
Week 11 Homework

1. Let G : R2 → R be a C1 function such that G(a, b) = 0 and D2G(a, b) 6= 0. Then the implicit
function theorem yields a C1 function f such that the graph of y = f(x) agrees with the zero
set of G in a neighborhood of (a, b). Show that

f ′(x) = −
D1G(x, f(x))

D2G(x, f(x))

for x in a neighborhood of a.

Solution. Let φ(x) = (x, f(x)). Then G ◦ φ ≡ 0 on a neighborhood U of a, and we may assume
U is small enough so that D2G(x, f(x)) 6= 0 for x ∈ U . Thus

0 = (G ◦ φ)′(x) = ∇G(φ(x)) · φ′(x) = D1G(x, f(x)) + f ′(x)D2G(x, f(x)).

The result follows.

2. The p-norm on R
n is defined by

|x|p = (|x1|
p + . . .+ |xn|

p)1/p.

Show that
lim
p→∞

|x|p = |x|∞

where
|x|∞ = max{|x1|, . . . , |xn|}.

Solution. Let |xk| be the greatest of |x1|, . . . , |xn|. Then

|x|p ≤ (n|xk|
p)1/p → |xk| = |x|∞ as p → ∞,

and
|x|p ≥ (|xk|

p)1/p = |xk| = |x|∞

The result follows by the squeeze theorem.

3. Let a ∈ R
n and consider the linear map La : Rn → R defined by

La(x) = a · x.

For a linear map L : Rn → R
m define

||L||p = max
x∈∂Dp

|L(x)|p

where Dp = {x ∈ R
n : |x|p ≤ 1}. Express ||La||1 and ||La||∞ in terms of the appropriate norms

of a.
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Solution. First consider ||La||1. Let |ak| be the largest of |a1|, . . . , |an|. Then

||La||1 = max
x∈∂D1

|a · x|1

= max
x∈∂D1

|a1x1 + . . .+ anxn|

≤ max
x∈∂D1

(|a1||x1|+ . . .+ |an||xn|)

≤ |ak| = |a|∞.

On the other hand, let x = ek. Then x ∈ ∂D1 and

|L(x)|1 = |a · ek|1 = |ak| = |a|∞

which shows that ||La||1 ≥ |a|∞. We conclude that ||La||1 = |a|∞.
Now consider ||La||∞. Compute

||La||∞ = max
x∈∂D∞

|a · x|∞

= max
x∈∂D∞

|a1x1 + . . .+ anxn|

≤ max
x∈∂D∞

(|a1||x1|+ . . .+ |an||xn|)

≤ |a1|+ . . .+ |an| = |a|1.

On the other hand, for j = 1, . . . , n, let xj = 1 if aj > 0 and xj = −1 if aj < 0. Then x ∈ ∂D∞

and
|L(x)|∞ = |a · x|∞ = |a1|+ . . .+ |an| = |a|1.

which shows ||La||∞ ≥ |a|1. We conclude that ||La||∞ = |a|1.

4. For a linear map L : Rn → R
m define

||L||p,q = max
x∈∂Dp

|L(x)|q.

Show that if A is the matrix of L, then

||L||1,∞ = max{|aij | : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Solution. Let x ∈ R
n, let y = L(x) and let |yk| be the largest of |y1|, . . . , |ym|. Then

||L||1,∞ = max
x∈∂D1

|L(x)|∞

= max
x∈∂D1

|yk|

= max
x∈∂D1

|

n
∑

j=1

akjxj |

≤ max
x∈∂D1

n
∑

j=1

|akj ||xj |

≤ max{|aij | : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
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On the other hand assume |akl| is the largest of |aij |, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and let x = el.
Then x ∈ ∂D1 and

|L(x)|∞ = |Ax|∞

=

∣

∣

∣

∣

∣

∣

∣







a1l
...

aml







∣

∣

∣

∣

∣

∣

∣

∞

= |akl| = max{|aij | : 1 ≤ i ≤ m, 1 ≤ j ≤ n},

which shows
||L||1,∞ ≥ max{|aij | : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The result follows.

5. Show that the linear map L : Rn → R
m is one-to-one if and only if

M ≡ min
x∈∂D∞

|L(x)|∞

is positive. Use this to show that L is one-to-one if and only if there exists M > 0 such that
|L(x)|∞ ≥ M |x|∞ for all x ∈ R

n.

Solution. Assume minx∈∂D∞ |L(x)|∞ = 0. Then |L(x)|∞ = 0 for some x, which means L(x) = 0.
Thus Ker L 6= 0 and L is not one-to-one. Conversely assume L is not one-to-one. Then
Ker L = 0, so there is x 6= 0 such that L(x) = 0. Thus

0 = L(x) = |x|∞L

(

x

|x|∞

)

and since x/|x|∞ ∈ ∂D∞ this shows minx∈∂D∞ |L(x)|∞ = 0.
Now assume there is K > 0 such that |L(x)|∞ ≥ K|x|∞ for all x ∈ R

n. Let x ∈ ∂D∞ be
arbitrary. Then |L(x)|∞ ≥ K|x|∞ = K which shows minx∈∂D∞ |L(x)|∞ ≥ K > 0. Conversely,
assume M ≡ minx∈∂D∞ |L(x)|∞ > 0, and let x ∈ R

n be arbitrary but not zero. Then

|L(x)|∞ = |x|∞

∣

∣

∣

∣

L

(

x

|x|∞

)∣

∣

∣

∣

≥ M |x|∞.

If x = 0 the same equation is trivially true. The result follows.
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