Week 3 Homework

1. For C,D C R" define d(C, D) = infyecc, yep |z — y|. If C is compact and D is closed, prove
there exist ¢ € C and d € D such that |c — d| = d(C, D).

Hint: First show that the statement is true when C' = {a} is a single point.

Remark: Below we write d(x, D) instead of d({z}, D). Observe that d(x, D) = infyep |z — y|.

Solution. We first prove the hint. Let D C R™ be closed and let a € R™. Choose r large enough
so that the closed ball B = {z € R" : |z — a|] < r} intersects D. Let K = BN D, observe
that K is compact, and consider the continuous function f : K — R defined by f(x) = |a — z|.
As f attains an absolute minimum on K, there is b € K such that |a — b| = d(a, K). Since
la — x| > |a —b| for any x € D\ K = D\ B, it follows that |a — b| = d(a, D).

Now let C' C R™ be compact and define a function g : C — R by setting g(z) = d(z, D).
We show below that g is continuous. So since C' is compact, g attains an absolute minimum
at some ¢ € C. Thus g(c) = d(¢, D) = d(C, D). And by the hint there is d € D such that
|c — d| = d(c, D), which completes the proof.

To see that g is continuous, let zg € C' and € > 0. From the hint there is yg € D such that
|zo — yo| = g(x0). Let x be such that |z — 29| < § = e. Then by the triangle inequality

|z — yo| < |zo — yo| + |7 — 20| < g(wo) + e
and so g(x) = d(z, D) < g(z¢) + €. Now assume (for contradiction) that
g9(x) < g(zo) — €.
By the hint there is y € D such that |z — y| = g(x), so
w0 —y| < |wo — 2 + |z —y| < e+ g(x) < g(xo)
which contradicts the definition of g. So
g(xo) — € < g(x) < g(wo) + ¢

and ¢ is continuous.

An alternate proof uses sequences {c,}°° ; and {d,}>°; in C and D such that |¢, — d,| —
d(C, D). One shows that {d,}5°; is bounded, so since D is closed there is a subsequence
{dn, }32; converging to d € D. Then since C' is compact there is a subsequence {cy, };2; of
{cn, }72| converging to ¢ € D. So by continuity of the norm | - |,

= |c—d| = d(C, D).

lim Cny, — dnkl
—00

2. Let V : R" — R be differentiable, F' = —VV, and suppose ¢ : R — R" satisfies

F(g(t)) = me"(t)



where m > 0 is constant. Let

K@) = gmld 0, P()=V(6()

and prove K + P is a constant function.

Hint: Show that (K + P)’ = 0. You may use without justification the fact that P'(t) =
VV(é(t)) - ¢'(t) (a consequence of the chain rule, to be proved next week).

Solution. Differentiating, we obtain

and so (K + P)' = 0.

3. Give an example to show that MVT does not hold for differentiable functions R — R™. That
is, find a differentiable function f : [a,b] — R™ such that there is no ¢ € (a, b) satisfying

f(0) — f(a)

fle) =0 1)

Solution. Define f : R — R3 by f(z) = (cosz,sinz,x). Note that f(0) = (1,0,0) and
f(2m) =(1,0,2m), so
f(2m) = f(0)

2r —0
On the other hand the first two components of f’(x) = (—sinx,cosz, 1) are never both zero,
so there is no ¢ satisfying (1) on [0, 27].

= (0,0,1).

4. Define p : R? — R by p(x) = x129. Prove that p is differentiable everywhere with

dpq(h) = aghy + ajhe.

Solution. Let a € R?, define L, : R? — R by L,(h) = ashi + a1hs. Now
lp(a + h) —pla) = La(h)| _ [(a1 + h1)(az + he) — a1az — (azh1 + a1hs)|

|hl Vh}+ h3

hih hih
_ |h1ha| < 1D < max{|hi|, |he|}

VA2 + k2 T min{|hil, |he|}

which shows limj_,o[p(a + h) — p(a) — La(h)]/|h| = 0. Thus, p is differentiable with dp, = L.

5. If F: R™ — R™ is differentiable at a, show that F' is continuous at a.
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Hint: Let R(h) = [F(a + h) — F(a) — dF,(h)]/|h| for h # 0, so that
F(a+h) — F(a) = dFy(h) + |h|R(h).

Solution. It suffices to show
lim |F(a+ h) — F(a)| = 0.
h—0
By the triangle inequality,
|[F(a+h) — F(a)| < [dFa(h)] + [h||R(h)].

Since F is differentiable, limy,_,o ||R(h)| = 0. Furthermore, dFy, is a linear map, hence (Lipschitz)
continuous — as we show below — so limy_,o |dF,(h)| = 0. Thus,

lim |F(a+h) - F(a)| =0.

To see that linear maps are Lipschitz' continuous, let L : R” — R™ be a linear map, and let
Ay

A= :
Am

be its matrix, with rows Ai,..., Ap,. Write C = max; |A;|. Then

[L(h)| = [Ah|
Ay -h
A - h

— ARt (A h)
< VIALRIR2 .. F AR R2
<VmC|h|

where the second-to-last step uses Cauchy-Schwartz. Linearity of L now implies Lipschitz
continuity.

6. Let

296“;’ 5, (w1,22) # (0,0)
) = ri+x5 .
f( ) {07 (.%'1,.%'2) = (070)

Prove that f has directional derivatives D, f(0) for every v € R? (so in particular its partial
derivatives exist) but that f is not differentiable at 0.

YA map F:R™ — R™ is called Lipschitz continuous if there is C' > 0 such that |F(z) — F(y)| < C|z — y| for
all z,y € R™.



Solution. Let v # 0 € R? and compute

(t'l}g)g

so that in particular

Dif(0)=0,  Dyf(0)=1

(Recall D;j = D,;.) Assume for contradiction that f is differentiable at 0. Then the directional

derivatives at 0 can be written in terms of partial derivatives:

Dy f(0) = v1D1f(0) +v2D2f(0) = v2,

which contradicts (2).



