Week 5 Homework

1. Find the shortest distance from the point (1,0) to the parabola $y^2 = 4x$.

Solution. The graph of $y^2 = 4x$ is a closed set so there is a minimum distance. Let $f(x, y) = (x-1)^2 + y^2$ and $g(x, y) = y^2 - 4x$; we must minimize f on the zero set of g. If (x, y) is such a minimum then $\nabla f(x, y) = \lambda \nabla g(x, y)$ and so

$$2(x-1) = -4\lambda x$$
$$2y = 2\lambda y$$

The second equation implies $\lambda = 1$ unless y = 0. But if $\lambda = 1$, then from the first equation x = -1, which is impossible because $y^2 - 4x = 0$. So y = 0 which implies x = 0. Thus (0,0) is the only critical point of f on the zero set of g, so f must attain an absolute minimum at (0,0). The shortest distance from (1,0) to $y^2 = 4x$ is then f(0,0) = 1.

2. Let $g: \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable, and suppose g(a, b) = 0, $D_2g(a, b) \neq 0$. Then by the implicit function theorem, there is a rectangular neighborhood¹ $Q = U \times V$ of (a, b) and a continuously differentiable function $h: U \to \mathbb{R}$ such that

$$Q \cap \{(x,y) : y = h(x)\} = Q \cap \{(x,y) : g(x,y) = 0\},\$$

that is, the graph of h agrees with the zero set of g inside Q. Use this to show there is an open set $W \subset \mathbb{R}$ containing 0 and a differentiable curve $\phi : W \to \mathbb{R}^2$ such that

$$\begin{aligned}
\phi(0) &= (a, b) \\
\phi'(0) &\neq (0, 0) \\
\phi(W) &= Q \cap \{(x, y) : g(x, y) = 0\},
\end{aligned}$$
(1)

that is, ϕ traces out the zero set of g in a neighborhood of (a, b).

Solution. Let

$$\phi(t) = (t+a, h(t+a))$$

Then $\phi(0) = (a, h(a)) = (a, b)$ and $\phi'(0) = (1, 0) \neq (0, 0)$. To satisfy the last condition of (1), let

$$W = \{ t \in \mathbb{R} : t + a \in U \cap h^{-1}(V) \}.$$

3. Let C be the curve g(x, y) = 0 (with $g : \mathbb{R}^2 \to \mathbb{R}$ continuously differentiable) and suppose $\nabla g \neq 0$ at each point of C. Take a point p not on C, and let q be the point of C closest to p. Show that the line through p and q is orthogonal to C at q.

¹I.e., U and V are open intervals containing a and b, respectively.

Solution. By Problem 2, there is² a differentiable function $\phi: U \to C$, with $U \subset \mathbb{R}$ open, such that $\phi(0) = q$ and $\phi'(0) \neq 0$. (That is, ϕ traces out C in a neighborhood of q, with nonzero velocity as it passes through q.)

Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x) = |x - p|^2$. By assumption, $f|_C$ has a minimum at q. Thus $\psi \equiv f \circ \phi$ has a minimum at t = 0, so

$$0 = \psi'(0) = (f \circ \phi)'(0) = \nabla f(q) \cdot \phi'(0)$$

which shows $\nabla f(q)$ is orthogonal to $\phi'(0)$, or equivalently $\nabla f(q)$ is orthogonal to C at q. But observe that

$$\nabla f(q) = 2(q-p)$$

so q - p is orthogonal to C at q, as desired.

4. Using Lagrange multipliers λ to maximize/minimize a quadratic form

$$q(x,y) = ax^2 + 2bxy + cy^2$$

on the unit circle $x^2 + y^2 = 1$, we obtain the equations

$$ax + by = \lambda x \tag{2}$$

$$bx + cy = \lambda y \tag{3}$$

and solutions (x_i, y_i, λ_i) , i = 1, 2. If $\lambda_1 \neq \lambda_2$, show that (x_1, y_1) and (x_2, y_2) are orthogonal.

(Hint: First, substitute (x_1, y_1, λ_1) into equations (2) and (3), multiply the equations by x_2 and y_2 , respectively, then add. Next, substitute (x_2, y_2, λ_2) into (2) and (3), multiply by x_1 and y_1 , respectively, then add. Finally subtract the two results.)

Solution. Following the hint we have

$$ax_1x_2 + by_1x_2 = \lambda_1x_1x_2$$

$$bx_1y_2 + cy_1y_2 = \lambda_1y_1y_2$$

and

$$ax_2x_1 + by_2x_1 = \lambda_2x_2x_1$$
$$bx_2y_1 + cy_2y_1 = \lambda_2y_2y_1$$

Adding the first two equations and subtracting the second two, we get

 $(\lambda_1 - \lambda_2)(x_1x_2 + y_1y_2) = 0,$

so since $\lambda_1 \neq \lambda_2$,

$$(x_1, y_1) \cdot (x_2, y_2) = 0.$$

²See also Theorem 4.1.

5. Provide charts to prove that the unit sphere $S^1 = \{(x, y) : x^2 + y^2 = 1\}$ is a 1-dimensional manifold.

Solution. To prove $S^1 = \{(x, y) : x^2 + y^2 = 1\}$ is a 1 dimensional manifold we must show that for each $a \in S^1$, there is an open set $U \subset R^2$ such that $U \cap S^1$ is a patch. Define charts $h_+ : (-1, 1) \to \mathbb{R}$ by $h_+(x) = \sqrt{1 - x^2}$ and $h_- : (-1, 1) \to \mathbb{R}$ by $h_-(x) = -\sqrt{1 - x^2}$. Define the following patches:

$$P_{1} = \{(x, y) : x \in (-1, 1), y = h_{+}(x)\}$$

$$P_{2} = \{(x, y) : x \in (-1, 1), y = h_{-}(x)\}$$

$$P_{3} = \{(x, y) : y \in (-1, 1), x = h_{+}(x)\}$$

$$P_{4} = \{(x, y) : y \in (-1, 1), x = h_{-}(x)\}$$

Geometrically, P_1 , P_2 , P_3 and P_4 are the upper, lower, right, and left (open) half-circles. Consider the open half-planes

$$U_{1} = \{(x, y) : y > 0\}$$
$$U_{2} = \{(x, y) : y < 0\}$$
$$U_{3} = \{(x, y) : x > 0\}$$
$$U_{4} = \{(x, y) : x < 0\}$$

If $(a,b) \in S^1$, then either $a \neq 0$ or $b \neq 0$. If b > 0 then $(a,b) \in U_1 \cap S^1 = P_1$. If b < 0 then $(a,b) \in U_2 \cap S^1 = P_2$. If a > 0 then $(a,b) \in U_3 \cap S^1 = P_3$. If a < 0 then $(a,b) \in U_4 \cap S^1 = P_4$. This completes the proof.