
Week 4 Homework

1. Let f : Rn → R be differentiable, and assume

(∗) f(tx) = tf(x) for every x ∈ R
n and t ∈ R

(i) Show that1 f(x) = ∇f(0) · x, so that f is linear.

(ii) Assume g : Rn → R satisfies (*) but is not linear (i.e. not additive). Show that g has
directional derivatives at 0 but is not differentiable. (Problem 6 of HW3 is a special case of
this.)

Solution. Note that (*) implies f(0) = 0. Let x ∈ R
n and compute

∇f(0) · x = Dxf(0) =
f(tx)− f(0)

t
= f(x)

This shows f is linear with matrix ∇f(0). So if g satisfies (*) but is not linear, then g cannot
be differentiable though it has directional derivatives Dxf(0) = f(x).

2. Let f : Rn → R
m, g : Rm → R, and φ : R → R

n be differentiable, and let h = g ◦ f ◦φ. Show
that

h′(t) = ∇g(f(φ(t))) ·Dφ′(t)f(φ(t)).

Solution. By the chain rule,

h′(t) = g′((f ◦ φ)(t)) · (f ◦ φ)′(t)

= ∇g(f(φ(t))) · (f ′(φ(t))φ′(t))

Now observe that
f ′(φ(t))φ′(t) = dfφ(t)(φ

′(t)) = Dφ′(t)f(φ(t))

which gives the desired result.

3. Show that if f, g : Rn → R are differentiable, then ∇(fg) = g∇f + f∇g.

Solution. We must show that

lim
h→0

1

|h|
(f(a+ h)g(a+ h)− f(a)g(a)− g(a)∇f(a) · h− f(a)∇g(a) · h) = 0.

Observe that

f(a+ h)g(a+ h) = f(a+ h) (g(a+ h)− g(a)) + g(a) (f(a+ h)− f(a))

1Recall ∇f = (D1f, . . . , Dnf).
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Substituting the second display into the first, we get

lim
h→0

1

|h|
(f(a+ h)g(a+ h)− f(a)g(a)− g(a)∇f(a) · h− f(a)∇g(a) · h)

= lim
h→0

1

|h|
[g(a) (f(a+ h)− f(a)−∇f(a) · h) + f(a+ h) (g(a+ h)− g(a))− f(a)∇g(a) · h]

= lim
h→0

1

|h|
[f(a+ h) (g(a+ h)− g(a))− f(a)∇g(a) · h]

= lim
h→0

1

|h|
[f(a) (g(a+ h)− g(a)−∇g(a) · h) + (f(a+ h)− f(a)) (g(a+ h)− g(a))]

= lim
h→0

1

|h|
(f(a+ h)− f(a))(g(a+ h)− g(a))

(1)

We claim that (f(a+ h)− f(a))/|h| is bounded as h → 0. To see this, let

φ(h) =
1

|h|
(f(a+ h)− f(a)−∇f(a) · h)

Then

|f(a+ h)− f(a)|

|h|
=

∣

∣

∣

∣

φ(h) +
f(a) · h

|h|

∣

∣

∣

∣

≤ |φ(h)|+
|f(a) · h|

|h|

≤ |φ(h)|+ |f(a)|

and since φ(h) → 0 as h → 0 the claim follows. Now from continuity of g at a the limit in (1)
must be zero.

4. Define f : R2 → R by

f(x) =

{

xy(x2 − y2)/(x2 + y2), (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Show that D1f(0, y) = −y and D2f(x, 0) = x for all x, y. Conclude that D1D2f(0, 0) and
D2D1f(0, 0) exist but are unequal.

Solution. Compute

D1f(0, y) = lim
t→0

1

t

ty(t2 − y2)

t2 + y2
= −y

D2f(x, 0) = lim
t→0

1

t

xt(x2 − t2)

x2 + t2
= x

Thus

D2D1f(0, 0) = −1

D1D2f(0, 0) = 1.
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5(a) For a, x ∈ R
2 with |x| = 1, show that |a · x| ≤ |a| by finding the maximum and minimum

values of f(x) = a · x on the unit circle.

(b) Use (a) to show |a · b| ≤ |a||b| for a, b ∈ R
2.

Solution. Let f(x) = a · x and g(x) = |x|2 − 1. We will maximize f on the unit circle
S = {x : g(x) = 0}. To do this we use Lagrange multipliers:

∇f(x) = λ∇g(x)

which gives

a1 = 2λx1

a2 = 2λx2

and so
a1
a2

=
x1
x2

Using |x|2 = 1 and solving for x1, x2 gives

x1 =
±a1
|a|

, x2 =
±a2
|a|

which shows the max/min values of f on S are ±1. Now if b ∈ R
2, then b/|b| ∈ S and

∣

∣

∣

∣

a ·
b

|b|

∣

∣

∣

∣

≤ 1,

so |a · b| ≤ |b|.
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