MATH 4603 Fall 2022, Final Exam Handout date: Tuesday 13 December 2022 Due: Tuesday 20 December 2022 at 11:59pm Instructor: Scot Adams

instructor. Scot reams

PRINT YOUR NAME:

SOLUTIONS

PRINT YOUR @umn.edu EMAIL ADDRESS:

NO COLLABORATION.

```
Hand-graded problems. Show work.
```

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$, $k \in \mathbb{N}_0$. Assume: $(f_0 = 0) \& (f' \in \mathcal{O}(k))$.

Then: $f \in \mathcal{O}(k+1)$.

Proof: Want: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}, \forall h \in \mathbb{R},$

$$(|h| < \delta) \Rightarrow (|f_h| \leqslant \varepsilon \cdot |h|^{k+1}).$$

Given $\varepsilon > 0$. Want: $\exists \delta > 0 \text{ s.t.}, \forall h \in \mathbb{R}$,

$$(|h| < \delta) \Rightarrow (|f_h| \leqslant \varepsilon \cdot |h|^{k+1}).$$

Since $f' \in \mathcal{O}(k)$, choose $\delta > 0$ s.t., $\forall h \in \mathbb{R}$,

$$(|h| < \delta) \Rightarrow (|f'_h| \leqslant \varepsilon \cdot |h|^k).$$

Then $(-\delta; \delta \subseteq \mathbb{D}'_f$.

Also,
$$\delta > 0$$
.

Want: $\forall h \in \mathbb{R}, (|h| < \delta) \Rightarrow (|f_h| \leqslant \varepsilon \cdot |h|^{k+1}).$

Given $h \in \mathbb{R}$. Assume: $|h| < \delta$. Want: $|f_h| \le \varepsilon \cdot |h|^{k+1}$.

We have: $0, h \in [-|h|; |h|].$

So, since $\lceil -|h|$; |h| is an interval, we get: $\lceil 0|h \rceil \subseteq \lceil -|h|$; |h|.

Since $|h| < \delta$, we get: $[-|h|; |h|] \subseteq (-\delta; \delta)$.

Since $[0|h] \subseteq [-|h|; |h|] \subseteq (-\delta; \delta)$, we get: $[0|h] \subseteq (-\delta; \delta)$.

Since $[0|h] \subseteq (-\delta; \delta) \subseteq \mathbb{D}'_f$, by the quotient-free MVT,

choose
$$c \in [0|h]$$
 s.t. $f_h - f_0 = f'_c \cdot (h-0)$.

By hypothesis, $f_0 = 0$. Then $f_h = f'_c \cdot h$. Then $|f_h| = |f'_c| \cdot |h|$.

Since $c \in [0|h] \subseteq [-|h|; |h|]$, we get: $|c| \le |h|$.

Since $|c| \le |h| < \delta$, by choice of δ , we have: $|f'_c| \le \varepsilon \cdot |c|^k$.

Then $|f_h| = |f_c'| \cdot |h| \le \varepsilon \cdot |c|^k \cdot |h| \le \varepsilon \cdot |h|^k \cdot |h| = \varepsilon \cdot |h|^{k+1}$. QED

Assume $f_0 = f_0' = f_0'' = 0$. Then: $f \in \mathcal{O}(2)$. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$.

Proof: Let g := f'. Then $g_0 = f'_0 = 0$ and $g'_0 = f''_0 = 0$. Since $g_0 = g'_0 = 0$, by the First-Order Vanishing Taylor Theorem,

we get: $g \in \mathcal{O}(1)$.

Since $f_0 = 0$ and since $f' = g \in \mathcal{O}(1)$, by Problem 1, QED

we get: $f \in \mathcal{O}(2)$.

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$, $a \in \mathbb{D}''_f$. Assume: $(f'_a = 0) \& (f''_a > 0)$.

Then: f has a local strict-minimum at a.

Proof: Want: $f_a^{\mathbb{T}}$ has a local strict-minimum at 0.

Let $L = D_a f$. Then $L = f'_a \cdot (\bullet) = 0 \cdot (\bullet) = \mathbf{0}$, so $L = \mathbf{0}$.

Let $\varepsilon := f_a''/4$ and $Q := D_a^2 f$.

Then $Q = f_a'' \cdot (\bullet)^2 / 2 = 2 \cdot \varepsilon \cdot (\bullet)^2$, so $Q = 2 \cdot \varepsilon \cdot (\bullet)^2$.

Let $R := f_a^{\mathbb{T}} - L - Q$.

By the Second-Order Taylor Theorem, we get: $R \in \mathcal{O}(2)$.

Let $g := f_a^{\mathbb{T}}$. Want: g has a local strict-minimum at 0.

Want: $\exists B \in \mathcal{B}(0)$ s.t., $\forall h \in B_0^{\times}, g_h > g_0$.

Since $R := f_a^{\mathbb{T}} - L - Q = g - \mathbf{0} - Q = g - Q$, we get: R = g - Q.

Since $R \in \mathcal{O}(2)$, choose $\delta > 0$ s.t., $\forall h \in \mathbb{R}$,

 $(|h| < \delta) \Rightarrow (|R_h| \leqslant \varepsilon \cdot |h|^2).$

Let $B := B(0, \delta)$. Then $B \in \mathcal{B}(0)$. Want: $\forall h \in B_0^{\times}, g_h > g_0$.

Given $h \in B_0^{\times}$. Want: $g_h > g_0$.

Since $h \in B_0^{\times}$, we get: $h \in B$ and $h \neq 0$.

Since $\varepsilon > 0$ and $h \neq 0$, we get $2 \cdot \varepsilon \cdot h^2 > 0$.

Since $h \in B = B(0, \delta)$, we get $|h| < \delta$.

So, by choice of δ , we get: $|R_h| \leq \varepsilon \cdot |h|^2$.

Let $a := R_h$ and $b := Q_h$.

Since R = g - Q, we get $R_h = g_h - Q_h$, so $a = g_h - b$, so $g_h = b + a$.

Since $Q = 2 \cdot \varepsilon \cdot (\bullet)^2$, we get $Q_h = 2 \cdot \varepsilon \cdot h^2$, so $b = 2 \cdot \varepsilon \cdot h^2$.

We have $|a|=|R_h|\leqslant \varepsilon\cdot |h|^2=(2\cdot \varepsilon\cdot |h|^2)/2=|b|/2,$ so $|a|\leqslant |b|/2.$

So, by robustness of sgn, we get: $\operatorname{sgn}_{b+a} = \operatorname{sgn}_b$.

Recall: $2 \cdot \varepsilon \cdot h^2 > 0$.

Since $b = 2 \cdot \varepsilon \cdot h^2 > 0$, we get b > 0, so $\operatorname{sgn}_b = 1$.

Then $\operatorname{sgn}_{b+a} = \operatorname{sgn}_b = 1$, so b+a > 0. Recall: $g_h = b+a$.

We have $g_0 = (f_a^T)_0 = f_{a+0} - f_a = f_a - f_a = 0$.

Then $g_h = b + a > 0 = g_0$. QED

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$. Assume f is one-to-one. Let $g:=f^{-1}$.

Assume: $(f_0 = 0) \& (f'_0 = 3) \& (g \in \mathcal{O}(0))$. Then: $g'_0 = 1/3$.

Proof: Since $f_0 = 0$ and since $g = f^{-1}$, we get: $0 = g_0$.

Since $f_0 = 0$, we get: $f_0^{\mathbb{T}} = f$. Since $g_0 = 0$, we get: $g_0^{\mathbb{T}} = g$.

Since $f'_0 = 3$, we get: $D_0 f = 3 \cdot (\bullet)$.

Let $L := (\bullet)$. Then $L = id^{\mathbb{R}}$. Then: $\forall h \in \mathbb{R}, L_h = h$.

We have: $\forall h \in \mathbb{R}$,

$$(D_0 f)_h = (D_0 f)_{h \cdot 1} = h \cdot ((D_0 f)_1) = h \cdot [D_0 f]$$

= $h \cdot f'_0 = h \cdot 3 = 3 \cdot h = 3 \cdot L_h = (3 \cdot L)_h$.

Then: $D_0 f = 3 \cdot L$. Then: $f_0^{\mathbb{T}} - 3 \cdot L \in \mathcal{O}(1)$.

Let $R := f - 3 \cdot L$. Then: $R = f_0^{\mathbb{T}} - 3 \cdot L$. Then: $R \in \mathcal{O}(1)$.

We have $[(1/3) \cdot L] = ((1/3) \cdot L)_1 = (1/3) \cdot L_1 = (1/3) \cdot 1 = 1/3$.

Also, $g'_0 = [D_0 g]$. Want: $[D_0 g] = [(1/3) \cdot L]$.

It suffices to show: $D_0g = (1/3) \cdot L$.

By uniqueness of linearization, want: $(1/3) \cdot L \in LINS_0g$.

Want: $g_0^{\mathbb{T}} - (1/3) \cdot L \in \mathcal{O}(1)$.

Recall: $g_0^{\mathbb{T}} = g$. Want: $g - (1/3) \cdot L \in \mathcal{O}(1)$.

We have: $L \circ g = id^{\mathbb{R}} \circ g = g$.

Then: $(3 \cdot L) \circ g = 3 \cdot (L \circ g) = 3 \cdot g$.

Since $R = f - 3 \cdot L$, we get: $f = 3 \cdot L + R$.

Then: $\operatorname{id}_{\underline{}}^{\mathbb{D}_g} = f \circ g = ((3 \cdot L) \circ g) + (R \circ g) = 3 \cdot g + (R \circ g).$

Then: $id^{\mathbb{D}_g} = 3 \cdot g + (R \circ g)$.

Since $g_0 = 0$, we get $0 \in \mathbb{D}'_g$, so g is defined near 0.

Then $id^{\mathbb{R}} = id^{\mathbb{D}_g}$ near 0.

Then $id^{\mathbb{R}} = 3 \cdot g + (R \circ g)$ near 0.

Recall: $L = id^{\mathbb{R}}$. Then $L = 3 \cdot g + (R \circ g)$ near 0.

Then: $(1/3) \cdot L = g + (1/3) \cdot (R \circ g)$ near 0.

Then: $(1/3) \cdot L - g = (g - g) + (1/3) \cdot (R \circ g)$ near 0.

Since g is defined near 0, we get: $g - g = \mathbf{0}$ near 0.

Then: $(1/3) \cdot L - g = (1/3) \cdot (R \circ g)$ near 0.

Then: $g - (1/3) \cdot L = -(1/3) \cdot (R \circ g)$ near 0.

Want: $-(1/3) \cdot (R \circ g) \in \mathcal{O}(1)$. Want: $R \circ g \in \mathcal{O}(1)$.

Since $R \in \mathcal{O}(1)$, it suffices to show: $g \in \widehat{\mathcal{O}}(1)$.

Want: $\exists C \ge 0, \exists \varepsilon > 0 \text{ s.t.}, \forall k \in \mathbb{R}, (|k| < \varepsilon) \Rightarrow (|g_k| \le C \cdot |k|^1).$

Let C := 1/2. Then $C \ge 0$.

Want: $\exists \varepsilon > 0 \text{ s.t.}, \forall k \in \mathbb{R}, (|k| < \varepsilon) \Rightarrow (|g_k| \leqslant C \cdot |k|^1).$

Since $R \in \mathcal{O}(1)$, choose $\delta > 0$ s.t., $\forall h \in \mathbb{R}$,

$$(|h| < \delta) \Rightarrow (|R_h| \leqslant 1 \cdot |h|^1).$$

Since $g \in \mathcal{O}(0)$, choose $\varepsilon > 0$ s.t., $\forall k \in \mathbb{R}$,

$$(|k| < \varepsilon) \Rightarrow (|g_k| \le (1/2) \cdot \delta \cdot |k|^0).$$

Then $\varepsilon > 0$. Want: $\forall k \in \mathbb{R}, (|k| < \varepsilon) \Rightarrow (|g_k| \leqslant C \cdot |k|^1)$.

Given $k \in \mathbb{R}$. Assume: $|k| < \varepsilon$. Want: $|g_k| \le C \cdot |k|^1$.

Recall: C = 1/2. Want: $|g_k| \le (1/2) \cdot |k|$.

Since $|k| < \varepsilon$, by choice of ε , we get: $|g_k| \le (1/2) \cdot \delta \cdot |k|^0$.

Let $h := g_k$. Then $|h| = |g_k| \le (1/2) \cdot \delta \cdot |k|^0 = (1/2) \cdot \delta < \delta$.

Then $|h| < \delta$. So, by choice of δ , we get: $|R_h| \leq 1 \cdot |h|^1$.

We have $R_h = (f - 3 \cdot L)_h$ and $L_h = h$, so $R_h = f_h - 3 \cdot h$.

Then $|f_h - 3 \cdot h| = |R_h| \le 1 \cdot |h|^1 = |h|$, so $|f_h - 3 \cdot h| \le |h|$.

Since $| \bullet |$ is distance-semidecreasing, we get:

$$||f_h|| - |3 \cdot h|| \leqslant |f_h| - 3 \cdot h|.$$

Since $||f_h|| - |3 \cdot h|| \le |f_h| - |3 \cdot h| \le |h|$,

we get: $|3 \cdot h| - |h| \le |f_h| \le |3 \cdot h| + |h|$.

Then: $3 \cdot |h| - |h| \le |f_h| \le 3 \cdot |h| + |h|$. Then: $2 \cdot |h| \le |f_h| \le 4 \cdot |h|$.

Then $2 \cdot |h| \leq |f_h|$. Recall: $h = g_k$. Then: $2 \cdot |g_k| \leq |f_h|$.

Since $h = g_k$ and since $g = f^{-1}$, we get: $f_h = k$.

Then $2 \cdot |g_k| \le |k|$. Then $|g_k| \le (1/2) \cdot |k|$. QED

```
5. (20 pts) Show:
Let a \in \mathbb{R}, b \geqslant a, I := [a; b], f, g : \mathbb{R} \dashrightarrow \mathbb{R}. Assume: I \subseteq \mathbb{D}_f \cap \mathbb{D}_g.
Assume: on I, f \leq g.
                                          Then: JL_I f \leq JL_I g.
Proof:
              S \ := \ \{ \text{ simple functions } s: I \to \mathbb{R} \mid s \leqslant f \text{ on } I \ \}.
Let
              T := \{ \text{ simple functions } s: I \to \mathbb{R} \mid s \leqslant g \text{ on } I \}.
Let
              JL_f = \sup\{JI_s \mid s \in S\} and JL_g = \sup\{JI_s \mid s \in T\}.
Then:
Since f \leq g on I, we get: S \subseteq T.
                                \{\operatorname{JI}_s \mid s \in S\} \subseteq \{\operatorname{JI}_s \mid s \in T\}.
Then:
                          \sup\{\mathrm{JI}_s \mid s \in S\} \leqslant \sup\{\mathrm{JI}_s \mid s \in T\}.
Then:
              JL_f = \sup\{JI_s \mid s \in S\} \leq \sup\{JI_s \mid s \in T\} = JL_q.
Then:
                                                                                                        QED
```