MATH 4603 Fall 2022, Midterm \#2
Handout date: Thursday 3 November 2022
Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

Thirty minute exam.

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.
I. Definitions
A. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$.

Then $f_{a}^{\mathbb{T}}: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by: $\forall h \in \mathbb{R},\left(f_{a}^{\mathbb{T}}\right)_{h}=\cdots$.
B. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$.

By f is uniformly continuous, we mean: ...
C. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}, S \subseteq \mathbb{R}$.

By f is continuous on S, we mean: ...
D. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}, a, z \in \mathbb{R}$.

By as $x \rightarrow a, f_{x} \rightarrow z$, we mean:
E. (5 pts) Let S be a set. By S is countably infinite, we mean: ...
F. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. By f is Lipschitz, we mean: ...
II. True or false (no partial credit):
a. $(5 \mathrm{pts}) \quad \forall x \in \mathbb{R}, \quad\left(x^{2}, x^{2}, x^{2}, \ldots\right) \rightarrow x^{2}$.
b. (5 pts) Let $p, q \in \mathbb{R}$. Assume $p \neq q$.

Then: $\exists \varepsilon>0$ s.t. $(B(p, \varepsilon)) \cap(B(q, \varepsilon))=\varnothing$.
c. $(5 \mathrm{pts}) \exists 2^{\mathbb{R}} \hookrightarrow \mathbb{R}$.
d. (5 pts) Let $s, t \in \mathbb{R}^{\mathbb{N}}, a, b \in \mathbb{R}$.

Assume $s \rightarrow a$ and $t \rightarrow b$. Then $s \cdot t+s+t \rightarrow a \cdot b+a+b$.
e. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Assume f is continuous. Then f is Lipschitz.
I. A, B, C
I. D,E,F
II. a,b,c,d,e
III. 1
III. 2
III. 3
III. 4
III. Hand-graded problems. Show work.

1. (10 pts) Find $f, g: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

$$
\begin{array}{lll}
\text { as } x \rightarrow 1, & f_{x} \rightarrow 5 & \text { and } \\
\text { as } y \rightarrow 5, & g_{y} \rightarrow 9 & \text { and } \\
\text { as } x \rightarrow 1, & (g \circ f)_{x} \rightarrow 0 . &
\end{array}
$$

(No need to prove that your answer is correct; just giving the correct answer will earn you full credit. However, if you give an incorrect answer, an explanation might be worth some partial credit.)
(NOTE: Avoid unbound variables. To bind f and g, say,
"Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by: $\forall x \in \mathbb{R}, f_{x}=\cdots$ "
and

$$
\text { "Define } g: \mathbb{R} \rightarrow \mathbb{R} \text { by: } \forall y \in \mathbb{R}, g_{y}=\cdots \text { " .) }
$$

2. (10 pts) Show: Let $s, t \in \mathbb{R}^{\mathbb{N}}, a \in \mathbb{R}$.

Assume $s \rightarrow-\infty$ and $t \rightarrow \infty$. Then $s-t \rightarrow-\infty$.
3. (10 pts) Show: Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by: $\forall x \in \mathbb{R}, f_{x}=|x|$.

Then f is uniformly continuous.
4. (15 pts) Show: Let $s \in \mathbb{R}^{\mathbb{N}}$.

Assume $s \rightarrow-\infty$. Then: $s^{2}+s \rightarrow \infty$.

