MATH 4603 Fall 2022, Midterm #1 Handout date: Thursday 13 October 2022 Instructor: Scot Adams

PRINT YOUR NAME:
PRINT YOUR @umn.edu EMAIL ADDRESS:
Thirty minute exam.
Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.
Turn off all mobile electronic devices.

I. Definitions

A. (5 pts) Let f be a function. By f is **1-1**, we mean: . . .

B. (5 pts) Let f be an injective function. Then $f^{-1}: \mathbb{I}_f \to \mathbb{D}_f$ is defined by: $\forall y \in \mathbb{I}_f, f_y^{-1} = \cdots$.

C. (5 pts) Let $S \subseteq \mathbb{R}^*$. Then $UB_S := \cdots$.

D. (5 pts) Let $S \subseteq \mathbb{R}^*$. Then $\sup_S := \cdot \cdot \cdot$.

E. (5 pts) Let f and g be functions. Then $g \circ f$ is the function defined by: $\forall x, (g \circ f)_x = \cdots$.

F. (5 pts) Let A be a set. Then $id^A: A \to A$ is the function defined by: $\forall x \in A, id_x^A = \cdots$.

II. True or false (no partial credit):

a. (5 pts) Let A, B be sets, $f: A \to B, g: B \to A$. Assume $g \circ f = \operatorname{id}^A$. Then $f: A \hookrightarrow B$.

b. (5 pts) $\min \mathbb{Z} = \mathfrak{S}$.

c. (5 pts) $\sup \emptyset = \odot$.

d. (5 pts) Let A, B and C be sets. Let $f: A \rightarrow > B$ and $g: B \rightarrow > C$. Then $g \circ f: A \rightarrow > C$.

e. (5 pts) $\forall x, y \in \mathbb{R}$, $|y| - |x| \leq |y - x|$.

III. Hand-graded problems. Show work.

1. (10 pts) Let $S := \{2, 4, 6, 8, ...\}$. Compute: max S and sup S.

(No need to prove that your answers are correct; just giving the correct answers will earn you full credit. However, if you give an incorrect answer, an explanation might be worth some partial credit.)

2. (10 pts) Using the 0-Principle of Mathematical Induction, show: $\forall j \in \mathbb{N}_0, \quad \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^j} = 2 - \frac{1}{2^j}.$

3. (10 pts) Show: $\forall \varepsilon > 0, \, \exists \delta > 0 \text{ s.t. } \delta^5 + 3\delta^3 - 2\delta < \varepsilon.$

4. (15 pts) Show: $\forall \varepsilon > 0, \exists j \in \mathbb{N} \text{ s.t. } (1/\sqrt[3]{j}) + (1/2^{j}) < \varepsilon.$