MATH 4603 Fall 2022, Midterm #2Handout date: Thursday 3 November 2022 Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

Thirty minute exam.

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.

I. Definitions

A. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and $a \in \mathbb{R}$. Then $f_a^{\mathbb{T}} : \mathbb{R} \dashrightarrow \mathbb{R}$ is defined by: $\forall h \in \mathbb{R}, (f_a^{\mathbb{T}})_h = \cdots$.

B. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$. By f is **uniformly continuous**, we mean: ...

C. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}, S \subseteq \mathbb{R}$.

By f is **continuous** on S, we mean: ...

D. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}, a, z \in \mathbb{R}$. By as $x \to a, f_x \to z$, we mean:

E. (5 pts) Let S be a set. By S is countably infinite, we mean: \dots

F. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$. By f is **Lipschitz**, we mean: ...

II. True or false (no partial credit):

a. (5 pts) $\forall x \in \mathbb{R}, (x^2, x^2, x^2, \ldots) \rightarrow x^2.$

b. (5 pts) Let $p, q \in \mathbb{R}$. Assume $p \neq q$. Then: $\exists \varepsilon > 0$ s.t. $(B(p, \varepsilon)) \cap (B(q, \varepsilon)) = \emptyset$.

c. (5 pts) $\exists 2^{\mathbb{R}} \hookrightarrow \mathbb{R}$.

d. (5 pts) Let $s, t \in \mathbb{R}^{\mathbb{N}}$, $a, b \in \mathbb{R}$. Assume $s \to a$ and $t \to b$. Then $s \cdot t + s + t \to a \cdot b + a + b$.

e. (5 pts) Let $f : \mathbb{R} \to \mathbb{R}$. Assume f is continuous. Then f is Lipschitz.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

I. A,B,C

I. D,E,F

II. a,b,c,d,e

III. 1

III. 2

III. 3

III. 4

III. Hand-graded problems. Show work.

1. (10 pts) Find
$$f, g : \mathbb{R} \to \mathbb{R}$$
 s.t.

as $x \to 1$,	$f_x \to 5$	and
as $y \to 5$,	$g_y \to 9$	and
as $x \to 1$,	$(g \circ f)_x \to 0.$	

(No need to prove that your answer is correct; just giving the correct answer will earn you full credit. However, if you give an incorrect answer, an explanation might be worth some partial credit.)

(NOTE: Avoid unbound variables. To bind f and g, say, "Define $f : \mathbb{R} \to \mathbb{R}$ by: $\forall x \in \mathbb{R}, f_x = \cdots$ "

and

"Define
$$g : \mathbb{R} \to \mathbb{R}$$
 by: $\forall y \in \mathbb{R}, g_y = \cdots$ ".)

2. (10 pts) Show: Let $s, t \in \mathbb{R}^{\mathbb{N}}$, $a \in \mathbb{R}$. Assume $s \to -\infty$ and $t \to \infty$. Then $s - t \to -\infty$. 3. (10 pts) Show: Define $f : \mathbb{R} \to \mathbb{R}$ by: $\forall x \in \mathbb{R}, f_x = |x|$. Then f is uniformly continuous. 4. (15 pts) Show: Let $s \in \mathbb{R}^{\mathbb{N}}$. Assume $s \to -\infty$. Then: $s^2 + s \to \infty$.