
Week 1 Homework

1. Let V be a vector space of dimension n, and let v1, . . . , vk be linearly independent vectors in
V , with k < n. Show that there exist vectors vk+1, . . . , vn such that v1, . . . , vn is a basis for V .

Solution. Every basis for V has exactly n vectors, so v1, . . . , vk is not a basis for V ; since
v1, . . . , vk are linearly independent this means they do not span V . Thus, there is a vector vk+1 ∈
V such that vk+1 /∈ span(v1, . . . , vk). We claim that v1, . . . , vk+1 are linearly independent. To
see this, suppose c1v1 + . . . ck+1vk+1 = 0. If ck+1 = 0 then c1 = . . . = ck = 0 since v1, . . . , vk
are linearly independent. If ck+1 6= 0 then vk+1 can be written as a linear combination of
v1, . . . , vk, contrary to vk+1 /∈ span(v1, . . . , vk). By induction, we can find linearly independent
vectors v1, . . . , vn in V , and since dimV = n this must be a basis for V .

2. Use the Gram-Schmidt process to find an orthonormal basis for P 2([−1, 1]), the vector space
of polynomial functions on [−1, 1] of degree ≤ 2.

Solution. Observe that 1, x, x2 is a basis for P 2([−1, 1]), and in fact 1 and x are orthogonal.
(Recall the inner product is 〈f, g〉 =

∫

1

−1
fg dx.) To find a vector which is orthogonal to both 1

and x we use Gram-Schmidt:

x2 −
∫

1

−1
x3 dx

∫

1

−1
x2 dx

x−
∫

1

−1
x2 dx

∫

1

−1
dx

1 = x2 − 1

3
.

The last step is to normalize 1, x, and x2 − 1/3; we obtain
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3. Let V be a normed vector space1 such that for each x, y ∈ V ,

2|x|2 + 2|y|2 = |x+ y|2 + |x− y|2. (1)

Show that the function 〈·, ·〉 defined by

〈x, y〉 = 1

4

(

|x+ y|2 − |x− y|2
)

(2)

is an inner product on V .

Solution. Observe that 〈u, u〉 = |u|2 > 0 if x 6= 0 by positivity of norms. Also 〈u, v〉 = 〈u, v〉
follows from | − x| = |x|. We will show 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉. Observe that by putting
x = u+ w and y = v in (1),

|u+ v + w|2 = 2|u+ w|2 + 2|v|2 − |u− v + w|2
1Recall in this class we only consider vector spaces over R.
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and swapping u and v we get

|u+ v + w|2 = 2|v + w|2 + 2|u|2 − |v − u+ w|2 = 2|v + w|2 + 2|u|2 − |u− v − w|2.

By averaging the right hand sides of the last two equations we obtain

|u+ v + w|2 = |u+ w|2 + |v + w|2 + |u|2 + |v|2 − 1

2
|u− v + w|2 − 1

2
|u− v − w|2.

Now,

〈u+ v, w〉 = 1

4

(

|u+ v + w|2 − |u+ v − w|2
)

=
1

4

(

|u+ w|2 + |v + w|2 − |u− w|2 − |v − w|2
)

= 〈u,w〉+ 〈v, w〉.

It follows immediately that 〈nu, v〉 = n〈u, v〉 holds for any nonnegative integer n, and from
(2) we easily see that 〈−u, v〉 = −〈u, v〉, so it holds for every integer n. From this it follows
that 〈(1/n)u, v〉 = (1/n)〈u, v〉 for any nonzero integer n and so 〈ru, v〉 = r〈u, v〉 for any rational
number r. To finish the proof, observe that the map t → |tx+y| is continuous (this follows from
the triangle inequality), so from (2) the map t → 〈tx, y〉 is continuous. Thus, t → (1/t)〈tx, y〉
is continuous when t 6= 0, and this map gives the constant value 〈x, y〉 whenever t is rational.
Thus, 〈tx, y〉 = t〈x, y〉 for every real number t. This completes the proof.

4. Let Tc : R2 → R
2 be reflection through the line y = cx, and let Rθ be counterclockwise

rotation around the origin by the angle θ. Observe that

Tc = Rθ ◦ T0 ◦R−θ

for an appropriately chosen θ, and use this to represent Tc as a matrix.

Solution. Observe that

MT0
=

(

1 0
0 −1

)

MRθ
=

(

cos θ − sin θ
sin θ cos θ

)

MR
−θ

=

(

cos θ sin θ
− sin θ cos θ

)

and compute

MRθ
MT0

MR
−θ

=

(

1− 2 sin2 θ sin 2θ
sin 2θ 2 sin2 θ − 1

)

.

To finish the problem let θ = tan−1 c and note that

Tc(x) = MRθ
MT0

MR
−θ
x.
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5. Let V be a finite dimensional vector space with inner product 〈·, ·〉 and define V ∗ = {f :
V → R : f is linear}. Then V ∗ is also a vector space. Find linear maps f : V → V ∗ and
g : V ∗ → V such that f ◦ g = IdV ∗ and g ◦ f = IdV .

Hint: Let v1, . . . , vn be an orthonormal basis for V , and define f : V → V ∗ by f(v) = φv ≡ 〈v, ·〉.
(So φv(x) = 〈v, x〉.) Show that φv1 , . . . , φvn is a basis for V ∗.

Solution. Let v1, . . . , vn be an orthonormal basis of V and define f : V → V ∗ by f(v) = φv ≡
〈v, ·〉. Note that f and φv are linear because of bilinearity of inner products. Write φj ≡ φvj

for j = 1, . . . , n, and observe that

φj(c1v1 + . . .+ cnvn) = cj . (3)

We claim that φ1, . . . , φn is a basis for V ∗. To see that they are linearly independent, suppose

φ ≡ c1φ1 + . . .+ cnφn = 0,

that is, φ is the zero function on V . Then for j = 1, . . . , n,

0 = φ(vj) = cj .

To see that φ1, . . . , φn span V , observe that for any φ ∈ V ∗ we have

φ = φ(v1)φ1 + . . .+ φ(vn)φn.

Now define g : V ∗ → V by
g(φ) = φ(v1)v1 + . . .+ φ(vn)vn.

Then g is linear and g(φj) = vj . Now f(g(φj)) = φj and g(f(vj)) = vj , so linearity of f and g
imply the result.

6. Let A be an upper triangular n× n matrix, i.e. A = (aij) where aij = 0 for 1 ≤ j < i ≤ n.
Prove that det A = a11a22 . . . ann.

Solution. The result is trivially true for 1× 1 matrices. Assume it is true for (n− 1)× (n− 1)
matrices. Let A be an upper triangular n × n matrix, aij its (i, j)th entry and Aij the (n −
1)× (n− 1) matrix obtained by deleting the ith row and jth column from A. We compute the
determinant of A by expanding along the bottom row:

detA =
n
∑

j=1

(−1)n+janj detAnj = (−1)2nann detAnn = a11 . . . ann,

with the last equality coming from the induction assumption. By induction we are done.
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