Week 1 Homework

1. Let V be a vector space of dimension n, and let v_1, \ldots, v_k be linearly independent vectors in V, with k < n. Show that there exist vectors v_{k+1}, \ldots, v_n such that v_1, \ldots, v_n is a basis for V.

Solution. Every basis for V has exactly n vectors, so v_1, \ldots, v_k is not a basis for V; since v_1, \ldots, v_k are linearly independent this means they do not span V. Thus, there is a vector $v_{k+1} \in V$ such that $v_{k+1} \notin \operatorname{span}(v_1, \ldots, v_k)$. We claim that v_1, \ldots, v_{k+1} are linearly independent. To see this, suppose $c_1v_1 + \ldots + c_{k+1}v_{k+1} = 0$. If $c_{k+1} = 0$ then $c_1 = \ldots = c_k = 0$ since v_1, \ldots, v_k are linearly independent. If $c_{k+1} \neq 0$ then v_{k+1} can be written as a linear combination of v_1, \ldots, v_k , contrary to $v_{k+1} \notin \operatorname{span}(v_1, \ldots, v_k)$. By induction, we can find linearly independent vectors v_1, \ldots, v_n in V, and since dim V = n this must be a basis for V.

2. Use the Gram-Schmidt process to find an orthonormal basis for $P^2([-1,1])$, the vector space of polynomial functions on [-1,1] of degree ≤ 2 .

Solution. Observe that $1, x, x^2$ is a basis for $P^2([-1, 1])$, and in fact 1 and x are orthogonal. (Recall the inner product is $\langle f, g \rangle = \int_{-1}^{1} fg \, dx$.) To find a vector which is orthogonal to both 1 and x we use Gram-Schmidt:

$$x^{2} - \frac{\int_{-1}^{1} x^{3} dx}{\int_{-1}^{1} x^{2} dx} x - \frac{\int_{-1}^{1} x^{2} dx}{\int_{-1}^{1} dx} 1 = x^{2} - \frac{1}{3}.$$

The last step is to normalize 1, x, and $x^2 - 1/3$; we obtain

$$\frac{\sqrt{2}}{2}, \ \sqrt{\frac{3}{2}}x, \ \frac{3}{2}\sqrt{\frac{5}{2}}\left(x^2-\frac{1}{3}\right).$$

3. Let V be a normed vector space¹ such that for each $x, y \in V$,

$$2|x|^{2} + 2|y|^{2} = |x+y|^{2} + |x-y|^{2}.$$
(1)

Show that the function $\langle \cdot, \cdot \rangle$ defined by

$$\langle x, y \rangle = \frac{1}{4} \left(|x+y|^2 - |x-y|^2 \right)$$
 (2)

is an inner product on V.

Solution. Observe that $\langle u, u \rangle = |u|^2 > 0$ if $x \neq 0$ by positivity of norms. Also $\langle u, v \rangle = \langle u, v \rangle$ follows from |-x| = |x|. We will show $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$. Observe that by putting x = u + w and y = v in (1),

$$|u + v + w|^2 = 2|u + w|^2 + 2|v|^2 - |u - v + w|^2$$

¹Recall in this class we only consider vector spaces over \mathbb{R} .

and swapping u and v we get

$$|u+v+w|^{2} = 2|v+w|^{2} + 2|u|^{2} - |v-u+w|^{2} = 2|v+w|^{2} + 2|u|^{2} - |u-v-w|^{2}.$$

By averaging the right hand sides of the last two equations we obtain

$$|u+v+w|^{2} = |u+w|^{2} + |v+w|^{2} + |u|^{2} + |v|^{2} - \frac{1}{2}|u-v+w|^{2} - \frac{1}{2}|u-v-w|^{2}.$$

Now,

$$\begin{aligned} \langle u + v, w \rangle &= \frac{1}{4} \left(|u + v + w|^2 - |u + v - w|^2 \right) \\ &= \frac{1}{4} \left(|u + w|^2 + |v + w|^2 - |u - w|^2 - |v - w|^2 \right) \\ &= \langle u, w \rangle + \langle v, w \rangle. \end{aligned}$$

It follows immediately that $\langle nu, v \rangle = n \langle u, v \rangle$ holds for any nonnegative integer n, and from (2) we easily see that $\langle -u, v \rangle = -\langle u, v \rangle$, so it holds for every integer n. From this it follows that $\langle (1/n)u, v \rangle = (1/n) \langle u, v \rangle$ for any nonzero integer n and so $\langle ru, v \rangle = r \langle u, v \rangle$ for any rational number r. To finish the proof, observe that the map $t \to |tx+y|$ is continuous (this follows from the triangle inequality), so from (2) the map $t \to \langle tx, y \rangle$ is continuous. Thus, $t \to (1/t) \langle tx, y \rangle$ is continuous when $t \neq 0$, and this map gives the constant value $\langle x, y \rangle$ whenever t is rational. Thus, $\langle tx, y \rangle = t \langle x, y \rangle$ for every real number t. This completes the proof.

4. Let $T_c : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection through the line y = cx, and let R_θ be counterclockwise rotation around the origin by the angle θ . Observe that

$$T_c = R_\theta \circ T_0 \circ R_{-\theta}$$

for an appropriately chosen θ , and use this to represent T_c as a matrix.

Solution. Observe that

$$M_{T_0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$M_{R_{\theta}} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
$$M_{R_{-\theta}} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

and compute

$$M_{R_{\theta}}M_{T_0}M_{R_{-\theta}} = \begin{pmatrix} 1 - 2\sin^2\theta & \sin 2\theta \\ \sin 2\theta & 2\sin^2\theta - 1 \end{pmatrix}.$$

To finish the problem let $\theta = \tan^{-1} c$ and note that

$$T_c(x) = M_{R_\theta} M_{T_0} M_{R_{-\theta}} x.$$

5. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$ and define $V^* = \{f : V \to \mathbb{R} : f \text{ is linear}\}$. Then V^* is also a vector space. Find linear maps $f : V \to V^*$ and $g : V^* \to V$ such that $f \circ g = Id_{V^*}$ and $g \circ f = Id_V$.

Hint: Let v_1, \ldots, v_n be an orthonormal basis for V, and define $f: V \to V^*$ by $f(v) = \phi_v \equiv \langle v, \cdot \rangle$. (So $\phi_v(x) = \langle v, x \rangle$.) Show that $\phi_{v_1}, \ldots, \phi_{v_n}$ is a basis for V^* .

Solution. Let v_1, \ldots, v_n be an orthonormal basis of V and define $f: V \to V^*$ by $f(v) = \phi_v \equiv \langle v, \cdot \rangle$. Note that f and ϕ_v are linear because of bilinearity of inner products. Write $\phi_j \equiv \phi_{v_j}$ for $j = 1, \ldots, n$, and observe that

$$\phi_j(c_1v_1 + \ldots + c_nv_n) = c_j. \tag{3}$$

We claim that ϕ_1, \ldots, ϕ_n is a basis for V^* . To see that they are linearly independent, suppose

$$\phi \equiv c_1 \phi_1 + \ldots + c_n \phi_n = 0,$$

that is, ϕ is the zero function on V. Then for $j = 1, \ldots, n$,

$$0 = \phi(v_j) = c_j.$$

To see that ϕ_1, \ldots, ϕ_n span V, observe that for any $\phi \in V^*$ we have

$$\phi = \phi(v_1)\phi_1 + \ldots + \phi(v_n)\phi_n.$$

Now define $g: V^* \to V$ by

$$g(\phi) = \phi(v_1)v_1 + \ldots + \phi(v_n)v_n.$$

Then g is linear and $g(\phi_j) = v_j$. Now $f(g(\phi_j)) = \phi_j$ and $g(f(v_j)) = v_j$, so linearity of f and g imply the result.

6. Let A be an upper triangular $n \times n$ matrix, i.e. $A = (a_{ij})$ where $a_{ij} = 0$ for $1 \le j < i \le n$. Prove that det $A = a_{11}a_{22}\ldots a_{nn}$.

Solution. The result is trivially true for 1×1 matrices. Assume it is true for $(n-1) \times (n-1)$ matrices. Let A be an upper triangular $n \times n$ matrix, a_{ij} its (i, j)th entry and A_{ij} the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*th row and *j*th column from A. We compute the determinant of A by expanding along the bottom row:

$$\det A = \sum_{j=1}^{n} (-1)^{n+j} a_{nj} \det A_{nj} = (-1)^{2n} a_{nn} \det A_{nn} = a_{11} \dots a_{nn},$$

with the last equality coming from the induction assumption. By induction we are done.