Week 10 Homework

1. Show that $2 - x - \sin x = 0$ has exactly one solution, x_* , in $[\pi/6, \pi/2]$. Then show that $\phi(x) = 2 - \sin x$ is a contraction mapping on $[\pi/6, \pi/2]$, and calculate x_* to 3 digits of precision.

Solution. Let $f(x) = 2 - x - \sin x$. Observe that $f(\pi/6) = 2 - \pi/6 - 1/2 > 0$ and $f(\pi/2) = 2 - \pi/2 - 1 < 0$, while $f'(x) = -1 - \cos x < 0$ for $x \in [\pi/6, \pi/2]$. So by IVT, f(x) = 0 has a solution, and by MVT, f(x) = 0 has only one solution.

Now, note that $-\sqrt{3}/2 \le \phi'(x) \le 0$ for $x \in [\pi/6, \pi/2]$. Since ϕ is decreasing on $[\pi/6, \pi/2]$,

$$\phi([\pi/6, \pi/2]) = [\phi(\pi/2), \phi(\pi/6)] = [1, 3/2] \subset [\pi/6, \pi/2]$$

Thus ϕ is a contraction mapping with contraction constant $\sqrt{3}/2$. Let $x_n = \phi^n(\pi/2)$. The contraction mapping theorem then implies

$$|x_n - x_*| \le \frac{\pi/2 - 1}{1 - \sqrt{3}/2} \left(\frac{\sqrt{3}}{2}\right)^n$$

The right hand side is less than 0.001 if $n \ge 59$. The following Matlab code estimates the root:

 $\begin{array}{l} n = 59; \\ x = pi/2; \\ for i = 1:n \\ x = 2 \text{-sin}(x); \\ end \\ disp('root estimate') x \end{array}$

The output of the code is x = 1.106... (In fact if one uses n = 7 above one finds the root to precision 0.001. So the contraction mapping estimate is not sharp.)

2. Show that the set of all points (x, y) such that $(x + y)^5 - xy = 1$ is a 1-manifold.

Solution. Let $f(x, y) = (x + y)^5 - xy - 1$. Consider the sets

$$S = \{(x, y) : f(x, y) = 0\}$$

$$S' = \{(x, y) : f(x, y) = 0, \nabla f(x, y) \neq 0\}$$

We have proved that S' is a manifold. We will show here that S = S'; since $S' \subset S$ it suffices to show $S \subset S'$. Compute

$$D_1 f(x, y) = 5(x + y)^4 - y$$
$$D_2 f(x, y) = 5(x + y)^4 - x$$

Assume $(x, y) \in S \setminus S'$. Then $D_1 f(x, y) = D_2 f(x, y) = 0$ so y = x. In particular from $D_2 f(x, y) = 0$ we get $5(2x)^4 = x$. Now from f(x, y) = 0 we obtain:

$$(2x)^5 - x^2 - 1 = 0$$

$$5(2x)^5 - 5x^2 = 5$$

$$2x^2 - 5x^2 = 5$$

and so $-3x^2 = 5 > 0$, a contradiction. We conclude that $S \setminus S' = \emptyset$ so S = S' as desired.

3. Recall Newton's method for finding roots of a differentiable function $f: I \to \mathbb{R}$:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad x_0 \in I.$$
 (1)

Apply Newton's method, starting with $x_0 = 2$, to estimate $\sqrt{2}$ to three digits of precision without using the actual (unknown) value of $\sqrt{2}$ for comparison.

Hint: To get an error estimate, prove that the function $\phi(x) = \frac{1}{2}(x + 2/x)$ is a contraction mapping on $\sqrt{2}$, 2]. Then use our error estimate for contraction mappings.

Solution. We want to find roots of $f(x) = x^2 - 2$. Define

$$\phi(x) = x - f(x)/f'(x)$$
$$= \frac{1}{2}\left(x + \frac{2}{x}\right).$$

If x_* is a fixed point of ϕ then $f(x_*) = 0$, meaning $x_* = \sqrt{2}$. We show ϕ is a contraction mapping on $[\sqrt{2}, 2]$. Compute

$$|\phi'(x)| = \frac{1}{2} - \frac{1}{x^2} \in \left[0, \frac{1}{4}\right]$$
 for $x \in [\sqrt{2}, 2]$.

In particular ϕ is increasing on $[\sqrt{2}, 2]$ so

$$\phi(x) \in [\phi(\sqrt{2}), \phi(2)] = [\sqrt{2}, 3/2] \subset [\sqrt{2}, 2].$$

Thus, ϕ is a contraction mapping with contraction constant 1/4. So with $x_0 = 2$ and $x_n = \phi^n(x_0)$ we have

$$|x_n - \sqrt{2}| \le \frac{2}{3} \left(\frac{1}{4}\right)^n.$$

The right hand side is less that 0.001 if $n \ge 5$. The following Matlab code can be used:

n=5; x=2; for i=1:n $x = 0.5^{*}(x+2/x);$ end disp('root estimate') x

We get the output x = 1.414..., while $\sqrt{2} = 1.414...$ (In fact with n = 5 we obtain an estimate which is precise up to at least 15 digits after the decimal point!)

4. Let $f : [a, b] \to [c, d]$ be a surjective differentiable function such that $0 < m \le f'(x) \le M$ for $x \in [a, b]$. Let $y_* \in [c, d]$ and consider the following iteration scheme:

$$x_{n+1} = \phi(x_n), \qquad x_0 = a$$
 (2)

where

$$\phi(x) = x - \frac{f(x) - y_*}{M}.$$

Prove that ϕ is a contraction map on [a, b]. What can one conclude about the sequence $\{x_n\}$?

Solution. Note that

$$\phi'(x) \in \left[0, 1 - \frac{m}{M}\right)$$

Observe that since f is increasing and surjective we must have f(a) = c and f(b) = d. So since ϕ is also increasing,

$$a \le a - \frac{f(a) - y_*}{M} \le \phi(x) \le b - \frac{f(b) - y_*}{M} \le b.$$

Thus ϕ is a contraction mapping of [a, b]. One concludes that $\{x_n\}$ converges to the unique fixed point x_* of ϕ , which is the unique point $x_* \in [a, b]$ such that $f(x_*) = y_*$.

5. Consider the situation of problem 4, and think of x_n as a function of y_* , say $x_n = f_n(y_*)$. What can be said about the sequence of functions $\{f_n\}$, each defined on [c, d]? Do they converge pointwise? Uniformly?

Solution. In Problem 4 think of x_n and x_* as being functions of $y_* \in [c, d]$:

$$x_n = f_n(y_*)$$
$$x_* = f(y_*).$$

By the contraction mapping theorem,

$$|f_n(y_*) - y_*| \le \frac{k^n}{1-k}(b-a)$$

where $k \equiv 1 - m/M$. This inequality holds uniformly in $y_* \in [c, d]$, showing $\{f_n\}$ converges uniformly to f.

One application of this is to prove that f is continuous: one first shows (by induction) that each f_n is continuous, then uses the fact that if a sequence of continuous functions converges uniformly on an interval, then the limit function is continuous. (*) Error estimate for contraction mappings: If $\phi : [a, b] \to [a, b]$ is a contraction mapping with contraction constant k and $x_0 \in [a, b]$, then

$$|x_n - x_*| \le \frac{k^n}{1 - k} |x_1 - x_0|$$

where $x_n \equiv \phi^n(x_0)$ and x_* is the unique fixed point of ϕ .