Week 11 Homework

1. Let $G : \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function such that G(a, b) = 0 and $D_2G(a, b) \neq 0$. Then the implicit function theorem yields a C^1 function f such that the graph of y = f(x) agrees with the zero set of G in a neighborhood of (a, b). Show that

$$f'(x) = -\frac{D_1 G(x, f(x))}{D_2 G(x, f(x))}$$

for x in a neighborhood of a.

Solution. Let $\phi(x) = (x, f(x))$. Then $G \circ \phi \equiv 0$ on a neighborhood U of a, and we may assume U is small enough so that $D_2G(x, f(x)) \neq 0$ for $x \in U$. Thus

$$0 = (G \circ \phi)'(x) = \nabla G(\phi(x)) \cdot \phi'(x) = D_1 G(x, f(x)) + f'(x) D_2 G(x, f(x)).$$

The result follows.

2. The *p*-norm on \mathbb{R}^n is defined by

$$|x|_p = (|x_1|^p + \ldots + |x_n|^p)^{1/p}.$$

Show that

$$\lim_{p \to \infty} |x|_p = |x|_\infty$$

where

$$|x|_{\infty} = \max\{|x_1|, \dots, |x_n|\}.$$

Solution. Let $|x_k|$ be the greatest of $|x_1|, \ldots, |x_n|$. Then

$$|x|_p \le (n|x_k|^p)^{1/p} \to |x_k| = |x|_\infty$$
 as $p \to \infty$,

and

$$|x|_p \ge (|x_k|^p)^{1/p} = |x_k| = |x|_{\infty}$$

The result follows by the squeeze theorem.

3. Let $a \in \mathbb{R}^n$ and consider the linear map $L_a : \mathbb{R}^n \to \mathbb{R}$ defined by

$$L_a(x) = a \cdot x.$$

For a linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ define

$$||L||_p = \max_{x \in \partial D^p} |L(x)|_p$$

where $D^p = \{x \in \mathbb{R}^n : |x|_p \le 1\}$. Express $||L_a||_1$ and $||L_a||_{\infty}$ in terms of the appropriate norms of a.

Solution. First consider $||L_a||_1$. Let $|a_k|$ be the largest of $|a_1|, \ldots, |a_n|$. Then

$$||L_a||_1 = \max_{x \in \partial D^1} |a \cdot x|_1$$

=
$$\max_{x \in \partial D^1} |a_1 x_1 + \ldots + a_n x_n|$$

$$\leq \max_{x \in \partial D^1} (|a_1||x_1| + \ldots + |a_n||x_n|)$$

$$\leq |a_k| = |a|_{\infty}.$$

On the other hand, let $x = e_k$. Then $x \in \partial D^1$ and

$$|L(x)|_1 = |a \cdot e_k|_1 = |a_k| = |a|_{\infty}$$

which shows that $||L_a||_1 \ge |a|_{\infty}$. We conclude that $||L_a||_1 = |a|_{\infty}$.

Now consider $||L_a||_{\infty}$. Compute

$$||L_a||_{\infty} = \max_{x \in \partial D^{\infty}} |a \cdot x|_{\infty}$$

=
$$\max_{x \in \partial D^{\infty}} |a_1 x_1 + \ldots + a_n x_n|$$

$$\leq \max_{x \in \partial D^{\infty}} (|a_1||x_1| + \ldots + |a_n||x_n|)$$

$$\leq |a_1| + \ldots + |a_n| = |a|_1.$$

On the other hand, for j = 1, ..., n, let $x_j = 1$ if $a_j > 0$ and $x_j = -1$ if $a_j < 0$. Then $x \in \partial D^{\infty}$ and

$$|L(x)|_{\infty} = |a \cdot x|_{\infty} = |a_1| + \ldots + |a_n| = |a|_1$$

which shows $||L_a||_{\infty} \ge |a|_1$. We conclude that $||L_a||_{\infty} = |a|_1$.

4. For a linear map $L:\mathbb{R}^n\to\mathbb{R}^m$ define

$$||L||_{p,q} = \max_{x \in \partial D^p} |L(x)|_q$$

Show that if A is the matrix of L, then

$$||L||_{1,\infty} = \max\{|a_{ij}| : 1 \le i \le m, 1 \le j \le n\}.$$

Solution. Let $x \in \mathbb{R}^n$, let y = L(x) and let $|y_k|$ be the largest of $|y_1|, \ldots, |y_m|$. Then

$$\begin{split} |L||_{1,\infty} &= \max_{x \in \partial D^1} |L(x)|_{\infty} \\ &= \max_{x \in \partial D^1} |y_k| \\ &= \max_{x \in \partial D^1} |\sum_{j=1}^n a_{kj} x_j| \\ &\leq \max_{x \in \partial D^1} \sum_{j=1}^n |a_{kj}| |x_j| \\ &\leq \max\{|a_{ij}| \, : \, 1 \leq i \leq m, 1 \leq j \leq n\}. \end{split}$$

On the other hand assume $|a_{kl}|$ is the largest of $|a_{ij}|$, $1 \le i \le m$, $1 \le j \le n$, and let $x = e_l$. Then $x \in \partial D^1$ and

$$|L(x)|_{\infty} = |Ax|_{\infty}$$
$$= \left| \begin{pmatrix} a_{1l} \\ \vdots \\ a_{ml} \end{pmatrix} \right|_{\infty}$$
$$= |a_{kl}| = \max\{|a_{ij}| : 1 \le i \le m, 1 \le j \le n\},$$

which shows

$$||L||_{1,\infty} \ge \max\{|a_{ij}| : 1 \le i \le m, 1 \le j \le n\}.$$

The result follows.

5. Show that the linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if and only if

$$M \equiv \min_{x \in \partial D^{\infty}} |L(x)|_{\infty}$$

is positive. Use this to show that L is one-to-one if and only if there exists M > 0 such that $|L(x)|_{\infty} \ge M|x|_{\infty}$ for all $x \in \mathbb{R}^{n}$.

Solution. Assume $\min_{x \in \partial D^{\infty}} |L(x)|_{\infty} = 0$. Then $|L(x)|_{\infty} = 0$ for some x, which means L(x) = 0. Thus Ker $L \neq 0$ and L is not one-to-one. Conversely assume L is not one-to-one. Then Ker L = 0, so there is $x \neq 0$ such that L(x) = 0. Thus

$$0 = L(x) = |x|_{\infty} L\left(\frac{x}{|x|_{\infty}}\right)$$

and since $x/|x|_{\infty} \in \partial D^{\infty}$ this shows $\min_{x \in \partial D^{\infty}} |L(x)|_{\infty} = 0$.

Now assume there is K > 0 such that $|L(x)|_{\infty} \ge K|x|_{\infty}$ for all $x \in \mathbb{R}^n$. Let $x \in \partial D^{\infty}$ be arbitrary. Then $|L(x)|_{\infty} \ge K|x|_{\infty} = K$ which shows $\min_{x \in \partial D^{\infty}} |L(x)|_{\infty} \ge K > 0$. Conversely, assume $M \equiv \min_{x \in \partial D^{\infty}} |L(x)|_{\infty} > 0$, and let $x \in \mathbb{R}^n$ be arbitrary but not zero. Then

$$|L(x)|_{\infty} = |x|_{\infty} \left| L\left(\frac{x}{|x|_{\infty}}\right) \right| \ge M|x|_{\infty}.$$

If x = 0 the same equation is trivially true. The result follows.