
Week 8 Homework

1. Consider the function
f(x) =

(

e−x − 1
) (

tan−1(x)− x
)

.

Show that the 4th order Taylor expansion of f around 0 is

f(x) =
1

3
x4 +R4(x).

(Hint: First compute the Taylor expansions of e−x and tan−1 around zero.) Observe that 0 is
a critical point of f , and show also that limx→0R4(x)/x

4 = 0. What kind of critical point is 0?

Solution. Observe that

e−x = 1− x+ R̄1(x)

tan−1 x = x−
1

3
x3 + R̃3(x)

where

lim
x→0

R̄1(x)

x
= 0

lim
x→0

R̃3(x)

x3
= 0

Thus,

f(x) =
(

e−x − 1
) (

tan−1(x)− x
)

=
1

3
x4 +R(x)

where

R(x) = −
1

3
x3R̄1(x)− xR̃3(x) + R̄1(x)R̃3(x).

Observe that limx→0R(x)/x4 = 0, which shows x4/3 is the 4th order Taylor expansion of f at
0. It follows that f ′(0) = 0, and since

lim
x→0

f(x)− f(0)

x4
= lim

x→0

f(x)

x4
=

1

3
> 0

we see that f(x) > f(0) for x 6= 0 in a neighborhood of 0. Thus f has a local minimum at 0.

2. Let f(x) = (x1 + . . .+ xn)
k.

(a) Show that Dj1
1
. . . Djn

n f(x) = k! if j1 + . . .+ jn = k.

(b) Show that if i1 + . . .+ in = j1 + . . .+ jn = k, then

Dj1
1
. . . Djn

n xi1
1
. . . xinn =

{

j1! . . . jn!, if i1 = j1, . . . , in = jn

0, else
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(c) Conclude that
(

k
j1 . . . jn

)

=
k!

j1! . . . jn!
.

Recall that

(

k
j1 . . . jn

)

is defined by the condition

(x1 + . . .+ xn)
k =

∑

j1+...+jn=k

(

k
j1 . . . jn

)

xj1
1
. . . xjnn . (1)

Solution. Note that, for any i ∈ {1, . . . , n} and any j ∈ N,

Di(x1 + . . .+ xn)
j = j(x1 + . . .+ xn)

j−1.

To see (a), note that if j1 + . . .+ jn = k then

Dj1
1
. . . Djn

n f(x) = Dj1+...+jn
1

f(x) = Dk
1f(x) = k!

Now assume i1 + . . .+ in = j1 + . . .+ jn = k. If i1 = j1, . . . , in = jn then

Dj1
1
. . . Djn

n xi1
1
. . . xinn = (Dj1

1
xi1
1
) . . . (Djn

n xinn ) = j1! . . . jn!

Otherwise jk > ik for some k, in which case

Dj1
1
. . . Djn

n xi1
1
. . . xinn = (Dj1

1
xi1
1
) . . . (Djk

k xikk ) . . . (Djn
n xinn ) = 0.

This proves (b). Now consider (c). Assume j1 + . . . + jn = k, and apply Dj1
1
. . . Djn

n to both
sides of equation (1). We obtain

k! = Dj1
1
. . . Djn

n

∑

i1+...+in=k

(

k
i1 . . . in

)

xi1
1
. . . xinn

=
∑

i1+...+in=k

(

k
i1 . . . in

)

Dj1
1
. . . Djn

n xi1
1
. . . xinn

=

(

k
j1 . . . jn

)

j1! . . . jn!

This proves (c).

3. Find the third order Taylor polynomial of the following functions at the points given:

(a) f(x, y) = (x+ y)3 at (1, 1).

(b) f(x, y, z) = xy2z3 at (1, 0,−1)

Solution. (a) The desired expansion is

f(a+ h) = f(a) +Dhf(a) +
1

2
D2

hf(a) +
1

6
D3

hf(a) +R3(h).
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with a = (1, 1) and h = (h1, h2) = (x− 1, y − 1). Computing

Dhf(x, y) = h1D1f(x, y) + h2D2f(x, y)

D2
hf(x, y) = h21D

2
1f(x, y) + 2h1h2D1D2f(x, y) + h22D

2
2f(x, y)

D3
hf(x, y) = h31D

3
1f(x, y) + 3h21h2D

2
1D2f(x, y) + 3h1h

2
2D1D

2
2f(x, y) + h32D

3
2f(x, y)

we get

Dhf(x, y) = 3(h1 + h2)(x+ y)2

D2
hf(x, y) = 6(h21 + 2h1h2 + h22)(x+ y)

D3
hf(x, y) = 6(h31 + 3h21h2 + 3h1h

2
2 + h32).

Higher order derivatives are all zero so R3(h) ≡ 0. Using (x, y) = a = (1, 1),

Dhf(a) = 12(h1 + h2)

D2
hf(a) = 12(h21 + 2h1h2 + h22)

D3
hf(a) = 6(h31 + 3h21h2 + 3h1h

2
2 + h32).

Thus, the third order Taylor polynomial of f at a is

12(x− 1) + 12(y − 1) + 6(x− 1)2 + 12(x− 1)(y − 1) + 6(y − 1)2

+ (x− 1)3 + 3(x− 1)2(y − 1) + 3(x− 1)(y − 1)2 + (y − 1)3.

(b) We could use the same procedure as in (a), but instead we note that since f is polynomial
we may simply write it in powers of (x − 1), y, and (z + 1) to obtain the appropriate Taylor
polynomial. Thus,

xy2z3 = y2z3 + (x− 1)y2z3

and since

z3 = (z + 1)3 − 3z2 − 3z − 1

= (z + 1)3 − 3(z + 1)2 + 3z + 2

= −1 + 3(z − 1)− 3(z − 1)2 + (z − 1)3

we obtain

xy2z3 = (x− 1)y2z3 + y2z3

= −y2 + 3y2(z − 1)− 3y2(z − 1)2 + y2(z − 1)3

− (x− 1)y2 + 3(x− 1)y2(z − 1)− 3(x− 1)y2(z − 1)2 + (x− 1)y2(z − 1)3.

The last expression is the 4th order Taylor polynomial for f at a = (1, 0, 1).

4. Classify the critical point (−1, π/2, 0) of f(x, y, z) = x sin z + z sin y.

3



Solution. The Hessian matrix is

H(x, y, z) =





0 0 cos z
0 −z sin y cos y

cos z cos y −x sin z





At (−1, π/2, 0) this is

H
(

−1,
π

2
, 0
)

=





0 0 1
0 0 0
1 0 0





which is degenerate, thus giving no information about the character of the critical point. We
must understand the character of the point by other means. One way is to fix two of the
coordinates and let the third vary. Let x = −1 and y = π/2; this gives the function g(z) =
z − sin z. It is easily seen that g has neither a local maximum nor a local minimum at 0; this
fact can be deduced from its 3rd order Taylor expansion

g(z) =
1

6
z3 +R(z).

It follows that f has neither a local maximum nor minimum at (−1, π/2, 0). For more detailed
information one can fix any other two coordinates and let the third vary. One can also see this
behavior via Taylor expansions of f : the 3rd order Taylor expansion of f at a = (−1, π/2, 0) is

f(x, y, z) = (x+ 1)z −
1

2
(y − π/2)2z +

1

6
z3 +R3(h)

where h = (x+ 1, y − π/2, z). Fixing x = −1 and y = π/2, one sees that

f(−1, π/2, z) =
1

6
z3 +R3(0, 0, z)

Dividing both sides by z3 and taking a limit as z → 0, and using the fact that limz→0R3(0, 0, z)/z
3 =

0, one concludes that f takes both positive and negative values in a neighborhood of a.
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