Week 5 Homework

1. Find the shortest distance from the point (1,0) to the parabola y? = 4z.

Solution. The graph of y?> = 4z is a closed set so there is a minimum distance. Let f(z,y) =
(x —1)%2 +y? and g(x,y) = y* — 42; we must minimize f on the zero set of g. If (x,%) is such a
minimum then Vf(x,y) = AVg(z,y) and so

2(r—1) = -4z
2y =2y

The second equation implies A = 1 unless y = 0. But if A = 1, then from the first equation
x = —1, which is impossible because y? — 4x = 0. So y = 0 which implies z = 0. Thus (0, 0)
is the only critical point of f on the zero set of g, so f must attain an absolute minimum at
(0,0). The shortest distance from (1,0) to y? = 4z is then f(0,0) = 1.

2. Let g : R? — R be continuously differentiable, and suppose g(a,b) = 0, D2g(a,b) # 0. Then
by the implicit function theorem, there is a rectangular neighborhood! @ = U x V of (a, b) and
a continuously differentiable function h : U — R such that

QN{(z,y) : y="nh(x)} =Qn{(z,y) : g(x,y) = 0},

that is, the graph of h agrees with the zero set of g inside ). Use this to show there is an open
set W C R containing 0 and a differentiable curve ¢ : W — R? such that

$(0) = (a,b)
¢'(0) # (0,0) (1)
(W) =Qn{(z,y) : g(x,y) = 0},

that is, ¢ traces out the zero set of g in a neighborhood of (a,b).

Solution. Let
o(t) = (t +a,h(t +a))

Then ¢(0) = (a,h(a)) = (a,b) and ¢'(0) = (1,0) # (0,0). To satisfy the last condition of (1),
let
W={tcR:t+acUnh (V)}.

3. Let C be the curve g(z,y) = 0 (with g : R — R continuously differentiable) and suppose
Vg # 0 at each point of C. Take a point p not on C, and let g be the point of C closest to p.
Show that the line through p and ¢ is orthogonal to C at q.

.e., U and V are open intervals containing a and b, respectively.



Solution. By Problem 2, there is? a differentiable function ¢ : U — C, with U C R open, such
that ¢(0) = ¢ and ¢/(0) # 0. (That is, ¢ traces out C in a neighborhood of ¢, with nonzero
velocity as it passes through g.)

Define f : R?> — R by f(x) = |z — p|?>. By assumption, f|c has a minimum at g. Thus
1 = f o ¢ has a minimum at ¢ = 0, so

0=1'(0) = (f29)'(0) = Vf(q) ¢'0),

which shows V f(q) is orthogonal to ¢'(0), or equivalently V f(q) is orthogonal to C at ¢q. But
observe that

Vf(q) =2(q—p)

so ¢ — p is orthogonal to C' at ¢, as desired.

4. Using Lagrange multipliers A to maximize/minimize a quadratic form
q(z,y) = az® + 2bzy + cy?
on the unit circle 22 4+ y? = 1, we obtain the equations

ar + by = Az (2)
br +cy = Ny (3)

and solutions (x;,yi, Ai), © = 1,2. If A} # A9, show that (z1,y1) and (z2,y2) are orthogonal.

(Hint: First, substitute (z1,y1, A1) into equations (2) and (3), multiply the equations by z2 and
ya2, respectively, then add. Next, substitute (z2,y2, A2) into (2) and (3), multiply by =1 and yi,
respectively, then add. Finally subtract the two results.)

Solution. Following the hint we have

ax1T2 + byr1xe = Az

bx1yz + cy1y2 = My1y2
and

aroxy + byle = )\Qngl
brayr + cyay1 = AaYay1

Adding the first two equations and subtracting the second two, we get
(A1 = A2) (w122 + Y192) = 0,

S0 since A1 # Ao,
(Cﬂl,yl) ) (33273/2) = 0.

2See also Theorem 4.1.



5. Provide charts to prove that the unit sphere S* = {(z,y) : 2% + y? = 1} is a 1-dimensional
manifold.

Solution. To prove S' = {(x,y) : 22 + y?> = 1} is a 1 dimensional manifold we must show
that for each a € S', there is an open set U C R? such that U N S' is a patch. Define charts
hy:(—=1,1) > Rby hy(x) =v1—2?and h_: (—1,1) > R by h_(x) = —v/1 — 22. Define the
following patches:

Pr={(z,y) : x € (-1,1), y = hy(z)}
Py={(z,y) : w € (-1,1), y =h_(2)}
Py={(z,y) - ye (=L1), x = hy(z)}
Py={(z,y) : ye (-1,1), z = h_(x)}.

Geometrically, P;, P, P3 and P, are the upper, lower, right, and left (open) half-circles.
Consider the open half-planes

Ur={(z,y) : y> 0}
U ={(z,y) : y <0}
Us = {(z,y) : * >0}
Us={(z,y) : <0}

If (a,b) € S!, then either a # 0 or b # 0. If b > 0 then (a,b) € Uy NS = P;. If b < 0 then
(a,b) € UsN St = P,. If a > 0 then (a,b) € U3N S = P3. If a < 0 then (a,b) € UyN St = Py.
This completes the proof.



