
Week 3 Homework

1. For C,D ⊂ R
n define d(C,D) = infx∈C, y∈D |x − y|. If C is compact and D is closed, prove

there exist c ∈ C and d ∈ D such that |c− d| = d(C,D).

Hint: First show that the statement is true when C = {a} is a single point.

Remark: Below we write d(x,D) instead of d({x}, D). Observe that d(x,D) = infy∈D |x− y|.

Solution. We first prove the hint. Let D ⊂ R
n be closed and let a ∈ R

n. Choose r large enough
so that the closed ball B = {x ∈ R

n : |x − a| ≤ r} intersects D. Let K = B ∩ D, observe
that K is compact, and consider the continuous function f : K → R defined by f(x) = |a− x|.
As f attains an absolute minimum on K, there is b ∈ K such that |a − b| = d(a,K). Since
|a− x| ≥ |a− b| for any x ∈ D \K = D \B, it follows that |a− b| = d(a,D).

Now let C ⊂ R
n be compact and define a function g : C → R by setting g(x) = d(x,D).

We show below that g is continuous. So since C is compact, g attains an absolute minimum
at some c ∈ C. Thus g(c) = d(c,D) = d(C,D). And by the hint there is d ∈ D such that
|c− d| = d(c,D), which completes the proof.

To see that g is continuous, let x0 ∈ C and ǫ > 0. From the hint there is y0 ∈ D such that
|x0 − y0| = g(x0). Let x be such that |x− x0| < δ ≡ ǫ. Then by the triangle inequality

|x− y0| ≤ |x0 − y0|+ |x− x0| < g(x0) + ǫ.

and so g(x) = d(x,D) < g(x0) + ǫ. Now assume (for contradiction) that

g(x) ≤ g(x0)− ǫ.

By the hint there is y ∈ D such that |x− y| = g(x), so

|x0 − y| ≤ |x0 − x|+ |x− y| < ǫ+ g(x) ≤ g(x0)

which contradicts the definition of g. So

g(x0)− ǫ < g(x) < g(x0) + ǫ

and g is continuous.
An alternate proof uses sequences {cn}∞n=1 and {dn}∞n=1 in C and D such that |cn − dn| →

d(C,D). One shows that {dn}∞n=1 is bounded, so since D is closed there is a subsequence
{dnk

}∞k=1
converging to d ∈ D. Then since C is compact there is a subsequence {cnkl

}∞l=1
of

{cnk
}∞k=1

converging to c ∈ D. So by continuity of the norm | · |,

lim
l→∞

∣

∣

∣
cnkl

− dnkl

∣

∣

∣
= |c− d| = d(C,D).

2. Let V : Rn → R be differentiable, F = −∇V , and suppose φ : R → R
n satisfies

F (φ(t)) = mφ′′(t)
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where m > 0 is constant. Let

K(t) =
1

2
m|φ′(t)|2, P (t) = V (φ(t)),

and prove K + P is a constant function.

Hint: Show that (K + P )′ = 0. You may use without justification the fact that P ′(t) =
∇V (φ(t)) · φ′(t) (a consequence of the chain rule, to be proved next week).

Solution. Differentiating, we obtain

K ′(t) = mφ′(t) · φ′′(t) = F (φ(t)) · φ′(t)

P ′(t) = ∇V (φ(t)) · φ′(t) = −F (φ(t)) · φ′(t)

and so (K + P )′ = 0.

3. Give an example to show that MVT does not hold for differentiable functions R → R
n. That

is, find a differentiable function f : [a, b] → R
n such that there is no c ∈ (a, b) satisfying

f ′(c) =
f(b)− f(a)

b− a
(1)

Solution. Define f : R → R
3 by f(x) = (cosx, sinx, x). Note that f(0) = (1, 0, 0) and

f(2π) = (1, 0, 2π), so
f(2π)− f(0)

2π − 0
= (0, 0, 1).

On the other hand the first two components of f ′(x) = (− sinx, cosx, 1) are never both zero,
so there is no c satisfying (1) on [0, 2π].

4. Define p : R2 → R by p(x) = x1x2. Prove that p is differentiable everywhere with

dpa(h) = a2h1 + a1h2.

Solution. Let a ∈ R
2, define La : R2 → R by La(h) = a2h1 + a1h2. Now

|p(a+ h)− p(a)− La(h)|
|h| =

|(a1 + h1)(a2 + h2)− a1a2 − (a2h1 + a1h2)|
√

h2
1
+ h2

2

=
|h1h2|

√

h2
1
+ h2

2

≤ |h1h2|
min{|h1|, |h2|}

≤ max{|h1|, |h2|}

which shows limh→0[p(a+ h)− p(a)− La(h)]/|h| = 0. Thus, p is differentiable with dpa = La.

5. If F : Rn → R
m is differentiable at a, show that F is continuous at a.
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Hint: Let R(h) = [F (a+ h)− F (a)− dFa(h)]/|h| for h 6= 0, so that
F (a+ h)− F (a) = dFa(h) + |h|R(h).

Solution. It suffices to show
lim
h→0

|F (a+ h)− F (a)| = 0.

By the triangle inequality,

|F (a+ h)− F (a)| ≤ |dFa(h)|+ |h||R(h)|.

Since F is differentiable, limh→0 ||R(h)| = 0. Furthermore, dFa is a linear map, hence (Lipschitz)
continuous – as we show below – so limh→0 |dFa(h)| = 0. Thus,

lim
h→0

|F (a+ h)− F (a)| = 0.

To see that linear maps are Lipschitz1 continuous, let L : Rn → R
m be a linear map, and let

A =







A1

...
Am







be its matrix, with rows A1, . . . , Am. Write C = maxj |Aj |. Then

|L(h)| = |Ah|

=

∣

∣

∣

∣

∣

∣

∣







A1 · h
...

Am · h







∣

∣

∣

∣

∣

∣

∣

=

√

(A1 · h)2 + . . .+ (Am · h)
≤

√

|A1|2|h|2 + . . .+ |Am|2|h|2
≤

√
mC |h|

where the second-to-last step uses Cauchy-Schwartz. Linearity of L now implies Lipschitz
continuity.

6. Let

f(x) =

{

x3

2

x2

1
+x2

2

, (x1, x2) 6= (0, 0)

0, (x1, x2) = (0, 0)
.

Prove that f has directional derivatives Dvf(0) for every v ∈ R
2 (so in particular its partial

derivatives exist) but that f is not differentiable at 0.

1A map F : Rn → R
m is called Lipschitz continuous if there is C > 0 such that |F (x)− F (y)| ≤ C|x− y| for

all x, y ∈ R
n.
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Solution. Let v 6= 0 ∈ R
2 and compute

Dvf(0) = lim
t→0

f(tv)− f(0)

t

= lim
t→0

(tv2)
3

t[(tv1)2 + (tv2)2]

=
v32

v2
1
+ v2

2

(2)

so that in particular

D1f(0) = 0, D2f(0) = 1

(Recall Dj ≡ Dej .) Assume for contradiction that f is differentiable at 0. Then the directional
derivatives at 0 can be written in terms of partial derivatives:

Dvf(0) = v1D1f(0) + v2D2f(0) = v2,

which contradicts (2).
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