
Exposition Handout:

General remarks on binding variables and

on exposition in proofs

I should say, first of all, that, in learning to use any language (e.g.,

the language of mathematical proofs), there is substantial variation

in the way that different people use the various rules of syntax and

grammar. In an initial attempt to learn the language, many rigid

rules are put forth to which the student is expected to adhere without

exception. However, as one progresses, one notices that native speakers

will frequently bend and break these rules, and that different situations

require different levels of care.

Here, I set down here a few rules, and will expect you to follow

these rules closely in your written work. As you move to other courses,

however, you may find that you have more leeway. View all this as

part of the process of becoming fluent.

First, at the beginning of the statement of a theorem, all variables

are unbound (or free), in the sense that they cannot be used except in

(1) an assignment statement, e.g., “Let x :“ 1” or “Define the

function f : RÑ R by: @x P R, fpxq “ x2”,

(2) a statement that begins with the word “Given”,

(3) a statement that begins with the word “Choose”,

(4) a set definition, as in “taih | i P Z and h P Hu”,

(5) a clause that starts with “For all” or “There exists” or

(6) certain statements involving limits, suprema and infima, max-

ima and minima.

Each of these items takes an unbound variable and “binds” it to some-

thing. For example, if the statement “Choose x P S” appears in the

middle of a proof, then the variable x is unbound before the statement

and becomes bound to an (unspecified) element of S after the state-

ment. As long as the variable is bound, it cannot be bound to anything

new, so it is important to understand the circumstances under which a

bound variable becomes “unbound” or “free”. This is often a challenge,

since many mathematicians do not follow a precise pattern, expecting

the reader to understand, from context, the binding and freeing of

variables. In this course, we will try to be more regulated, as follows.

For (1), (2) and (3) above: If the proof is not broken up into sections,

then, once a variable is bound, it stays bound until the end of the proof.
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On the other hand, if you are reading inside a section of a proof (e.g.,

if you are inside of the proof of some claim), and if a variable becomes

bound inside of that section, then it will stay bound until that section

reaches its end. After that, the variable is free.

For (4) above: The binding only lasts until the end brace at the

end of the set definition. So, for exmple, if a statement includes the

text “taih | i P Z and h P Hu”, then the variable a must have been

bound somewhere above, and continues to be bound following the set

definition. By contrast, i and h are only bound from “t” to “u”.

For (5) above: These types of statements are called “quantified state-

ments”. In them, the variable becomes bound immediately after the

quantified clause (i.e., the clause that starts with “for all” or “there

exists”). It becomes free at the end of the following clause. For exam-

ple, in “For all ε ą 0, there exists δ ą 0 such that p2δq2 ` p2δq ă ε”,

the variable ε becomes bound immediately after “For all ε”, while δ

becomes bound immediately after “there exists δ”. These two bindings

are held only until the sentence comes to an end, after which ε and δ

become free variables again.

When following best practices, quantified clauses should appear be-

fore the variable is used. For example, “x` y “ y` x, for all x, y P R”

is poorly constructed, and should be changed to “For all x, y P R,

x` y “ y ` x”. Humans are fallible, and this rule is often broken, but

we will try to be careful about it. Great confusion can arise, if someone

writes, for example, “There exists δ ą 0 such that p2δq2` p2δq ă ε, for

all ε ą 0”, because it’s unclear whether δ is allowed to depend on ε.

For (6) above: For example, in “lim
xÑa
rfpxqs”, the variable x must

be unbound before “lim
xÑa

” and becomes temporarily bound starting

at “lim
xÑa

”. It becomes free following “rfpxqs”. For another example,

in “fpxq Ñ L, as xÑ a”, the variable x must be unbound before this

sentence, is temporarily bound, and becomes unbound after the sen-

tence. It is also UNbound in between “fpxq Ñ” and “as xÑ a”; that

is, “L” cannot be replaced by any expression involving x. So, for exam-

ple, the statement “x2 Ñ 2x, as x Ñ 2” is not allowed, because the x

in “2x” is unbound. Instead of “fpxq Ñ L, as xÑ a”, it might be bet-

ter, though unconventional, to say “As xÑ a, fpxq Ñ L”, so that one

doesn’t have to read to the end of the sentence in order to understand

how the variable x becomes bound.
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There are other similar temporary-binding constructions, using sup,

inf, lim sup, lim inf, max and min. For example, in “ max
´2ďxď1

rx2s “ 4”,

the variable x is temporarily bound, starting at “ max
´2ďxď1

” and becomes

free after “rx2s”.

To summarize, a free variable can only be used in statements of types

(1) through (6). While a variable is bound, it may be used in all sorts

of ways. It may also, later in the proof, become free. However, a

variable which is bound at some point in a proof cannot be bound

again until after it becomes free. So, if a statement of the form “Given

ε ą 0” appears, then the next statement cannot be “Choose ε ą 0”,

or “Let ε :“ 1”, or “For all ε ą 0, . . .”. However, if δ is free, then “Let

δ :“ ε{2” would be an acceptable continuation.

General rules of argument:

(7) When a proof starts, you should be aware that you are assuming

all the hypotheses, and that you want to prove the conclusion.

It would be acceptable (if annoying) to start a proof by writ-

ing “Know:” followed by all the hypotheses, and then “Want:”

followed by the conclusion. However, if you do this, take care

not to “rebind” variables; a statement like, “Let n be a positive

integer” should not be repeated.

(8) Keep in mind that it’s always important to distinguish between

what’s known and what we want to prove. As the proof pro-

ceeds, we sometimes work forward from the hypotheses, and

sometimes work backward from the conclusion, and confusion

can easily arise if we don’t carefully track where we hope to go

and where we’ve already been.

(9) When what we want matches what we know, then the proof

ends. Conversely, until what we want matches what we know,

the proof should NOT end.
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Templates for WANTED assertions:

(10) There are often many ways to prove a statement that begins “for

all”, but the most typical way to proceed is as follows. Parse the

statement into “for all xvariableyxrangey, xstatementy”. Then

say “Given: xvariableyxrangey”. Then say “Want: xstatementy”.

So, for example, “Want: For all ε ą 0, there exists δ ą 0 such

that p2δq2 ` p2δq ă ε” would typically be followed by “Given

ε ą 0. Want: There exists δ ą 0 such that p2δq2`p2δq ă ε”. In

this example, xvariabley is “ε”, xrangey is “ą 0” and xstatementy

is “there exists δ ą 0 such that p2δq2 ` p2δq ă ε”.

(11) There are often many ways to prove a statement that begins

“there exists”, but the most typical way to proceed is: Parse

the statement into “there exists xvariableyxrangey such that

xstatementy”. Then there will be a sequence of statements

in which xvariabley is bound. (Figuring out this sequence of

statements often difficult. This is where mathematicians make

their money!) Following that sequence of statements you should

write “Want: [ xvariableyxrangey ] and [ xstatementy ]”. Fre-

quently, xvariableyxrangey is obvious from the way xvariabley

was bound, in which case, we only say “Want: xstatementy”.

For example: Suppose, at some point in a proof, ε is a bound

variable, and ε ą 0. Suppose, for some reason, we have just

written: “Want: There exists δ ą 0 such that p2δq2`p2δq ă ε”.

This might then be followed by: “Let η :“ mintε{3,
a

ε{3 u.

Then η ď ε{3. Also, η ď
a

ε{3, so η2 ď ε{3. Let δ :“ η{2.”

At this point δ has become bound, so we would write: “Want:

[ δ ą 0 ] and [ p2δq2 ` p2δq ă ε ]”. However, in this case, my

judgment is that δ ą 0 is clear enough that we would probably

omit it, and say only, “Want: p2δq2 ` p2δq ă ε”. After this,

we need to show that our “strategy” (of η :“ mintε{3,
a

ε{3 u

and δ :“ η{2) works (i.e., somehow yields: p2δq2 ` p2δq ă ε).

This could be accomplished by arguing as follows: “We have

η2 ` η ď pε{3q ` pε{3q “ 2ε{3 ă ε. Also, 2δ “ η. Then

p2δq2 ` 2δ “ η2 ` η ă ε, as desired. QED” A key point: Once

what you know matches what you want, you STOP.

(12) If you want to prove a statement of the form “AñB”, you would

typically write: “Assume A. Want B.”
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(13) If you want to prove a statement B, you may always argue

by contradiction. You need to know how to negate B, to end

up with a new statement, NOT B, whose truth is equivalent to

the falsity of B. You then write “Assume NOT B. Want: Con-

tradiction.” You then argue until you have two contradictory

statements, after which you write “Contradiction. QED”. So,

for example, if you want to prove, “For all a P R, a2 ě 0”, you

may write “Assume there exists a P R such that a2 ă 0. Want:

Contradiction”. More argument is now needed, but the proof

ends at “Contradiction. QED”. I would discourage, for exam-

ple, writing: “. . . Contradiction. This contradiction happened

because we were assuming existence of an a P R such that

a2 ă 0. Thus we have proved that that’s impossible. That is,

we have proved, for all a P R, that a2 ě 0. QED” Leave out all

that extraneous, superfluous, unnecessary, repetitive and reit-

erative stuff!

(14) Say we want to prove [ P &Q ]. Then, if we wish, we can

break the proof into two sections. Typically, we would write

something like: “Want: (a) P , and (b) Q”, followed by a section

that starts “Proof of (a):”, followed by a sequence of statements,

at the end of which P is known. We then write “End of proof

of (a)”. We would then write a section the starts “Proof of

(b):”. There then follows a sequence of statements, at the end

of which Q is known. We then write “End of proof of (b)”.

(15) The last bullet point has analogues for any number of state-

ments, not just two. For example, if [ P &Q&R ] is a wanted

statement, then we can break the proof into three sections.
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Other templates:

(16) Let P and Q be two mathematical statements, and suppose

that [ P _ Q ] is a known statement. Then, if we wish, we can

break the proof into two cases, as follows: First, write “Case

1: P”, followed by a sequence of statements in which P is as-

sumed true. This sequence ends when what we know matches

what we want. Then write “Case 2: Q”, followed by a sequence

of statements in which Q is assumed true. This sequence ends

when what we know matches what we want. The end of the sec-

ond sequence marks the end of the entire proof. Keep in mind:

Each of these two sequences of statements is considered to be

a section of the proof. Remember that variables that are bound

within a section of a proof are freed at the end of the section.

Therefore, a variable that’s bound during Case 1 cannnot be

used in Case 2 (unless, of course, it gets bound again some-

where in Case 2). Variables bound before Case 1 in the main

body of the proof (i.e., not in any section of the proof), will

stay bound through both Case 1 and Case 2.

(17) The last bullet point has analogues for any number of state-

ments, not just two. For example, if [ P _ Q _ R ] is a known

statement, then we can break the proof into three cases.

(18) Let P be a mathematical statement that we wish to establish,

as part of a proof. Sometimes the proof of P can be compli-

cated and, to “modularize” the proof, we wish to set off those

statements that establish the validity of P . Typically, in such a

case, we will write “Claim: P . Proof of claim:”. There then fol-

lows a sequence of statements, at the end of which P is known.

We then write “End of proof of claim.” After that, we finish

the main argument, and, as usual, stop when what we want

matches what we know. Keep in mind: The proof of the claim

is considered to be a section of the overall proof, and variables

bound within a section of a proof are freed at the end of the sec-

tion. So a variable bound during the proof of the claim cannot

be used after the proof of the claim (unless, it gets bound again

somewhere after the claim’s proof). Variables bound before the

claim, in the main body of the proof (i.e., not in any section

of the proof), will stay bound all the way through the claim,

and, then, all the way to the end of the main proof.
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(19) The last bullet point has analogues for any number of claims,

not just one. In this case, for ease of later reference, it is com-

mon to number the claims as “Claim 1”, “Claim 2”, etc.

(20) The Principle of Mathematical Induction template: Say we wish

to prove a sequence of statements P1,P2, . . .. Proceed as fol-

lows: “Let S :“ tj P N |Pju. Want: S “ N. ¨ ¨ ¨ ¨ ¨ ¨ . Then P1,

so 1 P S. By the PMI, want: @j P S, j ` 1 P S. Given j P S.

Want: j ` 1 P S. Know: Pj. Want: Pj`1.” Then work, as

usual, until what you know matches what you want.

Replacement rules for KNOWN assertions with quantifiers:

(21) It is acceptable to replace a quantified variable by another vari-

able that is unbound at the quantifier. So for example, if we

have a known statement that reads “@x ě 0, Dy P R s.t. y2 “ x”,

then, assuming that z is unbound, we can replace every “x”

by “z” and obtain: “@z ě 0, Dy P R s.t. y2 “ z”. However,

in “@x ě 0, Dy P R s.t. y2 “ x”, we cannot replace “y” by “x”,

because, while x is unbound at the start of the statement, it is

bound at the “D” quantifier.

(22) In any known existentially quantified statement, it is accept-

able to replace “D” by “choose”. This then binds the variable

until the end of the section of the proof in which the state-

ment appears. So, if we know “Dy P R s.t. y2 “ 7”, we can

follow that by “Choose y P R s.t. y2 “ 7”. WARNING: If the

existential quantifier follows a universal quantifier in the same

sentence, then, invoking the Axiom of Choice, we can still re-

place “D” by “choose”, but the existentially quantified variable

needs to be replaced by an expression that takes into account

that many choices are being made. So, for example, in the

statement “@x ě 0, Dy P R s.t. x “ y2”, it would NOT be cor-

rect to simply replace “D” by choose, and say “@x ě 0, choose

y P R s.t. y2 “ x”, because there is not one y that works for

every x. We can replace “D” by “choose”, if we ALSO replace

“y” by, say, “yx”. This then yields the statement: “@x ě 0,

choose yx P R s.t. pyxq
2 “ x”.
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(23) In any known universally quantified statement, it is acceptable

to eliminate the quantified clause, and then, in the rest of the

statement, replace the quantified variable by any bound expres-

sion that satisfies any conditions that appear in the quantified

clause. (An expression is “bound” if all the variables appearing

in it are bound.) So, for example, if we know “For all x ě 0,

there exists y P R such that y2 “ x”, and if, say, q and r are

bound variables, and if we know that q ` r ě 0, then we can

replace x by q` r and we obtain the known statement: “There

exists y P R such that y2 “ q ` r”. Or, because 7 ě 0, we can

replace x by 7 and we then know “There exists y P R such that

y2 “ 7”. NOTE: If, after replacement, we end up with a state-

ment of the form “P ñ Q”, and if P is known to be false, then

the replacement was useless, and should not have been done.

If, after replacement, we end up with a statement of the form

“P ñ Q”, and if P is known to be true, then we should erase

“ñ” and change it to “therefore”, obtaining “P, thereforeQ”.

(See (26) below.)

The preceding replacement rules do NOT apply to statements preceded

by “Want”. They only apply to known statements.

Miscellaneous comments about exposition in proofs (comments below

only apply to proofs):

(24) Don’t stop until what you want matches what you know.

(25) Stop when what you want matches what you know. No extra-

neous, superfluous, unnecessary, repetitive, reiterative stuff!

(26) A statement of the form “Añ B” should typically not be made

when A is known to be true. If we are in a situation where we

know that A is true and that, as a consequence, B is also true,

then it is best to say: “A, therefore B”, or, alternatively, “A,

so B”, or “A, thus B”, or something similar. The problem is

that “Añ B” makes it seem as if: we are unsure about A, but,

at some point in the future, we may establish A, and then we

will know that B is true. For example, suppose, at some point

in some proof, we somehow know that a ą 3, and we want to
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conclude that a2 ą 9. Writing “r a ą 3 s ñ r a2 ą 9 s” is not

wrong, but conveys the impression that we are unsure whether

or not a ą 3 is true. It’s therefore better to say, e.g., “Since

a ą 3, it follows that a2 ą 9.”

(27) In an addendum to the preceding point, it’s of no use to say

“Añ B”, when A is known to be false. The value of “Añ B”

occurs only when we are unsure whether A is true or false.

(28) The phrases “Let”, “Choose”, “Given”, “For all” and “There

exists” should always precede a variable, not an expression. For

example, do NOT say “Choose ai P ta1, . . . , anu”. Rather, say

“Choose i P t1, . . . , nu”. Also, take care that the variable used

is unbound; if i is bound, we cannot say “Choose i P t1, . . . , nu”;

instead we’d look for some other variable to use.

(29) In a proof, the word “let” must be followed by an unbound

variable, then “:“”, then a bound expression. You may use

““” instead of “:“”, but I’d prefer “:“”. In the statement of a

theorem, it’s acceptable to say, e.g., “let x P R”, but not in a

proof.

(30) The word “Given” should never be used except after a state-

ment of the form “Want: For all . . . , we have ˚˚˚”. If, after such

a statement, you choose to follow the “Want: @” template, then

you should write “Given: . . . ”, immediately followed by “Want:

˚˚˚”. “Given” should not be used as a replacement for “Know”.

So, if, say, an assumption in some theorem reads “n ě 1”, then

it’s not correct, in the proof, to write “Given n ě 1”, in

the sense of “It is given in the theorem that n ě 1”. Instead,

you should say something like “By assumption, we know that

n ě 1”. If you use the word “given”, be prepared to explain

exactly which “Want: @” statement generated it.

(31) I would not typically use “Choose” with an assignment. For

example, I would not say “Choose δ :“ η{2.” It’s like saying,

“Choose a card, any card, as long as it’s the ace of spades.”

(Or, to paraphrase Henry Ford: “Choose any color you want

for your Model T, as long as it’s black.”) Instead of “Choose

δ :“ η{2”, it’s better to say “Let δ :“ η{2”.
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(32) If you use the word “Want” at the beginning of a statement,

and then, again, at the beginning of a later statement, you

should be prepared to explain why the later statement implies

the earlier one. (This doesn’t apply if the second “Want” was

the result of applying one of our templates.)

(33) A statement such as “a2 “ b8” is equivalent to “Know: a2 “ b8”.

In other words, if a statement is not a binding statement and if,

in addition, it does not begin with “Want” or “Know”, then you

may place “Know:” in front of it without affecting its meaning.

If you assert that you know some statement (whether you ac-

tually use the word “Know” or not), you should be prepared to

explain why it follows from earlier known facts. This is in con-

trast to “Want”, for which the earlier wanted statement should

follow from the later one (assuming the later one didn’t arise

from the use of a template).

(34) In this course, we will NOT use the word “where” in proofs.

This word is sometimes used to mean “for all” and sometimes

used to mean “there exists”, and sometimes is used as a catchall

for general commentary.

(35) We avoid using “for some”. Instead of “for some x P R, we

have x3 “ 8” please say “there exists x P R such that x3 “ 8”,

or, if you want the binding of x to continue after the sentence,

say “Choose x P R such that x3 “ 8”. Keep in mind that the

statement “x3 “ 8, for some x P R” is in bad form for two

reasons: First, it uses “for some”, which we are disallowing.

Second the binding of the variable x comes after its use.

(36) In this course, we will NOT use “without loss of generality”

or “we may assume” in proofs. It is possible to set templates

for the use of these phrases, but it would be complicated, and

their use can always be avoided. The only advantage of these

constructions is that, sometimes, in order to avoid them, we will

be forced to introduce extra notation, which can obscure the

main ideas of the proof. However, I’ve made the decision that,

for this class, the confusion from creating yet more templates

outweighs the benefit of reducing notation.
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(37) In this class, “for all” does not take “such that” as part of the

quantification clause. Some mathematicians do not follow this

rule, and might write, for example: “For all x P R such that

´1 ă x ă 1, we have x2 ă 1.” In this class, we will replace

this with the more standard form: “For all x P R, we have:

r p´1 ă x ă 1q ñ px2 ă 1q s.” Note that after the “for all”

quantification clause, if we have a “there exists” quantification

clause, then it’s quite common and acceptable follow that sec-

ond clause with “such that”. For example, one often sees: “For

all ε ą 0, there exists δ ą 0 such that . . . .” Simply stated, “for

all” does not take “such that”, but “there exists” does.

(38) The word “assume” may be used in the statement of a theorem,

but should not be used in a proof, except: as part of the

“implies” template or as part of the proof by contradiction

template. If you use the word “assume” in a proof, you should

be prepared to explain exactly which template generated it.

(39) Once you know a statement that is the same as the last wanted

statement, you should end the proof, unless you are in the mid-

dle of a section of a proof that has been broken up, in which

case you should end that section and go on to the next. Other-

wise, you’ll end up with extraneous, superfluous, unnecessary,

repetitive and reiterative stuff. That is to say, stuff that can be

removed.

(40) The standard way to define a function f with domain A and

target B is either by the construction, “Define f : A Ñ B by

. . . ” or by the construction, “Let f : A Ñ B be defined by

. . . ”. Sometimes “f : A Ñ B” is replaced by “f P BA”. So,

if we say, “Define f : R Ñ R by @x P R, fpxq “ x2”, then,

for example we would have: fp5q “ 25. Even though it results

in an unbound variable, it’s acceptable to omit “@x P R” in

this construction and say “Define f : R Ñ R by fpxq “ x2”.

Similarly, if we asy “Let a P RN be defined by aj “ 1{j”, then

a‚ would be the sequence p1, 1{2, 1{3, 1{4, . . .q.

(41) Suppose, in a proof, you have written “Want: a ă d” and

“Know: a ă b” and “Know: c ă d”. Suppose, later in the proof,

you know that b ´ 3 ă c ´ 3. Bad form: “Since b ´ 3 ă c ´ 3,

we get a ă b ă c ă d. QED”. It’s much better to write: “Since

b´ 3 ă c´ 3, we get b ă c. Then a ă b ă c ă d. QED”
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Let’s talk about how to prove a specific theorem:

Theorem. Let a, b P RN. Assume that a‚ Ñ 3 and b‚ Ñ 4.

Then pa` bq‚ Ñ 7.

Steps in writing a proof of the theorem above:

(42) I often omit this first step, but it’s reasonable to begin by tak-

ing all the assumptions, and writing out what each one means,

in quantified form. So, we might begin “Know: @ε ą 0, DK P N
s.t., @j P N, [ ( j ě K ) ñ ( |aj ´ 3| ă ε ) ]. Know: @ε ą 0,

DK P N s.t., @j P N, [ ( j ě K ) ñ ( |bj ´ 4| ă ε ) ]”. I now

imagine that I have, at my disposal, two oracles, one of whom

I call my a-oracle. Given any ε ą 0, she returns

a number K P N s.t. @j P N, [ ( j ě K ) ñ ( |aj´ 3| ă ε ) ].

The other oracle is my b-oracle. Given any ε ą 0, he returns

a number K P N s.t. @j P N, [ ( j ě K ) ñ ( |bj ´ 4| ă ε ) ].

(43) Write “Want:” followed by the conclusion, written in quantified

form. So write “Want: @ε ą 0, DK P N s.t.,

@j P N, [ ( j ě K ) ñ ( |pa` bqj ´ 7| ă ε ) ].”

Keep in mind that, by definition of pa ` bq‚, for all j P N, we

have pa ` bqj “ aj ` bj. Now imagine we are playing a game.

Someone give us ε ą 0, and we give them K P N and they give

us j P N satisfying j ě K. If |pa ` bqj ´ 7| ă ε, then we win.

We may consult with our a-oracle and b-oracle as needed.

(44) Structure the proof. This means that we apply the templates

to the statement we trying to prove, leaving blanks when needed.

So, as we are trying to prove the statement in the last bullet

point, we would write: “Given ε ą 0. Want: DK P N s.t.,

@j P N, [ ( j ě K ) ñ ( |pa ` bqj ´ 7| ă ε ) ].” Then leave

blank space, in which the variable K is to be bound. That

blank space is for our “K-strategy”. Below it, we write “Want:

@j P N, [ ( j ě K ) ñ ( |pa ` bqj ´ 7| ă ε ) ]. Given j P N.

Want: ( j ě K ) ñ ( |pa`bqj´7| ă ε ). Assume j ě K. Want:

|pa ` bqj ´ 7| ă ε.” This finishes the structuring of the proof.

We now need to work on the K-strategy (which will be placed

up above, in the blank space) and the finish (at the end). We

stop when (and only when) what “Want” matches “Know”.



13

(45) At this point, we might look over the last wanted statement,

which reads, “Want: |pa`bqj´7| ă ε.” We need to think about

what requirements on K will ensure that |pa ` bqj ´ 7| ă ε

becomes true. Note that, in the space where the K-strategy

goes, we do not yet have j bound, so the K-srategy cannot use

anything about j. Also, keep in mind that the a-oracle and

b-oracle are at our disposal. If we could get |aj ´ 3| ă ε and

|bj ´ 4| ă ε, then we could use the triangle inequality to prove

|paj´3q`pbj´4q| ă ε`ε, which is the same as |pa`bqj´7| ă 2ε.

This is almost what we want. We just need to use the oracles

choose K in a way that guarantees that, no matter which j is

chosen, we will have both |aj´3| ă ε{2 and |bj´4| ă ε{2. Then

everything will work out fine. As we think about all this, we

might write some of this down some notes on scratch paper, but

none of it will appear in the actual proof. This line of thinking

only helps us to clarify our K-strategy.

(46) Now go back to the blank space for the K-strategy and look

at the two known statements at the top of the proof. Using

replacement rules, fill in the blank space: “Choose L P N s.t.

@j P N, [ ( j ě L ) ñ ( |aj ´ 3| ă ε{2 ) ].

Choose M P N s.t.

@j P N, [ ( j ěM ) ñ ( |bj ´ 4| ă ε{2 ) ].

Let K :“ maxtL,Mu.” This means that we consult the a-oracle

to get an L, then the b-oracle to get an M , and then take the

larger of L and M and call it K. That’s our K-strategy.

(47) The finish. We write the part after “Want: |pa` bqj ´ 7| ă ε.”

This is where we show that our K-strategy always works. Write:

“As j ě K ě L, by choice of L, we have |aj ´ 3| ă ε{2. As

j ě K ěM , by choice of M , we have |bj ´ 4| ă ε{2. Then

| pa` bqj ´ 7 | “ | paj ` bjq ´ p3` 4q |

“ | paj ´ 3q ` pbj ´ 4q |

ď |aj ´ 3| ` |bj ´ 4|

ă rε{2s ` rε{2s “ ε,

as desired.”
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(48) Technically, in the last point, before the “as desired”, we should

say, “so |pa ` bqj ´ 7| ă ε”; then “Want” will match “Know”.

However, I allow that we can omit a final contraction step.

(49) Add a box or “QED” to signify the end of the proof.

(50) Celebrate . . . responsibly!

Here is the finished product:

Theorem. Let a, b P RN. Assume that a‚ Ñ 3 and b‚ Ñ 4. Then

pa` bq‚ Ñ 7.

Proof: Want: @ε ą 0, DK P N s.t.,

@j P N, [ ( j ě K ) ñ ( |pa` bqj ´ 7| ă ε ) ].

Given ε ą 0.

Want: DK P N s.t.,

@j P N, [ ( j ě K ) ñ ( |pa` bqj ´ 7| ă ε ) ].

Choose L P N s.t.

@j P N, [ ( j ě L ) ñ ( |aj ´ 3| ă ε{2 ) ].

Choose M P N s.t.

@j P N, [ ( j ěM ) ñ ( |bj ´ 4| ă ε{2 ) ].

Let K :“ maxtL,Mu.

Want: @j P N, [ ( j ě K ) ñ ( |pa` bqj ´ 7| ă ε ) ].

Given j P N.

Want: [ ( j ě K ) ñ ( |pa` bqj ´ 7| ă ε ) ].

Assume j ě K.

Want: |pa` bqj ´ 7| ă ε.

As j ě K ě L, by choice of L, we have |aj ´ 3| ă ε{2.

As j ě K ěM , by choice of M , we have |bj ´ 4| ă ε{2.

Then

| pa` bqj ´ 7 | “ | paj ´ 3q ` pbj ´ 4q |

ď |aj ´ 3| ` |bj ´ 4|

ă rε{2s ` rε{2s “ ε,

as desired.

QED


