Central Limit Theorem and Finance Duluth 10 November 2008 Scot Adams

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, 30 days from now.

Call option

Assume:

Spot price = \$1/share. uptick prob.:50.001% dntick prob.:49.999%

7% ann exp. incr. drift-vol assumption 20% ann volatility

Each second, price changes either by a factor of 1.000035616 or by a factor of 0.999964386.

The one-second risk-free factor is 1.00000001.

Goal:

Find the "right" price, i.e., the price that can be used to set up a "perfect hedge".

Difficulty: $30 \times 24 \times 60 \times 60$ adjustments

Salvation: The Central Limit Theorem!

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now.

```
Assume: Spot price = $1/share.
          Each second, price changes
           either by a factor of 1.000035616
               or by a factor of 0.999964386.
         The one-second risk-free factor
\iota := 0.00000001 = \rho - 1 is 1.000000001.
        Find the "right" price, i.e.,
Goal:
              the price that can be used
              to set up a "perfect hedge".
```

Payoff function:

$$f(S) = (5000S - 5000)_{+}$$
 Exercise: Graph f .
 $\overline{N} := 30 \times 24 \times 60 \times 60 = 2,592,000$

P:= price of option P:= initial value of hedging portfolio P:= P:= P:= P:= P:= P:= P:= P:= expected final value of hedging portfolio P:= expected contingent claim

Coin-flipping game: Flip a fair coin N times.

If
$$H$$
 heads and T tails, pay $f(u^H d^T)$, $1+\iota=\rho$ 30 days from now. $\rho^N P = \text{expected payout} =: E$

$$ho^N P = \frac{\text{expected payout}}{P = \rho^{-N} E^{\text{equal}}} (1 + \iota)^{-N} E$$

$$f(S) = (5000S - 5000)_{+}$$

$$P := price of option$$
 $Goal = initial value of hedging portfolio$

$$\rho^{N}P = (1 + \iota)^{N}P =$$

expected final value of
hedging portfolio =

expected contingent claim

Contingent claim:

$$f(u^{N})$$
 N , 0
 $f(u^{N-1}d)$ $N-1$, 1
 $f(u^{N-2}d^2)$ $N-2$, 2
 \vdots \vdots \vdots $f(d^{N})$ 0, N

Coin-flipping game: Flip a fair coin N times. If H heads and T tails, pay $f(u^H d^T)$, 30 days from now. $\rho^N P = \text{expected payout} =: E = ???$ $P = \rho^{-N} E = (1+\iota)^{-N} E \text{expected value problem} = \text{discounted expected payout}$

 $\rho^N P = (1 + \iota)^N P =$ expected final value of hedging portfolio =
expected contingent claim

Contingent claim:

$$f(u^{N})$$
 N , 0
 $f(u^{N-1}d)$ $N-1$, 1
 $f(u^{N-2}d^2)$ $N-2$, 2
 \vdots \vdots \vdots $f(d^{N})$ 0, N

Easier problem:

probability problems, then expected value problems

Compute the probability that

$$-\sqrt{N} < H - T < \sqrt{N}.$$

DIVIDE BY \sqrt{N}

$$X := (H - T)/\sqrt{N}$$

Easier problem after restatement:

Compute the probability that

$$-1 < X < 1$$
.

 $H_1 :=$ number of heads after first flip

 $H_2 :=$ number of heads after second flip

 $H_N :=$ number of heads after Nth flip = H

Easier problem:

Compute the probability that

$$-\sqrt{N} < H - T < \sqrt{N}.$$

$$X := (H - T)/\sqrt{N}$$

Easier problem after restatement:

Compute the probability that

$$-1 < X < 1$$
. X is hard ...

For all integers $j \in [1, N]$,

 $H_i :=$ number of heads after jth flip

 $T_i := \text{number of tails after } j \text{th flip}$

$$D_j := H_j - T_j$$

Easier: $D_1, D_1/7, D_2, D_N$

$$H = H_N$$
, $T = T_N$, $X = (H_N - T_N)/\sqrt{N}$
= D_N/\sqrt{N}

keep the distribution forget its origin

$$D_1/7$$
:

 $0.5 - 1/7$
 $z^{1/7}$
 $0.5 - 1/7$
 $z^{1/7}$

What about $D_1/7$? Replace t by t/7.

$$i = \sqrt{-1}$$

Replace z by e^{-it}

$$(0.5)z^{1/7} + (0.5)z^{-1/7}$$

$$(0.5)e^{-it/7} + (0.5)e^{it/7}$$
 \parallel
 $\cos(t/7)$

Generating function:

$$e^{it/7} = \cos(t/7) + i \sin(t/7)$$

 $e^{-it/7} = \cos(t/7) - i \sin(t/7)$

$$D_2 = \overset{0}{H_2} - \overset{2}{T_2} :$$

$$0.25$$

$$0 \quad 0.25 + 0.25 = 0.5$$

$$-2 \quad 0.25$$

forget its origin keep the distribution

$$D_2 = H_2 - T_2 :$$

$$0.25 - 2 \qquad z^2 - 1$$

$$0.5 - 0 \qquad z^0 = 1$$

$$0.25 - 2 \qquad z^{-2} - 2$$
for each lite oxigin keeps, the edictric

forget its origin keep the distribution

Generating function:

$$(0.25)z^2 + 0.5 + (0.25)z^{-2}$$

$$= ((0.5)z + (0.5)z^{-1})^2$$
the generating function of the distribution of D_1
$$i = \sqrt{-1}$$
Replace z by e^{-it}
Fourier transform: $(\cos t)^2 = \cos^2 t$

$$D_N = H_N \cdot T_N :$$
 Solviide by \sqrt{N}

Goal:
$$X_{\nwarrow}$$
 What about D_N/\sqrt{N} ? Replace t by t/\sqrt{N} .

Generating function:

NO WAY!!
$$= ((0.5)z + (0.5)z^{-1})^N$$
 the generating function of the distribution of D_1
$$i = \sqrt{-1}$$
 Replace z by e^{-it} Fourier transform:
$$(\cos t)^N = \cos^N t$$

$$X = D_N/\sqrt{N}$$
:

NO WAY!

Goal:
$$X_{\rm N}$$
 What about D_N/\sqrt{N} ? Replace t by t/\sqrt{N} .

$$\cos^N(t/\sqrt{N})$$

$$X = D_N/\sqrt{N}$$
:

NO WAY!

Generating functions Fourier transforms

Fourier transform: $\cos^N(t/\sqrt{N})$

$$\cos^N(t/\sqrt{N})$$

$$X = D_N/\sqrt{N}$$
:

NO WA

Generating functions Fourier transforms Fourier analysis Spectral theory

Useful?

Easier problem aft restatement:

Compute the probability that

$$-1 < X < 1$$
.

Exercise:
$$\lim_{n\to\infty} \cos^n(3/\sqrt{n}) = e^{-3^2/2}$$

Fourier transform: $\cos^N(t/\sqrt{N})$

$$\approx \lim_{n \to \infty} \cos^n (t/\sqrt{n}) = e^{-t^2/2}$$
Verify for $t = 3$.

19

$$X = D_{N}/\sqrt{N} :$$
 Fourier transform: $\cos^{N}(t/\sqrt{N})$
$$\approx \lim_{n \to \infty} \cos^{n}(t/\sqrt{n}) \stackrel{!}{=} e^{-t^{2}/2}$$

Fourier transform:
$$\cos^N(t/\sqrt{N})$$

$$\approx \lim_{n\to\infty} \; \cos^n(t/\sqrt{n}) \; = \; e^{-t^2/2}$$

$$X = D_N/\sqrt{N}$$
:

Fourier transform: $\cos^N(t/\sqrt{N})$

$$\approx \lim_{n \to \infty} \cos^n(t/\sqrt{n}) = e^{-t^2/2}$$

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$. Then Z is "close" to X. Inverse Fourier Transform

Easier problem after restatement:

Compute the probability that

$$-1 < X < 1$$
.

Compute the probability that -1 < Z < 1.

$$Z$$
:

$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$
 infinitesimal

Do this for all $x \in \mathbb{R}$

∃ RV Z with this dist.

NOTES

Mistake:

$$\int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2\pi}$$

$$D_2 \in \{2,0,-2\}$$
 distribution supported on three points $D_N \in \{-N,-N+2,\dots,N-2,N\}$

distribution supported on N+1 points

By contrast, the distribution of Z does not have finite support.

$$Z$$
:
$$\frac{1}{\sqrt{2\pi}} \, e^{-x^2/2} \, dx - x$$
 Do this for all $x \in \mathbb{R}$

Problem: Compute the probability that

$$Z = 7$$

Solution:
$$\int_{7}^{7} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 0$$

$$Z: \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x$$
 Do this for all $x \in \mathbb{R}$

Problem: Compute the probability that 2 < Z < 3

Solution:
$$\int_{2}^{3} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = [\Phi(x)]_{x=2}^{x=3}$$
$$= \Phi(3) - \Phi(2) = 0.0214$$
$$= 2.14\%$$

$$Z: \xrightarrow{1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x \qquad z^x - \text{Do this for } all \ x \in \mathbb{R}$$

Generating function:

$$\int_{-\infty}^{\infty} z^{x} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = \text{Exercise}$$

Fourier transform:

transform: Verify for
$$t = 3$$
.
$$\int_{-\infty}^{\infty} e^{-it} x \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \stackrel{!}{=} e^{-t^2/2}$$

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$. Then Z is "close" to X.

$$\overset{Z}{X} : \frac{1}{\sqrt{2\pi}} \, e^{-x^2/2} \, dx - x \qquad z^x \qquad \text{Do this for all } x \in \mathbb{R}$$

Exercise:
$$\int_{-\infty}^{\infty} e^{-3ix} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = e^{-3^2/2}$$

Fourier transform: Verify for
$$t = 3$$
.
$$\int_{-\infty}^{\infty} e^{-itx} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = e^{-t^2/2}$$

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$. Then Z is "close" to X.

$$Z: \underbrace{\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx}_{x} - x = x$$

$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$= x$$

$$z^x$$

$$= x$$

$$z^x$$

$$= x$$

$$z^x$$

$$= x$$

Easier problem after restatement:

Compute the probability that -1 < X < 1.

Approximately equal to the probability that -1 < Z < 1.

Approximate solution:

Berry-Esseen Theorem

$$\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = [\Phi(x)]_{x=-1}^{x=1}$$
= 68.27%

Compute the expected value of $f(u^H d^T)$.

Coin-flipping game: Flip a fair coin/N times. If H heads and T tails, pay $f(u^H d^T)$, 30 days from now.

 $ho^N P = \text{expected payout} = : E = ???$ $P = \rho^{-N} E = (1 + \iota)^{-N} E$ = discounted expected payout

 $\iota := 0.00000001$

$$f(S) = (5000S - 5000)_{+}$$

Compute the expected value of $f(u^H d^T)$.

New easier problem:

Compute the expected value of $f(D_2)$.

Define:
$$g(S) = 5e^{S} + S^{2}$$

Compute the expected value of $f(u^H d^T)$.

New easier problem:

Compute the expected value of $g(D_2)$.

$$D_2 = H_2 - T_2$$
:
 $0.25 - 2$
 $g(2)$
 $0.5 - 0$
 $g(0)$
 $0.25 - 2$
 $g(-2)$

$$[0.25][g(2)] + [0.5][g(0)] + [0.25][g(-2)] = Exercise$$

Recall: $f(S) = (5000S - 5000)_{+}$

Goal:

Compute the expected value of $f(u^H d^T)$.

New easier problem:

Compute the expected value of f(Z).

Z:
$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x \quad f(x) \quad \text{Do this for}$$

$$\frac{all \ x \in \mathbb{R}}{\sqrt{2\pi}}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [f(x)] e^{-x^2/2} dx = \text{exercise}_{31}$$

Recall: $f(S) = (5000S - 5000)_{+}$

Goal:

Compute the expected value of $f(u^H d^T)$.

New easier problem:

Compute the expected value of f(X).

$$X$$
:
$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x \quad f(x) \quad \text{Do this for all } x \in \mathbb{R}$$

$$\int_{-\infty}^{\infty} [f(x)] \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$f(x) = (5000x - 5000)_{+}$$
Approx. Sol'n:
$$\int_{-\infty}^{\infty} f(x) e^{-x^2/2} dx = \text{exercise}_{32}$$

Recall:
$$f(S) = (5000S - 5000)_{+}$$
 as expr.s of X

Compute the expected value of $f(u^H d^T)$.

New easier problem:

Compute the expected value of q(X).

Approx.
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [g(x)] e^{-x^2/2} dx$$

Recall:
$$f(S) = (5000S - 5000)_+$$
 as expr.s of X Goal:

Compute the expected value of $f(u^H d^T)$.

New easier problem:

Compute the expected value of g(X).

$$X = \frac{(H - T)/\sqrt{N}}{N}$$

$$N = 2,592,000$$

$$H + T = N$$

$$H - T = X\sqrt{N}$$

$$N = 2,592,000$$

$$H + T = N$$

$$H + T = N$$

$$H + T = N$$

$$M +$$

Approx.
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [g(x)] e^{-x^2/2} dx$$

Recall:
$$f(S) = (5000S - 5000)_{+}$$
 as expr.s of X Goal:

Compute the expected value of $f(u^H d^T)$

New easier problem:

Compute the expected value of q(X).

$$H = N/2 + X\sqrt{N}/2 \qquad T = N/2 - X\sqrt{N}/2$$

$$u^{H} = u^{N/2}u^{X\sqrt{N}/2} \qquad d^{T} = d^{N/2}d^{-X\sqrt{N}/2}$$

$$u^{H}d^{T} = N : = 30 \times 24 \times 60 \times 60 = 2,592,000$$

$$2H = N + X\sqrt{N}$$

$$2T = N - X\sqrt{N}$$

$$2H = N + X\sqrt{N}$$

$$2T = N$$

Approx.
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [g(x)] e^{-x^2/2} dx$$

Recall:
$$f(S) = (5000S - 5000)_{+}$$

Compute the expected value of $f(u^H d^T)$.

New easier problem:

Compute the expected value of g(X).

Recall:
$$f(S) = (5000S - 5000)_{+}$$

Goal:

Compute the expected value of $f(u^H d^T)$.

New easier problem:

Compute the expected value of g(X).

$$f(u^{H}d^{T}) = f(Ce^{kX}) = g(X)$$

$$g(x) := f(Ce^{kx})$$

$$u^{H}d^{T} = u^{N/2} d^{N/2} u^{X\sqrt{N}/2} d^{-X\sqrt{N}/2}$$

$$= (ud)^{N/2} (u/d)^{X\sqrt{N}/2} C := (ud)^{N/2}$$

$$= C e^{kX} k := \ln((u/d)^{\sqrt{N}/2})$$

Approx.
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [g(x)] e^{-x^2/2} dx$$

Recall:
$$f(S) = (5000S - 5000)_{+}$$

Goal:

Compute the expected value of $f(u^H d^T)$. Restatement of goal:

Compute the expected value of g(X).

$$f(u^H d^T) = f(Ce^{kX}) = g(X)$$

$$g(x) := f(Ce^{kx})$$

$$u^{H}d^{T} = u^{N/2} d^{N/2} u^{X\sqrt{N}/2} d^{-X\sqrt{N}/2}$$

$$= (ud)^{N/2} (u/d)^{X\sqrt{N}/2} C := (ud)^{N/2}$$

$$= C e^{kX} k := \ln((u/d)^{\sqrt{N}/2})$$

Approx. Sol'n:
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [g(x)] e^{-x^2/2} dx$$

Recall:
$$f(S) = (5000S - 5000)_{+}$$

 $= 5000(S - 1)_{+}$
 $g(x) := f(Ce^{kx}) = 5000(Ce^{kx} - 1)_{+}$ reasonable??
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.0573390439
 0.05739998999
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.05733904
 0.0573

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} 5000 (Ce^{kx} - 1)_{+} e^{-x^{2}/2} dx$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} 5000 (Ce^{kx} - 1)_{+} e^{-x^{2}/2} dx$$

$$= \frac{5000}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (Ce^{kx} - 1)_{+} e^{-x^{2}/2} dx$$

$$= \frac{5000}{\sqrt{2\pi}} \int_{a}^{\infty} (Ce^{kx} - 1)_{+} e^{-x^{2}/2} dx$$

$$Ce^{ka} - 1 = 0$$

$$Ce^{ka} = 1$$

$$e^{ka} = 1/C$$

$$ka = \ln(1/C) = -\ln C$$

$$A = -(\ln C)/k$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} 5000 (Ce^{kx} - 1)_{+} e^{-x^{2}/2} dx$$

$$= \frac{5000}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (Ce^{kx} - 1)_{+} e^{-x^{2}/2} dx$$

$$= \frac{5000}{\sqrt{2\pi}} \int_{a}^{\infty} (Ce^{kx} - 1) e^{-x^{2}/2} dx$$

$$= \frac{5000}{\sqrt{2\pi}} \left[C \int_{a}^{\infty} e^{kx} e^{-x^{2}/2} dx - \int_{a}^{\infty} e^{-x^{2}/2} dx \right]$$

$$a = -(\ln C)/k$$

$$= \frac{\sqrt{2\pi} \Phi(-a)}{\sqrt{2\pi}} \left[C \int_a^{\infty} e^{kx} e^{-x^2/2} dx - \int_a^{\infty} e^{-x^2/2} dx \right]$$

$$= \frac{5000}{\sqrt{2\pi}} \left[C \int_a^{\infty} e^{kx} e^{-x^2/2} dx - \int_a^{\infty} e^{-x^2/2} dx \right]$$

$$a = -(\ln C)/k$$

$$= \frac{5000}{\sqrt{2\pi}} \left[C \int_{a}^{\infty} e^{kx} e^{-x^2/2} dx - \int_{a}^{\infty} e^{-x^2/2} dx \right]$$

$$= \frac{5000}{\sqrt{2\pi}} \left[C \int_{a}^{\infty} e^{kx} e^{-x^2/2} dx - \int_{a}^{\infty} e^{-x^2/2} dx \right]$$

$$= \frac{e^{k(x+k)} e^{-(x+k)^2/2} dx}{e^{k(x+k)} e^{-(x+k)^2/2} e^{-kx}}$$

$$= e^{k^2/2} \int_{a-k}^{\infty} e^{-x^2/2} dx$$

$$= e^{$$

$$a = -(\ln C)/k$$

$$= \frac{5000}{\sqrt{2\pi}} \left[C \int_{a}^{\infty} e^{kx} e^{-x^{2}/2} dx - \int_{a}^{\infty} e^{-x^{2}/2} dx \right]$$

$$= \frac{5000}{\sqrt{2\pi}} \left[C \int_{a}^{\infty} e^{kx} e^{-x^{2}/2} dx - \int_{a}^{\infty} e^{-x^{2}/2} dx \right]$$

$$= \frac{1}{\sqrt{2\pi}} \frac{e^{k(x+k)} e^{-(x+k)^{2}/2} dx}{e^{k^{2}} e^{-x^{2}/2} e^{-k^{2}/2}}$$

$$= \frac{e^{k^{2}/2}}{\sqrt{2\pi}} \Phi(k-a)$$

$$a = -(\ln C)/k$$

$$= \frac{\sqrt{2\pi} \Phi(-a)}{\sqrt{2\pi}} \left[C \int_{a}^{\infty} e^{kx} e^{-x^{2}/2} dx - \int_{a}^{\infty} e^{-x^{2}/2} dx \right]$$

$$e^{k^2/2}\sqrt{2\pi}\Phi(k-a)$$

$$= \frac{5000}{\sqrt{2\pi}} \left[C \int_{a}^{\infty} e^{kx} e^{-x^{2}/2} dx - \int_{a}^{\infty} e^{-x^{2}/2} dx \right]$$

$$= e^{k^{2}/2} \sqrt{2\pi} \Phi(k-a)$$

$$= 5000 \begin{bmatrix} C e^{k^2/2} [\Phi(k-a)] & 0.01653528434 \\ C e^{k^2/2} [\Phi(k-a)] & - [\Phi(-a)] \end{bmatrix}$$

$$= 121.0704439 \begin{cases} a = -0.01653528434 \\ k = 0.0573390439 \\ C = 1.000948567 \end{cases}$$

$$a = -(\ln C)/k$$

Coin-flipping game: Flip a fair coin N times. If H heads and T tails, pay $f(u^Hd^T)$, 30 days from now. $\rho^N P = \underline{\text{expected payout}} =: \underline{E = ???}$

$$ho^N P = \underset{P}{\operatorname{expected}}$$
 payout $=: E = ???$
 $P = \rho^{-N} E = (1 + \iota)^{-N} E$
 $= \underset{\text{discounted expected payout}}{\operatorname{expected}}$

1.00000001

$$P = \rho^{-N}E \approx 120.7570357$$

$$E \approx 121.0704439$$

$$\rho^{-N} = 0.997411356$$

$$N := 30 \times 24 \times 60 \times 60 = 2,592,000$$

$$K = 5000$$

"at the money"
$$\mu = 0.003917149457$$

$$K' := K/e^r = 4987.056782$$

$$\sigma = 0.057338217$$

$$d_{\pm} := \frac{\ln(S_0/K')}{\sigma} \pm \frac{\sigma}{2}$$

$$e^r = 1.002595362$$

$$S_0 = 5000$$

$$= \frac{0.002592000333}{0.057338217} \pm 0.028669108$$

$$d_{+} = 0.073874565$$

$$d_{-} = 0.016536349$$

$$\Phi(d_+) = 0.52944$$

$$\Phi(d_{-}) = 0.50660$$

Black-Scholes Option Pricing Formula

Black-Scholes Price =
$$S_0[\Phi(d_+)] - K'[\Phi(d_-)]$$

$$= [5000][0.52944] - [4987.056782][0.5066]$$

$$=120.7570357$$

drift (μ) unused!!

QUESTIONS? COMMENTS?