Week 12 Homework

1. Assume f : R" — R" is a C! function with a C! inverse locally near a. That is, there is a
neighborhood U of a and a C! function g : f(U) — U such that g(f(z)) = = for z € U. Show
that then f’(a) is nonsingular.

Solution. Observe that go f = I, (where I is the identity transformation), so
dgfa) o dfa =d(go fla=dls=1. (1)
To see that f/(a) is nonsingular, note that if f/(a)x = 0 then
w = I(z) = dgy()(dfa(z)) = dgp)(f'(a)z) = dgy() (0) = 0.

2. Consider the function f : R3 — R? defined by f(z,vy,2) = (z,y3, 2°).

(i) f has a global inverse, g. Give a formula for g.
(ii) Compute f'(0) and observe that it is singular. Why doesn’t this contradict Problem 17

Solution. (i) The inverse of f is, by inspection, g(x,y,z) = (z,y"/3, 21/5).
(ii) Compute
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and observe that for the nonzero vector x = (0,1,0)" we have f’(0)z = 0. There is no contra-
diction to (i) since g is not C: it is not differentiable at (0,0, 0).

3. Using the definition of area (see below), calculate the area of the set

S ={(z,y) : z€[0,1], y € [0,27]}.

Solution. Let ¢ > 0, n € N, and define for j =1,...,n
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Then the R;’s and R;”s are rectangles (with the R;’s nonoverlapping) such that
n — n +
szle C S, szle oS

Furthermore
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To see that v(S) = 1/3, choose n large enough so that
(n—1)n(2n —1)

6n3 >1/3—¢
n(n+1)(2n+1)
6nd <1/3+e.

4. Assume S, T C R? both have area and S C T. Prove that then v(S) < v(T).

Solution. Assume for contradiction that v(S) > v(T), and let ¢ = v(S) — v(T"). Choose

nonoverlapping intervals I, ..., I, and intervals Ji, ..., J; such that
Ule IcsS
and

Zvuj) > 0(S) —€/2

Zv(Jj) <u(T) +¢/2.
Then

i=1 i=1
To obtain a contradiction, it suffices to show that the quantity in square brackets above is
nonnegative. To do this, subdivide the I;’s and J;’s wherever they intersect, so that we obtain

nonoverlapping subintervals I, ... , I5 whose union is the same as the union of the I;’s, and

nonoverlapping intervals Ji, ..., J; whose union is the same as the union of the J;’s, such that
the I;’s are a subcollection of the J;’s. Then

q p

Zv(Jj) - Zv(fj) => w(J;) =Y o(l;) > 0.

=1 i=1 j=1 j=1

5. Assume f : R — R is continuously differentiable, and let a = o < 21 < ... < x, = b. Use
the mean value theorem to show that there exist rectangles R, ..., R, of the form

R; = [zi—1, 5] x [0, f'(x)] where zf € [2;_1, 2]

such that

n

> u(R:) = F(5) - f(a).

=1



Solution. Choose z} in [z;_1, z;] such that

Then

6. Prove that if f and g are admissible, so are f + g and ¢f (c € R).

Solution. Assume f and g are admissible. Then f is zero outside a bounded set D, and g is zero
outside a bounded set F, so f + g is zero outside the bounded set DU E. Also f is continuous
outside a negligible set S, and ¢ is continuous outside a negligible set T', so f + g is continuous
outside the negligible set S U T. Finally f and g are bounded, say |f| < M and |g| < L, so
|f + 9| < M + L, showing f + g is bounded.

To see that cf is admissible, note that cf is zero outside D, |cf| < ¢M and cf is continuous
outside the negligible set S.

Definition of area: A set S C R? has area v(S) = « if for each € > 0, there exist rectangles
Rf, ..., RZ and nonoverlapping rectangles Ry, ..., R; such that

RfU...URf>S and R{U...UR;CS
l

k
Zv(Rf)<a+6 and ZU(R;)>O&—6

i=1 =1

where for a rectangle R = [c,d] X [e, f] we define v(R) = (d — ¢)(f — e).



