Paul Cusson’s question

The main results in this note are:

Theorem 30, due to T. Tao,

and Theorem 42, and Theorem 57.

DEFINITION 1. Let \(a, b \in \mathbb{R} \).
Then: \((a; b) := \{ x \in \mathbb{R} \mid a < x < b \} \), \([a; b] := \{ x \in \mathbb{R} \mid a \leq x < b \} \), \([a; b] := \{ x \in \mathbb{R} \mid a < x \leq b \} \), \([a; b] := \{ x \in \mathbb{R} \mid a \leq x \leq b \} \).

DEFINITION 2. Let \(f \) be a function.
Then \(\mathbb{D}_f \) denotes the domain of \(f \).
Also, \(\mathbb{I}_f := \{ f(x) \mid x \in \mathbb{D}_f \} \) denotes the image of \(f \).

DEFINITION 3. Let \(A \) and \(B \) be sets.
By \(f : A \to B \) we mean: \(f \) is a function and \(\mathbb{D}_f = A \) and \(\mathbb{I}_f \subseteq B \).
By \(f : A \to\to B \) we mean: \(f \) is a function and \(\mathbb{D}_f \subseteq A \) and \(\mathbb{I}_f \subseteq B \).

DEFINITION 4. \(\mathbb{N} := \{1, 2, 3, \ldots\} \) and \(\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \).
Convention: Any subset of \(\mathbb{R} \) is given the relative topology

inherited from the standard topology on \(\mathbb{R} \).

NOTE: Any open subset of \(\mathbb{R} \) is locally compact and Hausdorff.

NOTE: Any closed subset of any open subset of \(\mathbb{R} \)

is locally compact and Hausdorff.

THEOREM 5. Let \(W \) be a non\(\emptyset \) bounded open subset of \(\mathbb{R} \).
Let \(U \) be a connected component of \(W \).
Then: \(\exists s, t \in \mathbb{R}\setminus W \text{ s.t. } s < t \text{ and } s,t \in W \).

Proof. Since \(U \) is a connected component of \(W \), we get: \(\emptyset \neq U \subseteq W \).
Since \(W \) is bounded and since \(U \subseteq W \), we get: \(U \) is bounded.
The topological space \(\mathbb{R} \) is locally connected, so,

since \(W \) is open in \(\mathbb{R} \) and
since \(U \) is a connected component of \(W \),
we get: \(U \) is a connected open subset of \(\mathbb{R} \).
Since \(U \) is a non\(\emptyset \) bounded connected open subset of \(\mathbb{R} \),
choose \(s,t \in \mathbb{R} \text{ s.t. } s < t \text{ and } s,t \in W = (s,t) \).
Want: \(s,t \notin W \). \(s,t \notin W \).
Want: \(\{s,t\} \cap W = \emptyset \).
Assume: \(\{s,t\} \cap W \neq \emptyset \). \(\{s,t\} \cap W \neq \emptyset \).
Want: Contradiction.
Choose \(r \in \{s,t\} \cap W \). \(r \in \{s,t\} \cap W \).
Then: \(r \in \{s,t\} \text{ and } r \in W \).
Since W is open in \mathbb{R} and since $r \in W$,

choose $\delta > 0$ s.t. $(r - \delta; r + \delta) \subseteq W$.

Since $r \in \{s, t\}$ and since $\delta > 0$,

we get: $(s; t) \cap (r - \delta; r + \delta) \neq \emptyset$.

Let $I := (r - \delta; r + \delta)$. Then: I is connected and $r \in I \subseteq W$.

Since $r \in I$, we get: $I \neq \emptyset$.

Since $I \subseteq W$ and since I is non-\emptyset and connected,

Let V be the connected component of W s.t. $I \subseteq V$.

We have: $U \cap V \supseteq U \cap I = (s; t) \cap (r - \delta; r + \delta) \neq \emptyset$,

so, since U and V are both connected components of W,

we conclude: $U = V$. Then: $r \in I \subseteq V = U$, so $r \in U$.

So, since $r \in \{s, t\}$, we get: $r \in \{s, t\} \cap U$. Then $\{s, t\} \cap U \neq \emptyset$.

However, $\{s, t\} \cap U = \{s, t\} \cap (s; t) = \emptyset$. Contradiction. □

THEOREM 6. Let $c, d, p, r, w \in \mathbb{R}$. Assume: $c < p < w < r < d$.

Let W be an open subset of $(c; d)$. Assume: $w \in W$ and $p, r \notin W$.

Let U be the connected component of W s.t. $w \in U$.

Then there exist $s, t \in [p; r] \setminus W$ s.t. $s < t$ and s.t. $U = (s; t)$.

Proof. We have $w \in U \subseteq W$. Since $w \in W$, we get: $W \neq \emptyset$.

Since W open in $(c; d)$, and since $(c; d)$ is bounded and open in \mathbb{R},

we get: W is a bounded open subset of \mathbb{R}.

So, since U is a connected component of W, by Theorem 5,

choose $s, t \in \mathbb{R} \setminus W$ s.t. $s < t$ and s.t. $U = (s; t)$.

Want: $s, t \in [p; r]$. Want: $p \leq s < t \leq r$.

Since $U = (s; t)$ and $w \in U$, we get: $(s; w) \subseteq U$.

By hypothesis, $p \notin W$, so, since $(s; w) \subseteq U \subseteq W$, we get: $p \notin (s; w)$.

By hypothesis, $p < w$. Since $p < w$ and $p \notin (s; w)$, we get: $p \leq s$.

By choice of s and t, we have: $s < t$. It remains to show: $t \leq r$.

Want: $r \geq t$. Since $U = (s; t)$ and $w \in U$, we get: $(w; t) \subseteq U$.

By hypothesis, $r \notin W$, so, since $(w; t) \subseteq U \subseteq W$, we get: $r \notin (w; t)$.

By hypothesis, $w < r$. Since $r > w$ and $r \notin (w; t)$, we get: $r \geq t$. □

THEOREM 7. Let $a, b \in \mathbb{R}$. Assume $a < b$.

Let $X \subseteq (a; b)$. Let $X' \subseteq X$. Assume X' has non-\emptyset interior in X.

Then: $\exists c, d \in [a; b]$ s.t. $c < d$ and s.t. $\emptyset \neq (c; d) \cap X \subseteq X'$.

Proof. Let W denote the interior in X of X'. By hypothesis, $W \neq \emptyset$.

Also, W is open in X and $W \subseteq X'$. Since $W \neq \emptyset$, choose $w \in W$.

Since W is open in X, choose an open subset V of \mathbb{R} s.t. $W = V \cap X$.

By hypothesis, \(X \subseteq (a; b) \), so: \(X = (a; b) \cap X \).

Since \(V \) and \((a; b) \) are open in \(\mathbb{R} \), we get: \(V \cap (a; b) \) is open in \(\mathbb{R} \).

Let \(U := V \cap (a; b) \). Then \(U \) is open in \(\mathbb{R} \).

Also, \(W = V \cap X = V \cap (a; b) \cap X = U \cap X \), so \(W = U \cap X \).

Since \(w \in W = U \cap X \), we get: \(w \in U \) and \(w \in X \).

Since \(w \in U \) and since \(U \) is open in \(\mathbb{R} \),

choose \(c, d \in \mathbb{R} \) s.t. \(c < d \) and s.t. \(w \in (c; d) \subseteq U \).

Since \((c; d) \subseteq U = V \cap (a; b) \subseteq (a; b) \), we get: \((c; d) \subseteq (a; b) \).

It follows that \([c; d] \subseteq [a; b] \). Then \(c, d \in [a; b] \).

It remains to show: \(\emptyset \neq (c; d) \cap X \subseteq X' \).

Since \(w \in (c; d) \) and since \(w \in X \), we get: \(w \in (c; d) \cap X \).

Then \(\emptyset \neq (c; d) \cap X \). Want: \((c; d) \cap X \subseteq X' \).

Since \((c; d) \subseteq U \), we get: \((c; d) \cap X \subseteq U \cap X \).

Recall: \(W \subseteq X' \) and \(W = U \cap X \).

Then: \((c; d) \cap X \subseteq U \cap X = W \subseteq X' \). \(\square \)

DEFINITION 8. \(\forall S \subseteq \mathbb{R} \), let \(\overline{S}^* \) denote the interior in \(\mathbb{R} \) of \(S \).

DEFINITION 9. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \).

Then: \(\mathbb{D}'_f := \left\{ x \in (\mathbb{D}_f) \cup \lim_{h \to 0} \frac{(f(x + h)) - (f(x))}{h} \text{ exists} \right\} \).

Also, the \textbf{derivative of} \(f \) is the function \(f' : \mathbb{D}'_f \to \mathbb{R} \)

defined by: \(\forall x \in \mathbb{D}'_f \), \(f'(x) = \lim_{h \to 0} \frac{(f(x + h)) - (f(x))}{h} \).

DEFINITION 10. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \), \(j \in \mathbb{N}_0 \).

Then: \(f^{(j)} \) denotes the \(j \)th derivative of \(f \).

Also, \(\mathbb{D}^{(j)}_f := \mathbb{D}_{f^{(j)}} \) denotes the domain of \(f^{(j)} \).

Note: \(\forall f : \mathbb{R} \rightarrow \mathbb{R} \), \(f^{(0)} = f \) and \(\mathbb{D}^{(0)}_f = \mathbb{D}_f \).

Also, \(\forall f : \mathbb{R} \rightarrow \mathbb{R} \), \(f^{(1)} = f' \) and \(\mathbb{D}^{(1)}_f = \mathbb{D}'_f \).

Also, \(\forall f : \mathbb{R} \rightarrow \mathbb{R} \), \(\mathbb{D}^{(0)}_f \supseteq \mathbb{D}^{(1)}_f \supseteq \mathbb{D}^{(2)}_f \supseteq \mathbb{D}^{(3)}_f \supseteq \cdots \).

In fact, each set is contained in the \textit{interior} in \(\mathbb{R} \) of the preceding one.

DEFINITION 11. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \).

Then: \(\mathbb{D}^{(\infty)}_f := \mathbb{D}^{(0)}_f \cap \mathbb{D}^{(1)}_f \cap \mathbb{D}^{(2)}_f \cap \mathbb{D}^{(3)}_f \cap \cdots \).
Note that, $f : \mathbb{R} \to \mathbb{R}$, $D_f^{(0)} \cap D_f^{(2)} \cap D_f^{(4)} \cap D_f^{(6)} \cap \cdots = D_f^{(\infty)}$.

Also, $\forall f : \mathbb{R} \to \mathbb{R}$, $\forall j \in \mathbb{N}_0$, $D_f^{(\infty)} = D_f^{(j)}$.

Convention: $0^0 = 1$. Then: $\forall x \in \mathbb{R}, \ x^0 = 1$.

DEFINITION 12. Let $f : \mathbb{R} \to \mathbb{R}$, $k \in \mathbb{N}_0$, $c \in D_f^{(k)}$.

Then: $P_k^{f,c} : \mathbb{R} \to \mathbb{R}$ is defined by:

$$\forall x \in \mathbb{R}, \ P_k^{f,c}(x) = \sum_{i=0}^{k} \left[(f^{(i)}(c)) \cdot \frac{(x - c)^i}{i!} \right].$$

DEFINITION 13. Let $f : \mathbb{R} \to \mathbb{R}$, $c \in \mathbb{R}$.

By f is real-analytic at c, we mean:

$\exists \delta > 0$ s.t. $P_k^{f,c} \to f$ pointwise on $(c - \delta; c + \delta)$, as $k \to \infty$.

It is well-known that: $\forall f : \mathbb{R} \to \mathbb{R}$, $\forall c \in \mathbb{R}$,

$(f \text{ is real-analytic at } c) \Rightarrow (c \in D_f^{(\infty)})$.

DEFINITION 14. Let $f : \mathbb{R} \to \mathbb{R}$, $S \subseteq \mathbb{R}$.

By f is real-analytic on S, we mean:

$\forall x \in S$, f is real-analytic at x.

THEOREM 15. Let $\sigma, \tau : \mathbb{R} \to \mathbb{R}$, $I \subseteq \mathbb{R}$, $q \in I$.

Assume: I is an interval.

Assume: σ and τ are both real-analytic on I.

Assume: $\forall j \in \mathbb{N}_0$, $\sigma^{(j)}(q) = \tau^{(j)}(q)$.

Then: $\sigma = \tau$ on I.

Theorem 15 is well-known. Its proof is omitted.

THEOREM 16. Let $\beta_0, \beta_1, \beta_2, \ldots \in \mathbb{R}$. Let $c \in \mathbb{R}$.

Assume $\{\beta_0, \beta_1, \beta_2, \ldots\}$ is bounded.

Define $\phi : \mathbb{R} \to \mathbb{R}$ by: $\forall x \in \mathbb{R}, \ \phi(x) = \sum_{i=0}^{\infty} \left[\beta_i \cdot \frac{(x - c)^i}{i!} \right]$.

Then: ϕ is real-analytic on \mathbb{R}.

Also, $\forall j \in \mathbb{N}_0$, $\forall x \in \mathbb{R}$, $\phi^{(j)}(x) = \sum_{i=0}^{\infty} \left[\beta_{i+j} \cdot \frac{(x - c)^i}{i!} \right]$.

Theorem 16 is well-known. Its proof is omitted.

DEFINITION 17. Let $f : \mathbb{R} \to \mathbb{R}$, $x \in \mathbb{R}$, $M \geq 0$.

By f has M-BD at x, we mean:
\[x \in \mathbb{D}^{(x)}_f \quad \text{and} \quad \forall j \in \mathbb{N}_0, \ |f^{(j)}(x)| \leq M. \]

By \(f \) has **M-BED at** \(x \), we mean:
\[x \in \mathbb{D}^{(x)}_f \quad \text{and} \quad \forall j \in \mathbb{N}_0, \ |f^{(2j)}(x)| \leq M. \]

BD stands for “bounded derivatives”.
BED stands for “bounded even derivatives”.

DEFINITION 18. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \in \mathbb{R}. \)

By \(f \) has **BD at** \(x \), we mean:
\[\exists M \geq 0 \quad \text{s.t.} \quad f \text{ has } M\text{-BD at } x. \]

By \(f \) has **BED at** \(x \), we mean:
\[\exists M \geq 0 \quad \text{s.t.} \quad f \text{ has } M\text{-BED at } x. \]

Note: \(\forall f : \mathbb{R} \rightarrow \mathbb{R}, \forall x \in \mathbb{R}, \)
\((f \text{ has BD at } x) \Rightarrow (f \text{ has BED at } x) \Rightarrow (x \in \mathbb{D}^{(x)}_f). \)

DEFINITION 19. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \quad S \subseteq \mathbb{R}, \quad M \geq 0. \)

By \(f \) has **M-BD on** \(S \), we mean:
\[\forall x \in S, \quad f \text{ has } M\text{-BD at } x. \]

By \(f \) has **M-BED on** \(S \), we mean:
\[\forall x \in S, \quad f \text{ has } M\text{-BED at } x. \]

DEFINITION 20. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \quad S \subseteq \mathbb{R}. \)

By \(f \) has **PBD on** \(S \), we mean:
\[\forall x \in S, \quad f \text{ has BD at } x. \]

By \(f \) has **PBED on** \(S \), we mean:
\[\forall x \in S, \quad f \text{ has BED at } x. \]

By \(f \) has **UBD on** \(S \), we mean:
\[\exists M \geq 0 \quad \text{s.t.} \quad f \text{ has } M\text{-BD on } S. \]

By \(f \) has **UBED on** \(S \), we mean:
\[\exists M \geq 0 \quad \text{s.t.} \quad f \text{ has } M\text{-BED on } S. \]

PBD stands for “pointwise bounded derivatives”.
PBED stands for “pointwise bounded even derivatives”.
UBD stands for “uniformly bounded derivatives”.
UBED stands for “uniformly bounded even derivatives”.

DEFINITION 21. Let \(f : \mathbb{R} \rightarrow \mathbb{R}. \)

Then \(\overline{\text{BD}_f} := \{ x \in \mathbb{D}^{(x)}_f \mid f \text{ has } BD \text{ at } x \}. \)
DEFINITION 22. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \ c \in \text{BD}_f \).
Then: \(P_{f,c}^{(i)} : \mathbb{R} \rightarrow \mathbb{R} \) is defined by:
\[
\forall x \in \mathbb{R}, \quad P_{f,c}^{(i)}(x) = \sum_{i=0}^{\infty} \left(\frac{f^{(i)}(c)}{i!} \right) \cdot \frac{(x-c)^i}{i!}.
\]

THEOREM 23. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \ c \in \text{BD}_f \), \(g = P_{f,c}^{(i)} \).
Then: \(g \) is real-analytic on \(\mathbb{R} \). Also: \(\forall j \in \mathbb{N}_0, \ f^{(j)}(c) = g^{(j)}(c) \).
Proof. For all \(i \in \mathbb{N}_0 \), let \(\beta_i := f^{(i)}(c) \).
Since \(c \in \text{BD}_f \), we get: \(\{\beta_0, \beta_1, \beta_2, \ldots\} \) is bounded.
Since \(g = P_{f,c}^{(i)} \), we get: \(\forall x \in \mathbb{R}, \ g(x) = \sum_{i=0}^{\infty} \left(\beta_i \cdot \frac{(x-c)^i}{i!} \right) \).
Then, by Theorem 16, we get: \(g \) is real-analytic on \(\mathbb{R} \).
It remains to show: \(\forall j \in \mathbb{N}_0, \ f^{(j)}(c) = g^{(j)}(c) \).
Given \(j \in \mathbb{N}_0 \), want: \(f^{(j)}(c) = g^{(j)}(c) \). Want: \(g^{(j)}(c) = \beta_j \).
By Theorem 16, we get: \(g^{(j)}(c) = \sum_{i=0}^{\infty} \left(\beta_i \cdot \frac{(x-c)^i}{i!} \right) \).
Then \(g^{(j)}(c) = \sum_{i=0}^{\infty} \left(\beta_i \cdot \frac{(x-c)^i}{i!} \right) = \frac{0^j}{0!} + \frac{0^j}{0!} + \cdots + \frac{0^j}{0!} \).
Then \(g^{(j)}(c) = [\beta_j \cdot 1] + \sum_{i=1}^{\infty} (\beta_i + 1) = \beta_j + 0 = \beta_j \). \(\square \)

THEOREM 24. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \ B \subseteq \mathbb{R}, \ c, x \in B, \ M \geq 0 \).
Assume: \(B \) is an interval. Assume: \(f \) has \(M \)-BD on \(B \).
Let \(j \in \mathbb{N}_0 \). Then: \(|f(x) - (P_{f,c}^{(j+1)}(x))| \leq M \cdot \frac{|x-c|^{j+1}}{(j+1)!} \).
Proof. Since \(f \) has \(M \)-BD on \(B \), we get: \(B \subseteq \mathfrak{D}^{(j)}_f \).
By Taylor’s Theorem, choose \(\xi \) strictly between \(c \) and \(x \) s.t.
\[
f(x) = (P_{f,c}^{(j+1)}(x)) + \left(f^{(j+1)}(\xi) \cdot \frac{(x-c)^{j+1}}{(j+1)!} \right).
\]
Then: \(f(x) - (P_{f,c}^{(j+1)}(x)) = f^{(j+1)}(\xi) \cdot \frac{(x-c)^{j+1}}{(j+1)!} \).
Then: \(|f(x) - (P_{f,c}^{(j+1)}(x))| = |f^{(j+1)}(\xi)| \cdot \frac{|x-c|^{j+1}}{(j+1)!} \).
Since \(B \) is an interval and \(c, x \in B \), we get: \(\xi \in B \).
So, since \(f \) has \(M \)-BD on \(B \), we get: \(|f^{(j+1)}(\xi)| \leq M \).
Then: \[|(f(x)) - (P_{j}^{f,c}(x))| \leq M \cdot \frac{|x-c|^{j+1}}{(j+1)!}.\] □

DEFINITION 25. Let \(f : \mathbb{R} \to \mathbb{R}, \ x \in \mathbb{R}. \)
By \(f \) has \(\text{UBD near } x \), we mean:
\[\exists \delta > 0 \text{ s.t. } f \text{ has UBD on } (x - \delta; x + \delta).\]

THEOREM 26. Let \(f : \mathbb{R} \to \mathbb{R}, \ U \subseteq \mathbb{R}. \)
Assume: \(\forall x \in U, \ f \) has UBD near \(x. \)
Then: \(f \) is real-analytic on \(U. \)

Proof. Given \(c \in U, \) we want: \(f \) is real-analytic at \(c. \)

Want: \(\exists \delta > 0 \) s.t. \(P_{j}^{f,c} \to f \) pointwise on \((c - \delta; c + \delta), \) as \(j \to \infty. \)
Since \(c \in U, \) by hypothesis, \(f \) has UBD near \(c, \) so
choose \(\delta > 0 \) s.t. \(f \) has UBD on \((c - \delta; c + \delta). \)

Want: \(P_{j}^{f,c} \to f \) pointwise on \((c - \delta; c + \delta), \) as \(j \to \infty. \)
Let \(B := (c - \delta; c + \delta). \)
Then: \(B \) is an interval and \(c \in B \) and \(f \) has UBD on \(B. \)

Want: \(P_{j}^{f,c} \to f \) pointwise on \(B, \) as \(j \to \infty. \)
Given \(x \in B, \) we want: \(P_{j}^{f,c}(x) \to f(x), \) as \(j \to \infty. \)

Want: \[|(f(x)) - (P_{j}^{f,c}(x))| \to 0, \text{ as } j \to \infty.\]
Since \(f \) has UBD on \(B, \) choose \(M > 0 \) s.t. \(f \) has \(M\)-BD on \(B. \)

Then, by Theorem 24, \(\forall j \in \mathbb{N}_{0}, \) \[|(f(x)) - (P_{j}^{f,c}(x))| \leq M \cdot \frac{|x-c|^{j+1}}{(j+1)!}.\]
So, since \(M \cdot \frac{|x-c|^{j+1}}{(j+1)!} \to 0, \) as \(j \to \infty, \)
we conclude: \[|(f(x)) - (P_{j}^{f,c}(x))| \to 0, \text{ as } j \to \infty.\] □

THEOREM 27. Let \(f, g : \mathbb{R} \to \mathbb{R}, \ r, s, t \in \mathbb{R}. \)
Assume: \(s < t \) and \(r \in [s; t]. \)
Assume: \(r \in D^{(\infty)}_{f} \cap D^{(\infty)}_{g} \) and \((s; t) \subseteq D^{(\infty)}_{f} \cap D^{(\infty)}_{g}. \)
Assume: \(f = g \) on \((s; t). \)
Then: \(\forall j \in \mathbb{N}_{0}, \ f^{(j)}(r) = g^{(j)}(r). \)

Proof. Given \(j \in \mathbb{N}_{0}, \) we want: \(f^{(j)}(r) = g^{(j)}(r). \)
Since \(f = g \) on \((s; t), \) we get: \(f^{(j)} = g^{(j)} \) on \((s; t). \)
Let \(\phi := f^{(j)} \) and \(\psi := g^{(j)}. \)
Then: \(\phi = \psi \) on \((s; t). \)

Want: \(\phi(r) = \psi(r). \)
We have: \(D^{(\infty)}_{\phi} = D^{(\infty)}_{f} \) and \(D^{(\infty)}_{\psi} = D^{(\infty)}_{g}. \)
Then: \(r \in D^{(\infty)}_{\phi} \cap D^{(\infty)}_{\psi} \) and \((s; t) \subseteq D^{(\infty)}_{\phi} \cap D^{(\infty)}_{\psi}. \)
Since \(r \in \mathbb{D}_\phi^{(\infty)} \cap \mathbb{D}_\psi^{(\infty)} \subset \mathbb{D}_\phi^{(1)} \cap \mathbb{D}_\psi^{(1)}, \) we get: \(\phi \) and \(\psi \) are both differentiable at \(r. \)

Then: \(\phi \) and \(\psi \) are both continuous at \(r. \)

Since \(r \in [s; t], \) choose \(q_1, q_2, q_3, \ldots \in (s; t) \) s.t. \(q_j \to r, \) as \(j \to \infty. \)

By continuity, \(\phi(q_j) \to \phi(r), \) as \(j \to \infty \) and \(\psi(q_j) \to \psi(r), \) as \(j \to \infty. \)

Since \(\phi = \psi \) on \((s; t), \) we get: \(\forall j \in \mathbb{N}, \) \(\phi(q_j) = \psi(q_j). \)

So, letting \(j \to \infty, \) we get: \(\phi(r) = \psi(r). \) \(\square \)

THEOREM 28. Let \(f : \mathbb{R} \to \mathbb{R}, \) \(s, t \in \mathbb{R}, \) \(M \geq 0. \)

Assume: \(s < t. \) Assume: \(\forall x \in (s; t), \) \(f \) has UBD near \(x. \)

Let \(r \in [s; t]. \) Assume: \(f \) has M-BD at \(r. \)

Let \(N := M \cdot e^{t-s}. \) Then: \(f \) has N-BD on \((s; t). \)

Proof. Let \(c := (s + t)/2. \) Then \(c \in (s; t). \)

So, by hypothesis, we get: \(f \) has UBD near \(c. \)

Then \(f \) has BD at \(c. \) Then \(c \in \text{BD}_f. \)

By Theorem 23, \(g \) is real-analytic on \(\mathbb{R}. \)

Then \(\mathbb{D}_g^{(x)} = \mathbb{R}, \) so: \(r \in \mathbb{D}_g^{(\infty)} \) and \((s; t) \subseteq \mathbb{D}_g^{(\infty)}. \)

By hypothesis, \(f \) has M-BD at \(r, \) so we get: \(r \in \mathbb{D}_f^{(\infty)}. \)

By hypothesis, we have: \(\forall x \in (s; t), \) \(f \) has UBD near \(x. \)

So, by Theorem 26, \(f \) is real-analytic on \((s; t). \) Then: \((s; t) \subseteq \mathbb{D}_f^{(\infty)}. \)

Then: \(r \in \mathbb{D}_f^{(\infty)} \cap \mathbb{D}_g^{(\infty)} \) and \((s; t) \subseteq \mathbb{D}_f^{(\infty)} \cap \mathbb{D}_g^{(\infty)}. \)

By Theorem 23, we get: \(\forall j \in \mathbb{N}_0, \) \(f^{(j)}(c) = g^{(j)}(c). \)

So, since \(c \in (s; t) \) and since \(f \) and \(g \) are both real-analytic on \((s; t), \)

by Theorem 15, we get: \(f = g \) on \((s; t). \)

Then, by Theorem 27, we get: \(\forall j \in \mathbb{N}_0, \) \(f^{(j)}(r) = g^{(j)}(r). \)

By hypothesis, \(f \) has M-BD at \(r, \) so \(f \) has BD at \(r. \)

Then \(r \in \text{BD}_f. \)

Let \(h := P_f^{j,r}. \) Then, by Theorem 23, \(h \) is real-analytic on \(\mathbb{R}. \)

Also, by Theorem 23, \(\forall j \in \mathbb{N}_0, \) \(f^{(j)}(r) = h^{(j)}(r). \)

Since \(\forall j \in \mathbb{N}_0, \) \(g^{(j)}(r) = f^{(j)}(r) = h^{(j)}(r). \)

and since \(g \) and \(h \) are both real-analytic on \(\mathbb{R}, \)

by Theorem 15, we get: \(g = h \) on \(\mathbb{R}. \)

So, since \(f = g \) on \((s; t), \) we get: \(f = h \) on \((s; t). \)

It therefore suffices to show: \(h \) has N-BD on \((s; t). \)

Given \(u \in (s; t), \) \(\text{want:} \) \(h \) has N-BD at \(u. \)

Given \(j \in \mathbb{N}_0, \) \(\text{want:} \) \(|h^{(j)}(u)| \leq N. \)

By hypothesis, \(r \in [s; t]. \)

Since \(r, u \in [s; t], \) we get: \(|u - r| \leq t - s. \)

Then \(e^{|u-r|} \leq e^{t-s}. \)

So, since \(M \geq 0, \) we get: \(M \cdot e^{|u-r|} \leq M \cdot e^{t-s}. \)
By hypothesis, f has M-BD at r, so: \[\forall i \in \mathbb{N}_0, \quad |f^{(i)}(r)| \leq M. \]

Since $h = P^{f_x}_\infty$, we get: \[\forall x \in \mathbb{R}, \quad h(x) = \sum_{i=0}^{\infty} \left(f^{(i)}(r) \cdot \frac{(x-r)^i}{i!} \right). \]

Then, by Theorem 16, we have: \[\forall x \in \mathbb{R}, \quad h^{(i)}(x) = \sum_{i=0}^{\infty} \left(f^{(i+j)}(r) \cdot \frac{(x-r)^i}{i!} \right). \]

Then: \[|h^{(i)}(u)| \leq \sum_{i=0}^{\infty} \left| f^{(i+j)}(r) \cdot \frac{|u-r|^i}{i!} \right| \leq M \cdot \sum_{i=0}^{\infty} \frac{|u-r|^i}{i!} \]

\[= M \cdot e^{|u-r|} \leq M \cdot e^{t-s} = N. \quad \square \]

THEOREM 29. Let $I \subseteq \mathbb{R}$, $f : \mathbb{R} \to \mathbb{R}$.
Assume: I is a non-empty open interval.
Assume: $\forall x \in I$, f has UBD near x. Then: f has UBD on I.

Proof. Since I is an interval, we get: I is connected.
Since I is a non-empty bounded connected open subset of \mathbb{R},
choose $s, t \in \mathbb{R}$ s.t. $s < t$ and s.t. $I = (s,t)$.
Then: $\forall x \in (s;t)$, f has UBD near x.
By Theorem 26, f is real-analytic on (s,t).
Let $r := (s + t)/2$. Then $r \in (s,t)$. Then $r \in I$ and $r \in [s;t]$.
Since $r \in I$, by assumption, f has UBD near r.
Then f has BD at r. Choose $M \geq 0$ s.t. f has M-BD at r.
Let $N := M \cdot e^{t-s}$. By Theorem 28, f has N-BD on (s,t).
Then f has UBD on (s,t). Then f has UBD on I. \quad \square

Theorem 30 and the proof below are both due to T. Tao. See https://mathoverflow.net/questions/413165/does-iterating-the-derivative-infinitely-many-times-give-a-smooth-function-when

THEOREM 30. (T. Tao) Let $f : \mathbb{R} \to \mathbb{R}$, $a, b \in \mathbb{R}$.
Assume: $a < b$. Let $I := (a;b)$.
Assume: f has PBD on I. Then: f has UBD on I.

Proof. Let $V := \{ x \in I \mid f$ has UBD near $x \}$. Then V is open in I.
By Theorem 29, it suffices to show: $V = I$.
Let $X := I \setminus V$. Then $V = I \setminus X$. Want: $X = \emptyset$.
Assume: $X \neq \emptyset$. **Want:** Contradiction.

Since $I = (a; b)$, we get: I is open in \mathbb{R}.

Since V is open in I and since $X = I \setminus V$, we get: X is closed in I.

Since X is closed in I and since I is open in \mathbb{R}, we get: X is locally compact and Hausdorff.

By hypothesis, f has PBD on I, so, since $X = I \setminus V \subseteq I$, we get: f has PBD on X.

Then: $X \subseteq D_f^{(x)}$. For all $m \in \mathbb{N}$, let $X_m := \{x \in X \mid f$ has m-BD at $x\}$.

By continuity, we get: $\forall m \in \mathbb{N}, X_m$ is closed in X.

Since f has PBD on X, we get: $X_1 \cup X_2 \cup X_3 \cup \cdots = X$.

So, since X is non-\emptyset and locally compact and Hausdorff, by the Baire Category Theorem,

choose $M \in \mathbb{N}$ s.t. X_M has non-\emptyset interior in X.

So, since $X = I \setminus V \subseteq I = (a; b)$, by Theorem 7, choose $c, d \in [a; b]$ s.t. $c < d$ and s.t. $\emptyset \neq (c; d) \cap X \subseteq X_M$.

Since $\emptyset \neq (c; d) \cap X$, choose $q \in (c; d) \cap X$.

Then $q \in X_M$. Also, $q \in (c; d)$ and $q \in X$.

Since $q \in (c; d)$ and since $(c; d)$ is open in \mathbb{R}, choose $\delta > 0$ s.t. $(q - \delta; q + \delta) \subseteq (c; d)$.

Since $q \in X = I \setminus V$, by definition of V,

we get: f does not have UBD near q.

Then: f does not have UBD on $(q - \delta; q + \delta)$.

So, since $(q - \delta; q + \delta) \subseteq (c; d)$, we get:

f does not have UBD on $(c; d)$.

Let $K := M \cdot e^{d-c}$. Then f does not have K-BD on $(c; d)$.

Choose $p \in (c; d)$ s.t. f does not have K-BD at p.

Since $c < d$, we get: $e^{d-c} \geq 1$. Then: $K \geq M$.

By definition of X_M, f has M-BD on X_M.

So, since $K \geq M$, we get: f has K-BD on X_M.

So, since f does not have K-BD at p, we get: $p \notin X_M$.

Since $I = (a; b)$, we get: I is open in \mathbb{R}.

Since X_M is closed in X and since X is closed in I,

we get: X_M is closed in I. Then: $I \setminus X_M$ is open in I.

So, since I is open in \mathbb{R}, we get: $I \setminus X_M$ is open in \mathbb{R}.

Since $c, d \in [a; b]$, we get: $(c; d) \subseteq (a; b)$.

Since $(c; d) \subseteq (a; b) = I$, we get: $(c; d) \setminus X_M = (c; d) \cap (I \setminus X_M)$.

Let $W := (c; d) \setminus X_M$. Then: $W = (c; d) \cap (I \setminus X_M)$.

Since $(c; d)$ and $I \setminus X_M$ are both open in \mathbb{R},
we get:
\((c; d) \cap (I \setminus X_M)\) is open in \(\mathbb{R}\).
Then \(W\) is open in \(\mathbb{R}\).

Since \(p \in (c; d)\) and \(p \notin X_M\), we get: \(p \in W\).
Then: \(W \neq \emptyset\).

Since \(W = (c; d) \setminus X_M \subseteq (c; d)\), we get: \(W \subseteq (c; d)\).

Then \(W\) is bounded.
Then \(W\) is a non-empty bounded open subset of \(\mathbb{R}\).

Recall: \((c; d) \cap X \subseteq X_M\).
Then \([\overline{(c; d) \cap X}] \setminus X_M = \emptyset\).

Then:
\[W \cap X = \overline{(c; d) \cap X} \setminus X = \overline{(c; d) \cap X} \setminus X_M = \emptyset.\]

Then: \(W \cap X = \emptyset\).
Also, \(W \subseteq (c; d) \subseteq (a; b) = I\), so \(W \subseteq I\).

Since \(W \subseteq I\) and \(W \cap X = \emptyset\), we get: \(W \subseteq I \setminus X\).

Then \(W \subseteq I \setminus X = V\),
so, by definition of \(V\),
we get: \(\forall x \in W, \ f\) has UBD near \(x\).

Let \(U\) be the connected component of \(W\) s.t. \(p \in U\).

Then: \(p \in U \subseteq W\).
Then: \(\forall x \in U, \ f\) has UBD near \(x\).

By Theorem 5, choose \(s, t \in \mathbb{R} \setminus W\) s.t. \(s < t\) and s.t. \(U = (s; t)\).

Then: \(\{s, t\} \subseteq \mathbb{R} \setminus W\).
Recall: \(W \subseteq (c; d)\).

Then \((s; t) = U \subseteq W \subseteq (c; d)\),
so \((s; t) \subseteq (c; d)\),
so \([s; t] \subseteq [c; d]\).

Then: \(s, t \in [c; d]\).
Then: \(c \leq s < t \leq d\).

Then: \(t - s \leq d - c\).
Then: \(e^{t-s} \leq e^{d-c}\).

Since \(M \in \mathbb{N}\), we get: \(M > 0\).
Then: \(M \cdot e^{t-s} \leq M \cdot e^{d-c}\).

Let \(N := M \cdot e^{t-s}\).
Recall: \(K = M \cdot e^{d-c}\).
Then \(N \leq K\).

Since \(W = (c; d) \setminus X_M\) and since \(q \in X_M\), we get: \(q \notin W\).

So, since \((s; t) = U \subseteq W\), we get: \(q \notin (s; t)\).
Recall: \(q \in (c; d)\).

Since \(q \notin (s; t)\) and since \(q \in (c; d)\), we get: \((s; t) \neq (c; d)\).

Since \((s; t) \neq (c; d)\), we get:
either \(s \neq c\) or \(t \neq d\).

Recall: \(c \leq s < t \leq d\).

Then: \(c \leq s < t \leq d\).

Choose \(r \in \{s, t\} \cap (c; d)\).

Since \(r \in \{s, t\} \subseteq \mathbb{R} \setminus W\), we get: \(r \in \mathbb{R} \setminus W\).

Then: \(r \in (c; d) \setminus W\).

By definition of \(W\), we have: \(W = (c; d) \setminus X_M\).

Since \(r \in (c; d) \setminus W = (c; d) \setminus [(c; d) \setminus X_M] = (c; d) \cap X_M \subseteq X_M\),
by definition of \(X_M\), we get: \(f\) has \(M\)-BD at \(r\).

We have \(r \in \{s, t\} \subseteq [s; t]\), so \(r \in [s; t]\).

Recall: \(\forall x \in U, \ f\) has UBD near \(x\).

Then, by Theorem 28, \(f\) has \(N\)-BD on \((s; t)\).

So, since \(N \leq K\), we get: \(f\) has \(K\)-BD on \((s; t)\).

So, since \(p \in U = (s; t)\), we get: \(f\) has \(K\)-BD at \(p\).

By choice of \(p\), \(f\) does not have \(K\)-BD at \(p\).
Contradiction. \(\square\)
THEOREM 31. Let \(g : \mathbb{R} \rightarrow \mathbb{R}, \ a, b \in \mathbb{R} \), \(M \geq 0 \). Assume: \(a < b \). Let \(I := (a;b) \). Assume: \(I \subseteq \mathbb{D}^{(2)}_g \).

Assume: \(|g| \leq M \) on \(I \) and \(|g''| \leq M \) on \(I \).

Let \(N := M \cdot \left(\frac{6}{b-a} + \frac{b-a}{6} \right) \). Then: \(|g'| \leq N \) on \(I \).

Proof. Given \(x \in I \), want: \(|g'(x)| \leq N\).

Let \(\delta := \frac{b-a}{3} \). Then \(\delta > 0 \) and \(\frac{2M}{\delta} + \frac{M\delta}{2} = N \).

Choose \(h \in \{\delta, -\delta\} \) s.t. \(x + h \in I \). Then \(|h| = \delta\).

By Taylor's Theorem, choose \(\xi \) strictly between \(x \) and \(x + h \) s.t.

\[
g(x + h) = (g(x)) + (g'(x)) \cdot h + (g''(\xi)) \cdot \frac{h^2}{2}.
\]

Then:

\[
g'(x) = \frac{(g(x + h)) - (g(x))}{h} - \frac{(g''(\xi)) \cdot h}{2}.
\]

Then:

\[
|g'(x)| \leq \frac{|g(x + h)| + |g(x)|}{|h|} + \frac{|g''(\xi)| \cdot |h|}{2}.
\]

Since \(|g|, |g''| \leq M \) on \(I \) and since \(x, \xi, x + h \in I \), we get:

\[
|g(x)| \leq M \quad \text{and} \quad |g''(\xi)| \leq M \quad \text{and} \quad |g(x + h)| \leq M.
\]

Recall: \(|h| = \delta\). Then: \(|g'(x)| \leq \frac{2M}{\delta} + \frac{M\delta}{2} = N\). \(\square\)

THEOREM 32. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \ I \subseteq \mathbb{R} \).

Assume: \(I \) is a non\(\emptyset\) bounded open interval.

Assume: \(f \) has UBED on \(I \). Then: \(f \) has UBD on \(I \).

Proof. Want: \(\exists N \geq 0 \) s.t. \(f \) has \(N\)-BD on \(I \).

Since \(f \) has UBED on \(I \), choose \(M \geq 0 \) s.t. \(f \) has \(M\)-BED on \(I \).

Since \(I \) is a non\(\emptyset\) bounded open interval,

choose \(a, b \in \mathbb{R} \) s.t. \(a < b \) and s.t. \(I = (a;b) \).

Let \(N := M \cdot \left(\frac{6}{b-a} + \frac{b-a}{6} \right) \). Then \(M \leq N \). Then \(N \geq 0 \).

Want: \(f \) has \(N\)-BD on \(I \). Given \(x \in I \), want: \(f \) has \(N\)-BD at \(x \).

Given \(j \in \mathbb{N}_0 \), want: \(|f^{(j)}(x)| \leq N\).

Case 1: \(j \) is even.

Proof in Case 1:

Since \(j \) is even, by choice of \(M \), we have: \(|f^{(j)}| \leq M \) on \(I \).

So, since \(x \in I \), we get: \(|f^{(j)}(x)| \leq M \). Then \(|f^{(j)}(x)| \leq M \leq N \).
End of proof in Case 1.

Case 2: \(j \) is odd.

Proof in Case 2:

Since \(j - 1 \) and \(j + 1 \) are even, by the choice of \(M \), we have:

\[
|f^{(j-1)}| \leq M \text{ on } I \quad \text{and} \quad |f^{(j+1)}| \leq M \text{ on } I.
\]

By hypothesis, \(f \) has UBED on \(I \), so: \(I \subseteq \mathbb{D}_f^{(\infty)} \).

Let \(g := f^{(j-1)} \). Then \(I \subseteq \mathbb{D}_g^{(\infty)} = \mathbb{D}_g^{(2)} \subseteq \mathbb{D}_g^{(2)} \), so \(I \subseteq \mathbb{D}_g^{(2)} \).

Also, \(g' = f^{(j)} \) and \(g'' = f^{(j+1)} \).

Then:

\[
|g| \leq M \text{ on } I \quad \text{and} \quad |g''| \leq M \text{ on } I.
\]

By hypothesis, \(f \) has UBED on \(I \), so:

\[
I \subseteq D_{p8qf}.
\]

Let \(h : g^{(j)} \). Then

\[
I \subseteq D_{p8qg} \subseteq D_{p8qg}, \quad \text{so} \quad I \subseteq D_{p2qg}.
\]

Also, \(g' = f^{(j)} \) and \(g'' = f^{(j+1)} \).

Then:

\[
|g'| \leq M \text{ on } I \quad \text{and} \quad |g''| \leq M \text{ on } I.
\]

By Theorem 31, we get:

\[
|g'_{x}| \leq N \text{ on } I.
\]

Then, since \(x \in I \), we get:

\[
|f^{(j)}(x)| = |g'(x)| \leq N.
\]

End of proof in Case 2. \(\square \)

THEOREM 33. Let \(f : \mathbb{R} \to \mathbb{R}, \ c, d \in \mathbb{R} \).

Assume \(c < d \). Let \(J := (c; d) \). Assume \(f \) has PBED on \(J \).

Then \(\exists \text{non}\emptyset \text{ open subintervals } U_1, U_2, U_3, \ldots \text{ of } J \)

s.t. \(\forall i \in \mathbb{N}, \ f \text{ has UBD on } U_i \quad \text{and} \quad s.t. \ U_1 \cup U_2 \cup U_3 \cup \cdots \text{ is dense in } J. \)

Proof. Since \(J \) is second-countable, choose a countable base \(\mathcal{W} \) for \(J \) s.t., \(\forall W \in \mathcal{W}, \ W \neq \emptyset \).

Since \(\mathcal{W} \) is countable, it suffices to prove:

\(\forall W \in \mathcal{W}, \ \exists \text{non}\emptyset \text{ open subinterval } U \text{ of } J \)

s.t. \(U \subseteq W \quad \text{and} \quad s.t. \ f \text{ has UBD on } U \).

Given \(W \in \mathcal{W}, \ \text{want: } \exists \text{non}\emptyset \text{ open subinterval } U \text{ of } J \)

s.t. \(U \subseteq W \quad \text{and} \quad s.t. \ f \text{ has UBD on } U \).

Since \(W \in \mathcal{W}, \ \text{we get: } \ W \neq \emptyset \quad \text{and} \quad W \subseteq J. \)

Since \(W \in \mathcal{W}, \ \text{we get: } \ W \text{ is open in } J. \)

So, since \(J \) is open in \(\mathbb{R}, \ \text{we get: } \ W \text{ is open in } \mathbb{R}. \)

Then: \(W \) is locally compact and Hausdorff.

For all \(m \in \mathbb{N}, \ \text{let } C_m := \{ x \in W \mid f \text{ has } m\text{-BED at } x \}. \)

Since \(f \) has PBED on \(J \) and since \(W \subseteq J \), we get: \(f \) has PBED on \(W \).

Then \(W \subseteq \mathbb{D}_f^{(\infty)} \). So, by continuity, \(\forall m \in \mathbb{N}, \ C_m \text{ is closed in } W. \)

Since \(f \) has PBED on \(W \), we get: \(C_1 \cup C_2 \cup C_3 \cup \cdots = W. \)

So, since \(W \) is non\emptyset and locally compact and Hausdorff,

by the Baire Category Theorem,

choose \(M \in \mathbb{N} \) s.t. \(C_M \text{ has non}\emptyset \text{ interior in } W. \)

Then, since \(W \) is open in \(\mathbb{R}, \ \text{we get: } \ C_M \text{ has non}\emptyset \text{ interior in } \mathbb{R}. \)
So choose \(s, t \in \mathbb{R} \) s.t. \(s < t \) and s.t. \((s; t) \subseteq C_M \).

Let \(U := (s; t) \). Then: \(U \) is a non\(\emptyset \) open interval and \(U \subseteq C_M \).

Since \(U \subseteq C_M \subseteq W \subseteq J \) and since \(U \) is a non\(\emptyset \) open interval, we get: \(U \) is a non\(\emptyset \) open subinterval of \(J \).

As \(U \subseteq C_M \subseteq W \), it remains only to show: \(f \) has \(\text{UBD} \) on \(U \).

Since \(U \subseteq C_M \), by definition of \(C_M \), we get: \(f \) has \(M\text{-BED} \) on \(U \).

Then \(f \) has \(\text{UBED} \) on \(U \). Then, by Theorem 32, \(f \) has \(\text{UBD} \) on \(U \). □

DEFINITION 34. Let \(f : \mathbb{R} \to \mathbb{R} \).

Then \(\text{IBD}_f := (\text{BD}_f)^\circ \) denotes the interior in \(\mathbb{R} \) of \(\text{BD}_f \).

THEOREM 35. Let \(f : \mathbb{R} \to \mathbb{R} \), \(c, d \in \mathbb{R} \).

Assume \(c < d \). Let \(J := (c; d) \).

Assume \(f \) has \(\text{PBED} \) on \(J \). Then \(\text{IBD}_f \cap J \) is dense in \(J \).

Proof. By Theorem 33, choose non\(\emptyset \) open subintervals \(U_1, U_2, U_3, \ldots \) of \(J \)

\[\text{s.t. } \forall i \in \mathbb{N}, \ f \text{ has } \text{UBD} \text{ on } U_i \quad \text{and} \quad \text{s.t. } U_1 \cup U_2 \cup U_3 \cup \cdots \text{ is dense in } J. \]

Then: \(\forall i \in \mathbb{N} \), since \(f \) has \(\text{UBD} \) on \(U_i \),

it follows that \(f \) has \(\text{BD} \) on \(U_i \), so \(U_i \subseteq \text{BD}_f \).

Let \(U := U_1 \cup U_2 \cup U_3 \cup \cdots \). Then \(U \subseteq \text{BD}_f \), so \(U^\circ \subseteq (\text{BD}_f)^\circ \).

Since \(\forall i \in \mathbb{N}, U_i \subseteq J \), we get: \(U \subseteq J \).

Since \(\forall i \in \mathbb{N}, U_i \text{ is open in } J \), we get: \(U \text{ is open in } J \).

So, since \(J \) is open in \(\mathbb{R} \), we get: \(U \text{ is open in } \mathbb{R} \). Then \(U^\circ = U \).

Since \(U_1 \cup U_2 \cup U_3 \cup \cdots \text{ is dense in } J \), we get: \(U \text{ is dense in } J \).

Since \(U = U^\circ \subseteq (\text{BD}_f)^\circ = \text{IBD}_f \) and since \(U \subseteq J \),

we get: \(U \subseteq \text{IBD}_f \cap J \).

So, since \(U \text{ is dense in } J \), we get: \(\text{IBD}_f \cap J \text{ is dense in } J \). □

THEOREM 36. Let \(\phi : \mathbb{R} \to \mathbb{R} \), \(s, t \in \mathbb{R} \), \(L \geq 0 \). Assume: \(s < t \).

Assume: \((s; t) \subseteq D^{(2)}_\phi \) and \(\phi \) is continuous both at \(s \) and at \(t \).

Assume: \(\phi^g > 0 \text{ on } (s; t) \). Assume: \(\phi \leq L \text{ on } \{s, t\} \).

Then: \(\phi < L \text{ on } (s; t) \).

Theorem 36 is a special case of the Maximum Principle.

This particular special case follows from the Mean Value Theorem.

We omit the proof.

THEOREM 37. Let \(g : \mathbb{R} \to \mathbb{R} \), \(s, t \in \mathbb{R} \), \(L \geq 0 \).

Assume: \(s < t \) and \(t - s \leq 1 \).
Assume: \((s; t) \subseteq \mathbb{D}_g^{(2)}\) and \(g\) is continuous both at \(s\) and at \(t\).

Assume: \(|g| \leq L\) on \((s, t)\). Let \(w \in (s; t)\). Assume \(|g(w)| \geq 2L\).
Then: \(\exists x \in (s; t) \text{ s.t. } |g''(x)| \geq 8L\).

Proof. Choose \(h \in \{g, -g\} \text{ s.t. } |g(w)| = h(w)\). Then \(h(w) \geq 2L\).
Also, \(|h| = |g|\) and \(|h'| = |g'|\) and \(|h''| = |g''|\).
Also, \((s; t) \subseteq \mathbb{D}_h^{(2)}\) and \(h\) is continuous both at \(s\) and at \(t\).

Want: \(\exists x \in (s; t) \text{ s.t. } |h''(x)| \geq 8L\).
Assume: \(|h''| < 8L\) on \((s; t)\). Want: Contradiction.

We have: \(-8L < h'' < 8L\) on \((s; t)\).
Since \(h'' > -8L\) on \((s; t)\), we get: \(8L + h'' > 0\) on \((s; t)\).
Define \(Q : \mathbb{R} \rightarrow \mathbb{R}\) by: \(\forall x \in \mathbb{R}, \ Q(x) = 4L \cdot (x - s) \cdot (x - t)\).
Then: \(Q'' = 8L\) on \(\mathbb{R}\). Then: \((Q + h)'' > 0\) on \((s; t)\).
Let \(\phi := Q + h\). Then \(\phi'' > 0\) on \((s; t)\).
Since \(Q = 0\) on \((s, t)\) and since \(h \leq |h| = |g| \leq L\) on \((s, t)\),
we get: \(Q + h \leq L\) on \((s, t)\). Then: \(\phi \leq L\) on \((s, t)\).
Also, \((s; t) \subseteq \mathbb{D}_h^{(2)}\) and \(\phi\) is continuous both at \(s\) and at \(t\).
Then, by Theorem 36 (Maximum Principle), we get: \(\phi < L\) on \((s; t)\).
By hypothesis, we have: \(w \in (s; t)\). Then \(\phi(w) < L\).
Since \((Q(w)) + (h(w)) = \phi(w) < L\), we get: \(h(w) < L - (Q(w))\).
Let \(c := (s + t)/2\). The minimum value of \(Q\) is \(Q(c)\).
Then \(Q(w) \geq Q(c)\). We calculate: \(Q(c) = -L \cdot (t - s)^2\).
Since \(0 < t - s \leq 1\), we get: \((t - s)^2 \leq 1\).
So, since \(L \geq 0\), we get: \(-L \cdot (t - s)^2 \geq -L\).
Then \(Q(w) \geq Q(c) = -L \cdot (t - s)^2 \geq -L\), so \(-Q(w) \leq L\).
Then \(h(w) < L - (Q(w)) \leq L + L = 2L\), so \(h(w) < 2L\).
Recall, from the start of the proof: \(h(w) \geq 2L\). Contradiction. \(\square\)

THEOREM 38. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \ s, t \in \mathbb{R}, \ M > 0\).
Assume \(s < t\). Assume \(t - s \leq 1\).
Assume \(f\) has \(M\)-BED on \((s, t)\). Assume \(f\) has \(UBED\) on \((s; t)\).
Then \(f\) has \(2M\)-BED on \((s; t)\).

Proof. Given \(p \in (s; t), \ want: f\ has 2M-BED at \(p\).
Given \(f \in \mathbb{N}_0, \ want: |f^{(2j)}(p)| \leq 2M\).
Assume: \(|f^{(2j)}(p)| > 2M\). Want: Contradiction.
Since \(|f^{(2j)}(p)| > 2M\), we get: \(|f^{(2j)}(p)| > 2M\).
For all \(i \in \mathbb{N}_0, \ L_i := 4^i \cdot M\). Then: \(\forall i \in \mathbb{N}_0, \ L_i \geq 0\).
Also, \(L_0 = M\) and \(\forall i \in \mathbb{N}_0, \ L_{i+1} = 4L_i\).
For all \(i \in \mathbb{N}_0, \ let \ B_i := \{q \in (s; t) \text{ s.t. } |f^{(2j+2i)}(q)| \geq 2L_i\}.\)
Claim: \(\forall i \in \mathbb{N}_0, \ B_i \neq \emptyset. \)

Proof of Claim: We have \(|f^{(2j+20)}(p)| = |f^{(2j)}(p)| \geq 2M = 2L_0. \)
Also, \(p \in (s;t) \). Then \(p \in B_0 \). Then \(B_0 \neq \emptyset \).
We proceed by mathematical induction:

Given \(i \in \mathbb{N}_0 \), assume \(B_i \neq \emptyset \), **want:** \(B_{i+1} \neq \emptyset \).
Choose \(w \in B_i \). Then \(w \in (s;t) \) and \(|f^{(2j+2i)}(w)| \geq 2L_i. \)
By hypothesis, \(f \) has \(M\)-BED on \(\{s,t\} \), so \(s, t \in D_f^{(x)}. \)
By hypothesis, \(f \) has \(M\)-BED on \(\{s,t\} \), so \(|f^{(2j+2i)}(w)| \leq M \) on \(\{s,t\} \).
By hypothesis, \(f \) has UBED on \((s;t) \), so \((s,t) \subseteq D_f^{(x)}. \)
Let \(g := f^{(2j+2i)} \). Then \((s,t) \subseteq D_f^{(x)} = D_g^{(x)} \subseteq D_g^{(2)} \), so \((s,t) \subseteq D_g^{(2)}. \)
Since \(s, t \in D_f^{(x)} = D_f^{(x)} = D_g^{(2)} = D_g^{(1)}, \)
we get: \(g \) is differentiable both at \(s \) and at \(t \).
Then \(g \) is continuous both at \(s \) and at \(t \).
Also, \(|g(w)| = |f^{(2j+2i)}(w)| \geq 2L_i \), so \(|g(w)| \geq 2L_i. \)
Also, \(|g| = |f^{(2j+2i)}| \leq M \) on \(\{s,t\} \), so \(|g| \leq M \) on \(\{s,t\} \).
We have: \(M \leq 4^i \cdot M = L_i \). Then \(|g| \leq L_i \) on \(\{s,t\} \).
By Theorem 37, choose \(x \in (s;t) \) s.t. \(|g''(x)| \geq 8L_i. \)
Since \(g'' = (f^{(2j+2i)})'' = f^{(2j+2i+2)} = f^{(2j+2(i+1))}, \)
we get: \(|f^{(2j+2(i+1))}(x)| = |g''(x)|. \)
Then \(|f^{(2j+2(i+1))}(x)| = |g''(x)| \geq 8L_i = 2 \cdot 4L_i = 2L_{i+1}. \)
Also, \(x \in (s;t) \). Then \(x \in B_{i+1} \). Then \(B_{i+1} \neq \emptyset \).

End of proof of Claim.

By hypothesis, \(f \) has UBED on \((s;t) \), so \(\choose K \geq 0 \) s.t. \(f \) has \(K\)-BED on \((s;t) \).
By hypothesis, \(M > 0 \), so choose \(n \in \mathbb{N}_0 \) s.t. \(2 \cdot 4^n \cdot M > K. \)
By the Claim, \(B_n \neq \emptyset \), so choose \(z \in B_n \).
Then, by definition of \(B_n \), we get: \(z \in (s;t) \) and \(|f^{(2j+2n)}(z)| \geq 2L_n. \)
Then \(|f^{(2j+2n)}(z)| \geq 2L_n = 2 \cdot 4^n \cdot M > K, \) so \(|f^{(2j+2n)}(z)| > K. \)
On the other hand, since \(f \) has \(K\)-BED on \((s;t) \) and since \(z \in (s;t) \), we get: \(|f^{(2j+2n)}(z)| \leq K. \) Contradiction.

THEOREM 39. Let \(c, d \in \mathbb{R} \). Assume: \(c < d \). Let \(J := (c;d). \)
Let \(T \subseteq J \). Assume: \(T \) is finite. Let \(q \in T \).
Then: \(\exists \delta > 0 \) s.t. \((q - \delta; q) \subseteq J \setminus T. \)
The preceding result is basic. Its proof is left as an exercise.
THEOREM 40. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \), \(c, d \in \mathbb{R} \).
Assume: \(c < d \). Let \(J := (c;d) \). Assume: \(J \subseteq \mathbb{D}_f^{(\infty)} \).
Let \(T := J \setminus \text{BD}_f \). Assume: \(T \neq \emptyset \). Then: \(T \) is infinite.

Proof. Assume: \(T \) is finite. \hspace{1cm} \textbf{Want:} Contradiction.
Since \(T \neq \emptyset \), choose \(q \in T \). Then \(q \in J \) and \(q \notin \text{BD}_f \).
By Theorem 39, choose \(\delta > 0 \) s.t. \((q-\delta; q) \subseteq J \setminus T \).
Since \((q-\delta; q) \subseteq J \setminus T \subseteq J \) and since \(q \in J \), we get: \((q-\delta; q) \subseteq J \).
We have: \((q-\delta; q) \subseteq J \setminus T = J \setminus (J \setminus \text{BD}_f) = J \setminus \text{BD}_f \subseteq \text{BD}_f \).
so \((q-\delta; q) \subseteq \text{BD}_f \), so \(f \) has PBD on \((q-\delta; q) \).
So, by Tao’s Theorem (Theorem 30), we get: \(f \) has UBD on \((q-\delta; q) \).
Choose \(M \geq 0 \) s.t. \(f \) has M-BD on \((q-\delta; q) \).
So, since \((q-\delta; q) \subseteq J \subseteq \mathbb{D}_f^{(\infty)} \), by continuity, \(f \) has M-BD at \(q \).
Then \(f \) has BD at \(q \), so \(q \in \text{BD}_f \). Recall: \(q \notin \text{BD}_f \). Contradiction. \(\square \)

THEOREM 41. Let \(T \subseteq \mathbb{R}, \varepsilon > 0 \).
Assume: \(T \) is bounded and infinite.
Then: \(\exists p, q, r \in T \) s.t. \(p < q < r \) and s.t. \(r - p \leq \varepsilon \).

Proof. Since \(T \) is bounded and infinite, choose a limit point \(x \) of \(T \).
Let \(C := [x - (\varepsilon/2); x + (\varepsilon/2)] \). Then \(C \cap T \) is infinite.
Choose \(p, q, r \in C \cap T \) s.t. \(p < q < r \). \hspace{1cm} \textbf{Want:} \(r - p \leq \varepsilon \).
Since \(p, q, r \in C \cap T \subseteq C = [x - (\varepsilon/2); x + (\varepsilon/2)] \), we get: \(r - p \leq \varepsilon \). \(\square \)

THEOREM 42. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \ a, b \in \mathbb{R} \).
Assume: \(a < b \). Let \(I := (a;b) \).
Assume: \(f \) has PBED on \(I \). Then: \(f \) has PBD on \(I \).

Proof. \hspace{1cm} \textbf{Want:} \(I \subseteq \text{BD}_f \).
Let \(V := I \setminus \text{BD}_f \).
Since \(I \setminus \text{BD}_f \) is open in \(\mathbb{R} \), we get: \(V \) is open in \(I \).
Since \(V \subseteq I \setminus \text{BD}_f \subseteq \text{BD}_f \), \hspace{1cm} \textbf{it suffices to show:} \(I \subseteq V \).
Let \(X := I \setminus V \). \hspace{1cm} \textbf{Want:} \(X = \emptyset \).
Assume \(X \neq \emptyset \). \hspace{1cm} \textbf{Want:} Contradiction.
Since \(V \) is open in \(I \) and since \(X = I \setminus V \), we get: \(X \) is closed in \(I \).
Since \(I = (a;b) \), we get: \(I \) is open in \(\mathbb{R} \).
Since \(X \) is closed in \(I \) and since \(I \) is open in \(\mathbb{R} \),
we get: \(X \) is locally compact and Hausdorff.
By hypothesis, \(f \) has PBED on \(I \), so, since \(X = I \setminus V \subseteq I \),
it follows that: \(f \) has PBED on \(X \). Then: \(X \subseteq \mathbb{D}_f^{(\infty)} \).
For all \(m \in \mathbb{N} \) let \(X_m := \{ x \in X | f \text{ has } m\text{-BED at } x \} \).
Then, by continuity, we get: \(\forall m \in \mathbb{N}, \ X_m \text{ is closed in } X \).
Since \(f \) has PBED on \(X \), we get: \(X_1 \cup X_2 \cup X_3 \cup \cdots = X \).

So, since \(X \) is non\(\emptyset \) and locally compact and Hausdorff,
by the Baire Category Theorem,
choose \(M \in \mathbb{N} \) s.t. \(X_M \) has non\(\emptyset \) interior in \(X \).

So, since \(X = I \setminus V \subseteq I = (a; b) \),
by Theorem 7, choose \(c, d \in [a; b] \)
s.t. \(c < d \) and s.t. \(\emptyset \neq (c; d) \cap X \subseteq X_M \).

Then: \(a < c < d < b \). Then: \((c; d) \subseteq (a; b) \).

Let \(J := (c; d) \). Then: \(J \) is open in \(\mathbb{R} \), so \(J^\circ = J \).

Also, \(J = (c; d) \subseteq (a; b) = I \), so: \(J \subseteq I \). Then \(J \setminus V = J \cap (I \setminus V) \).

Since \(J \setminus V = J \cap (I \setminus V) = J \cap X = (c; d) \cap X \),
we get: \(J \setminus V = (c; d) \cap X \).

So, since \(\emptyset \neq (c; d) \cap X \subseteq X_M \), we get: \(\emptyset \neq J \setminus V \subseteq X_M \).

Since \(J \setminus V \neq \emptyset \), we get: \(J \notin V \).

Since \(J \notin V = \text{IBD}_f \cap I \) and since \(J \subseteq I \), we get: \(J \notin \text{IBD}_f \).

Since \(J^\circ = J \notin \text{IBD}_f = (\text{BD}_f)^\circ \), we get \(J^\circ \notin (\text{BD}_f)^\circ \), and so \(J \notin \text{BD}_f \).

Then: \(J \setminus \text{BD}_f \neq \emptyset \). Let \(T := J \setminus \text{BD}_f \). Then \(T \neq \emptyset \).

By hypothesis, \(f \) has PBED on \(I \), so, since \(J \subseteq I \),
it follows that: \(f \) has PBED on \(J \). Then \(J \subseteq \mathbb{D}_f^{(\infty)} \).

Then, by Theorem 40, we get: \(T \) is infinite.

Also, \(T = J \setminus \text{BD}_f \subseteq J = (c; d) \), so \(T \subseteq (c; d) \). Then \(T \) is bounded.

By Theorem 41, choose \(p, q, r \in T \) s.t. \(p < q < r \) and s.t. \(r - p \leq 1 \).

Then: \(p, q, r \in T \subseteq (c; d) \). Then: \(a < c < p < q < r < d < b \).

Then: \([p; r] \subseteq (c; d) \). By Theorem 35, \(\text{IBD}_f \cap J \) is dense in \(J \).

Let \(W := \text{IBD}_f \cap J \). Then: \(W \) is dense in \(J \).

Since \(J \subseteq I \), we get: \(J = I \setminus J \). Then \(W = J \cap \text{IBD}_f \cap I \).

By definition of \(V \), we have: \(V = \text{IBD}_f \cap I \). Then: \(W = J \cap V \).

So, since \(J \setminus V = J \setminus (J \cap V) \), we get: \(J \setminus V = J \setminus W \).

Recall: \(\emptyset \neq J \setminus V \subseteq X_M \).

Since \(J \setminus W = J \setminus V \subseteq X_M \), we get: \(J \setminus W \subseteq X_M \).

We have \((p; r) \subseteq [p; r] \subseteq (c; d) = J \), so \((p; r) \subseteq J \).

Then: \((p; r) \) is an open subset of \(J \).

So, since \(W \) is dense in \(J \), we get: \(W \cap (p; r) \) is dense in \((p; r) \).

We have \(p, q, r \in T = J \setminus \text{BD}_f \). Then \(p, q, r \notin \text{BD}_f \).

Since \(p < q < r \), we get: \(q \in (p; r) \).

Since \(q \notin \text{BD}_f \), we get: \(f \) does not have BD at \(q \).

So, since \(q \in (p; r) \), we get: \(f \) does not have PBD on \((p; r) \).

Then \(f \) does not have UBD on \((p; r) \).

Then, by Theorem 32, \(f \) does not have UBED on \((p; r) \).
Then: \(f \) does not have 2IM-BED on \((p; r)\).

So, since \((p; r) \subseteq J \subseteq \mathbb{D}_f^{(\infty)}\) and

\[
W \cap (p; r) \text{ is dense in } (p; r), \text{ by continuity,}
\]

we get: \(f \) does not have 2IM-BED on \(W \cap (p; r)\).

Choose \(w \in W \cap (p; r) \) s.t. \(f \) does not have 2IM-BED at \(w \).

Then: \(a \leq c < p < w < r < d \leq b \). Also, \(w \in W \).

By definition of \(W \), we have: \(W = \text{IBD}_f \cup J \).

So, since \(\text{IBD}_f \) is open in \(\mathbb{R} \), we get: \(W \) is an open subset of \(J \).

So, since \(J = (c; d) \), we get: \(W \) is an open subset of \((c; d)\).

Since \(p, r \notin \text{BD}_f \supseteq \text{IBD}_f \supseteq \text{BD}_f \cap J = W \), we get: \(p, r \notin W \).

Let \(U \) be the connected component of \(W \) s.t. \(w \in U \). Then: \(w \in U \subseteq W \).

By Theorem 6, choose \(s, t \in [p; r] \setminus W \) s.t. \(s < t \) and s.t. \(U = (s; t) \).

Then \(p \leq s < t \leq r \). Since \(w \in U = (s; t) \), we get: \(s < w < t \).

Then: \(a \leq c < p \leq s < w < t \leq r < d \leq b \).

Since \(p \leq s < t \leq r \), we get: \(t - s \leq r - p \).

So, since \(r - p \leq 1 \), we get: \(t - s \leq 1 \).

Since \((s; t) = U \subseteq W = \text{IBD}_f \cup J \subseteq \text{IBD}_f \subseteq \text{BD}_f \),

we get: \(f \) has PBD on \((s; t)\).

Then, by Tao’s Theorem (Theorem 30), we get: \(f \) has UBD on \((s; t)\).

Then: \(f \) has UBED on \((s; t)\). Since \(M \in \mathbb{N} \), we get: \(M > 0 \).

Recall: \(J \setminus W \subseteq X_M \) and \(J = (c; d) \) and \([p; r] \subseteq (c; d)\).

Since \(s, t \in [p; r] \setminus W \subseteq (c; d) \setminus W = J \setminus W \subseteq X_M \),

by definition of \(X_M \), we get: \(f \) has M-BED on \((s; t)\).

Then, by Theorem 38, we get: \(f \) has 2M-BED on \((s; t)\).

So, since \(w \in U = (s; t) \), we get: \(f \) has 2M-BED at \(w \).

By choice of \(w \), \(f \) does not have 2M-BED at \(w \). Contradiction. \(\square \)

DEFINITION 43. Let \(\mu : \mathbb{R} \rightarrow \mathbb{R}, \quad I \subseteq \mathbb{R} \).

By \(\mu \) is **affine** on \(I \), we mean: \(I \subseteq \mathbb{D}_\mu \) and

\[
\exists m, c \in \mathbb{R} \text{ s.t., } \forall x \in I, \quad \mu(x) = mx + c.
\]

THEOREM 44. Let \(\mu : \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R} \).

Assume \(a < b \). Let \(I := (a; b) \). Assume: \(I \subseteq \mathbb{D}_\mu \).

Then:

\[
(\mu \text{ is affine on } I) \iff (\mu'' = 0 \text{ on } I) \iff \left(\forall p, q \in I, \forall t \in [0; 1], \mu((1 - t) \cdot p + t \cdot q) = (1 - t) \cdot (\mu(p)) + t \cdot (\mu(q)) \right).
\]

The preceding result is basic. Its proof is left as an exercise.
THEOREM 45. Let \(a, b \in \mathbb{R} \). Assume \(a < b \). Let \(I := (a; b) \).
Let \(\lambda_0, \lambda_1, \lambda_2 \ldots : I \to \mathbb{R} \). Assume: \(\forall j \in \mathbb{N}, \lambda_j \) is affine on \(I \).
Let \(\mu : I \to \mathbb{R} \). Assume: \(\lambda_j \to \mu \) pointwise, as \(j \to \infty \).
Then: \(\mu \) is affine on \(I \).

Proof. Given \(p, q \in I, t \in [0; 1], \) want:
\[
\mu((1-t)p + tq) = (1-t) \cdot (\mu(p)) + t \cdot (\mu(q)).
\]
Since, \(\forall j \in \mathbb{N}_0, \lambda_j \) is affine on \(I \), we get:
\[
\forall j \in \mathbb{N}_0, \lambda_j((1-t)p + tq) = (1-t) \cdot (\lambda_j(p)) + t \cdot (\lambda_j(q)).
\]
So, letting \(j \to \infty \), by pointwise convergence, we get:
\[
\mu((1-t)p + tq) = (1-t) \cdot (\mu(p)) + t \cdot (\mu(q)). \qquad \square
\]

THEOREM 46. Let \(\mu : \mathbb{R} \to \mathbb{R}, I \subseteq \mathbb{R} \).
Assume: \(\mu \) is affine on \(I \). Then: \(\mu \) is Lipschitz on \(I \).

Proof. Choose \(m, c \in \mathbb{R} \) s.t., \(\forall x \in I, \mu(x) = mx + c \).
Want: \(\mu \) is \(|m|\)-Lipschitz on \(I \).
Given \(p, q \in I \), want: \(|(\mu(q)) - (\mu(p))| \leq |m| \cdot |q - p|\).
We have:\((\mu(q)) - (\mu(p)) = (mq + c) - (mp + c) = m \cdot (q - p) \).
Then: \(|(\mu(q)) - (\mu(p))| = |m \cdot (q - p)| = |m| \cdot |q - p| \).
Then: \(|(\mu(q)) - (\mu(p))| \leq |m| \cdot |q - p| \). \quad \square

THEOREM 47. Let \(\phi : \mathbb{R} \to \mathbb{R}, a, b \in \mathbb{R}, M \geq 0 \).
Assume: \(a < b \). Let \(I := (a; b) \). Assume: \(\phi \) is \(M \)-Lipschitz on \(I \).
Let \(c \in I \). Let \(M' := |\phi(c)| + M \cdot (b - a) \). Then: \(|\phi| \leq M' \) on \(I \).

Proof. Given \(x \in I \), want: \(|\phi(x)| \leq M' \).
Since \(x, x \in I = (a; b) \), we get: \(|x - c| < b - a \).
So, since \(M \geq 0 \), we get: \(M \cdot |x - c| \leq M \cdot (b - a) \).
Since \(\phi \) is \(M \)-Lipschitz on \(I \), we get: \(|(\phi(x)) - (\phi(c))| \leq M \cdot |x - c| \).
Then: \(|\phi(x)| = |[\phi(c)] + [(\phi(x)) - (\phi(c))]| \leq |\phi(c)| + |(\phi(x)) - (\phi(c))| \leq |\phi(c)| + M \cdot |x - c| \leq |\phi(c)| + M \cdot (b - a) = M' \). \quad \square

THEOREM 48. Let \(f : \mathbb{R} \to \mathbb{R}, a, b \in \mathbb{R}, M \geq 0 \).
Assume: \(a < b \). Let \(I := (a; b) \). Assume: \(\phi \) is Lipschitz on \(I \).
Then: \(\phi \) is bounded and continuous on \(I \).

Proof. Since \(\phi \) is Lipschitz on \(I \), we get: \(\phi \) is continuous on \(I \).
It remains to show: \(\phi \) is bounded on \(I \).
Since \(\phi \) is Lipschitz on \(I \), choose \(M \geq 0 \) s.t. \(\phi \) is \(M \)-Lipschitz on \(I \).
Let \(c := (a + b)/2 \). Then \(c \in I \). Let \(M' := |\phi(c)| + M \cdot (b - a) \).
By Theorem 47, we get: \(|\phi| \leq M' \) on \(I \). Then \(\phi \) is bounded on \(I \). \quad \square
DEFINITION 49. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R} \).
Assume: \(a < b \). Let \(I := (a; b) \). Let \(c := (a + b)/2 \).
Assume: \(f \) is bounded and measurable on \(I \).

Then \(\left[f^\# \right]_I : I \rightarrow \mathbb{R} \) is defined by: \(\forall x \in I, \quad f^\#(x) = \int_c^x f \).

THEOREM 50. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R} \).
Assume: \(a < b \). Let \(I := (a; b) \).
Assume: \(f \) is bounded and continuous on \(I \).
Then: \(f^\# = f \) on \(I \).

Theorem 50 is a case of the Fundamental Theorem of Calculus.

THEOREM 51. Let \(a, b \in \mathbb{R} \). Assume: \(a < b \). Let \(I := (a; b) \).
Let \(f_0, f_1, f_2, \ldots : I \rightarrow \mathbb{R} \) be measurable. Let \(g : I \rightarrow \mathbb{R} \).
Let \(M \geq 0 \). Assume: \(\forall j \in \mathbb{N}_0, \quad |f_j| \leq M \) on \(I \).
Assume: \(f_j \rightarrow g \) pointwise on \(I \), as \(j \rightarrow \infty \).
Then: \(g \) is bounded and measurable on \(I \) and \((f_j)^\# \rightarrow g^\# \) pointwise on \(I \), as \(j \rightarrow \infty \).

Proof. Since \(\forall j \in \mathbb{N}_0, \quad |f_j| \leq M \) on \(I \)
and since \(f_j \rightarrow g \) pointwise on \(I \), as \(j \rightarrow \infty \),
we get \(|g| \leq M \) on \(I \), so \(g \) is bounded on \(I \).
Since a pointwise limit of measurable functions is measurable,
we get: \(g \) is measurable on \(I \).

It remains to show: \((f_j)^\# \rightarrow g^\# \) pointwise on \(I \), as \(j \rightarrow \infty \).

Given \(x \in I \), want: \((f_j)^\#(x) \rightarrow g^\#(x) \), as \(j \rightarrow \infty \).

Let \(c := (a + b)/2 \). Then: \(g^\#(x) = \int_c^x g \).

Also, we have: \(\forall j \in \mathbb{N}_0, \quad (f_j)^\#(x) = \int_c^x f_j \)
Since \(\forall j \in \mathbb{N}_0, \quad |f_j| \leq M \) on \(I \) and
since \(f_j \rightarrow g \) pointwise on \(I \), as \(j \rightarrow \infty \),
by the Dominated Convergence Theorem, we get:

\[
\int_c^x f_j \rightarrow \int_c^x g, \quad \text{as } j \rightarrow \infty.
\]

Then: \((f_j)^\#(x) \rightarrow g^\#(x) \), as \(j \rightarrow \infty \).

THEOREM 52. Let \(f : \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}, \quad M \geq 0 \).
Assume: \(a < b \). Let \(I := (a; b) \).
Assume: \(f \) is measurable on \(I \). Assume: \(|f| \leq M \) on \(I \).
Then: \(f_I^\# \) is \(M \)-Lipschitz on \(I \).

Proof. Given \(s, t \in I \), assume \(s < t \),

want: \(|(f_I^\#(t)) - (f_I^\#(s))| \leq M \cdot (t - s) \).
Since \(s, t \in I \) and since \(I \) is an interval, we get: \([s; t] \subseteq I \).
Then: \(|f| \leq M \) on \([s; t] \). Let \(c := (a + b)/2 \).
Then:
\[
(f_I^\#(t)) - (f_I^\#(s)) = \left(\int_c^t f \right) - \left(\int_c^s f \right) = \int_s^t f.
\]
Then:
\[
|(f_I^\#(t)) - (f_I^\#(s))| \leq \int_s^t |f|.
\]
So, since \(|f| \leq M \) on \([s; t] \), we get:
\[
|(f_I^\#(t)) - (f_I^\#(s))| \leq \int_s^t M.
\]
Then:
\[
|(f_I^\#(t)) - (f_I^\#(s))| \leq M \cdot (t - s).
\]

THEOREM 53. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \), \(a, b \in \mathbb{R} \).
Assume \(a < b \). Let \(I := (a; b) \).
Assume: \(f \) is bounded and measurable on \(I \).
Then: \(f_I^\# \) is bounded and continuous on \(I \).

Proof. Since \(f \) is bounded on \(I \), choose \(M \geq 0 \) s.t. \(|f| \leq M \) on \(I \).
By Theorem 52, \(f_I^\# \) is \(M \)-Lipschitz on \(I \), so \(f_I^\# \) is Lipschitz on \(I \).
Then, by Theorem 48, \(f_I^\# \) is bounded and continuous on \(I \). \(\square \)

DEFINITION 54. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \), \(a, b \in \mathbb{R} \).
Assume \(a < b \). Let \(I := (a; b) \).
Assume: \(f \) is bounded and measurable on \(I \).
Then:
\[
\left[f_I^\# \right]^\# := (f_I^\#)^\#.
\]
Implicit in Definition 54 is that, by Theorem 53,
\(f_I^\# \) is bounded and continuous on \(I \),
and so \(f_I^\# \) is bounded and measurable on \(I \).

THEOREM 55. Let \(g : \mathbb{R} \rightarrow \mathbb{R} \), \(a, b \in \mathbb{R} \).
Assume: \(a < b \). Let \(I := (a; b) \).
Assume: \(g \) is bounded and continuous on \(I \).
Then:
\[
(g_I^\#)^\# = g \text{ on } I.
\]

Proof. By Theorem 50, we get:
\((g_I^\#)' = g \) on \(I \).
Let \(h := g_I^\# \). Then \(h' = g \).
Since \(g \) is continuous on \(I \), we get: \(g \) is measurable on \(I \).
Then, by Theorem 53, we get: \(g_I^\# \) is bounded and continuous on \(I \).

So, since \(h = g_I^\# \), we get: \(h \) is bounded and continuous on \(I \).

So, by Theorem 50, we get: \((h_I^\#)' = h \) on \(I \).

So, since \(h' = g \) on \(I \), we get: \((h_I^\#)'' = g \) on \(I \).

Then: \((g_I^\#)'' = ((g_I^\#)')' = (h_I^\#)'' = g \) on \(I \).\(\square \)

THEOREM 56. Let \(f : \mathbb{R} \to \mathbb{R} \), \(a, b \in \mathbb{R} \).

Assume: \(a < b \). Let \(I := (a; b) \). Assume: \(I \subseteq \mathbb{D}_I^2 \).

Assume: \(f'' \) is bounded and continuous on \(I \).

Then: \((f''_I^\#)_i^\# - f \) is affine on \(I \).

Proof. Let \(\phi := (f'')_I^\# \).\(\textbf{Want:} \phi - f \) is affine on \(I \).

\(\textbf{Want:} (\phi - f)'' = 0 \) on \(I \). \(\textbf{Want:} \phi'' = f'' \) on \(I \).

Let \(g := f'' \). By hypothesis, \(g \) is bounded and continuous on \(I \).

Then, by Theorem 55, we get: \((g_I^\#)'' = g \) on \(I \).

Then: \(\phi'' = ((f''_I^\#)_i^\#)' = (g_I^\#)' = g = f'' \) on \(I \).\(\square \)

THEOREM 57. Let \(a, b \in \mathbb{R} \). Assume \(a < b \). Let \(I := (a; b) \).

Let \(S := C^\infty(I, \mathbb{R}) \). Define \(L : S \to S \) by: \(\forall h \in S, \ Lh = h'' \).

Let \(f \in S \). Let \(g : I \to \mathbb{R} \). Assume \(f, Lf, L^2f, \ldots \to g \) pointwise on \(I \).

Then: \(g \in S \) and \(Lg = g \).

Proof. It suffices to show: \(g'' = g \).

We have: \(\forall j \in \mathbb{N}_0, \ L^j f = f^{(2j)} \).

Then: \(f^{(2j)} \to g \) pointwise on \(I \), as \(j \to \infty \).

It follows that: \(f \) has PBD on \(I \).

Then, by Theorem 42, we get: \(f \) has PBD on \(I \).

Then, by Tao’s Theorem (Theorem 30), we get: \(f \) has UBD on \(I \).

Then: \(f \) has UBED on \(I \). Choose \(M \geq 0 \) s.t. \(f \) has M-BED on \(I \).

Then: \(\forall j \in \mathbb{N}_0, \ |f^{(2j)}| \leq M \) on \(I \).

For all \(j \in \mathbb{N}_0 \), let \(f_j := L^j f \). Then: \(\forall j \in \mathbb{N}_0, \ f_j = f^{(2j)} \).

Then: \(f_j \to g \) pointwise on \(I \), as \(j \to \infty \).

Also, \(\forall j \in \mathbb{N}_0, \ |f_j| \leq M \) on \(I \).

Then, since \(f_j \to g \) pointwise on \(I \), as \(j \to \infty \), by Theorem 51, \(g \) is bounded and measurable on \(I \) and \((f_j)_i^\# \to g_I^\# \) pointwise on \(I \), as \(j \to \infty \).

By Theorem 52, we get: \(\forall j \in \mathbb{N}_0, \ (f_j)_i^\# \) is \(M \)-Lipschitz on \(I \).

Let \(c := (a + b)/2 \). Then: \(\forall j \in \mathbb{N}_0, \ (f_j)_I^\#(c) = 0 \).

Let \(M' := M \cdot (b - a) \). Then \(M' \geq 0 \).

Also, \(\forall j \in \mathbb{N}_0, \ M' = |(f_j)_I^\#(c)| + M \cdot (b - a) \).
Then, by Theorem 47, we get: \(\forall j \in \mathbb{N}_0, \quad |(f_j)_I^\#| \leq M' \) on \(I \).

Then, since \((f_j)_I^\# \rightarrow g_I^\# \) pointwise on \(I \), as \(j \rightarrow \infty \), by Theorem 51, \(g_I^\# \) is bounded and measurable on \(I \) and
\[
(f_j)_I^\# \rightarrow g_I^\# \quad \text{pointwise on } I, \text{ as } j \rightarrow \infty.
\] Re却:
\[
(f_j)_I^\# - f_j \rightarrow g_I^\# - g \quad \text{pointwise on } I, \text{ as } j \rightarrow \infty.
\] 为所有 \(j \in \mathbb{N}_0 \), let \(\lambda_j := (f_j)_I^\# - f_j \). Let \(\mu := g_I^\# - g \).

Then \(\lambda_j \rightarrow \mu \) pointwise on \(I \), as \(j \rightarrow \infty \). Also, \(g = g_I^\# - \mu \).

Since \(f \in S = C^\infty(I, \mathbb{R}) \) and since \(\forall j \in \mathbb{N}_0, \quad f_j^\# = (L^j f)^\# = (f(2^j))^\# = (2^j f)^\# = f_{j+1} \), we conclude:
\[
\forall j \in \mathbb{N}_0, \quad I \subseteq \mathbb{D}_{f_j}^{(2)} \quad \text{and} \quad f_j^\# \text{ is continuous on } I.
\] We have:
\[
\forall j \in \mathbb{N}_0, \quad f_j^\# = L f_j = L L^j f = L^{j+1} f = f_{j+1}.
\] Then:
\[
\forall j \in \mathbb{N}_0, \quad |f_j^\#| = |f_{j+1}| \leq M \text{ on } I.
\] Then:
\[
\forall j \in \mathbb{N}_0, \quad f_j^\# \text{ is bounded on } I.
\] Then, by Theorem 56, we have:
\[
\forall j \in \mathbb{N}_0, \quad (f_j^\#)_I^\# - f_j \text{ is affine on } I.
\] So, since \(\forall j \in \mathbb{N}_0, \quad \lambda_j = (f_j^\#)_I^\# - f_j \),
we get:
\[
\forall j \in \mathbb{N}_0, \quad \lambda_j \text{ is affine on } I.
\] So, since \(\lambda_j \rightarrow \mu \) pointwise on \(I \), as \(j \rightarrow \infty \),
by Theorem 45, we get:
\[
\mu \text{ is affine on } I.
\] So, by Theorem 46, we get:
\[
\mu \text{ is Lipschitz on } I.
\] Then, by Theorem 48, we get:
\[
\mu \text{ is bounded and continuous on } I.
\] Recall:
\[
g_I^\# \text{ is bounded and measurable on } I.
\] So, by Theorem 53,
\[
g_I^\# \text{ is bounded and continuous on } I.
\] Then, since \(g = g_I^\# - \mu \), we get:
\[
g \text{ is bounded and continuous on } I.
\] Then, by Theorem 55, we get:
\[
(g_I^\#)^\# = g.
\] Since \(\mu \) is affine on \(I \), we get:
\[
\mu'' = 0.
\] Then, by subtracting, we get:
\[
(g_I^\# - \mu)^\# = g.
\] So, since \(g = g_I^\# - \mu \), we get:
\[
g'' = g. \quad \square