra;bs, and so JOra;bs ď

TLU .

Then JOra;bs ď TLU “ b´ a` ε. �

THEOREM 5.1.17. Let a P R. Then JOtau “ 0.
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Proof. By the preceding theorem, JOra;as “ a´ a.

Then JOtau “ JOra;as “ a´ a “ 0. �

We next show that JO is monotonic:

THEOREM 5.1.18. Let S, T Ď R.

Assume: T Ě S. Then: JOT ě JOS.

Proof. Since T Ě S, it follows that JOCT Ď JOCS, so TJOCT Ď

TJOCS.

We have TJOCT Ď TJOCS ě inf TJOCS “ JOS.

Since TJOCT ě JOS, it follows that inf TJOCT ě JOS.

Then JOT “ inf TJOCT ě JOS. �

We next show that JO is subadditive:

THEOREM 5.1.19. Let S, T Ď R. Then JOSYT ď JOS ` JOT .

Proof. This is HW#13-1. �

The next two theorems are Unassigned HW:

THEOREM 5.1.20. Let I P OI, a :“ inf I, b :“ sup I. Then:

p I “ Hq ñ p pa “ 8q& pb “ ´8q q and

p I ‰ Hq ñ p´8 ă a ă b ă 8q and

I “ pa; bq and ClI “ ra; bs.

THEOREM 5.1.21. Let I P OI, a :“ inf I, b :“ sup I, γ ą 0.

Let J :“ pa´ γ; b` γq. Then:

p I “ Hq ô p J “ Hq and

ClI Ď J and LJ ď LI ` 2 ¨ γ.

THEOREM 5.1.22. Let U P OIN, ε ą 0.

Then DV P OIN s.t.

suppU “ suppV and

@j P N, ClUj
Ď Vj and

TLV ď TLU ` ε.

Proof. Define a, b P r´8;8sN by: @j P N,

aj :“ inf Uj and bj :“ supUj.

Define s, t P r´8;8sN by: @j P N,

sj :“ aj ´
ε{2

2j
and tj :“ bj `

ε{2

2j
.

Then, @j P N, we have: pUj “ Hq ñ p psj “ 8q& ptj “ ´8q q.
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Then, @j P N, we have: pUj “ Hq ñ p psj; tjq “ Hq.

Define V P OIN by: @j P N, Vj “ psj; tjq. Then V P OIN.

Want: suppU “ suppV and

@j P N, ClUj
Ď Vj and

TLV ď TLU ` ε.

We have: @j P N,

pUj “ Hq ô pVj “ Hq

and ClUj
“ Clp pinf Uj; supUjq q “ Clp paj; bjq q

“ raj; bjs Ď psj; tjq “ Vj

and LVj ď LUj
` 2 ¨

ε{2

2j
.

Then: suppU “ suppV and

@j P N, ClUj
Ď Vj.

Want: TLV ď TLU ` ε.

We have TLV ď TLU ` 2 ¨

˜

ÿ

jPN

ε{2

2j

¸

“ TLU ` 2 ¨ pε{2q “ TLU ` ε. �

THEOREM 5.1.23. Let U P OIN. Assume #suppU ă 8.

Define U P p2RqN by: @j P N, U j “ ClUj.

Then
Ť

IU is closed.

Proof. We have: @i P N, U i is closed.

Let F :“ suppU . Then F is finite.

Then
Ť

iPF U i is closed.

Since F “ suppU , we get: @i P NzF , Ui “ H.

Then @i P NzF , U i “ ClUi “ ClH “ H.

Then
Ť

iPN U i “
Ť

iPF U i.

Since
Ť

IU “
Ť

iPN U i “
Ť

iPF U i, and since
Ť

iPF U i is closed,

we conclude that
Ť

IU is closed. �

THEOREM 5.1.24. Let S Ď R. Then JOS “ JOClS.

Proof. Let S :“ ClS. Want: JOS “ JOS.

Since S Ď ClS “ S, we get JOS ď JOS.

Want: JOS ď JOS. We have: JOS “ inf TJOCS.

Want: JOS ď inf TJOCS. Want: JOS ď TJOCS.

Want: @a P TJOCS, JOS ď a.

Given a P TJOCS. Want: JOS ď a.

Since a P TJOCS, choose U P JOCS s.t. a “ TLU .
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Want: JOS ď TLU . Want: @ε ą 0, JOS ď TLU ` ε.

Given ε ą 0. Want: JOS ď TLU ` ε.

By Theorem 5.1.22, choose V P OIN s.t. p suppU “ suppV q

and p @j P N, ClUj Ď Vj q and p TLV ď TLU ` ε q.

Want: JOS ď TLV .

Define U P p2RqN by: @j P N, U j “ ClUj.

Since U P JOCS, we get:
Ť

IU Ě S and #suppU ă 8.

By Theorem 5.1.23,
Ť

IU is closed, and so Cl p
Ť

IUq “
Ť

IU .

Since @j P N, Uj Ď ClUj “ U j, we get:
Ť

IU Ď
Ť

IU .

Since @j P N, U j “ ClUj Ď Vj, we get:
Ť

IU Ď
Ť

IV .

Since S Ď
Ť

IU Ď
Ť

IU , we get: ClS Ď Cl p
Ť

IUq.
Then S “ ClS Ď Cl p

Ť

IUq “
Ť

IU Ď
Ť

IV .

So, since #suppV “ #suppU ă 8, we get: V P JOCS.

Then TLV P TJOCS. Then TLV ě inf TJOCS.

Then JOS “ inf TJOCS ď TLV . �

For any sets A and S,

t S X A , SzA u is a partition of S,

and this would lead us to expect that

JOSXA ` JOSzA “ JOS,

but we will soon see that this is not always true.

We capture the equation JOSXA ` JOSzA “ JOS in a definition:

DEFINITION 5.1.25. Let A, S Ď R.

By A splits S well, we mean: JOSXA ` JOSzA “ JOS.

Our focus here is on Jordan measure theory,

but we can do something similar for Lebesgue measure:

DEFINITION 5.1.26. Let A, S Ď R.

By A splits S L-well, we mean: LOSXA ` LOSzA “ LOS.

Since Clpr0; 1s XQq “ r0; 1s,

from the preceding theorem, we get: JOr0;1sXQ “ JOr0;1s.

So, since JOr0;1s “ 1´ 0, we conclude: JOr0;1sXQ “ 1.

Since Clpr0; 1szQq “ r0; 1s,

from the preceding theorem, we get: JOr0;1szQ “ JOr0;1s.

So, since JOr0;1s “ 1´ 0, we conclude: JOr0;1szQ “ 1.

Then t r0; 1s XQ , r0; 1szQu is a partition of r0; 1s, but, paradoxically,

JOr0;1sXQ ` JOr0;1szQ ‰ JOr0;1s.

So Q does NOT split r0; 1s well.
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In this sense, Q is not a good set

from the point of view of Jordan measure.

Note that QX r7; 8s splits r0; 1s well, because

r0; 1s X pQX r7; 8sq “ H and r0; 1szpQX r7; 8sq “ r0; 1s.

However, there’s a different set that QX r7; 8s does NOT split well.

Specifically, QX r7; 8s does NOT split r7; 8s well.

In this sense, QX r7; 8s is another bad set

from the point of view of Jordan measure.

In the next definition, we will formalize the idea that a “good” set,

from the point of view of Jordan measure,

is one which splits every subset of R well.

DEFINITION 5.1.27. Let A Ď R.

By A is Carathéodory-Jordan measurable or CJ-measurable,

we mean: @S Ď R, A splits S well.

DEFINITION 5.1.28. Let A Ď R.

By A is Carathéodory-Lebesgue measurable or CL-measurable,

we mean: @S Ď R, A splits S L-well.

We won’t be developing Lebesgue measure theory,

but we comment that,

every CJ-measurable set is CL-measurable,

so the Lebesgue theory

has fewer paradoxical decompositions than the Jordan theory,

and is, in that sense, a better theory. However, it is not perfect:

there do exist subsets of R that are not CL-measurable,

but proof of their existence is known to require the Axiom of Choice.

So subsets of R that are not CL-measurable are very obscure.

By contrast, it is not hard to describe

subsets of R (like Q) that are not CJ-measurable.

However, we will eventually show that

there is a broad enough collection of CJ-measurable sets

to suffice for most applications in the natural sciences.

In that sense, Jordan measure theory

and the corresponding integration theory,

which we will soon be describing

are good enough for government work.

We develop some of the theory of CJ-measurable sets,
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then use it in showing that every interval is CJ-measurable.

We begin by showing that

Jordan outer measure is pairwise-additive on CJ-measurable sets:

THEOREM 5.1.29. Let A,B Ď R.

Assume A is CJ-measurable.

Assume AXB “ H. Then JOAYB “ JOA ` JOB.

The preceding theorem expresses that Jordan measure is pairwise ad-

ditive.

Proof. Let S :“ AYB.

Then, because AXB “ H, it follows that S X A “ A and SzA “ B.

Since A is CJ-measurable, A splits S well, so JOS “ JOSXA ` JOSzA.

Then JOAYB “ JOS “ JOSXA ` JOSzA “ JOA ` JOB. �

Unassigned HW: Use Theorem 5.1.29 and induction on #Q to prove

the following.

THEOREM 5.1.30. Let S Ď R.

Let Q be a finite partition of S by CJ-measurable sets.

Then JOS “
ÿ

APQ
JOA.

The preceding theorem expresses that Jordan measure is finitely ad-

ditive.

DEFINITION 5.1.31. @A Ď R, Ac :“ RzA.

For any A, S Ď R, we have: SzA “ S X Ac, and so

A splits S well iff JOS “ JOSXA ` JOSXAc .

THEOREM 5.1.32. Let A Ď R be CJ-measurable.

Then Ac is CJ-measurable.

Proof. Want: @S Ď R, Ac splits S well.

Given S Ď R. Want: Ac splits S well.

Want: JOS “ JOSXAc ` JOSXAcc .

Since A is CJ-measurable,

we conclude that A splits S well,

and so JOS “ JOSXA ` JOSXAc .

So, since A “ Acc, we get JOS “ JOSXAcc ` JOSXAc .

Then JOS “ JOSXAc ` JOSXAcc . �
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Unassigned HW. Show: Let A,B Ď R. Then

t AXB , AXBc , Ac XB , Ac XBc u

is a partition of R.

THEOREM 5.1.33. Let A,B Ď R both be CJ-measurable.

Let W 1 :“ AXB, X 1 :“ AXBc,

Y 1 :“ Ac XB, Z 1 :“ Ac XBc.

Let W Ď W 1, X Ď X 1, Y Ď Y 1, Z Ď Z 1.

Then JOWYXYYYZ “ JOW ` JOX ` JOY ` JOZ.

Proof. Let S :“ W YX Y Y YZ. Want: JOS “ JOW ` JOX ` JOY `

JOZ .

Since W Ď W 1, we get W XW 1 “ W .

We have: t W 1 , X 1 , Y 1 , Z 1 u is pairwise-disjoint.

So, since W Ď W 1, we get: W XX 1 “ W X Y 1 “ W X Z 1 “ H.

Then S XW 1 “ pW YX Y Y Y Zq XW 1

“ pW XW 1q Y pW XX 1q Y pW X Y 1q Y pW X Z 1q

“ W YHYHYH “ W .

Similarly, S XX 1 “ X and S X Y 1 “ Y and S X Z 1 “ Z.

Want: JOS “ JOSXW 1 ` JOSXX 1 ` JOSXY 1 ` JOSXZ1 .

Because A is CJ-measurable, A splits S well,

so JOS “ JOSXA ` JOSXAc .

Because B is CJ-measurable, B splits S X A well,

so JOSXA “ JOSXAXB ` JOSXAXBc .

Then JOSXA “ JOSXW 1 ` JOSXX 1 .

Because B is CJ-measurable, B splits S X Ac well,

so JOSXAc “ JOSXAcXB ` JOSXAcXBc .

Then JOSXAc “ JOSXY 1 ` JOSXZ1 .

Then JOS “ JOSXA ` JOSXAc

“ JOSXW 1 ` JOSXX 1 ` JOSXY 1 ` JOSXZ1 . �

THEOREM 5.1.34. Let A,B Ď R both be CJ-measurable.

Then AXB is CJ-measurable.

Proof. Let W 1 :“ AXB, X 1 :“ AXBc,

Y 1 :“ Ac XB, Z 1 :“ Ac XBc.

Want: W 1 is CJ-measurable.

Want: @S Ď R, W 1 splits S well.

Given S Ď R. Want: W 1 splits S well.

Want: JOS “ JOSXW 1 ` JOSzW 1 .
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Let W :“ S XW 1, X :“ S XX 1,

Y :“ S X Y 1, Z :“ S X Z 1.

Since t W 1 , X 1 , Y 1 , Z 1 u is a partition of R,

we get: t W , X , Y , Z u is a partition of S.

Then SzW “ X Y Y Y Z. Also, SzW “ SzpS XW 1q “ SzW 1.

We get: JOSXW 1 “ JOW and JOSzW 1 “ JOSzW “ JOXYYYZ .

Want: JOS “ JOW ` JOXYYYZ .

By Theorem 5.1.33, we get:

both JOWYXYYYZ “ JOW ` JOX ` JOY ` JOZ

and JOHYXYYYZ “ JOH ` JOX ` JOY ` JOZ .

Then: both JOS “ JOW ` JOX ` JOY ` JOZ

and JOXYYYZ “ 0 ` JOX ` JOY ` JOZ .

Then JOS “ JOW ` JOX ` JOY ` JOZ

“ JOW ` p0` JOX ` JOY ` JOZq

“ JOW ` JOXYYYZ . �

THEOREM 5.1.35. Let A,B Ď R both be CJ-measurable.

Then AXB, AYB, AzB are all CJ-measurable.

Proof. By Theorem 5.1.34, AXB is CJ-measurable.

Want: AYB, AzB are both CJ-measurable.

By Theorem 5.1.32, we get: Ac, Bc are both CJ-measurable.

Since A, Bc are both CJ-measurable, by Theorem 5.1.34,

AXBc is CJ-measurable.

So, since AzB “ AXBc, we see that AzB is CJ-measurable.

Want: AYB is CJ-measurable.

Since Ac and Bc are both CJ-measurable, by Theorem 5.1.34,

Ac XBc is CJ-measurable.

Then, by Theorem 5.1.32, pAc XBcqc is CJ-measurable.

So, since AYB “ pAcXBcqc, we see that AYB is CJ-measurable. �

THEOREM 5.1.36. Let A,B Ď R.

Assume: A is CJ-measurable and JOA ă 8.

Then: JOBzA “ JOB ´ JOA.

Proof. Since A is CJ-measurable, A splits B well,

so JOB “ JOBXA ` JOBzA.

Since A Ď B, we get B X A “ A. Then JOB “ JOA ` JOBzA.

So, since JOA ă 8, we get: JOB ´ JOA “ JOBzA.

Then JOBzA “ JOB ´ JOA. �
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We have developed a certain amount of theory about CJ-measurable

sets.

However, we have yet to produce examples.

Our next goal is to show that all intervals are CJ-measurable.

We begin by showing, that: @a P R, @U P OI,

the sets p´8; aq and pa;8q split U well, in length:

THEOREM 5.1.37. Let U P OI, a P R, A :“ p´8; aq, B :“ pa;8q.

Then pU X A,U XB P OI q & pLU “ LUXA ` LUXB q.

Idea of proof:

There are two cases: pU “ Hq _ pU ‰ Hq.

The case where U “ H is an exercise for the reader.

We concentrate on the case where U ‰ H.

Choose s, t P R s.t. s ă t and U “ ps; tq.

We have LU “ Lps;tq “ supps;tq´ infps;tq “ t´ s, so LU “ t´ s.

There are three subcases: p a ď s q _ p s ă a ă t q _ p t ď a q.

The subcases where a ď s or t ď a are exercises for the reader.

We concentrate on the case where s ă a ă t.

Then U X A “ ps; aq and U XB “ pa; tq.

Then UXA,UXB P OI. It remains to show: LU “ LUXA`LUXB.

We have LUXA “ Lps;aq “ supps;aq´ infps;aq “ a´ s, so LUXA “ a´ s.

We have LUXB “ Lpa;tq “ suppa;tq´ infpa;tq “ t´ a, so LUXB “ t´ a.

Then LUXB ` LUXA “ pt´ aq ` pa´ sq “ t´ s “ LU .

Then LU “ LUXA ` LUXB. QED

THEOREM 5.1.38. Let A, S Ď R.

Assume JOS “ 8. Then A splits S well.

Proof. By subadditivity of JO, we get: JOS ď JOSXA ` JOSzA.

Want: JOSXA ` JOSzA ď JOS.

We have JOSXA ` JOSzA P R˚ ď 8 “ JOS. �

Because of the preceding theorem,

to show that a set A is CJ-measurable,

it suffices to show that it splits all

sets of finite outer Jordan measure

well; the sets of infinite measure are split well for free.

THEOREM 5.1.39. Let S Ď R. Then: S is CJ-measurable iff

@S Ď R, p JOS ă 8q ñ pA splits S well q.
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THEOREM 5.1.40. Let a P R. Then p´8; aq is CJ-measurable.

Proof. Let A :“ p´8; aq, B :“ pa;8q. Want: A is CJ-measurable.

Want: @S Ď R, p JOS ă 8 q ñ p A splits S well q.

Given S Ď R. Assume JOS ă 8. Want: A splits S well.

Want: JOS “ JOSXA ` JOSzA.

By HW 13-1, JOS ď JOSXA ` JOSzA.

Want: JOSXA ` JOSzA ď JOS.

Want: @ε ą 0, JOSXA ` JOSzA ď JOS ` ε.

Given ε ą 0. Want: JOSXA ` JOSzA ď JOS ` ε.

Since JOS “ inf TJOCS, we get  pJOS ` ε ď TJOCSq.

Choose c P TJOCS s.t. JOS ` ε ą c.

Want: JOSXA ` JOSzA ď c.

Since c P TJOCS, choose U P JOCS s.t. c “ TLU .

Since U P JOCS, we get:

U P OIN and #suppU ă 8 and
Ť

IU Ě S.

Define V,W P OIN by: @j P N,

Vj “ Uj X A and Wj “ Uj XB.

Since suppV Ď suppU , we get #suppV ď #suppU .

We have
Ť

IV “
Ť

jPN Vj “
Ť

jPN pUj X Aq

“

´

Ť

jPN Uj

¯

X A “ p
Ť

IUq X A Ě S X A.

Then
Ť

IV Ě S X A. We also have #suppV ď #suppU ă 8,

and so we get: V P JOCSXA.

Then TLV P TJOCSXA ě inf TJOCSXA “ JOSXA, so TLV ě JOSXA.

Since suppW Ď suppU , we get #suppW ď #suppU .

We have
Ť

IW “
Ť

jPN Wj “
Ť

jPN pUj XBq

“

´

Ť

jPN Uj

¯

XB “ p
Ť

IUq XB Ě S XB.

Then
Ť

IW Ě S XB. We also have, #suppW ď #suppU ă 8,

and so we get: W P JOCSXB.

Then TLW P TJOCSXB ě inf TJOCSXB “ JOSXB, so TLW ě JOSXB.

We have both TLV ě JOSXA and TLW ě JOSXB,

and so JOSXA ` JOSXB ď TLV ` TLW .

By Theorem 5.1.37, we get: @j P N, LUi
“ LUiXA ` LUiXB.

Then TLU “
ř

iPN LUi
“
ř

iPN pLUiXA ` LUiXBq “
ř

iPN pLVi ` LWi
q

“ p
ř

iPN LViq ` p
ř

iPN LWi
q “ TLV ` TLW .

We have: SzA “ S X Ac “ S X ra;8q “ S X ptau Y pa;8qq

“ S X ptau YBq “ pS X tauq Y pS XBq

Ď tau Y pS XBq.
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Then JOSzA ď JOtauYpSXBq.

So, by subadditivity of JO, we get: JOSzA ď JOtau ` JOSXB.

We have JOtau “ JOra;as “ a´ a “ 0. Then JOSzA ď JOSXB.

Then JOSXA`JOSzA ď JOSXA`JOSXB ď TLV `TLW “ TLU “ c. �

THEOREM 5.1.41. Let a P R. Then ra;8q is CJ-measurable.

Proof. By Theorem 5.1.40, p´8; aq is CJ-measurable.

Then p´8; aqc is CJ-measurable.

So, since p´8; aqc “ ra;8q, we get: ra;8q is CJ-measurable. �

THEOREM 5.1.42. Let a P R. Then pa;8q is CJ-measurable.

Proof. Unassigned HW. Similar to Theorem 5.1.40. �

THEOREM 5.1.43. Let a P R. Then p´8; as is CJ-measurable.

Proof. By Theorem 5.1.42, pa;8q is CJ-measurable.

Then pa;8qc is CJ-measurable.

So, since pa;8qc “ p´8; as, we get: p´8; as is CJ-measurable. �

THEOREM 5.1.44. Let a, b P R. Then ra; bs is CJ-measurable.

Proof. Since p´8; bs and ra;8q are CJ-measurable,

we get: p´8; bs X ra;8q is CJ-measurable.

So, since p´8; bs X ra;8q “ ra; bs, we get: ra; bs is CJ-measurable. �

THEOREM 5.1.45. Let a, b P R. Then ra; bq is CJ-measurable.

Proof. Since p´8; bq and ra;8q are CJ-measurable,

we get: p´8; bq X ra;8q is CJ-measurable.

So, since p´8; bq X ra;8q “ ra; bq, we get: ra; bq is CJ-measurable. �

THEOREM 5.1.46. Let a, b P R. Then pa; bs is CJ-measurable.

Proof. Since p´8; bs and pa;8q are CJ-measurable,

we get: p´8; bs X pa;8q is CJ-measurable.

So, since p´8; bs X pa;8q “ pa; bs, we get: pa; bs is CJ-measurable. �

THEOREM 5.1.47. Let a, b P R. Then pa; bq is CJ-measurable.

Proof. Since p´8; bq and pa;8q are CJ-measurable,

we get: p´8; bq X pa;8q is CJ-measurable.

So, since p´8; bqX pa;8q “ pa; bq, we get: pa; bq is CJ-measurable. �
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Since H “ p0; 0q, we get: H is CJ-measurable.

So, since Hc “ R, we get: R is CJ-measurable.

We have now proved: every interval is CJ-measurable.

A set of sets is called a ring of sets if it is closed under

pairwise intersection, pairwise union and set subtraction.

A set is constructible if it is in the ring of sets generated by intervals.

Sets of use in the natural sciences are typically constructible,

and we now know: every constructible set is CJ-measurable.

THEOREM 5.1.48. Let a P R, b ě a. Then:

JOra;bs “ JOra;bq “ JOpa;bs “ JOpa;bq “ b´ a.

Idea of proof: We already proved JOra;bs “ b´ a.

Want: JOra;bq “ JOpa;bs “ JOpa;bq “ b´ a.

We have JOtbu “ JOrb;bs “ b´ b “ 0 and ra; bq “ ra; bsztbu.

By Theorem 5.1.36, JOra;bq “ JOra;bs ´ JOtbu.

Then JOra;bq “ JOra;bs ´ JOtbu “ b´ a` 0 “ b´ a.

Want: JOpa;bs “ JOpa;bq “ b´ a.

The rest is left as unassigned Homework. QED

5.2. Jordan integration.

Addition is associative, and so we have:

THEOREM 5.2.1. Let P , F be finite sets, α : P Ñ R, β : P Ñ F .

Then
ÿ

yPF

¨

˝

ÿ

PPβ˚tyu

αP

˛

‚“
ÿ

PPP
αP .

In Theorem 5.2.1, for any y P F ,

the sum
ÿ

PPβ˚tyu

αP is the “fiber sum” of α over y.

Also,
ÿ

PPP
αP is the “total sum” of α.

Then, informally, Theorem 5.2.1 asserts:

The sum of the fiber sums is equal to the total sum.

That is, the total sum can be “grouped” into fiber sums, and,

by the associative law, the sum is unchanged by that grouping.

DEFINITION 5.2.2. Let s be a function. Let Q be a partition of Ds.

By s is subordinate to Q, we mean:

@Q P Q, s|Q is constant.
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THEOREM 5.2.3. Let s be a function.

Let P and Q be partitions of Ds.

Assume s is subordinate to Q and P is a refinement of Q.

Then s is subordinate to P.

DEFINITION 5.2.4. Let s : R 99K R.

By s is J-simple, we mean:

Dfinite partition Q of Ds s.t. s is subordinate to Q
and s.t. @Q P Q, Q is CJ-measurable.

DEFINITION 5.2.5. Let s : R 99K R.

By s is L-simple, we mean:

Dcountable partition Q of Ds s.t. s is subordinate to Q
and s.t. @Q P Q, Q is CL-measurable.

We read “J-simple” as “Jordan simple”.

We read “L-simple” as “Lebesgue simple”.

Any J-simple function R 99K R is L-simple.

THEOREM 5.2.6. Let s : R 99K R be J-simple. Then Is is finite.

THEOREM 5.2.7. Let s : R 99K R be L-simple. Then Is is countable.

We now define

the simple integral of a simple function s,

denoted SIs, as follows:

DEFINITION 5.2.8. Let a P R, b ě a, s : ra; bs Ñ R.

Assume s is J-simple. Then:

JIs :“
ÿ

yPIs

pJOs˚tyu ¨ yq.

THEOREM 5.2.9. Let a P R, b ě a, s : ra; bs Ñ R.

Let P be a finite partition of ra; bs.

Assume: s is subordinate to P.

Assume: @P P P, P is CJ-measurable and nonempty.

Define β : P Ñ Is by: @P P P, βP “ UEs˚P .

Then: @y P Is, JOs˚tyu “
ÿ

PPβ˚tyu

JOP .

Idea of Proof: Given y P Is. Want: JOs˚tyu “
ÿ

PPβ˚tyu

JOP .

We leave it as an exercise to show that β˚tyu is a partition of s˚tyu.
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Then, by finite additivity of Jordan measure,

we get the desired result: JOs˚tyu “
ÿ

PPβ˚tyu

JOP . QED

THEOREM 5.2.10. Let a P R, b ě a, s : ra; bs Ñ R.

Let P be a finite partition of ra; bs.

Assume: s is subordinate to P.

Assume: @P P P, P is CJ-measurable and nonempty.

Then: JIs “
ÿ

PPP
p JOP ¨ UEs˚P q.

Proof. Define α : P Ñ R by: @P P P , αP “ JOP ¨ UEs˚P .

Want: JIs “
ÿ

PPP
αP .

Define β : P Ñ Is by: @P P P , βP “ UEs˚P .

By Theorem 5.2.9,

@y P Is, JOs˚tyu “
ÿ

PPβ˚tyu

JOP .

Then JIs “
ÿ

yPIs

JOs˚tyu ¨ y

“
ÿ

yPIs

ˆ

ÿ

PPβ˚tyu

JOP

˙

¨ y

“
ÿ

yPIs

ÿ

PPβ˚tyu

p JOP ¨ y q.

We have: @y P Is, @P P β˚tyu, βP P tyu, so βP “ y.

Then JIs “
ÿ

yPIs

ÿ

PPβ˚tyu

p JOP ¨ βP q.

By definition of β, we have: @P P P , βP “ UEs˚P .

Then JIs “
ÿ

yPIs

ÿ

PPβ˚tyu

p JOP ¨ UEs˚P q.

By definition of α, we have: @P P P , αP “ JOP ¨ UEs˚P .

Then JIs “
ÿ

yPIs

ÿ

PPβ˚tyu

αP .

Then, by Theorem 5.2.1, we get: JIs “
ÿ

PPP
αP . �

THEOREM 5.2.11. Let a P R, b ą a.

Let s, t : ra; bs Ñ R both be J-simple.

Then: s` t is J-simple and

JIs`t “ JIs ` JIt.

Proof. Choose a finite partition P of ra; bs s.t.

@P P P , P is CJ-measurable and
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s is subordinate to P .

Choose a finite partition Q of ra; bs s.t.

@Q P Q, Q is CJ-measurable and

t is subordinate to Q.

Let R :“ tP XQ |P P P , Q P QuˆH.

Then R is a finite partition of ra; bs s.t.

@R P R, R is nonempty and CJ-measurable and

both s and t are subordinate to P .

Since both s and t are subordinate to R,

it follows that s` t is subordinate to R.

Then s` t is J-simple. Want: JIs`t “ JIs ` JIt.

We have: @R P R, UEps`tq˚R “ UEs˚R ` UEt˚R.

Then: @R P R, JOR ¨ UEps`tq˚R “ JOR ¨ UEs˚R ` JOR ¨ UEt˚R.

Then:
ÿ

RPR
pJOR ¨ UEps`tq˚Rq

“

«

ÿ

RPR
pJOR ¨ UEs˚Rq

ff

`

«

ÿ

RPR
pJOR ¨ UEt˚Rq

ff

.

Then, by Theorem 5.2.10, we get: JIs`t “ JIs ` JIt. �

THEOREM 5.2.12. Let a P R, b ą a, c P R.

Let s : ra; bs Ñ R be J-simple.

Then: c ¨ s is J-simple and JIc¨s “ c ¨ JIs.

Proof. Unassigned HW. �

The preceding two theorems can be summarized by saying:

Jordan simple integration, JI, is algebraically linear.

The next theorem says:

Jordan simple integration, JI, is monotonic.

THEOREM 5.2.13. Let a P R, b ą a, I :“ ra; bs.

Let s, t : ra; bs Ñ R both be J-simple.

Assume: on I, s ď t. Then JIs ď JIt.

Proof. By algebraic linearity of JI, we conclude:

t´ s is J-simple and JIt´s “ JIt ´ JIs.

On I, we have t´ s ě 0. So, since Dt´s “ I, we see: It´s ě 0.

Then, by definition of JIt´s, we get: JIt´s ě 0.

Then JIt ´ JIs “ JIt´s ě 0, so JIt ě JIs, so JIs ď JIt. �

The upper simple functions and lower simple functions

for f on I are
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those that majorize f and those majorized by f

on I, as follows:

DEFINITION 5.2.14. Let a P R, b ě a, I :“ ra; bs.

Let f : R 99K R. Assume I Ď Df .

Then USfI :“ t J-simple t : I Ñ R | on I, f ď t u.

Also, LSfI :“ t J-simple s : I Ñ R | on I, s ď f u.

The upper simple integrals and lower simple integrals

for f on I are the Jordan integrals of the

upper simple functions and lower simple functions

for f on I, as follows:

DEFINITION 5.2.15. Let a P R, b ě a, I :“ ra; bs.

Let f : R 99K R. Assume I Ď Df .

Then USIfI :“ t JIt | t P USfI u.

Also, LSIfI :“ t JIs | s P LSfI u.

The Jordan upper integral and Jordan lower integral

for f on I are the infimum and supremum of the

upper simple integrals and lower simple integrals

for f on I, as follows:

DEFINITION 5.2.16. Let a P R, b ě a, I :“ ra; bs.

Let f : R 99K R. Assume I Ď Df .

Then JUf
I :“ inf USIfI and JLfI :“ sup LSIfI .

THEOREM 5.2.17. Let A,B Ď R.

Assume: @a P A, @b P B, a ď b.

Then: supA ď inf B.

Proof. We have: @a P A, a ď B, hence a ď inf B.

Then: A ď inf B, and so supA ď inf B. �

THEOREM 5.2.18. Let a P R, b ě a, I :“ ra; bs.

Let f : R 99K R. Assume I Ď Df .

Then JLfI ď JUf
I .

Proof. Want: sup LSIfI ď inf USIfI .

By Theorem 5.2.17, it suffices to show:

@a P LSIfI , @b P USIfI , a ď b.
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Given a P LSIfI , b P USIfI . Want a ď b.

Since a P LSIfI , choose s P LSfI s.t. a “ JIs.

Since b P USIfI , choose t P USfI s.t. b “ JIt.

Since s P LSfI , we have: on I, s ď f .

Since t P USfI , we have: on I, f ď t.

Then on I, s ď t.

So, by monotonicity of Jordan simple integration, JIs ď JIt.

Then a “ JIs ď JIt “ b. �

The next theorem says that JL and JU are monontonic:

THEOREM 5.2.19. Let a P R, b ě a, I :“ ra; bs, f, g : R 99K R.

Assume: on I, f ď g.

Thene: JLfI ď JLgI and JUf
I ď JUg

I .

Proof. Monotonicity of JL is Problem 5 on the Final exam.

Monotonicity of JU is Unassigned HW. �

When the Jordan upper and lower integrals of f on I agree,

that common integral is called the Jordan integral of f on I:

DEFINITION 5.2.20. Let a P R, b ě a, I :“ ra; bs.

Let f : R 99K R. Assume I Ď Df .

Then:

ż

I

f :“ UE t JLfI , JUf
I u.

5.3. Jordan integrability of continuous functions.

We next show that continuity implies Jordan integrability.

This is one of two deep theorems we will cover in Jordan integration,

the other being the Fundamental Theorem of Calculus,

which will be proved later.

THEOREM 5.3.1. Let a P R, b ą a, I :“ ra; bs.

Let f : R 99K R. Assume f is continuous on I.

Then:

ż

I

f ‰ /.

Proof. Want: JLfI “ JUf
I . By Theorem 5.2.18, JLfI ď JUf

I .

It suffices to show: JUf
I ď JLfI . Want: @ε ą 0, JUf

I ď JLfI ` ε.

Given ε ą 0. Want: JUf
I ď JLfI ` ε.

Since I “ ra; bs, we see that I is closed and bounded.

Then I is compact.
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Since f is continuous on I, it follows that f |I is continuous.

Let g :“ f |I. Then g is continuous.

So, since I is compact, by Theorem 3.12.1, g is uniformly continuous.

By hypothesis b ą a. Then b´ a ą 0. Then ε{pb´ aq ą 0.

By uniform continuity of g, choose δ ą 0 s.t., @w, x P Dg,

p |w ´ x| ă δ q ñ p |gw ´ gx| ă ε{pb´ aq q.

By the AP, choose N P N s.t. N ą pb´ aq{δ. Then pb´ aq{N ă δ.

Let γ :“ pb´ aq{N . Then γ ă δ.

We have a`N ¨ γ “ a` pb´ aq “ b.

For all j P r0..N s, let xj :“ a` j ¨ γ.

Then x0 “ a and xN “ b.

Also, @j P r1..N s, we have xj ´ xj´1 “ γ.

For all j P r1..N s, let Kj :“ rxj´1;xjs.

We have: @j P r1..N s, Kj is closed and bounded, hence compact.

Let Q1 :“ rx0;x1s. Also, @j P r2..N s, let Qj :“ pxj´1;xjs.

By hypothesis, I “ ra; bs. Then tQ1, . . . , QNu is a partition of I.

Moreover, @j P r1..N s, Qj is an interval, so Qj is CJ-measurable.

So, by finite additivity of Jordan measure,
řN
j“1 JOQj

“ JOI .

Also, @j P r1..N s, we have: JOQj
“ xj ´ xj´1.

Then, @j P r1..N s, we have: JOQj
“ γ.

We have: @j P r1..N s, ClQj “ rxj´1;xjs “ Kj.

For all j P r1..N s, let yj :“ min f˚Kj.

For all j P r1..N s, by the EVT, yj ‰ /, so choose uj P Kj s.t. fuj “ yj.

For all j P r1..N s, let zj :“ max f˚Kj.

For all j P r1..N s, by the EVT, zj ‰ /, so choose vj P Kj s.t. fvj “ zj.

Claim 1: @j P r1..N s, zj ´ yj ă ε{pb´ aq.

Proof of Claim 1: Given j P r1..N s. Want: zj ´ yj ă ε{pb´ aq.

We have: uj, vj P Kj “ rxj´1;xjs. Then uj, vj P rx0;xN s “ ra; bs “ I.

Then uj, vj P rxj´1;xjs and uj, vj P I.

Since g “ f |I and since uj, vj P I, we get guj “ fuj and gvj “ fvj .

Since yj “ min f˚Kj ď max f˚Kj “ zj, we get |yj ´ zj| “ zj ´ yj.

Want: |yj ´ zj| ă ε{pb´ aq.

Since uj, vj P rxj´1;xjs, we get: |uj ´ vj| ď xj ´ xj´1.

Then |uj ´ vj| ď xj ´ xj´1 “ γ ă δ.

Also, uj, vj P I “ Df |I “ Dg.

Then, by choice of δ, we have: |guj ´ gvj | ă ε{pb´ aq.
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So, since yj “ fuj “ guj and zj “ fvj “ guj , we get: |yj´zj| ă ε{pb´aq.

End of proof of Claim 1.

Define s, t : I Ñ R by: @j P r1..N s, @x P Qj,

sx “ yj and tx “ zj.

Then s and t are both subordinate to tQ1, . . . , QNu.

Recall: @j P r1..N s, Qj is CJ-measurable.

Then s and t are both J-simple.

Also, JIs “
řN
j“1 pJOQj

¨ yjq and JIt “
řN
j“1 pJOQj

¨ zjq.

Then JIt ´ JIs “
řN
j“1pJOQj

q ¨ pzj ´ yjq.

Then, by Claim 1, JIt ´ JIs ď
řN
j“1p pJOQj

q ¨ pε{pb´ aqq q.

So, since
řN
j“1 JOQj

“ JOI , we conclude:

JIt ´ JIs ď pJOIq ¨ pε{pb´ aqq.

So, since JOI “ JOra;bs “ b´ a, we get: JIt ´ JIs ď ε.

Claim 2: On I, s ď f ď t.

Proof of Claim 2: Want: @x P I, sx ď fx ď tx.

Given x P I. Want: sx ď fx ď tx.

Since tQ1, . . . , QNu is a partition of I and since x P I,

choose j P r1..N s s.t. x P Qj.

Then, by definition of s and t, we get sx “ yj and tx “ zj.

We have x P Qj Ď ClQj “ Kj, so x P Kj.

Since x P Kj, we get min f˚Kj ď fx.

Then sx “ yj “ min f˚Kj ď fx, so sx ď fx. Want: fx ď tx.

Since x P Kj, we get fx ď max f˚Kj.

Then fx ď max f˚Kj “ zj “ tx, so fx ď tx.

End of proof of Claim 2.

By Claim 2, we have: on I, s ď f .

So, since s is J-simple, we get s P LSfI .

Then JIs P LSIfI , so JIs ď sup LSIfI .

Then JIs ď sup LSIfI “ JLfI .

So, since JIt ´ JIs ď ε, we get:

JIs ` pJIt ´ JIsq ď JLfI ` ε.

Then JIt ď JLfI ` ε.

By Claim 2, we have: on I, f ď t.



166 SCOT ADAMS

So, since t is J-simple, we get t P USfI .

Then JIt P USIfI , so JIt ě inf USIfI .

Then JIt ě inf USIfI “ JUf
I . Then JUf

I ď JIt.

So, since JIt ď JLfI ` ε, we get: JUf
I ď JLfI ` ε. �

5.4. Cocycle formulas.

DEFINITION 5.4.1. Let f : R 99K R, a, b P R, I :“ ra|bs.

Assume I Ď Df . Then

ż b

a

f :“

$

’

’

’

’

&

’

’

’

’

%

ż

I

f, if a ă b

0, if a “ b

´

ż

I

f, if a ą b

.

THEOREM 5.4.2. Let a P R, b ě a, f : R 99K R.

Assume ra; bs Ď Df . Let s, t, u P ra; bs. Assume s ď t ď u.

Then

ż u

s

f “
˚

ˆ
ż t

s

f

˙

`

ˆ
ż u

t

f

˙

.

Proof. Unassigned HW. �

The assumption that s ď t ď u can be relaxed:

THEOREM 5.4.3. Let a P R, b ě a, f : R 99K R.

Assume ra; bs Ď Df . Let s, t, u P ra; bs. Assume s ď u.

Then

ż u

s

f “
˚

ˆ
ż t

s

f

˙

`

ˆ
ż u

t

f

˙

.

Proof. Unassigned HW. �

The assumption that s ď u can be removed:

THEOREM 5.4.4. Let a P R, b ě a, f : R 99K R.

Assume ra; bs Ď Df . Let s, t, u P ra; bs.

Then

ż u

s

f “
˚

ˆ
ż t

s

f

˙

`

ˆ
ż u

t

f

˙

.

Proof. Unassigned HW. �

THEOREM 5.4.5. Let a P R, b ě a, f : R 99K R.

Assume ra; bs Ď Dcon
f . Let s, t, u P ra; bs.

Then

ż u

s

f “

ˆ
ż t

s

f

˙

`

ˆ
ż u

t

f

˙

.
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Proof. By Theorem 5.4.4, we have:
ż u

s

f “
˚

ˆ
ż t

s

f

˙

`

ˆ
ż u

t

f

˙

.

By Theorem 5.3.1,

ż t

s

f ‰ / ‰

ż u

t

f .

Then

ż u

s

f “

ˆ
ż t

s

f

˙

`

ˆ
ż u

t

f

˙

. �

5.5. The Fundamental Theorem of Calculus.

THEOREM 5.5.1. Let a, b, y P R. Then:

ż b

a

CR
y “ pb´ aq ¨ y.

Proof. Unassigned HW. �

DEFINITION 5.5.2. Let f : R 99K R, y P R. Then f ´ y :“

f ´ CR
y .

THEOREM 5.5.3. Let f : R 99K R, a, y P R, b ě a.

Assume ra; bs Ď Dcon
f . Then

ż b

a

pf ´ yq “

ˆ
ż b

a

f

˙

´ y ¨ pb´ aq.

Proof.

ż b

a

pf ´ yq “

ż b

a

pf ´ CR
y q “

ˆ
ż b

a

f

˙

´ y ¨ pb´ aq. �

THEOREM 5.5.4. Let a, P R, b ě a, f, g : R 99K R.

Assume: p ra; bs Ď Dcon
f X Dcon

g q& p on ra; bs, f ď g q.

Then:

ż b

a

f ď

ż b

a

g.

Proof. Let I :“ ra; bs.

By Theorem 5.3.1,

ż b

a

f ‰ / ‰

ż b

a

g.

Then:

ż b

a

f “ JLI f and

ż b

a

g “ JLI g.

By Theorem 5.2.19, JLI f ď JLI g.

Then

ż b

a

f “ JLI f ď JLI g “

ż b

a

g. �

The following is the Fundamental Theorem of Calculus:

THEOREM 5.5.5. Let a P R, b ě a, f : R 99K R.

Assume: ra; bs Ď Dcon
f .
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Define g : ra; bs Ñ R by: @x P ra; bs, gx “

ż x

a

f .

Then: @x P pa; bq, g1x “ fx.

Proof. Given x P pa; bq. Want: g1x “ fx.

We have rDxgs “ g1x. Want: rDxgs “ fx.

Let y :“ fx. Want: rDxgs “ y.

Let L :“ y ¨ p‚q. Then L P L and rLs “ L1 “ y ¨ 1 “ y.

Want: rDxgs “ rLs. Want: Dxg “ L.

We have UEpLINSxgq “ Dxg. Want: UEpLINSxgq “ L.

Want: LINSxg “ tLu.

By uniqueness of linearlization, it suffices to show: L P LINSxg.

Want: gTx ´ L P Op1q.

Want: @ε ą 0, Dδ ą 0 s.t., @h P R,

p |h| ă δ q ñ p |pgTx ´ Lqh| ď ε ¨ |h|1 q.

Given ε ą 0. Want: Dδ ą 0 s.t., @h P R,

p |h| ă δ q ñ p |pgTx ´ Lqh| ď ε ¨ |h|1 q.

Since x P pa; bq and since pa; bq is open,

choose λ ą 0 s.t. Bpx, λq Ď pa; bq.

By hypothesis, ra; bs Ď Dcon
f .

Since x P pa; bq Ď ra; bs Ď Dcon
f , we get: f is continuous at x.

Then choose µ ą 0 s.t., @w P Df ,

p |w ´ x| ă µ q ñ p |fw ´ fx| ă ε q.

Let δ :“ mintλ, µu. Then δ ď λ and δ ď µ and δ ą 0.

Want: @h P R, p |h| ă δ q ñ p |pgTx ´ Lqh| ď ε ¨ |h|1 q.

Given h P R. Assume |h| ă δ. Want: |pgTx ´ Lqh| ď ε ¨ |h|1.

Exactly one of the following is true:

(1) h ą 0 or (2) h “ 0 or (3) h ă 0.

Case (1):

We have |px` hq ´ x| “ |h| ă δ, so x` h P Bpx, δq.

Then x, x` h P Bpx, δq.

Since δ ď λ and δ ď µ, it follows that:

Bpx, δq Ď Bpx, λq and Bpx, δq Ď Bpx, µq.

Then: x, x` h P Bpx, λq and x, x` h P Bpx, µq.

We have x, x` h P Bpx, λq Ď pa; bq Ď ra; bs, so x, x` h P ra; bs.

Then x, x` h P ra; bs “ Dg and x, x` h P R “ DL,

so pgTx ´ Lqh “ gx`h ´ gx ´ Lh.
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We have

ż x`h

a

f “

ˆ
ż x

a

f

˙

`

ˆ
ż x`h

x

f

˙

,

so

ˆ
ż x`h

a

f

˙

´

ˆ
ż x

a

f

˙

“

ż x`h

x

f .

By Theorem 5.5.1,

ż x`h

x

y “ ppx` hq ´ xq ¨ y.

Then

ż x`h

x

y “ ppx` hq ´ xq ¨ y “ y ¨ h “ py ¨ p‚qqh “ Lh.

Then pgTx ´ Lqh “ gx`h ´ gx ´ Lh

“

ˆ
ż x`h

a

f

˙

´

ˆ
ż x

a

f

˙

´

ˆ
ż x`h

x

y

˙

“

ˆ
ż x`h

x

f

˙

´

ˆ
ż x`h

x

y

˙

“

ż x`h

x

pf ´ yq.

Want:

ˇ

ˇ

ˇ

ˇ

ż x`h

x

pf ´ yq

ˇ

ˇ

ˇ

ˇ

ď ε ¨ |h|1.

Since h ą 0, we get |h| “ h. Then |h|1 “ |h| “ h.

Want:

ˇ

ˇ

ˇ

ˇ

ż x`h

x

pf ´ yq

ˇ

ˇ

ˇ

ˇ

ď ε ¨ h.

Want: ´ε ¨ h ď

ż x`h

x

pf ´ yq ď ε ¨ h.

Want:

ż x`h

x

p´εq ď

ż x`h

x

pf ´ yq ď

ż x`h

x

ε.

Want: on rx;x` hs, ´ε ď f ´ y ď ε.

Want: @w P rx;x` hs, ´ε ď pf ´ yqw ď ε.

Given w P rx;x` hs. Want: ´ε ď pf ´ yqw ď ε.

Want: ´ε ď fw ´ y ď ε. Want: |fw ´ y| ď ε.

Recall that x, x` h P Bpx, δq.

Since Bpx, δq “ px´ δ;x` δq, we see that Bpx, δq is an interval.

Then rx|x` hs Ď Bpx, δq.

Since h ą 0, we get rx|x` hs “ rx;x` hs.

Then w P rx;x` hs “ rx|x` hs Ď Bpx, δq, so w P Bpx, δq.

Recall: Bpx, δq Ď Bpx, λq and Bpx, δq Ď Bpx, µq.

By choice of λ, we have: Bpx, λq Ď pa; bq.

By assumption, ra; bs Ď Dcon
f .

Since w P Bpx, δq Ď Bpx, λq Ď pa; bq Ď ra; bs Ď Dcon
f Ď Df ,

we concude that w P Df .

Since w P Bpx, δq Ď Bpx, µq, we get: |w ´ x| ă µ.

Then, by the choice of µ, we get: |fw ´ fx| ă µ.
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So, since y “ fx, we get: |fw ´ y| ă µ.

End of Case (1).

Case (2):

Unassigned HW. End of Case (2).

Case (3):

Unassigned HW. End of Case (3). �
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Archimedean Principle, 17

Axiom of Choice, 10, 38

Axiom of Extensionality, 8

bound, 4

boundary, 57

bounded, 53

bounded above, 53

bounded below, 53

c/d, 132

Carathéodory-Jordan

measurable, 151

Carathéodory-Lebesgue

measurable, 151

Cauchy, 79

chain of pO, O spaces, 107

chain rule, 121, 123

characteristic function, 38

CJ-measurable, 151

CL-measurable, 151

clopen, 60

closed, 59

closed ball, 77

closure, 58

compact, 77

comparable, 50

Completeness Axiom, 14

compose, 35

composition, 35

constant, 109, 134

constant function on S with

value a, 63

constructible, 158

continuous, 80, 83

continuous near a, 118

convergent, 74

convergent in X, 76

countable, 44

countably infinite, 44

cubic, 109

D-derivative, 114

defined at a, 106

defined near a, 106

derivative, 114

differentiable, 115

differentiable at a, 115

differentiable near a, 118

differentiable on S, 115

domain, 27
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Double Translate, 105

existential quantifier, 23

extended real, 6

extended real number, 6

extension, g Ě f , 35

Fermat’s Theorem, 130

fiber over y, 34

finite, 42

finitely additive, 152

forward-image of A, 33

free, 4

function, 28

functional, 50

Fundamental Theorem of

Calculus, 167

global semi-extremum, 126

global semi-maximum, 125

global semi-minimum, 125

global strict-extremum, 126

global strict-maximum, 125

global strict-minimum, 126

Hausdorff property, 56

identity function, 36

image, 27

incomparable, 50

infinite, 42

interior, 58

Intermediate Value Theorem,

92

interval, 133

inverse function, 37

Inverse Function Theorem, first

order, RÑ R, 143

IVT, 92

J-simple, 159

Jordan integral, 163

Jordan lower integral, 162

Jordan outer k-measure, 145

Jordan outer measure, 145

Jordan upper integral, 162

L-simple, 159

Lebesgue outer measure, 145

length, 144

limit of a sequence in R, 63

linear, 109

linear operations, 107

linearizations, 112

linearly closed, 108

local semi-extremum, 126

local semi-maximum, 126

local semi-minimum, 126

local strict-extremum, 126

local strict-maximum, 126

local strict-minimum, 126

lower simple functions, 161

lower simple integrals, 162

Mean Value Theorem, 133

monomial on R, 93

monotonicity of closure, 62

monotonicity of interior, 62

MVT, 133

Naive Product Rule, 10

object, 6

one-to-one, 30

open, 59

open ball, 52

open cover, 144

overmeasure, 144
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pairwise additive, 152

pairwise-disjoint, 49

partition, 49

PMI, 15

PMI template, 16

pointwise convergence, 102

polynomial on R, 93

polynomials, 109

polynomials RÑ R of degree

k, 109

power function on R, 93

pre-image of A, 33

Precalculus Chain Rule, 105

Precalculus Inverse Function

Theorem, 142

Precalculus Product Rule, 105

prime derivative, 114

primitive ordered pair, 26

Principle of Mathematical

Induction, 15

product rule, 120, 123

punctured open ball, 94

quadratic, 109

quantifier, 22

quotient rule, 123

RAP, 17

refinement, 49

relation, 26

restriction of f to a subset of

Df , 35

restriction, f Ď g, 35

ring of sets, 158

Rolle’s Theorem, 132

Schroeder-Bernstein Theorem,

43

semi-t-bounded, 55

semi-decreasing, 70

semi-forward-orbit, 41

semi-increasing, 70

semi-monotone, 70

sequence, 40

sequentially-closed, 98

simple integral, 159

singleton, 10

singleton set, 10

splits S L-well, 150

splits S well, 150

strict-forward-orbit, 41

strictly-t-bounded, 55

strictly-decreasing, 69

strictly-increasing, 69

strictly-monotone, 69

subconvergent, 76

subconvergent in X, 76

subordinate, 158

subsequence, 73

Subset Recentering Theorem,

52

Superset Recentering Theorem,

53

support, 144

tail, 63

Taylor Theorem, second order,

140

The Reciprocal Archimedean

Principle, 17

total length, 144

Triangle Inequality, 22

u.c., 85

unbound, 4

unbounded, 53

uncountable, 44
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uniform convergence, 102

universal quantifier, 23

upper simple functions, 161

upper simple integrals, 162

vertical line, 27

Well-Ordering Axiom, 14

zero-sequence, 40
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