Week 1 Homework

1. Let V be a vector space of dimension n, and let v_1, \ldots, v_k be linearly independent vectors in V, with k < n. Show that there exist vectors v_{k+1}, \ldots, v_n such that v_1, \ldots, v_n is a basis for V.

2. Use the Gram-Schmidt process to find an orthonormal basis for $P^2([-1,1])$, the vector space of polynomial functions on [-1,1] of degree ≤ 2 .

3. Let V be a normed vector space¹ such that for each $x, y \in V$,

$$2|x|^{2} + 2|y|^{2} = |x+y|^{2} + |x-y|^{2}$$

Show that the function $\langle \cdot, \cdot \rangle$ defined by

$$\langle x, y \rangle = \frac{1}{4} \left(|x + y|^2 - |x - y|^2 \right)$$

is an inner product on V.

4. Let $T_c : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection through the line y = cx, and let R_{θ} be counterclockwise rotation around the origin by the angle θ . Observe that

$$T_c = R_\theta \circ T_0 \circ R_{-\theta}$$

for an appropriately chosen θ , and use this to represent T_c as a matrix.

5. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$ and define $V^* = \{f : V \to \mathbb{R} : f \text{ is linear}\}$. Then V^* is also a vector space. Find linear maps $f : V \to V^*$ and $g : V^* \to V$ such that $f \circ g = Id_{V^*}$ and $g \circ f = Id_V$.

Hint: Let v_1, \ldots, v_n be an orthonormal basis for V, and define $f: V \to V^*$ by $f(v) = \phi_v \equiv \langle v, \cdot \rangle$. (So $\phi_v(x) = \langle v, x \rangle$.) Show that $\phi_{v_1}, \ldots, \phi_{v_n}$ is a basis for V^* .

6. Let A be an upper triangular $n \times n$ matrix, i.e. $A = (a_{ij})$ where $a_{ij} = 0$ for $1 \le j < i \le n$. Prove that det $A = a_{11}a_{22}\ldots a_{nn}$.

¹Recall in this class we only consider vector spaces over \mathbb{R} .