
Midterm 3

Complete exactly 6 of the 8 problems below. Only 6 will be graded. Indicate which
problems you have chosen by circling the problem number.
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1. Recall Newton’s method for finding roots of a function f :

xn+1 = xn − f(xn)

f ′(xn)
.

Consider f(x) = sinx, and fix x0 ∈ [5π/6, 7π/6].

(a) Prove that Newton’s method will succeed in locating the root π of f : that is, limn→∞ xn = π.

(b) The estimate xn converges exponentially fast to π. What is the exponential rate? Give an
explicit bound of the form

|xn − π| ≤ Can.

Solution. (a) Consider the function φ(x) = x − tanx defined on [5π/6, 7π/6]. Note that
φ′(x) = 1− sec2 x ∈ [−1/3, 0]. In particular φ is decreasing, so

φ([5π/6, 7π/6]) = [7π/6− 1/
√
3, 5π/6 + 1/

√
3] ⊂ [5π/6, 7π/6].

Now φ is a contraction mapping, so xn = φn(x0) converges to its unique fixed point, π.

(b) The contraction constant is 1/3. So the estimate xn satisfies

|xn − x0| ≤
√
3

2

(

1

3

)n

.

(The constant
√
3

2
is obtained by maximizing |x0 − x1| over x0 ∈ [5π/6, 7π/6].)
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2. Let G(x, y) = x+ y + y4 − 3.

(a) Show that G(x, y) = 0 can be solved for y as a function of x in a neighborhood of (1, 1).

(b) Starting with f0(x) = 1, compute the first two approximations f1(x), f2(x) of y = f(x)
provided by the implicit function theorem. (Do not simplify.)

Solution. (a) Observe that G(1, 1) = 0 and D2G(1, 1) = 5 6= 0. By the implicit function
theorem, G(x, y) = 0 can be solved for y as a function of x in a neighborhood of (1, 1).

(b) The first two approximations are

f1(x) = 1− x− 1

5

f2(x) = 1− x− 1

5
−

x+ 1− x−1

5
+
(

1− x−1

y

)4

− 3

5
.
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3. Let D∞
r = {x ∈ R

3 : ||x||∞ ≤ r, and let f : R3 → R be a C1 function such that f(0) = 0
and

||dfx − I||∞ ≤ ǫ < 1 for x ∈ D∞
1 . (1)

(a) Prove that f(D∞
1 ) ⊂ D∞

1+ǫ.

(b) Show that the estimate in (a) is sharp by giving an example of a C1 function f : R3 → R

satisfying (1), such that f(D∞
1 ) = D∞

1+ǫ.

Solution. Let h ∈ D∞
1 . Using the function f − I in the mean value theorem we obtain

|(f − I)(h)− (f − I)(0)|∞ ≤ |h|∞max
x∈L

||d(f − I)x||,

where L is the line segment between 0 and h. Simplifying, we get

|f(h)− h|∞ ≤ |h|∞max
x∈L

||dfx − I||.

Notice that L ⊂ D∞
1 since h ∈ D∞

1 , so

|f(h)− h|∞ ≤ ǫ|h|∞.

By the triangle inequality,
|f(h)|∞ ≤ (1 + ǫ)|h|∞ ≤ 1 + ǫ.

Since h ∈ D∞
1 was arbitrary, this shows f(D∞

1 ) ⊂ D∞
1+ǫ.

(b) Define f : R3 → R
3 by f(x) = (1 + ǫ)x. Then it is easily verified that f(D∞

1 ) = D∞
1+ǫ.
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4. Compute the (∞-) norm, ||L||, of the linear map

L(x, y, z) = (−2x+ 3y − z, 7x+ 4z).

Solution. The linear map has matrix

A =

(

−2 3 −1
7 0 4

)

.

The norm in question is

||L|| = ||A|| = max{| − 2|+ |3|+ | − 1|, |7|+ |0|+ |4|} = 11.
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5. Let A be an m× n matrix with all positive entries and define

||A||1,∞ = max
x∈∂D∞

|Ax|1

where

∂D∞ = {x ∈ R
n : |x|∞ = 1}

|y|1 = |y1|+ . . .+ |ym| for y ∈ R
m.

Express ||A||1,∞ in terms of the entries of A. Justify your response with proof.

Solution. Let x ∈ ∂D∞. Then

|Ax|1 =

∣

∣

∣

∣

∣

∣

n
∑

j=1

a1jxj

∣

∣

∣

∣

∣

∣

+ . . .+

∣

∣

∣

∣

∣

∣

n
∑

j=1

anjxj

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

a1j |xj |+ . . .+
n
∑

j=1

anj |xj |

≤
n
∑

j=1

a1j + . . .+
n
∑

j=1

anj

=
n
∑

i=1

n
∑

j=1

aij .

On the other hand, let x = (1, 1, . . . , 1). Then x ∈ ∂D∞ and

|Ax|1 =

∣

∣

∣

∣

∣

∣

n
∑

j=1

a1j

∣

∣

∣

∣

∣

∣

+ . . .+

∣

∣

∣

∣

∣

∣

n
∑

j=1

anj

∣

∣

∣

∣

∣

∣

=
n
∑

i=1

n
∑

j=1

aij .

It follows that

|Ax|1 =
n
∑

i=1

n
∑

j=1

aij .
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6. Show that
∫

1

0
x2 dx = 1/3 by using the definition of volume. You may use the fact that

n
∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Solution. By definition, the integral is the volume of the set

S = {(x, y) : x ∈ [0, 1], y ∈ [0, x2]}.

See Week 12 Homework solutions for a proof that v(S) = 1/3.

7



7. Let f : [a, b] → R be a bounded, nonnegative function and assume

G(x) =

∫ x

a

f

exists for all x ∈ [a, b]. Prove that G is continuous.

Solution. Pick M so that 0 ≤ f ≤ M , and observe that

|G(y)−G(x)| =
∣

∣

∣

∣

∫ y

a

f −
∫ x

a

f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ y

x

f

∣

∣

∣

∣

≤ M |y − x|.

It follows that G is continuous (in fact Lipschitz continuous, with constant M).
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8. Consider the set
S = [0, 1/2]2 ∪ ([0, 1]2 ∩ I

2)

where I is the set of irrational numbers.

(a) Provide intervals I−
1
, . . . , I−k and an interval I+

1
such that:

∪k
j=1 I

−
j ⊂ S, I+

1
⊃ S

k
∑

j=1

v(I−j ) = 1, v(I+
1
) = 1.

(2)

(b) The set S is not contented. Why doesn’t the answer to part (a) contradict the definition of
volume?

Solution. (a) Define I−
1

= . . . = I−
4

= [0, 1/2]2 and I+
1

= [0, 1]2. These are intervals satisfy-
ing (2).

(b) This doesn’t contradict the definition because the I−j ’s in part (a) are overlapping.
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