Midterm 2 Solutions

Choose 6 out of 8 problems below.

1. Consider the sets described in (a)-(c) below. For each set, either prove it is an (n—1)-manifold
in R” or give an example to show that it is not.

(a) The graph of a differentiable function f : U — R defined on an open set U C R"~!
(b) The zero set of a continuously differentiable function f: R™ — R
(

c¢) The (nonempty) intersection of an (n — 1)-dimensional manifold M C R" and an open set
UcCR"

Solution. (a) The graph is the set

G={(x1,...,2n) : Tp = f(z1,...,Tn-1), (T1,...,2p—1) € U}

Observe that G is a patch. A patch is itself a manifold, so GG is a manifold.
(b) This is not a manifold in general; see problem 2.

(c) Let a € UN M. Since a € M and M is a manifold, there is a neighborhood V' of a such
that VN M is a patch. Then V N (U N M) is also a patch, and M is a manifold.



2. Define G : R? — R by G(z,y) = 2> — ¢%.

(i) At which points (x,y) is VG(z,y) # 07

Solution. VG(x,y) # 0 if and only if (z,y) # (0,0).

(ii) For each such point, what does the implicit function theorem say about the set

S=A{(z,y) : G(x,y) = 0}?

Solution. Given (a,b) such that DyG(a,b) # 0, there is a rectangle Q@ = U x V and a function
f : U — V such that the graph of f is equal to S inside Q.

Given (a,b) such that D1G(a,b) # 0, there is a rectangle () = U x V and a function h : V — U
such that the graph of A is equal to S inside Q.

(iii) Is S a manifold?

Solution. No. Here S = {(z,y) : y = £z} fails to be a manifold at the origin. (In any ball
around (0, 0), it is impossible to write one coordinate of S as a function of the other coordinate.)



3. Let M C R™ be an (n — 1)-dimensional manifold, let a« € M, and define
C={¢:R— M : ¢is differentiable and ¢(0) = a}

and
T, ={4'(0) : 9 € C}.

Then a + T, is the tangent plane to M at a, and T, is an (n — 1)-dimensional vector space.
Choose a patch around a and the corresponding chart h, and give a basis for T, in terms of h.

Solution. Choose a chart h : U — R and the corresponding patch P around a. Assume for
simplicity that P has the form

P={(z1,...,2n) : xn =h(x1,...,2n-1), (x1,...,2p—1) € U}.

(Recall the other cases differ only by a permutation of the coordinates.) Write ¢(t) = (¢ (¢)
where () = (¢1(t), ..., dn-1(t)), and write b = (a1,...,an—1). Observe that ¢,(t) = h
in a neighborhood of ¢ = 0 (specifically for those t such that ¢(¢) € U). Now:

¢'(0) = (¢(0), VA(b) - ¥/(0))
n—1
= <¢3<0>, 1 (0),) Dih(b>¢;<0>)
=1

 dn(t))
(4 (1))

n—1
= 3" 4(0) (ei + Dih(b)ea)
=1

where eq, ..., e, are the standard basis vectors in R™. A basis for Ty is then
e1 + Dlh(b)em e2 + D2h(b)en7 s Dn—lh(b)en

since it is clear these vectors are linearly independent, and we have taken for granted the fact
that T, is an (n — 1)-dimensional vector space.



4. Find the point of the unit sphere S = {(z,y, z) : 22 + 9% + 22 = 1} which is closest to the
plane P = {(z,y,2) : v+ y+ 2z = 3}.

Solution. Note that (1,1,1) is orthogonal to P. Let (z,y,2) € R? and let (zg, o, 20) be the
point on P closest to (x,y,z). Then (xo,yo0,20) = (z,y,2) + t(1,1,1) for some t € R. Using
To + Yo + 20 = 3 we get
3—r—y—=z

3 )
Thus, the (square) distance from (z,y, z) to P is

t =

(3—x—y—z)2'

|(x07y0720) - (xvyaz)‘Q = ‘t(17 17 1)‘2 = 3t2 = 3

So we must minimize the function (3 —z —y — 2)? on S. Using Lagrange multipliers we get
TH+y+z—3=>Ar =y = Az

If A = 0 then (z,y,z) € P, but P is disjoint from S. So A # 0 and z = y = z. On S we
obtain z = y = z = +1/3/3. One verifies by hand that the minimum distance is attained when

r=y=2z2=+3/3.



5. Let f(z) = (tan~!x)(sin® z).
(a) Assuming that the Taylor expansions of tan~! x and sin?z at 0 are

1 1 1 2
x—§x3+5x5—|—... and :L‘2—§ZL‘4—|—£:L'6+...

respectively, prove that the 5th order Taylor polynomial of f at 0 is

Solution. Write

_ 1 _ . Rs(x)
1. _ 3 3
tan =z -3 + R3(z), ilg(l) = =0
_ 1 - . Ry(x)
2 . _ .2 4

sin“z =2° — qo + Ry(z), }:ILI%] g = 0.

Then 5
f(z) =2 — §x5 + R(z)

where

R(z) = Ry(x) (;ﬁ - ;x4> + Rae) (93 _ ;gﬁ) + Ry(2)Ra(a).

One checks that lim, ,o R(x)/2% = 0, which proves the 5th order Taylor polynomial is as
claimed.

(b) Use this to show that 0 is a critical point of

€Tr) =
g 1, z=0

What kind of critical point is 07

Solution. Note that

glx)=1— §x2 + R(:p)

where R(z) = R(z)/2® if x # 0 and R(0) = 0. Thus lim, o R(z)/2z> = 0, which shows that
1 —(2/3)2? is the 2nd order Taylor polynomial of g at 0. It follows that ¢/(0) = 0. One can see
that g has a local maximum at 0; see the argument of problem 6(b).



6. Assume that f: R — R is of class C® and can be written in the form
f(@) =1+a" + R(x),
where lim,_,o R(z) = 0.
(a) Must it be true that f has a local minimum at 0?7 Prove it or give a counterexample.

Solution. No. For example if R(z) = x then f has neither a local max nor min at zero.

(b) If 1 4+ 2* is the 4th degree Taylor polynomial of f at 0, must it be true that f has a local
minimum at 07 Prove it or give a counterexample.

Solution. Yes. We have

. Ry(2)
_ 4 _
f(z) =142" + Ra(x), ili% i = 0.
Thus .

lim % —=1>0

z—0 €T

which shows that f(x) > 1 for « # 0 in a neighborhood of 0.



7. Find the 3rd degree Taylor polynomial of f(x,y,z) = zyz at a = (1,0, 1).

Solution. Note that

zyz=(r—Dy(z—1)+ay+yz—vy
=@-Dyz-D+@-y+y+yz—1)+y—y
=y+(@-Dy+ylz—1+ @ —-1y(z - 1)+ Rs(z,y,2)
where R3(x,y,z) = 0. It follows that y+ (x — 1)y +y(z — 1) + (z — 1)y(z — 1) is the 3rd degree
Taylor polynomial of f at a.

See the last page for a calculation using the Taylor expansion formula.



8. Assume that the function f : R” — R is of class C2 in a neighborhood of the critical point
a. Let H(a) be Hessian matrix of f at a. Define ¢ : R — R and L : R” — R" by

Which of the following statements are true? (Circle “T” for true and “F” for false. No justifi-
cation is required.)

T/F
T/F
T/F
T/F

If H(a) has only nonnegative eigenvalues, then f has a local minimum at a
If the maximum value of ¢ on S"~! is attained at x, then L(x) = Az for some A\ € R
Va(a) = 2L(x)

If ¢ is positive on S”71, then f has a local minimum at a

Solution. The correct responses are, in order: F, T, T, T. The answers were obtained during
the analysis of f near a, using the 2nd order Taylor expansion

£(&) = fa) + 5a(a) + Ba(e)

in particular the expression

(CESONENEANE T

|| jf?



Computing the 3rd order Taylor polynomial of f(x,y,2z) = zyz at a = (1,0,1): For h =
(x —1,y,2z — 1) = (h1, ha, h3) we have

P,y 2) = flat h) = f(@) + Duf(a) + 5D} f(a) + cDRf(a) + Ro(h).
Compute

th($7yvz) = thlf(xayaz) =+ hQDZf(x7y7 Z) + h3D3f(ZL’,y, Z)
= h1yz + hoxz + hazy

and

D3 (2,4, 2) = Du(Dif (5, 2))
= Dp(h1yz + hoxz + hazy)
= h1D1(h1yz + hoxz + haxy) + haDa(h1yz + hozz + hazy)
+ hsDs(h1yz + hozz + hazy)
= hi1(haz + h3y) + ho(h1z + hax) + hs(hi1y + hox)
= 2h1hoz + 2h1hsy + 2hohsw

and

D3 (2, 2) = Du(DEf (2,9, 2))
= Dh(2h1h22 + 2h1h3y + Qthgl‘)
= h1D; (2h1h22’ + 2h1hsy + 2h2h3$) + h2D2(2h1h22’ + 2h1hsy + 2h2h3$)
+ h3Ds(2h1hoz + 2hyhay + 2hohsz)
= 2h1hohs + 2h1hahs + 2h1hahs
= 6h1hahs

At a =(1,0,1) we have

f(a)=0

Dy f(a) = ha

D3 f(a) = 2h1hy + 2hohs
D} f(a) = 6h1hahs

and so

f(z,y, 2) = ha + hiha + hahs + hihahs + R3(h)
=y+(x—-1Dy+ylz—1)+(x—1y(z—1)+ Rs(h).

Remark: When taking the derivatives Dy, f(z,y, z), we abuse notation by using the same letters
x,y,z to write both the function formula for f and the coordinates of hA. This is an abuse
because h = (x — 1,y,z — 1) is considered constant when the derivatives are taken. If this
bothers you, you can write h = (xg — 1,yo, 20 — 1) in the above, and save the letters z,y, z for
the formula for f.



