
Midterm 2 Solutions

Choose 6 out of 8 problems below.

1. Consider the sets described in (a)-(c) below. For each set, either prove it is an (n−1)-manifold
in R

n or give an example to show that it is not.

(a) The graph of a differentiable function f : U → R defined on an open set U ⊂ R
n−1

(b) The zero set of a continuously differentiable function f : Rn → R

(c) The (nonempty) intersection of an (n − 1)-dimensional manifold M ⊂ R
n and an open set

U ⊂ R
n

Solution. (a) The graph is the set

G = {(x1, . . . , xn) : xn = f(x1, . . . , xn−1), (x1, . . . , xn−1) ∈ U}.

Observe that G is a patch. A patch is itself a manifold, so G is a manifold.

(b) This is not a manifold in general; see problem 2.

(c) Let a ∈ U ∩M . Since a ∈ M and M is a manifold, there is a neighborhood V of a such
that V ∩M is a patch. Then V ∩ (U ∩M) is also a patch, and M is a manifold.
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2. Define G : R2 → R by G(x, y) = x2 − y2.

(i) At which points (x, y) is ∇G(x, y) 6= 0?

Solution. ∇G(x, y) 6= 0 if and only if (x, y) 6= (0, 0).

(ii) For each such point, what does the implicit function theorem say about the set

S = {(x, y) : G(x, y) = 0}?

Solution. Given (a, b) such that D2G(a, b) 6= 0, there is a rectangle Q = U × V and a function
f : U → V such that the graph of f is equal to S inside Q.

Given (a, b) such that D1G(a, b) 6= 0, there is a rectangle Q = U ×V and a function h : V → U
such that the graph of h is equal to S inside Q.

(iii) Is S a manifold?

Solution. No. Here S = {(x, y) : y = ±x} fails to be a manifold at the origin. (In any ball
around (0, 0), it is impossible to write one coordinate of S as a function of the other coordinate.)
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3. Let M ⊂ R
n be an (n− 1)-dimensional manifold, let a ∈M , and define

C = {φ : R →M : φ is differentiable and φ(0) = a}

and
Ta = {φ′(0) : φ ∈ C}.

Then a + Ta is the tangent plane to M at a, and Ta is an (n − 1)-dimensional vector space.
Choose a patch around a and the corresponding chart h, and give a basis for Ta in terms of h.

Solution. Choose a chart h : U → R and the corresponding patch P around a. Assume for
simplicity that P has the form

P = {(x1, . . . , xn) : xn = h(x1, . . . , xn−1), (x1, . . . , xn−1) ∈ U}.

(Recall the other cases differ only by a permutation of the coordinates.) Write φ(t) = (ψ(t), φn(t))
where ψ(t) = (φ1(t), . . . , φn−1(t)), and write b = (a1, . . . , an−1). Observe that φn(t) = h(ψ(t))
in a neighborhood of t = 0 (specifically for those t such that ψ(t) ∈ U). Now:

φ′(0) =
(

ψ′(0),∇h(b) · ψ′(0)
)

=

(

φ′1(0), . . . , φ
′

n−1(0),
n−1
∑

i=1

Dih(b)φ
′

i(0)

)

=

n−1
∑

i=1

φ′i(0) (ei +Dih(b)en)

where e1, . . . , en are the standard basis vectors in R
n. A basis for Ta is then

e1 +D1h(b)en, e2 +D2h(b)en, . . . , en−1 +Dn−1h(b)en

since it is clear these vectors are linearly independent, and we have taken for granted the fact
that Ta is an (n− 1)-dimensional vector space.
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4. Find the point of the unit sphere S = {(x, y, z) : x2 + y2 + z2 = 1} which is closest to the
plane P = {(x, y, z) : x+ y + z = 3}.

Solution. Note that (1, 1, 1) is orthogonal to P . Let (x, y, z) ∈ R
3 and let (x0, y0, z0) be the

point on P closest to (x, y, z). Then (x0, y0, z0) = (x, y, z) + t(1, 1, 1) for some t ∈ R. Using
x0 + y0 + z0 = 3 we get

t =
3− x− y − z

3
.

Thus, the (square) distance from (x, y, z) to P is

|(x0, y0, z0)− (x, y, z)|2 = |t(1, 1, 1)|2 = 3t2 =
(3− x− y − z)2

3
.

So we must minimize the function (3− x− y − z)2 on S. Using Lagrange multipliers we get

x+ y + z − 3 = λx = λy = λz.

If λ = 0 then (x, y, z) ∈ P , but P is disjoint from S. So λ 6= 0 and x = y = z. On S we
obtain x = y = z = ±

√
3/3. One verifies by hand that the minimum distance is attained when

x = y = z =
√
3/3.
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5. Let f(x) = (tan−1 x)(sin2 x).

(a) Assuming that the Taylor expansions of tan−1 x and sin2 x at 0 are

x− 1

3
x3 +

1

5
x5 + . . . and x2 − 1

3
x4 +

2

45
x6 + . . .

respectively, prove that the 5th order Taylor polynomial of f at 0 is

x3 − 2

3
x5.

Solution. Write

tan−1 x = x− 1

3
x3 + R̄3(x), lim

x→0

R̄3(x)

x3
= 0

sin2 x = x2 − 1

3
x4 + R̃4(x), lim

x→0

R̃4(x)

x4
= 0.

Then

f(x) = x3 − 2

3
x5 +R(x)

where

R(x) = R̄3(x)

(

x2 − 1

3
x4
)

+ R̃4(x)

(

x− 1

3
x3
)

+ R̄3(x)R̃4(x).

One checks that limx→0R(x)/x
5 = 0, which proves the 5th order Taylor polynomial is as

claimed.

(b) Use this to show that 0 is a critical point of

g(x) =

{

f(x)
x3 , x 6= 0

1, x = 0

What kind of critical point is 0?

Solution. Note that

g(x) = 1− 2

3
x2 + R̂(x)

where R̂(x) = R(x)/x3 if x 6= 0 and R̂(0) = 0. Thus limx→0 R̂(x)/x
2 = 0, which shows that

1− (2/3)x2 is the 2nd order Taylor polynomial of g at 0. It follows that g′(0) = 0. One can see
that g has a local maximum at 0; see the argument of problem 6(b).
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6. Assume that f : R → R is of class C5 and can be written in the form

f(x) = 1 + x4 +R(x),

where limx→0R(x) = 0.

(a) Must it be true that f has a local minimum at 0? Prove it or give a counterexample.

Solution. No. For example if R(x) = x then f has neither a local max nor min at zero.

(b) If 1 + x4 is the 4th degree Taylor polynomial of f at 0, must it be true that f has a local
minimum at 0? Prove it or give a counterexample.

Solution. Yes. We have

f(x) = 1 + x4 +R4(x), lim
x→0

R4(x)

x4
= 0.

Thus

lim
x→0

f(x)− 1

x4
= 1 > 0

which shows that f(x) > 1 for x 6= 0 in a neighborhood of 0.
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7. Find the 3rd degree Taylor polynomial of f(x, y, z) = xyz at a = (1, 0, 1).

Solution. Note that

xyz = (x− 1)y(z − 1) + xy + yz − y

= (x− 1)y(z − 1) + (x− 1)y + y + y(z − 1) + y − y

= y + (x− 1)y + y(z − 1) + (x− 1)y(z − 1) +R3(x, y, z)

where R3(x, y, z) ≡ 0. It follows that y+ (x− 1)y+ y(z− 1)+ (x− 1)y(z− 1) is the 3rd degree
Taylor polynomial of f at a.

See the last page for a calculation using the Taylor expansion formula.
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8. Assume that the function f : Rn → R is of class C3 in a neighborhood of the critical point
a. Let H(a) be Hessian matrix of f at a. Define q : Rn → R and L : Rn → R

n by

q(x) = xtH(a)x

L(x) = H(a)x

Which of the following statements are true? (Circle “T” for true and “F” for false. No justifi-
cation is required.)

T/F If H(a) has only nonnegative eigenvalues, then f has a local minimum at a

T/F If the maximum value of q on Sn−1 is attained at x, then L(x) = λx for some λ ∈ R

T/F ∇q(x) = 2L(x)

T/F If q is positive on Sn−1, then f has a local minimum at a

Solution. The correct responses are, in order: F, T, T, T. The answers were obtained during
the analysis of f near a, using the 2nd order Taylor expansion

f(x) = f(a) +
1

2
q(x) +R2(x),

in particular the expression

f(x)− f(a)

|x|2 =
1

2
q

(

x

|x|

)

+
R2(x)

|x|2 .
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Computing the 3rd order Taylor polynomial of f(x, y, z) = xyz at a = (1, 0, 1): For h =
(x− 1, y, z − 1) = (h1, h2, h3) we have

f(x, y, z) = f(a+ h) = f(a) +Dhf(a) +
1

2
D2

hf(a) +
1

6
D3

hf(a) +R3(h).

Compute

Dhf(x, y, z) = h1D1f(x, y, z) + h2D2f(x, y, z) + h3D3f(x, y, z)

= h1yz + h2xz + h3xy

and

D2
hf(x, y, z) = Dh(Dhf(x, y, z))

= Dh(h1yz + h2xz + h3xy)

= h1D1(h1yz + h2xz + h3xy) + h2D2(h1yz + h2xz + h3xy)

+ h3D3(h1yz + h2xz + h3xy)

= h1(h2z + h3y) + h2(h1z + h3x) + h3(h1y + h2x)

= 2h1h2z + 2h1h3y + 2h2h3x

and

D3
hf(x, y, z) = Dh(D

2
hf(x, y, z))

= Dh(2h1h2z + 2h1h3y + 2h2h3x)

= h1D1(2h1h2z + 2h1h3y + 2h2h3x) + h2D2(2h1h2z + 2h1h3y + 2h2h3x)

+ h3D3(2h1h2z + 2h1h3y + 2h2h3x)

= 2h1h2h3 + 2h1h2h3 + 2h1h2h3

= 6h1h2h3

At a = (1, 0, 1) we have

f(a) = 0

Dhf(a) = h2

D2
hf(a) = 2h1h2 + 2h2h3

D3
hf(a) = 6h1h2h3

and so

f(x, y, z) = h2 + h1h2 + h2h3 + h1h2h3 +R3(h)

= y + (x− 1)y + y(z − 1) + (x− 1)y(z − 1) +R3(h).

Remark: When taking the derivatives Dhf(x, y, z), we abuse notation by using the same letters
x, y, z to write both the function formula for f and the coordinates of h. This is an abuse
because h = (x − 1, y, z − 1) is considered constant when the derivatives are taken. If this
bothers you, you can write h = (x0 − 1, y0, z0 − 1) in the above, and save the letters x, y, z for
the formula for f .
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