Professors and Grants

1. Introduction

This note is intended as a compliment and complement to B. Zhang’s very enjoyable “Coconuts and Islanders”, which motivates the Boltzmann distribution in the case where every nonnegative integer is a possible energy-level.

Here, our initial focus is, instead, on Boltzmann distributions where 0 and 1 and 10 are the only possible energy-levels.

Taking our cue from “Coconuts and Islanders”, we motivate by story.

From §3 to §13, we analyze three systems for dispensing grant money to \(N \) professors.

Congress allocates \(N \) dollars to award to the \(N \) professors.

The grant rules stipulate: each professor receives \($0 \) or \($1 \) or \($10 \).

Each professor is identified by a number, from 1 to \(N \).

By a dispensation, we mean a full complement of awards, with a specific amount (\($0 \) or \($1 \) or \($10 \)) to Professor\#1, a specific amount (\($0 \) or \($1 \) or \($10 \)) to Professor\#2, etc., up to and including Professor\#\(N \), such that the total of the awards is the \($N \) allocated by Congress.

The first system (see §3) for awarding grants is very simple:

There are many possible dispensations, and, among all of them, one is selected randomly, giving equal probability to each possible dispensation.

The main problem is to figure out:

Using this first system, for a given professor, what is the probability of being awarded \($0 \)? \($1 \)? \($10 \)?

Later (see §5), we describe second and third probabilistic award systems.

Each of these systems depends on three parameters \(p, q, r \) satisfying \(p, q, r > 0 \) and \(p + q + r = 1 = q + 10r \).

The second system uses an iid system of random-variables, \(X_1, \ldots, X_N \) such that, \[\forall \ell, \quad \Pr[X_\ell = 0] = p, \]
\[\Pr[X_\ell = 1] = q, \]
\[\Pr[X_\ell = 10] = r. \]
Pr[X_\ell = 10] = r.

For all \ell, the second system awards \(X_\ell \) dollars to Professor\#\(\ell \).
The total dollar payout \(X_1 + \cdots + X_N \) is then random;
if \(X_1 = \cdots = X_N = 0 \), it could be as small as 0 dollars,
and if \(X_1 = \cdots = X_N = 10 \), it could be as large as \(10N \) dollars.

The third system is obtained from the second
by conditioning on the event \(X_1 + \cdots + X_N = N \),
so that the total payout is exactly the N allocated by Congress.

KEY POINT: With exactly the right choice of \(p, q, r \),
the first and third systems are shown to be equivalent.

In §6 and §7, we show that this parameter choice is Boltzmann,
meaning: \((p, q, r)\) is, for some real number \(\beta \),
a scalar multiple of \((e^{-\beta} , e^{-\beta} , e^{-10\beta}) \).
That is, \(\exists \beta, C \in \mathbb{R} \) s.t. \((p, q, r) = (C , Ce^{-\beta} , Ce^{-10\beta}) \).

The second and third systems are
accessible by basic tools of probability theory,
while our main problem involves the first system.
However, once we know the first and third systems are equivalent,
we can bring these probabilistic tools to bear on the main problem.

Thanks to J. Steif, for pointing out to me that
the Discrete Local Limit Theorem, which is described in §10,
is the right tool for the main problem, which is solved in §13.

Boltzmann distributions are often motivated by entropy, but,
from our perspective,
what’s special about \((p, q, r) = (C, Ce^{-\beta}, Ce^{-10\beta})\) is:
For any \(i, j, k \geq 0\), we have
\(p^i q^j r^k = C^{i+j+k} . e^{-\beta(j+10k)} \),
so \(p^i q^j r^k \) depends only on: \(i + j + k \) and \(j + 10k \).

In the third system of grant awards,
there exists a normalizing constant \(S > 0 \) s.t.,
for any dispensation in which
\(i \) professors receive $ 0,
\(j \) professors receive $ 1,
\(k \) professors receive $10,
the probability of that dispensation is \(p^i q^j r^k / S \),
which is equal to $C^{i+j+k} \cdot e^{-\beta(j+10k)}/S$.

That probability, then, depends only on

$$i + j + k,$$

which is the number of professors,

and

$$j + 10k,$$

which is the total dollar payout.

So, since the number of professors is N

and the total dollar payout is also N,

we conclude: each award-dispensation has probability $C^N \cdot e^{-\beta \cdot N}/S$,

so they are all equally likely, which exactly describes the first system.

Therefore, under the Boltzmann assumption,

the first and third systems are equivalent.

In §15, we expose the inequitablity of the first system.

In fact, assuming N is sufficiently large, we show, in §15, that:

with probability $> 99\%$, over half of the professors receive $\$0$.

Thanks to V. Reiner for suggesting

applying Chebyshev’s inequality to a sum of indicator variables,

to transition from individual statistics to population statistics.

In §16 and §17 and §18, we extend the theory to handle cases

where the award-sets are finite sets of rational numbers.

In §19, we show that

irrational award amounts can lead to non-Boltzmann statistics.

In §20 and §21 and §22, we extend our earlier results to include
degenerate energy-levels, with a finite set of states.

In §23 through §27, we extend these results further to include
cases that involve a countably infinite set of states.

Thanks to C. Prouty for help with many calculations.

For some of his Python code, see §28.

2. Some notation

A box around an expression indicates that it is global,

meaning that it is fixed to the end of these notes.

Unboxed variables are freed at the end of each section, if not earlier.

Let $\mathbb{R}^* := \mathbb{R} \cup \{\infty\}$, $\mathbb{Z}^* := \mathbb{Z} \cup \{\infty\}$.

For any $s, t \in \mathbb{R}^*$, let

$$(s; t) := \{x \in \mathbb{R}^* | s < x < t\}, \quad [s; t) := \{x \in \mathbb{R}^* | s \leq x < t\},$$
\[
\begin{align*}
(s; t) &:= \{x \in \mathbb{R}^* \mid s < x \leq t\}, \\
[s; t] &:= \{x \in \mathbb{R}^* \mid s \leq x \leq t\}.
\end{align*}
\]

For any \(s, t \in \mathbb{R}^*\), let
\[
\begin{align*}
(s..t) &:= (s; t) \cap \mathbb{Z}^*, \\
[s..t] &:= [s; t] \cap \mathbb{Z}^*.
\end{align*}
\]

Let \(\mathbb{N} := [1..\infty)\) be the set of positive integers.

For any finite set \(F\), let \(\#F\) be the number of elements in \(F\).

For any infinite set \(F\), let \(\#F := \infty\). Then \(\#\mathbb{Z} = \infty = \#\mathbb{R}\).

For all \(t \in \mathbb{R}\), let \([t]\) := \(\max\{n \in \mathbb{N} \mid n \leq t\}\) be the floor of \(t\).

For any sets \(S, T\), let \(f: S \to T\), the image of \(f\) is:
\[
\Im[f] := \{f(x) \mid x \in S\} \subseteq T.
\]

For any sets \(S, T\), for any function \(f: S \to T\),

for any set \(A\), we define:
\[
f^*A := \{x \in S \mid f(x) \in A\}.
\]

By convention, in these notes, we define \(0^0 := 1\).

By “\(C^\omega\)” we mean: “real-analytic”.

Fix an element of \(\{z \in \mathbb{C} \mid z^2 = -1\}\) and denote it by \(\sqrt{-1}\).

Define \(\Re: \mathbb{C} \to \mathbb{R}\) and \(\Im: \mathbb{C} \to \mathbb{R}\) by:
\[
\forall x, y \in \mathbb{R}, \quad \Re(x + y\sqrt{-1}) = x \quad \text{and} \quad \Im(x + y\sqrt{-1}) = y.
\]

3. First system of grant awards

Let \(\mathbb{N} \in \mathbb{N}\). Think of \(N\) as large.

Whenever we need to

formulate and prove precise mathematical statements,

we will “pass to the thermodynamic limit”, which means:

we replace \(N\) by a variable \(n \in \mathbb{N}\), and let \(n \to \infty\).

((Alternatively, within nonstandard analysis, the variable \(N\)

could be taken as an infinite integer,

and the various approximations involving \(N\),

could be taken as equality-modulo-infinitesimals.))

Suppose there are \(N\) professors, numbered 1 to \(N\),

who apply, once per year, to the GFA (Grant Funding Agency),

seeking funding for the very important work they are doing.

Each year, Congress authorizes \(\$N\) for the GFA to dispense

to the \(N\) professors.

The GFA has the rule: every award is 0 or 1 or 10 dollars.

The set of grant-dispensations is represented by:
\[
\Omega := \big\{ \omega: [1..N] \to \{0, 1, 10\} \mid \sum_{t=1}^{N} \lfloor \omega(t) \rfloor = N \big\}.
\]
The GFA has set aside \(#\Omega \) pieces of paper, and has written down all possible dispensations, one on each piece of paper.

So, for example, there is a piece of paper that says:

Professors 1 to \(N \) each get \(\$1 \).

Another piece of paper says:

Professors 1 to \(N - 10 \) each get \(\$1 \) and
Professors \(N - 9 \) to \(N - 1 \) each get \(\$0 \) and
Professor \(N \) gets \(\$10 \).

Since \(N \) is large, it follows that \(#\Omega \) is large, and so there are many, many, many other pieces of paper.

Each year, a GFA bureaucrat places all the pieces of paper in a big bin, then selects one at random and makes the awards as indicated on that piece of paper.

Under this \textbf{first system} of awarding grants, we have:

\[\forall \omega \in \Omega, \quad \text{the probability that the selected grant-dispensation is } \omega \text{ is equal to } \frac{1}{(#\Omega)}. \]

Suppose I am one of the professors. Here is our \textbf{main problem}:

Calculate my probability of getting \(\$0 \).
Then calculate my probability of getting \(\$1 \).
Then calculate my probability of getting \(\$10 \).

Approximate answers are acceptable.

In §5 to §13 of this note, we reformulate and then solve this problem.

\textbf{Spoiler:} It’s a Boltzmann distribution, approximately.

\section*{4. Particles and energy}

Recall that \(N \in \mathbb{N} \). Think of \(N \) as large.

Suppose there are \(N \) particles, numbered 1 to \(N \), each of which has a certain amount of energy.

Suppose the total energy is \(N \), dispensed among the \(N \) particles.

Suppose physicists have somehow determined that, for any particle, its possible energy-levels are: 0 or 1 or 10.

Recall:

\[\Omega = \left\{ \omega : [1..N] \to \{0, 1, 10\} \mid \sum_{\ell=1}^{N} [\omega(\ell)] = N \right\}. \]

Then \(\Omega \) represents the set of energy-dispensations.
Assume that physicists have somehow determined
that this system of particles has a random energy-dispensation
and that all energy-dispensations in Ω are equally probable.
That is, physicists tell us:
\[\forall \omega \in \Omega, \quad \text{the probability that the energy-dispensation is } \omega \]
\[\text{is equal to } \frac{1}{\#\Omega}. \]
The equal probability of all energy-dispensations
is a recurring theme in microcanonical-ensemble thermodynamics,
and can often be motivated through
rules of random energy transfer between random pairs of particles.
For examples of this, either see §20 below or
search for “Coconuts and Islanders” by B. Zhang,
and, in particular, see the work leading up to
the last paragraph of §3.2 therein.
In §20 below,
instead of particles exchanging energy,
there are professors exchanging dollars,
but the principle is exactly the same.
In Zhang’s exposition,
instead of particles exchanging energy,
there are islanders exchanging coconuts,
but the principle is exactly the same.

Returning to our N particles, pick any one of them.
Problem: Calculate its probability of having energy-level 0.
Then calculate its probability of having energy-level 1.
Then calculate its probability of having energy-level 10.
Approximate answers are acceptable.
Spoiler: It’s a Boltzmann distribution, approximately.

Except for terminology, this problem is the same as
the main problem (end of §3) about professors and grants.
We will go back to professors and grants.
Mathematically it makes no difference, but it’s more fun.
5. Second and Third Systems of Grant Awards

In an effort to go paperless, the GFA changes to a new system: In this **second system**, instead of all those pieces of paper, the GFA chooses $p, q, r > 0$ s.t. $p + q + r = 1,$ and then, for each of the N professors,

- awards $\$0$ with probability p,
- $\$1$ with probability q,
- $\$10$ with probability r.

No professor’s award depends in any way on any other professor’s; the awards are independent.

The expected payout, for any professor, is $p \cdot 0 + q \cdot 1 + r \cdot 10$ dollars. Under this second system,

there is no guarantee that the total payout will be $\$N,$ which is a difficulty that we will discuss later.

However, recognizing that the average award is intended to be $\$1,$

the GFA chooses the numbers p, q, r subject to the constraint that

$$p \cdot 0 + q \cdot 1 + r \cdot 10 = 1,$$

i.e., $q + 10r = 1$.

For each function $\omega : [1..N] \rightarrow \{0, 1, 10\}$, let

- $i_\omega := \# \{ \ell \in [1..N] \mid \omega(\ell) = 0 \}$,
- $j_\omega := \# \{ \ell \in [1..N] \mid \omega(\ell) = 1 \}$,
- $k_\omega := \# \{ \ell \in [1..N] \mid \omega(\ell) = 10 \}$;

that is, i_ω is the number of professors awarded $\$0$ and j_ω is the number of professors awarded $\$1$ and k_ω is the number of professors awarded $\$10$.

Then, $\forall \omega : [1..N] \rightarrow \{0, 1, 10\}$, we have:

the total number of awards is $i_\omega + j_\omega + k_\omega$
and the total dollar payout is $i_\omega \cdot 0 + j_\omega \cdot 1 + k_\omega \cdot 10$,

i.e., $j_\omega + 10k_\omega$.

Then, $\forall \omega : [1..N] \rightarrow \{0, 1, 10\}$, we have:

$$i_\omega + j_\omega + k_\omega = N$$
and $j_\omega + 10k_\omega = \sum_{\ell=1}^{N} [\omega(\ell)]$.

Recall: $\Omega = \left\{ \omega : [1..N] \rightarrow \{0, 1, 10\} \mid \sum_{\ell=1}^{N} [\omega(\ell)] = N \right\}$.

That is, Ω is the set of all payout functions

$\omega : [1..N] \rightarrow \{0, 1, 10\}$

s.t. the total dollar payout is N.

Then: $\forall \omega : [1..N] \rightarrow \{0, 1, 10\}$, we have:

$$\omega \in \Omega \quad \Rightarrow \quad j_\omega + 10k_\omega = N.$$
For every $i, j, k \in [0..N]$,

if $i + j + k = N$ and $j + 10k = N$,
then $\exists \omega \in \Omega$ s.t. $(i, j, k) = (i_\omega, j_\omega, k_\omega)$;

indeed, one such $\omega : [1..N] \rightarrow \{0, 1, 10\}$ is described by:

$\omega = 0$ on $[1..i]$, $\omega = 1$ on $(i..i+j)$, $\omega = 10$ on $(i+j..N]$.

Let $A := \{(i_\omega, j_\omega, k_\omega) | \omega \in \Omega\}$. Then A is the set of all (i, j, k) s.t. $i, j, k \in [0..N]$ and $i + j + k = N$ and $j + 10k = N$.

Under the second system,

- each $\$ 0 award happens with probability p
- each $\$ 1 award happens with probability q
- each $\$10 award happens with probability r.

So, $\forall \omega : [1..N] \rightarrow \{0, 1, 10\}$, under the second system, the probability that the grant-dispensation is equal to ω
is $p^\omega q^{i_\omega} r^{k_\omega}$.

Let $S := \sum_{\omega \in \Omega} p^\omega q^{i_\omega} r^{k_\omega}$. Then S is the probability (using the second system) that $\omega \in \Omega$,
i.e., the probability that the total payout is exactly N dollars.

Assuming N is large, it turns out that S is close to zero.

So, under this second system, the probability of paying out exactly N dollars is very small.

Congress only allocates $\$N per year for the N professors.

So, using this second system, each year, with probability $1 - S \approx 1$, the GFA will run a surplus or a deficit.

On the other hand, since $q + 10r = 1$, we see that, each year, the expected payout is $\$1 per professor, so, each year, the expected total payout is $\$N$.

So these surpluses and deficits should, over time, cancel one another.

Unfortunately, Congress is a paragon of fiscal responsibility, and, as soon as it finds out about the GFA’s second system, it insists that the GFA never again underspend or overspend.

So the GFA changes its system one more time, as follows.

Under its third system, each year, before announcing any of the awards publicly, the GFA writes out, in an internal memo,
a tentative proposal of awards that, independently, for each of the N professors,
awards 0 with probability p, 1 with probability q, 10 with probability r.

If the memo’s total award payout is NOT equal to N, the GFA deems the memo as unacceptable, deletes it, and starts over, making memo after memo, until an acceptable one (meaning payout exactly N) appears. Each memo has a probability S of being acceptable, so, each year, the GFA will likely need to repeat the memo process many times to get to a memo with total payout exactly equal to N.

However, as soon as that happens, the GFA uses that first acceptable memo, and publicizes its dispensation of awards. Mathematically, we are conditioning on the event $\omega \in \Omega$.

So, using the third system, the probability that $\omega \notin \Omega$ is 0.

Also, for this third system, $\forall \omega \in \Omega$, the probability of ω is $p^{i_\omega} q^{j_\omega} r^{k_\omega} / S$.

The sum of these probabilities is 1:

$$\sum_{\omega \in \Omega} \frac{p^{i_\omega} q^{j_\omega} r^{k_\omega}}{S} = \frac{1}{S} \sum_{\omega \in \Omega} p^{i_\omega} q^{j_\omega} r^{k_\omega} = \frac{1}{S} \cdot S = 1.$$

This third system is not necessarily equivalent to the first, because in the first system, all the probabilities were $1/(\#\Omega)$, whereas, in the third system, they are $p^{i_\omega} q^{j_\omega} r^{k_\omega} / S$.

So a **new question** arises:

Is it possible to choose $p, q, r > 0$ in such a way that

$$p + q + r = 1 \quad \text{and} \quad q + 10r = 1 \quad \text{and} \quad \forall \omega \in \Omega, \quad p^{i_\omega} q^{j_\omega} r^{k_\omega} / S = 1/(\#\Omega)?$$

If yes, then, using that (p, q, r), the first and third systems are equivalent.

We will see that the answer to this new question, in fact, is yes.

In the next two sections, assuming $N \geq 10$, we will show how to compute the only (p, q, r) that works.

Spoiler: It’s a Boltzmann distribution, exactly.

6. Computing p, q, r à la Boltzmann

As in the preceding section, let $p, q, r > 0$, $S := \sum_{\omega \in \Omega} p^{i_\omega} q^{j_\omega} r^{k_\omega}$.

We assume: $p + q + r = 1$ and $q + 10r = 1$.

We also assume: $\forall \omega \in \Omega, \quad p^{i_\omega} q^{j_\omega} r^{k_\omega} / S = 1/(\#\Omega)$.

We will prove that, if $N \geq 10$, then there is at most one (p, q, r) that satisfies these conditions, specifically, $(p, q, r) = (1, 9^{-1/10}, 9^{-1})$.

Define the dot product, \circ, on \mathbb{R}^3, by:
$$\forall x, y, z, X, Y, Z \in \mathbb{R}, \quad (x, y, z) \circ (X, Y, Z) = xX + yY + zZ.$$ For all $u \in \mathbb{R}^3$, let $u^\perp := \{ v \in \mathbb{R}^3 \mid u \circ v = 0 \}$; then u^\perp is a vector subspace of \mathbb{R}^3.

Also, $\forall u \in \mathbb{R}^3$, $u \in u^\perp$.

For all $U \subseteq \mathbb{R}^3$, let $U^\perp := \{ v \in \mathbb{R}^3 \mid \forall u \in U, u \circ v = 0 \}$; then U^\perp is a vector subspace of \mathbb{R}^3.

Also, $\forall t \in \mathbb{R}^3$, $\forall U \subseteq \mathbb{R}^3$, $(t \in U) \Rightarrow (t^\perp \supseteq U^\perp)$.

Also, $\forall T, U \subseteq \mathbb{R}^3$, $(T \subseteq U) \Rightarrow (T^\perp \supseteq U^\perp)$.

For all $u, v \in \mathbb{R}^3$, let $\langle u, v \rangle_{\text{span}}$ denote the \mathbb{R}-span of $\{u, v\}$, i.e.,
$$\langle u, v \rangle_{\text{span}} := \{ su + tv \mid s, t \in \mathbb{R} \};$$ then $\langle u, v \rangle_{\text{span}}$ is a vector subspace of \mathbb{R}^3.

Recall (§3): $\Omega = \left\{ \omega : [1..N] \rightarrow \{0, 1, 10\} \mid \sum_{t=1}^{N} [\omega(t)] = N \right\}$.

Recall (§5): $A = \{(i_\omega, j_\omega, k_\omega) \mid \omega \in \Omega\}$.

Recall (§5): A is the set of all (i, j, k) s.t. $i, j, k \in [0..N]$ and $i + j + k = N$ and $j + 10k = N$.

Then: A is the set of all (i, j, k) s.t. $i, j, k \in [0..N]$ and $(1, 1, 1) \circ (i, j, k) = N$ and $(0, 1, 10) \circ (i, j, k) = N$.

For all $a, b \in A$, we have

$$(1, 1, 1) \circ a = N = (1, 1, 1) \circ b \quad \text{and} \quad (0, 1, 10) \circ a = N = (0, 1, 10) \circ b,$$

so we get

$$(1, 1, 1) \circ (a - b) = 0 \quad \text{and} \quad (0, 1, 10) \circ (a - b) = 0,$$

so $a - b \in (1, 1, 1)^\perp \cap (0, 1, 10)^\perp$.

Let $V := (1, 1, 1)^\perp \cap (0, 1, 10)^\perp$.

Then: $\forall a, b \in A$, $a - b \in V$.

Let $D := \{ a - b \mid a, b \in A \}$. Then $D \subseteq V$.

Also, we have: $V \subseteq (1, 1, 1)^\perp$ and $V \subseteq (0, 1, 10)^\perp$.

Then: $V^\perp \supseteq (1, 1, 1)^{\perp\perp}$ and $V^\perp \supseteq (0, 1, 10)^{\perp\perp}$.

Since $(1, 1, 1) \in (1, 1, 1)^{\perp\perp} \subseteq V^\perp$ and $(0, 1, 10) \in (0, 1, 10)^{\perp\perp} \subseteq V^\perp$,

we get: $\langle (1, 1, 1), (0, 1, 10) \rangle_{\text{span}} \subseteq V^\perp$.

Let $W := \langle (1, 1, 1), (0, 1, 10) \rangle_{\text{span}}$. Then: $W \subseteq V^\perp$.

Assume $N \geq 10$. Let $a_1 := (0, N, 0)$, $a_2 := (9, N - 10, 1)$.

Then $a_1, a_2 \in A$. Let $d_1 := a_2 - a_1$. Then $d_1 \in D$.

Since $d_1 \neq (0, 0, 0)$, we get: $\dim d_1^\perp = 2$.

Since $W = \langle (1, 1, 1), (0, 1, 10) \rangle_{\text{span}}$, we get: $\dim W = 2$.

Since $d_1 \in D \subseteq V$ and $W \subseteq V^\perp$, we get: $d_1^\perp \supseteq D^\perp \supseteq V^\perp \supseteq W$.

So, since $\dim d_1^\perp = 2 = \dim W$, we get: $d_1^\perp = D^\perp = V^\perp = W$.

Then $D^\perp = W$. Recall: $\forall \omega \in \Omega, p^{i\omega q^j r^k} / S = 1/(\#\Omega)$.

So, since $A = \{(i_\omega, j_\omega, k_\omega) \mid \omega \in \Omega\}$, we get:

$$\forall(i, j, k) \in A, \quad p^{i\omega q^j r^k} / S = 1/(\#\Omega).$$

Equivalently, $\forall(i, j, k) \in A$,

$$i \cdot (\ln p) + j \cdot (\ln q) + k \cdot (\ln r) - (\ln S) = -(\ln(\#\Omega)).$$

Equivalently, $\forall(i, j, k) \in A$,

$$(i, j, k) \odot (\ln p, \ln q, \ln r) = (\ln S) - (\ln(\#\Omega)).$$

Then:

$a, b \in A$,

$$a \odot (\ln p, \ln q, \ln r) = (\ln S) - (\ln(\#\Omega)) = b \odot (\ln p, \ln q, \ln r),$$

so we get:

$$(a - b) \odot (\ln p, \ln q, \ln r) = 0.$$ Then:

$\forall d \in D, \quad d \odot (\ln p, \ln q, \ln r) = 0.$

Then:

$$(\ln p, \ln q, \ln r) \in D^\perp.$$ Since

$$(\ln p, \ln q, \ln r) \in D^\perp = W = \langle (1, 1, 1), (0, 1, 10) \rangle_{\text{span}},$$

choose a real number $C > 0$ and $\beta \in \mathbb{R}$ s.t.

$$(\ln p, \ln q, \ln r) = (\ln C) \cdot (1, 1, 1) - \beta \cdot (0, 1, 10).$$

Then

$$(\ln p, \ln q, \ln r) = (\ln C, (\ln C) - \beta, (\ln C) - 10\beta).$$

Then

$$(p, q, r) = (C, Ce^{-\beta}, Ce^{-10\beta}).$$

Then

$$(p, q, r) = C \cdot (1, e^{-\beta}, e^{-10\beta}).$$

So, since $p + q + r = 1$, we get:

$C \cdot (1 + e^{-\beta} + e^{-10\beta}) = 1.$

Then $C = \frac{1}{1 + e^{-\beta} + e^{-10\beta}}$. Then

$$(p, q, r) = \frac{(1, e^{-\beta}, e^{-10\beta})}{1 + e^{-\beta} + e^{-10\beta}}.$$

So, since $q + 10r = 1$, we get:

$e^{-\beta} + 10e^{-10\beta} = 1.$

Then

$e^{-\beta} + 10e^{-10\beta} = 1 + e^{-\beta} + e^{-10\beta}$.

Then $9e^{-10\beta} = 1$. Then $e^{-10\beta} = 9^{-1}$. Then $e^{-\beta} = 9^{-1/10}$. Then

$$(p, q, r) = \frac{(1, 9^{-1/10}, 9^{-1})}{1 + 9^{-1/10} + 9^{-1}}.$$

So this is the only (p, q, r) that can possibly work.

In the next section, we show that it does work.

7. Showing the Boltzmann p, q, r work

In this section, we prove

the converse of the result from the preceding section.
That is, we let \((p, q, r) := \left(1, 9^{-1/10}, 9^{-1}\right)\) and \(S := \sum_{\omega \in \Omega} p^{i_\omega} q^{j_\omega} r^{k_\omega}\), and we wish to show: \(p + q + r = 1\) and \(q + 10r = 1\) and
\[
\forall \omega \in \Omega, \quad p^{i_\omega} q^{j_\omega} r^{k_\omega} / S = 1 / (\#\Omega).
\]

Let \(\beta := (\ln 9) / 10\). Then \(e^{-\beta} = 9^{-1/10}\). Then \(e^{-10\beta} = 9^{-1}\).

Then \((p, q, r) = (1, e^{-\beta}, e^{-10\beta})\). Let \(C := \frac{1}{1 + e^{-\beta} + e^{-10\beta}}\).

Then \((p, q, r) = C \cdot (1, e^{-\beta}, e^{-10\beta})\). Then \((p, q, r) = (C, C e^{-\beta}, C e^{-10\beta})\).

Let \(K := C^N \cdot e^{-\beta \cdot N}\).

Recall \((\S3): \Omega = \left\{ \omega : [1..N] \to \{0, 1, 10\} \mid \sum_{\ell=1}^{N} [\omega(\ell)] = N \right\}\).

Claim: \(\forall \omega \in \Omega, \quad p^{i_\omega} q^{j_\omega} r^{k_\omega} = K\).

Proof of Claim: Given \(\omega \in \Omega\), want: \(p^{i_\omega} q^{j_\omega} r^{k_\omega} = K\).

Recall \((\S5): i_\omega + j_\omega + k_\omega = N\) and \(j_\omega + 10k_\omega = \sum_{\ell=1}^{N} [\omega(\ell)]\).

By definition of \(\Omega\), since \(\omega \in \Omega\), we get: \(\sum_{\ell=1}^{N} [\omega(\ell)] = N\).

Then: \(j_\omega + 10k_\omega = N\). Recall: \((p, q, r) = (C, C e^{-\beta}, C e^{-10\beta})\).

Then:
\[
\begin{align*}
p^{i_\omega} q^{j_\omega} r^{k_\omega} &= C^{i_\omega} \cdot (C e^{-\beta})^{j_\omega} \cdot (C e^{-10\beta})^{k_\omega} \\
&= C^{i_\omega + j_\omega + k_\omega} \cdot e^{-\beta \cdot (j_\omega + 10k_\omega)} = C^N \cdot e^{-\beta \cdot N} = K.
\end{align*}
\]

End of proof of Claim.

By definition of \(S\), we have: \(S = \sum_{\omega \in \Omega} p^{i_\omega} q^{j_\omega} r^{k_\omega}\).

So, by the Claim, we get: \(S = (\#\Omega) \cdot K\). Then \(K / S = 1 / (\#\Omega)\).

We have \(10 / 9 = 1 + (1/9)\). That is, \(10 \cdot 9^{-1} = 1 + 9^{-1}\).

So, since \(e^{-10\beta} = 9^{-1}\), we get: \(10 e^{-10\beta} = 1 + e^{-10\beta}\).

Then: \(e^{-\beta} + 10 e^{-10\beta} = 1 + e^{-\beta} + e^{-10\beta}\).

By definition of \(C\), we get: \(C \cdot (1 + e^{-\beta} + e^{-10\beta}) = 1\).

Recall: \((p, q, r) = C \cdot (1, e^{-\beta}, e^{-10\beta})\).

Since \(p + q + r = C \cdot (1 + e^{-\beta} + e^{-10\beta}) = 1\) and since \(q + 10r = C \cdot (e^{-\beta} + 10 e^{-10\beta}) = C \cdot (1 + e^{-\beta} + e^{-10\beta}) = 1\),

it remains only to show: \(\forall \omega \in \Omega, \quad p^{i_\omega} q^{j_\omega} r^{k_\omega} / S = 1 / (\#\Omega)\).

Given \(\omega \in \Omega\), want: \(p^{i_\omega} q^{j_\omega} r^{k_\omega} / S = 1 / (\#\Omega)\).

By the Claim, we get: \(p^{i_\omega} q^{j_\omega} r^{k_\omega} = K\).

Recall: \(K / S = 1 / (\#\Omega)\).

Then: \(p^{i_\omega} q^{j_\omega} r^{k_\omega} / S = K / S = 1 / (\#\Omega)\).
8. Infinite summation

DEFINITION 8.1. Let S be a set, and let $f : S \rightarrow [0; \infty]$. Let $\mathcal{F} := \{A \subseteq S | \#A < \infty\}$.

Then: $$\sum_{x \in S} [f(x)] := \sup_{A \in \mathcal{F}} \sum_{x \in A} [f(x)] \in [0; \infty].$$

DEFINITION 8.2. Let S be a set, and let $f : S \rightarrow \mathbb{R}$.

Assume: $\sum_{x \in S} |f(x)| < \infty$.

Then: $$\sum_{x \in S} [f(x)] := \left(\sum_{x \in S} |f(x)| \right) - \left(\sum_{x \in S} \lfloor f(x) \rfloor \right) \in \mathbb{R}.$$

Recall (§2): the notations $\Re(z)$ and $\Im(z)$.

DEFINITION 8.3. Let S be a set, and let $f : S \rightarrow \mathbb{C}$.

Assume: $\sum_{x \in S} |f(s)| < \infty$.

Then: $$\sum_{x \in S} [f(s)] := \left(\sum_{x \in S} [\Re(f(s))] \right) - \left(\sum_{x \in S} [\Im(f(s))] \right) \cdot \sqrt{-1} \in \mathbb{C}.$$

NOTE: For any set S, for any $f : S \rightarrow \mathbb{C}$, we have:

$$\left(\sum_{x \in S} |f(x)| < \infty \right) \Rightarrow \{ x \in S | f(x) \neq 0 \} \text{ is countable.}$$

THEOREM 8.4. Let S be a set. Let $S_1, S_2, \ldots \subseteq S$.

Assume: $S_1 \subseteq S_2 \subseteq \cdots$ and $S_1 \cup S_2 \cup \cdots = S$.

Let $f : S \rightarrow \mathbb{C}$. Assume: $\sum_{x \in S} |f(x)| < \infty$.

Then: as $n \rightarrow \infty$, $\sum_{x \in S_n} [f(x)] \rightarrow \sum_{x \in S} [f(x)]$.

The preceding is basic. We omit proof.

THEOREM 8.5. Let S and T be sets, $f : S \rightarrow \mathbb{R}$, $g : S \rightarrow T$.

Assume: $\sum_{x \in S} |f(x)| < \infty$.

Then: $\forall y \in T$, $\sum_{x \in g^{-1} \{y\}} |f(x)| < \infty$

and $\sum_{y \in T} | \sum_{x \in g^{-1} \{y\}} |f(x)| | < \infty$

and $\sum_{y \in T} \lfloor \sum_{x \in g^{-1} \{y\}} [f(x)] \rfloor = \sum_{x \in S} [f(x)]$.

The preceding theorem is an elementary version of Fubini’s Theorem. We omit proof.

9. Countable measure theory

By convention, in this note, any countable set is given its discrete Borel structure.
Let \(\Theta \) be a countable set. Let \(S \) be the set of subsets of \(\Theta \).

A **measure** on \(\Theta \) is a function \(\mu : S \to [0; \infty] \) such that, \(\forall \) pairwise-disjoint \(\Theta_1, \Theta_2, \ldots \subseteq \Theta \), we have:

\[
\mu(\Theta_1 \cup \Theta_2 \cup \cdots) = (\mu(\Theta_1)) + (\mu(\Theta_2)) + \cdots.
\]

A measure \(\mu \) on a countable set \(\Theta \) is completely determined by the function \(t \mapsto \mu(t) : \Theta \to [0; \infty] \), because:

\[
\forall \Theta_0 \subseteq \Theta, \quad \mu(\Theta_0) = \sum_{t \in \Theta_0} [\mu(t)].
\]

DEFINITION 9.1. Let \(\Theta \) be a countable set.

Then \(M_\Theta = \{ \mu \in M_\Theta | \mu(\Theta) < \infty \} \) denotes the set of measures on \(\Theta \), and \(FM_\Theta = \{ \mu \in M_\Theta | 0 < \mu(\Theta) < \infty \} \) is the set of finite measures on \(\Theta \), and \(FM^*_\Theta = \{ \mu \in M_\Theta | \mu(\Theta) = 1 \} \) is the set of nonzero finite measures on \(\Theta \), and \(P_\Theta \) is the set of probability measures on \(\Theta \).

The only measure on \(\emptyset \) is the zero measure.

Therefore:

\[
FM^*_\emptyset = \emptyset = P_\emptyset.
\]

DEFINITION 9.2. Let \(\Theta \) be a countable set, \(\mu \in FM_\Theta \).

Let \(n \in \mathbb{N} \). Then \(\mu^n \in FM_{\Theta^n} \) is defined by:

\[
\forall x \in \Theta^n, \quad \mu^n(x) = (\mu(x_1)) \cdots (\mu(x_n)).
\]

The following is a basic fact, whose proof we omit:

Let \(\Theta \) be a countable set, \(\mu \in FM_\Theta , \quad n \in [2, \infty) \).

Let \(Z \subseteq \Theta^n, \quad X \subseteq \Theta^{n-1} , \quad Y \subseteq \Theta \). Assume that:

under the standard bijection \(\Theta^n \longleftrightarrow \Theta^{n-1} \times \Theta \),

we have:

\[
Z \longleftrightarrow X \times Y.
\]

Then:

\[
\mu^n(Z) = (\mu^{n-1}(X)) \cdot (\mu(Y)).
\]

It is common to identify \(Z \) with \(X \times Y \), in which case we have:

\[
\mu^n(X \times Y) = (\mu^{n-1}(X)) \cdot (\mu(Y)).
\]

We also omit proof of:

Let \(\Theta \) be a countable set, \(\mu \in FM_\Theta , \quad n \in \mathbb{N} \).

Then:

\[
\mu^n(\Theta^n) = (\mu(\Theta))^n.
\]

In particular,

\[
(\mu \in P_\Theta) \Rightarrow (\mu^n \in P_{\Theta^n}).
\]
The countable sets that are of interest in this note all carry the discrete topology. We therefore define:

DEFINITION 9.3. Let Θ be a countable set, $\mu \in \mathcal{M}_\Theta$. Then the support of μ is:

$$S_\mu := \{ t \in \Theta \mid \mu\{t\} \neq 0 \}.$$

DEFINITION 9.4. Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{M}_\Theta$. Let $\rho \geq 1$ be real. Then:

$$|\mu|_\rho := (\sum_{t \in \Theta} [|t|^\rho \cdot (\mu\{t\})])^{1/\rho}.$$

Note: For countable $\Theta \subseteq \mathbb{R}$, $\forall \mu \in \mathcal{F} \mathcal{M}_\Theta$,

- if $\#S_\mu < \infty$, then: \forall real $\rho \geq 1$, $|\mu|_\rho < \infty$.

DEFINITION 9.5. Let $\Theta \subseteq \mathbb{R}$ be countable. Let $\mu \in \mathcal{P}_\Theta$. Assume: $|\mu|_1 < \infty$.

Then the mean of μ is:

$$M_\mu := \sum_{t \in \Theta} t \cdot (\mu\{t\}).$$

Also, the variance of μ is:

$$V_\mu := \sum_{t \in \Theta} (t - M_\mu)^2 \cdot (\mu\{t\}).$$

Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{P}_\Theta$. Assume: $|\mu|_1 < \infty$.

Then, by subadditivity of absolute value, we get $|M_\mu| \leq |\mu|_1$.

In particular, $|M_\mu| < \infty$, i.e., $-\infty < M_\mu < \infty$.

Also, by expanding the square in the formula for V_μ,

we get $V_\mu = |\mu|^2 - M_\mu^2$.

In particular, $(V_\mu < \infty) \iff (|\mu|^2 < \infty)$.

Let $\Theta \subseteq \mathbb{R}$ be countable and let X be a Θ-valued random-variable.

Let μ denote the distribution on Θ of X, i.e., define $\mu \in \mathcal{P}_\Theta$ by: $\forall t \in \Theta$, $\mu\{t\} = \Pr[X = t]$.

Then, for real $\rho \geq 1$, we have: $|\mu|_\rho$ is the L^ρ-norm of X.

Then, for real $\rho \geq 1$, we have: $(|\mu|_\rho < \infty) \iff (X \text{ is } L^\rho)$.

In particular, $(|\mu|_1 < \infty) \iff (X \text{ is } L^1)$.

Also, if X is L^1, then $M_\mu = \mathbb{E}[X]$ and $V_\mu = \text{Var}[X]$.

That is, if X is L^1, then M_μ is the mean (aka expected value, aka average value) of X and V_μ is the variance of X.

THEOREM 9.6. Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{P}_\Theta$.

Assume: $|\mu|_1 < \infty$. Then: $(\#S_\mu \geq 2) \iff (V_\mu > 0)$.

The preceding result is a measure-theoretic analogue of the statement: An L^1 random-variable is non-deterministic iff its variance is > 0.

We omit proof.

Because \(\forall t \in \mathbb{Z}, |t| \leq t^2 \), we conclude:

for any \(\mathbb{Z} \)-valued random-variable \(X \), \(\mathbb{E}[|X|] \leq \mathbb{E}[X^2] \).

It follows that for any \(\mathbb{Z} \)-valued \(L^2 \) random-variable \(X \), we have:

\(X \) is \(L^1 \), and so \(\mathbb{E}[X] \) is defined and finite.

Because \(\forall t \in \mathbb{Z}, |t| \leq t^2 \), we conclude:

\(\forall \Theta \subseteq \mathbb{Z}, \forall \mu \in \mathcal{M}_\Theta, \ |\mu|_1 \leq |\mu|_2 \ ; \)

it follows that if \(|\mu|_2 < \infty \), then

\[|\mu|_1 < \infty, \] and so \(M_\mu \) is defined and finite.

DEFINITION 9.7. Let \(\Theta \) be a countable set.

Let \(\mu_1, \mu_2, \ldots \in \mathcal{P}_\Theta \) and let \(\lambda \in \mathcal{P}_\Theta \).

By \(\mu_1, \mu_2, \ldots \rightarrow \lambda \), we mean: \(\forall \Theta_0 \subseteq \Theta, \mu_1(\Theta_0), \mu_2(\Theta_0), \ldots \rightarrow \lambda(\Theta_0) \).

Recall (§2): \(\forall \) function \(f \), the notation: \(\mathbb{I}_f \).

Recall (§2): \(\forall \) function \(f \), \(\forall \) set \(A \), the notation: \(f^*A \).

For any countable set \(S \), for any set \(T \),

for any function \(f : S \rightarrow T \), for any \(\mu \in \mathcal{M}_S \),

we define \(f_*\mu \in \mathcal{M}_T \) by: \(\forall A \subseteq \mathbb{I}_f, \ (f_*\mu)(A) = \mu(f^*A) \).

Let \(S \) be a countable set, \(T \) a set, \(f : S \rightarrow T \). Let \(n \in \mathbb{N} \).

Define \(f^n : S^n \rightarrow T^n \) by: \(\forall x \in S^n, \ f^n(x) = (f(x_1), \ldots, f(x_n)) \).

Then: \((f^n)_*\mu^n = (f_*\mu)^n \).

For any nonempty countable set \(\Theta \), for any \(\mu \in \mathcal{F}\mathcal{M}_\Theta^* \),

let \(\mathcal{N}(\mu) : = \frac{\mu}{\mu(\Theta)} \in \mathcal{P}_\Theta; \) then \(\forall \Theta_0 \subseteq \Theta, \ (\mathcal{N}(\mu))(\Theta_0) = \frac{\mu(\Theta_0)}{\mu(\Theta)} \),

and \(\mathcal{N}(\mu) \) is called the **normalization** of \(\mu \).

Let \(\hat{\Theta} \) be a countable set. Let \(\mu \in \mathcal{M}_\hat{\Theta} \). Let \(\Theta \subseteq \hat{\Theta} \).

Then the **restriction** of \(\mu \) to \(\Theta \), denoted \(\mu|\Theta \in \mathcal{M}_\Theta \),

is defined by: \(\forall \Theta_0 \subseteq \Theta, \ (\mu|\Theta)(\Theta_0) = \mu(\Theta_0) \).

NOTE: We have \((\mu|\Theta)(\Theta) = \mu(\Theta) \). So, if \(0 < \mu(\Theta) < \infty \), then:
\[\mu|\Theta \in \mathcal{FM}_\Theta^\ast \quad \text{and} \quad \mathcal{N}(\mu|\Theta) = \frac{\mu|\Theta}{\mu(\Theta)} \]

and \(\forall \theta_0 \subseteq \Theta, \ (\mathcal{N}(\mu|\Theta))(\theta_0) = \frac{\mu(\theta_0)}{\mu(\Theta)} \).

DEFINITION 9.8. Let \(F \) be a nonempty finite set.
Then we define \(\nu_F \in \mathcal{P}_F \) by: \(\forall f \in F, \ \nu_F\{f\} = 1/(\#F) \).

Also, we define \(\nu_{\emptyset} : \{\emptyset\} \to \{-1\} \) by: \(\nu_{\emptyset}(\emptyset) = -1 \).

THEOREM 9.9. Let \(F \) be a nonempty finite set. Let \(\theta \in \mathcal{P}_F \).
Assume: \(\forall f, g \in F, \ \theta\{f\} = \theta\{g\} \).
Then: \(\theta = \nu_F \).

Proof. Since \(F \) is nonempty, **choose** \(g_0 \in F \). Let \(b := \theta\{g_0\} \).
Then: \(\forall f \in F, \ \theta\{f\} = b \).
Then: \(\sum_{f \in F} (\theta\{f\}) = (\#F) \cdot b \).
Since \(\theta \in \mathcal{P}_F \), we get: \(\theta(F) = 1 \).
Since \((\#F) \cdot b = \sum_{f \in F} (\theta\{f\}) = \theta(F) = 1 \), we get: \(b = 1/(\#F) \).
Since \(\forall f \in F, \ \theta\{f\} = b = 1/(\#F) = \nu_F\{f\} \), we get: \(\theta = \nu_F \). \(\Box \)

10. THE DISCRETE LOCAL LIMIT THEOREM

DEFINITION 10.1. Let \(E \subseteq \mathbb{Z} \).
By \(E \) is **residue-constrained**, we mean:
\[\exists m \in [2..\infty), \exists n \in \mathbb{Z} \quad \text{s.t.} \quad E \subseteq m\mathbb{Z} + n. \]

By \(E \) is **residue-unconstrained**, we mean:
\(E \) is not residue-constrained.

Since \(\emptyset \subseteq 2 \cdot \mathbb{Z} + 1 \), we get: \(\emptyset \) is residue-constrained.
For all \(b \in \mathbb{Z} \), since \(\{b\} \subseteq 2 \cdot \mathbb{Z} + b \), we get: \(\{b\} \) is residue-constrained.
Then: \(\forall \text{residue-unconstrained} \ E \subseteq \mathbb{Z}, \ \#E \geq 2 \).
We have: \(\{0, 3, 9\} \subseteq 3\mathbb{Z} + 0 \) and \(\{2, 5, 11\} \subseteq 3\mathbb{Z} + 2 \),
so \(\{0, 3, 9\} \) and \(\{2, 5, 11\} \) are both residue-constrained.
Here is a test for residue-unconstrainedness:

Let \(E \subseteq \mathbb{Z} \). **Assume** \(\#E \geq 2 \). **Let** \(\varepsilon_0 \in E \).
Then: (\(E \) is residue-unconstrained) iff (\(\gcd(E - \varepsilon_0) = 1 \))
By this test, we see that:
\(\{0, 1, 10\} \) and \(\{2, 4, 8, 9\} \) and \(\{3, 9, 13, 18\} \) are all residue-unconstrained.

DEFINITION 10.2. For all \(\alpha \in \mathbb{R} \), for all real \(v > 0 \),
define \(\Phi^v_\alpha : \mathbb{R} \to (0; \infty) \) by: \(\forall t \in \mathbb{R}, \ \Phi^v_\alpha(t) = \frac{\exp\left(-\frac{(t-\alpha)^2}{2v}\right)}{\sqrt{2\pi v}} \).
Note: Φ_α^v is a PDF of a normal variable with mean α and variance v.

The next result is a version of the Discrete Local Limit Theorem;
this version is stated in probability-theoretic terms:

THEOREM 10.3. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let X_1, X_2, \ldots be an iid sequence of \mathbb{Z}-valued L^2 random-variables.
Assume: $\forall n \in \mathbb{N}, \{ t \in \mathbb{Z} : \Pr[X_n = t] > 0 \} = E$.
Let $\alpha \in \mathbb{R}, v \in [0; \infty]$. Assume: $\forall n \in \mathbb{N}, E[X_n] = \alpha$ and $\text{Var}[X_n] = v$.
Then: $0 < v < \infty$, and, $\forall t_1, t_2, \ldots \in \mathbb{Z}$, as $n \to \infty$, $\sqrt{n} \cdot [(\Pr[X_1 + \cdots + X_n = t_n]) - (\Phi_{\alpha t_n}^v(t_n))] \to 0$.

For a good exposition of this theorem and its proof,
search on “Terence Tao Local Limit Theorem”.
Visit the website, and then expand “read the rest of this entry”,
and then scroll down to “– 2. Local limit theorems –”.

In Theorem 10.3, since $E \subseteq \mathbb{Z}$, we have, for each $n \in \mathbb{N}$,
$|X_n| \leq X_n^2$ a.s., so $E[|X_n|] \leq E[X_n^2]$,
so, since X_n is L^2, we get X_n is L^1,
and so $E[X_n]$ and $\text{Var}[X_n]$ are both defined.
Moreover, in Theorem 10.3, $\forall n \in \mathbb{N}$,
since $|E[X_n]| \leq E[|X_n|] \leq E[X_n^2] < \infty$, we get: $E[X_n]$ is finite.
In Theorem 10.3, the proof that $v > 0$ is relatively simple:
Since E is residue-unconstrained, we get: $\#E \geq 2$.
Then, $\forall n \in \mathbb{N}$, $\#\{ t \in \mathbb{Z} : \Pr[X_n = t] > 0 \} \geq 2$,
so X_n is not deterministic,
which implies that $\text{Var}[X_n] > 0$,
and so $v > 0$.
In Theorem 10.3, the proof that $v < \infty$ is relatively simple:
$\forall n \in \mathbb{N}$, $\text{Var}[X_n] = E[X_n^2] - (E[X_n])^2 \leq E[X_n^2] < \infty$,
and so $v < \infty$.

Next is another version of the Discrete Local Limit Theorem;
this version is stated in measure-theoretic terms:

THEOREM 10.4. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let $\mu \in \mathcal{P}_E$. Assume: $S_\mu = E$. Assume: $|\mu|_2 < \infty$.
Let $\alpha := M_\mu$, $v := V_\mu$. Then: $0 < v < \infty$, and, $\forall t_1, t_2, \ldots \in \mathbb{Z}$,
as $n \to \infty$, $\sqrt{n} \cdot [(\mu^n\{ f \in E^n \mid f_1 + \cdots + f_n = t_n \}) - (\Phi_{\alpha t_n}^v(t_n))] \to 0$.

In Theorem 10.4, since \(S_{\mu} = E \subseteq \mathbb{Z} \) we get: \(|\mu|_1 \leq |\mu|_2^2\).

Since \(|\mu|_1 \leq |\mu|_2^2 < \infty\), we get: \(M_\mu \) and \(V_\mu \) are both defined.

Moreover, since \(|M_\mu| \leq |\mu|_1 \leq |\mu|_2^2 < \infty\), we get: \(M_\mu \) is finite.

In Theorem 10.4, the proof that \(v > 0 \) is relatively simple:

Since \(E \) is residue-unconstrained, we get: \(\# E \geq 2 \).

Since \(\# S_{\mu} = \# E \geq 2 \), by Theorem 9.6, we get: \(v > 0 \).

In Theorem 10.4, the proof that \(v < \infty \) is relatively simple:

\[
v = V_\mu = |\mu|_2^2 - M_\mu^2 \leq |\mu|_2^2 < \infty.
\]

Here is an application of Theorem 10.3:

THEOREM 10.5. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.

Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.

Assume: \(\forall n \in \mathbb{N}, \{ t \in \mathbb{Z} | \Pr[X_n = t] > 0 \} = E \).

Let \(\alpha \in \mathbb{R}, v \in [0; \infty] \). Assume: \(\forall n \in \mathbb{N}, E[X_n] = \alpha \) and \(\Var[X_n] = v \).

Then: \(0 < v < \infty \). Also, \(\forall t_1, t_2, \ldots \in \mathbb{Z}, \)

if \(\{ t_n - n\alpha | n \in \mathbb{N} \} \) is bounded,

then, as \(n \to \infty \), \(\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_n]) \to 1/\sqrt{2\pi v} \).

Proof. By Theorem 10.3, we get \(0 < v < \infty \).

Given \(t_1, t_2, \ldots \in \mathbb{Z} \), assume \(\{ t_n - n\alpha | n \in \mathbb{N} \} \) is bounded,

want: as \(n \to \infty \), \(\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_n]) \to 1/\sqrt{2\pi v} \).

By Theorem 10.3, it suffices to show:

as \(n \to \infty \), \(\sqrt{n} \cdot (\Phi^{nv}_{n\alpha}(t_n)) \to 1/\sqrt{2\pi v} \).

We have: \(\forall n \in \mathbb{N}, \Phi^{nv}_{n\alpha}(t_n) = \frac{\exp(-(t_n - n\alpha)^2 / (2nv))}{\sqrt{2\pi n} v} \).

Since \(\{ t_n - n\alpha | n \in \mathbb{N} \} \) is bounded, and since \(0 < v < \infty \), we get:

as \(n \to \infty \), \(-(t_n - n\alpha)^2 / (2nv) \to 0 \).

Then: as \(n \to \infty \), \(\exp(-(t_n - n\alpha)^2 / (2nv)) \to 1 \).

Then: as \(n \to \infty \), \(\sqrt{n} \cdot (\Phi^{nv}_{n\alpha}(t_n)) \to 1/\sqrt{2\pi v} \). \(\square \)

We record a measure-theoretic version of Theorem 10.5:

THEOREM 10.6. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.

Let \(\mu \in \mathcal{P}_E \). Assume: \(S_{\mu} = E \) and \(|\mu|_2 < \infty \).

Let \(\alpha := M_\mu, v := V_\mu \). Then: \(0 < v < \infty \).

Also, \(\forall t_1, t_2, \ldots \in \mathbb{Z}, \)

if \(\{ t_n - n\alpha | n \in \mathbb{N} \} \) is bounded,

then, as \(n \to \infty \), \(\sqrt{n} \cdot (\mu^n \{ f \in E^n | f_1 + \cdots + f_n = t_n \}) \to 1/\sqrt{2\pi v} \).

We also record the \(t_n = t_0 + n\alpha \) special case of the past two theorems:
THEOREM 10.7. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained. Let X_1, X_2, \ldots be an iid sequence of \mathbb{Z}-valued L^2 random variables. Assume: $\forall n \in \mathbb{N}, \{t \in \mathbb{Z} | \Pr[X_n = t] > 0\} = E$. Let $t_0, \alpha \in \mathbb{Z}, v \in [0; \infty]$. Assume: $\forall n \in \mathbb{N}, \mathbb{E}[X_n] = \alpha$ and $\text{Var}[X_n] = v$. Then: $0 < v < \infty$, and, as $n \to \infty$, $\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_0 + n\alpha]) \to 1/\sqrt{2\pi v}$.

THEOREM 10.8. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained. Let $\mu \in \mathcal{P}_E$. Assume: $S_{\mu} = E$. Assume: $|\mu|_2 < \infty$. Let $\alpha := M_{\mu}$, $v := V_{\mu}$. Assume: $\alpha \in \mathbb{Z}$. Let $t_0 \in \mathbb{Z}$. Then: $0 < v < \infty$, and, as $n \to \infty$, $\sqrt{n} \cdot (\mu^n\{f \in \mathbb{E}^n | f_1 + \cdots + f_n = t_0 + n\alpha\}) \to 1/\sqrt{2\pi v}$.

We also record the $t_0 = 0$ special case of the past two theorems:

THEOREM 10.9. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained. Let X_1, X_2, \ldots be an iid sequence of \mathbb{Z}-valued L^2 random variables. Assume: $\forall n \in \mathbb{N}, \{t \in \mathbb{Z} | \Pr[X_n = t] > 0\} = E$. Let $\alpha \in \mathbb{Z}, v \in [0; \infty]$. Assume: $\forall n \in \mathbb{N}, \mathbb{E}[X_n] = \alpha$ and $\text{Var}[X_n] = v$. Then: $0 < v < \infty$, and, as $n \to \infty$, $\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = n\alpha]) \to 1/\sqrt{2\pi v}$.

THEOREM 10.10. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained. Let $\mu \in \mathcal{P}_E$. Assume: $S_{\mu} = E$. Assume: $|\mu|_2 < \infty$. Let $\alpha := M_{\mu}$, $v := V_{\mu}$. Assume: $\alpha \in \mathbb{Z}$. Then: $0 < v < \infty$, and, as $n \to \infty$, $\sqrt{n} \cdot (\mu^n\{f \in \mathbb{E}^n | f_1 + \cdots + f_n = n\alpha\}) \to 1/\sqrt{2\pi v}$.

11. Average events have low information, particular case

Suppose, in secret, I flip a coin 1000 times, then reveal to you that the total number of heads was 1000, and then ask you to guess the last flip. The answer is that, since all the coin flips were heads, the last flip must have been a head.

Similarly, if I had told you that the total number of heads was 0, then you would have known that the last flip was a tail.

By contrast, if I had told you that the total number of heads was 500,
it seems intuitively clear that
you’d have had very little information about the last flip.
We wish to generalize and formalize that intuition,
and then provide rigorous proof of the resulting formal statement.
Our main theorem is Theorem 12.5, in the next section.
In this section, we go carefully through a special case:

Let $X_1, X_2 \ldots$ be \mathbb{Z}-valued iid random-variables s.t.,
\[
\forall n \in \mathbb{N}, \quad \Pr[X_n = -1] = 1/2,
\]
\[
\Pr[X_n = 0] = 1/3,
\]
\[
\Pr[X_n = 3] = 1/6.
\]
Then, $\forall n \in \mathbb{N}$, X_n is L^1 and X_n is L^2.
Also, $\forall n \in \mathbb{N}$, $E[X_n] = 0$ and $\text{Var}[X_n] = 2$.
Also, $\forall n \in \mathbb{N}$, $-1 \leq X_n \leq 3$ a.s.
For all $n \in \mathbb{N}$, let $T_n := X_1 + \cdots + X_n$.
Then: $\forall n \in \mathbb{N}, -n \leq T_n \leq 3n$ a.s.
Then: $-1000 \leq T_{1000} \leq 3000$ a.s.
Also, $[T_{1000} = -1000] \Rightarrow [X_1 = \cdots = X_{1000} = -1],$
and so $\Pr[X_{1000} = -1 \mid T_{1000} = -1000] = 1$.
Similarly, $\Pr[X_{1000} = 3 \mid T_{1000} = 3000] = 1$.
By contrast, the event $T_{1000} = 0$
would seem to give very little information about X_{1000}.
It therefore seems reasonable to expect that
\[
\Pr[X_{1000} = -1 \mid T_{1000} = 0] \approx 1/2 \quad \text{and}
\]
\[
\Pr[X_{1000} = 0 \mid T_{1000} = 0] \approx 1/3 \quad \text{and}
\]
\[
\Pr[X_{1000} = 3 \mid T_{1000} = 0] \approx 1/6.
\]
To make this precise, we will work “in the thermodynamic limit”,
which means: we replace 1000 by a variable $n \in \mathbb{N}$, and let $n \to \infty$.
That is, more precisely, we expect that, as $n \to \infty$,
\[
\Pr[X_n = -1 \mid T_n = 0] \to 1/2 \quad \text{and}
\]
\[
\Pr[X_n = 0 \mid T_n = 0] \to 1/3 \quad \text{and}
\]
\[
\Pr[X_n = 3 \mid T_n = 0] \to 1/6.
\]
We will focus on proving the third of these limits;
proofs of the other two are similar.
By definition of conditional probability,
we wish to prove: As $n \to \infty$,
\[
\frac{\Pr[(X_n = 3) \& (T_n = 0)]}{\Pr[T_n = 0]} \to 1/6.
\]
Claim: Let \(n \in [2..\infty) \).

Then: \(\Pr[(X_n = 3) \&(T_n = 0)] = (1/6) \cdot (\Pr[T_{n-1} = -3]) \).

Proof of Claim: We have: \(T_n = X_1 + \cdots + X_{n-1} + X_n \).

Since \(\Pr[(X_n = 3) \&(T_n = 0)] \)

\[= \Pr[(X_n = 3) \&(X_1 + \cdots + X_{n-1} + X_n = 0)] \]

\[= \Pr[(X_n = 3) \&(X_1 + \cdots + X_{n-1} + 3 = 0)] \]

\[= \Pr[(X_n = 3) \&(X_1 + \cdots + X_{n-1} = -3)] \],

it follows, from independence of \(X_1, \ldots, X_n \), that

\[\Pr[(X_n = 3) \&(T_n = 0)] \]

\[= (\Pr[X_n = 3]) \cdot (\Pr[X_1 + \cdots + X_{n-1} = -3]) \).

So, since \(\Pr[X_n = 3] = 1/6 \) and \(X_1 + \cdots + X_{n-1} = T_{n-1} \),

we get: \(\Pr[(X_n = 3) \&(T_n = 0)] = (1/6) \cdot (\Pr[T_{n-1} = -3]) \).

End of proof of Claim.

By the claim, we wish to prove:

As \(n \to \infty \), \(\frac{(1/6) \cdot (\Pr[T_{n-1} = -3])}{\Pr[T_n = 0]} \to 1/6 \).

We wish to prove: As \(n \to \infty \), \(\frac{\Pr[T_{n-1} = -3]}{\Pr[T_n = 0]} \to 1 \).

That is, we wish to prove:

As \(n \to \infty \), \(\Pr[T_{n-1} = -3] \) is asymptotic to \(\Pr[T_n = 0] \).

So the question becomes:

How do we get a handle on the asymptotics, as \(n \to \infty \), of

both \(\Pr[T_{n-1} = -3] \) and \(\Pr[T_n = 0] \) ?

The Discrete Local Limit Theorem turns out to be just what we need.

Recall: \(\forall n \in \mathbb{N} \), \(E[X_n] = 0 \) and \(\operatorname{Var}[X_n] = 2 \).

Let \(\alpha := 0 \) and \(v := 2 \). Then: (\(\forall n \in \mathbb{N}, n\alpha = 0 \)) and (\(2\pi v = 4\pi \)).

Also, \(\forall n \in \mathbb{N} \), \(E[X_n] = \alpha \) and \(\operatorname{Var}[X_n] = v \).

Let \(E := \{-1, 0, 3\} \). Then \(E \) is residue-unconstrained.

Also, we have: \(\forall n \in \mathbb{N}, \{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E \).

By Theorem 10.9, as \(n \to \infty \),

\[\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = n\alpha]) \to 1/\sqrt{2\pi v}, \]

Then: as \(n \to \infty \), \(\sqrt{n} \cdot (\Pr[T_n = 0]) \to 1/\sqrt{4\pi}, \)

so, as \(n \to \infty \), \(\Pr[T_n = 0] \) is asymptotic to \(1/\sqrt{4\pi n} \).

Want: as \(n \to \infty \), \(\Pr[T_{n-1} = -3] \) is asymptotic to \(1/\sqrt{4\pi n} \).

Let \(t_0 := -3 \). Then, \(\forall n \in \mathbb{N}, t_0 + n\alpha = -3 \).

By Theorem 10.7, as \(n \to \infty \),
\[\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_0 + n\alpha]) \to 1/\sqrt{2\pi}v. \]
Recall: \(\forall n \in \mathbb{N}, T_n = X_1 + \cdots + X_n. \)
Then: as \(n \to \infty, \)
\[\sqrt{n} \cdot (\Pr[T_n = -3]) \to 1/\sqrt{4\pi}. \]
Then, as \(n \to \infty, \)
\[\sqrt{n-1} \cdot (\Pr[T_{n-1} = -3]) \to 1/\sqrt{4\pi}. \]
Then, as \(n \to \infty, \)
\[\Pr[T_{n-1} = -3] \] is asymptotic to \(1/\sqrt{4\pi(n-1)}, \)
which is asymptotic to \(1/\sqrt{4\pi n}. \)

12. **Average events have low information, general result**

We now seek to generalize our work in §11;
in the example at the end of this section, we show that
Theorem 12.5 reproduces the result of §11.

THEOREM 12.1. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.
Assume: \(\forall n \in \mathbb{N}, \{ t \in \mathbb{Z} | \Pr[X_n = t] > 0\} = E. \) \textbf{Let} \(\alpha, P \in \mathbb{R}. \)
Assume: \(\forall n \in \mathbb{N}, \mathbb{E}[X_n] = \alpha \) and \(\Pr[X_n = \varepsilon_0] = P. \) \textbf{Let} \(\varepsilon_0 \in \mathbb{E}. \)
Let \(t_1, t_2, \ldots \in \mathbb{Z}. \) Assume: \(\{ t_n - n\alpha \mid n \in \mathbb{N} \} \) is bounded.
Then: as \(n \to \infty, \) \(\Pr[X_n = \varepsilon_0 \mid X_1 + \cdots + X_n = t_n] \to P. \)

I don’t know whether “\(L^2 \)” can be replaced by “\(L^1 \)”.

Part of the content of Theorem 12.1 is:
\(\forall \text{sufficiently large } n \in \mathbb{N}, \Pr[X_1 + \cdots + X_n = t_n] > 0 \)
since, otherwise, \(\Pr[X_n = \varepsilon_0 \mid X_1 + \cdots + X_n = t_n] \) would not be defined.

Proof. Since \(X_1, X_2, \ldots \) are all \(\mathbb{Z} \)-valued and \(L^2, \)
and since \(\forall t \in \mathbb{Z}, |t| \leq t \) we get: \(X_1, X_2, \ldots \) are all \(L^1. \)
So, since \(X_1, X_2, \ldots \) is an identically distributed sequence,

\[\textbf{choose} \; v \in [0; \infty] \; \text{s.t.,} \; \forall n \in \mathbb{N}, \text{Var}[X_n] = v. \]

By Theorem 10.5, we have: \(0 < v < \infty \) and
\[\text{as } n \to \infty, \; \sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_n]) \to 1/\sqrt{2\pi}v. \]
For all \(n \in \mathbb{N}, \) let \(T_n := X_1 + \cdots + X_n. \)
Then: as \(n \to \infty, \)
\[\sqrt{n} \cdot (\Pr[T_n = t_n]) \to 1/\sqrt{2\pi}v. \]

Want: as \(n \to \infty, \)
\[\Pr[X_n = \varepsilon_0 \mid T_n = t_n] \to P. \]
Let \(D_1 := \{ t_n - n\alpha \mid n \in \mathbb{N} \}. \) By hypothesis, \(D_1 \) is bounded.
Let \(D_2 := \{ t_n - n\alpha \mid n \in [2..\infty) \}. \) Then \(D_2 \subseteq D_1. \)
Let \(D_3 := \{ t_{n+1} - (n + 1) \cdot \alpha \mid n \in \mathbb{N} \}. \) Then \(D_3 = D_2. \)
For all \(n \in \mathbb{N}, \) let \(\tilde{t}_n := t_{n+1} - \varepsilon_0. \)
Let \(D_4 := \{ \tilde{t}_n - n\alpha \mid n \in \mathbb{N} \}. \)
Since \(D_4 - \alpha + \varepsilon = \{ \tilde{t}_n - n\alpha - \alpha + \varepsilon | n \in \mathbb{N} \} \)
\[= \{ t_{n+1} - \varepsilon_0 - (n + 1) \cdot \alpha + \varepsilon | n \in \mathbb{N} \} \]
\[= \{ t_{n+1} - (n + 1) \cdot \alpha | n \in \mathbb{N} \} \]
\[= D_3 = D_2 \subseteq D_1, \]
and since \(D_1 \) is bounded,
we get \(D_4 - \alpha + \varepsilon \) is bounded.
Then: \(D_4 - \alpha + \varepsilon + (\alpha - \varepsilon) \) is bounded.
Then: \(D_4 \) is bounded.

Then, by Theorem 10.5, we have:
as \(n \to \infty \), \(\sqrt{n} \cdot (\Pr[T_n = \tilde{t}_n]) \to 1/\sqrt{2\pi v}. \)
Then, as \(n \to \infty \), \(\sqrt{n-1} \cdot (\Pr[T_{n-1} = \tilde{t}_{n-1}]) \to 1/\sqrt{2\pi v}. \)
We have: \(\forall n \in [2..\infty), \) \(\tilde{t}_{n-1} = t_n - \varepsilon_0. \)
Then, as \(n \to \infty \), \(\sqrt{n-1} \cdot (\Pr[T_{n-1} = t_n - \varepsilon_0]) \to 1/\sqrt{2\pi v}. \)
Recall: as \(n \to \infty \), \(\sqrt{n} \cdot (\Pr[T_n = t_n]) \to 1/\sqrt{2\pi v}. \)
Dividing the last two limits, we get:
as \(n \to \infty \), \(\frac{\sqrt{n-1} \cdot (\Pr[T_{n-1} = t_n - \varepsilon_0])}{\sqrt{n} \cdot (\Pr[T_n = t_n])} \to 1. \)
Also, as \(n \to \infty \), \(\frac{1}{\sqrt{n-1}} \to 1. \)

Multiplying the last two limits together, we get:
as \(n \to \infty \), \(\frac{\Pr[T_{n-1} = t_n - \varepsilon_0]}{\Pr[T_n = t_n]} \to 1. \)
Since, \(\forall n \in [2..\infty), \)
\[\Pr[X_n = \varepsilon_0 | T_n = t_n] = \frac{\Pr[(X_n = \varepsilon_0) \& (T_n = t_n)]}{\Pr[T_n = t_n]} \]
\[= \frac{\Pr[(X_n = \varepsilon_0) \& (T_{n-1} + X_n = t_n)]}{\Pr[T_n = t_n]} \]
\[= \frac{\Pr[(X_n = \varepsilon_0) \& (T_{n-1} + \varepsilon_0 = t_n)]}{\Pr[T_n = t_n]} \]
\[= \frac{\Pr[(X_n = \varepsilon_0) \& (T_{n-1} = t_n - \varepsilon_0)]}{\Pr[T_n = t_n]} \]
\[= \frac{(\Pr[X_n = \varepsilon_0]) \cdot (\Pr[T_{n-1} = t_n - \varepsilon_0])}{\Pr[T_n = t_n]} \]
\[= \frac{\Pr[T_{n-1} = t_n - \varepsilon_0]}{\Pr[T_n = t_n]} \cdot \frac{\Pr[T_n = t_n]}{\Pr[T_{n-1} = t_n - \varepsilon_0]} \]
and since, as \(n \to \infty \),
we get: as \(n \to \infty \),
\[\Pr[X_n = \varepsilon_0 | T_n = t_n] \to P. \]
Recall (§9): \(\forall \) countable set \(\Theta \),
\[\mathcal{FM}^\times_{\Theta} \text{ is the set of nonzero finite measures on } \Theta \]
and \(\mathcal{P}_\Theta \text{ is the set of probability measures on } \Theta \).
Recall (§9): \(\forall \) nonempty countable set \(\Theta \), \(\forall \mu \in \mathcal{FM}^\times_{\Theta} \),
\[\bar{N}(\mu) \text{ is the normalization of } \mu. \]

Here is a measure-theoretic version of the preceding theorem:

THEOREM 12.2. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(\mu \in \mathcal{P}_E \). Assume: \(S_\mu = E \). Assume: \(|\mu|_2 < \infty \).
Let \(\alpha := M_\mu \). Let \(\varepsilon_0 \in E, \ P := \mu\{\varepsilon_0\} \).
Let \(t_1, t_2, \ldots \in \mathbb{Z} \). Assume: \(\{t_n - n\alpha \mid n \in \mathbb{N}\} \) is bounded.
For all \(n \in \mathbb{N} \), let \(\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = t_n\} \).
Then: as \(n \to \infty \), \((\bar{N}(\mu^n|\Omega_n))\{f \in \Omega_n \mid f_n = \varepsilon_0\} \to P. \)
I don’t know whether “\(|\mu|_2 < \infty\)” can be replaced by “\(|\mu|_1 < \infty\)”.

Part of the content of Theorem 12.2 is:
\[\forall \text{sufficiently large } n \in \mathbb{N} \text{, } \mu^n(\Omega_n) > 0, \]
since, otherwise, \(\mu^n|\Omega_n \) would be the zero measure on \(\Omega_n \),
and so \(\bar{N}(\mu^n|\Omega_n) \) would not be defined.

We record the \(t_n = t_0 + n\alpha \) special case of the past two theorems:

THEOREM 12.3. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.
Assume: \(\forall n \in \mathbb{N}, \{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E \). Let \(t_0, \alpha \in \mathbb{Z}, P \in \mathbb{R} \).
Let \(\varepsilon_0 \in E \). Assume: \(\forall n \in \mathbb{N}, E[X_n] = \alpha \text{ and } \Pr[X_n = \varepsilon_0] = P. \)
Then: as \(n \to \infty \), \(\Pr[X_n = \varepsilon_0 \mid X_1 + \cdots + X_n = t_0 + n\alpha] \to P. \)

THEOREM 12.4. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(\mu \in \mathcal{P}_E \). Let \(\alpha := M_\mu \). Assume: \(\alpha \in \mathbb{Z} \text{ and } S_\mu = E \text{ and } |\mu|_2 < \infty \).
Let \(t_0 \in \mathbb{Z} \). For all \(n \in \mathbb{N} \), let \(\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = t_0 + n\alpha\} \).
Let \(\varepsilon_0 \in E \). Let \(P := \mu\{\varepsilon_0\} \).
Then: as \(n \to \infty \), \((\bar{N}(\mu^n|\Omega_n))\{f \in \Omega_n \mid f_n = \varepsilon_0\} \to P. \)

We record the \(t_0 = 0 \) special case of the past two theorems:

THEOREM 12.5. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.
Assume: \(\forall n \in \mathbb{N}, \{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E \). Let \(\alpha \in \mathbb{Z}, P \in \mathbb{R} \).
Let $\varepsilon_0 \in E$. Assume: $\forall n \in \mathbb{N}$, $E[X_n] = \alpha$ and $\Pr[X_n = \varepsilon_0] = P$.
Then: as $n \to \infty$, $\Pr[X_n = \varepsilon_0 | X_1 + \cdots + X_n = n\alpha] \to P$.

THEOREM 12.6. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.

Let $\mu \in \mathcal{P}_E$. Let $\alpha := M_\mu$. Assume: $\alpha \in \mathbb{Z}$ and $S_\mu = E$ and $|\mu|_2 < \infty$.
For all $n \in \mathbb{N}$, let $\Omega_n := \{f \in E^n | f_1 + \cdots + f_n = n\alpha\}$.
Let $\varepsilon_0 \in E$. Let $P := \mu(\varepsilon_0)$.
Then: as $n \to \infty$, $(N(\mu^n | \Omega_n))\{f \in \Omega_n | f_n = \varepsilon_0\} \to P$.

Example: Let $E := \{-1, 0, 3\}$.
Then: $E \subseteq \mathbb{Z}$ and E is residue-unconstrained.

Let $X_1, X_2 \ldots$ be \mathbb{Z}-valued iid random-variables s.t.,

| $n \in \mathbb{N}$ | $\Pr[X_n = -1] = 1/2$ | $\Pr[X_n = 0] = 1/3$ | $\Pr[X_n = 3] = 1/6$. |

Then: $\forall n \in \mathbb{N}$, $\{t \in \mathbb{Z} | \Pr[X_n = t] > 0\} = E$.
Let $\varepsilon_0 = 3$, $P := 1/6$.

Then: $\forall n \in \mathbb{N}$, $\Pr[X_n = \varepsilon_0] = P$.
We have: $\forall n \in \mathbb{N}$, $E[X_n] = 0$.
Let $\alpha := 0$.
Then, $\forall n \in \mathbb{N}$, $E[X_n] = \alpha$.

Then, by Theorem 12.5, we have:

as $n \to \infty$, $\Pr[X_n = \varepsilon_0 | X_1 + \cdots + X_n = n\alpha] \to P$.

Then: as $n \to \infty$, $\Pr[X_n = 3 | X_1 + \cdots + X_n = 0] \to 1/6$.
For all $n \in \mathbb{N}$, let $T_n := X_1 + \cdots + X_n$.
Then: as $n \to \infty$, $\Pr[X_n = 3 | T_n = 0] \to 1/6$.

Thus Theorem 12.5 reproduces the result of §11.

13. Solving the main problem

We finally have all we need to solve the main problem (end of §3).

Let $(p, q, r) := \left(1, 9^{-1/10}, 9^{-1}\right)$

We compute $(p, q, r) \approx (0.5225, 0.4194, 0.0581)$,

all accurate to four decimal places.

Again, let’s say I am one of the professors applying to the GFA.

We will show: Under the GFA’s first system (§3),

- my probability of getting $\$0$ is p, approximately
- my probability of getting $\$1$ is q, approximately
- my probability of getting $\$10$ is r, approximately.
Recall: $\Omega = \{ \omega : [1..N] \rightarrow \{0, 1, 10\} \mid \sum_{\ell=1}^N [\omega(\ell)] = N \}$.

Recall ($\S 5$): the notations $i_\omega, j_\omega, k_\omega$.

Let $S := \sum_{\omega \in \Omega} p^{i_\omega} q^{j_\omega} r^{k_\omega}$.

By the work in $\S 7$, $p + q + r = 1$ and $q + 10r = 1$ and $\forall \omega \in \Omega$, $p^{i_\omega} q^{j_\omega} r^{k_\omega} / S = 1 / (\# \Omega)$.

Let X_1, X_2, \ldots be \mathbb{Z}-valued iid random-variables s.t., $\forall n \in \mathbb{N}$, $\Pr[X_n = 0] = p$, $\Pr[X_n = 1] = q$, $\Pr[X_n = 10] = r$.

Then X_1, X_2, \ldots is a sequence of L^2 random-variables.

Also, $\forall n \in \mathbb{N}$, $E[X_n] = q + 10r$.

So, since $q + 10r = 1$, we get: $\forall n \in \mathbb{N}$, $E[X_n] = 1$.

We model the GFA’s second system ($\S 5$) by: $\forall \ell \in [1..N]$, Professor$\#\ell$ receives X_ℓ dollars.

For all $n \in \mathbb{N}$, let $T_n := X_1 + \cdots + X_n$.

We model the GFA’s third system ($\S 5$) by: $\forall \ell \in [1..N]$, Professor$\#\ell$ receives X_ℓ dollars, conditioned on $T_N = N$.

Since $\forall \omega \in \Omega$, $p^{i_\omega} q^{j_\omega} r^{k_\omega} / S = 1 / (\# \Omega)$, it follows that: the third system is equivalent to the first.

For definiteness, let’s assume that I am Professor$\#N$.

Then, assuming N is large, we wish to show:

- $\Pr[X_N = 0 \mid T_N = N] \approx p$ and
- $\Pr[X_N = 1 \mid T_N = N] \approx q$ and
- $\Pr[X_N = 10 \mid T_N = N] \approx r$.

To be more precise, we wish to show: as $n \rightarrow \infty$,

- $\Pr[X_n = 0 \mid T_n = n] \rightarrow p$ and
- $\Pr[X_n = 1 \mid T_n = n] \rightarrow q$ and
- $\Pr[X_n = 10 \mid T_n = n] \rightarrow r$.

Let $E := \{0, 1, 10\}$. Then: E is residue-unconstrained.

Given $\varepsilon_0 \in E$, let $P := \begin{cases} p, & \text{if } \varepsilon_0 = 0 \\ q, & \text{if } \varepsilon_0 = 1 \\ r, & \text{if } \varepsilon_0 = 10, \end{cases}$

want: as $n \rightarrow \infty$, $\Pr[X_n = \varepsilon_0 \mid T_n = n] \rightarrow P$.

By definition of X_1, X_2, \ldots, we get: $\forall n \in \mathbb{N}$, $\Pr[X_n = \varepsilon_0] = P$.

Let $\alpha := 1$. Then: $\alpha \in \mathbb{Z}$ and $\forall n \in \mathbb{N}$, $E[X_n] = \alpha$.
Also, \(\forall n \in \mathbb{N}, \{ t \in \mathbb{Z} \mid \Pr[X_n = t] > 0 \} = E. \)

Then, by Theorem 12.5, we have:

\[
\text{as } n \to \infty, \quad \Pr[X_n = \varepsilon_0 | X_1 + \cdots + X_n = n\alpha] \to P.
\]

Then:

\[
\text{as } n \to \infty, \quad \Pr[X_n = \varepsilon_0 | T_n = n] \to P.
\]

14. **Probability of Two Professors Getting Zero**

Under the GFA’s first system, since \(N \) is large, one would expect:

- the award amounts of two different professors are almost independent.

Then, for example, one would expect:

- the probability that two professors both receive zero dollars should be very close to the square of the probability that one professor receives zero dollars.

We will formalize this statement and prove it, below.

For definiteness, we will assume that

- the two professors are Professor \(# (N - 1) \) and Professor \(# N \).

Let \((p, q, r) := \frac{1, 9^{-1/10}, 9^{-1}}{1 + 9^{-1/10} + 9^{-1}} \). Then (§7):

\[
p + q + r = 1.
\]

Let \(X_1, X_2, \ldots \) be \(\mathbb{Z} \)-valued iid random-variables s.t., \(\forall n \in \mathbb{N}, \)

\[
\begin{align*}
\Pr[X_n = 0] &= p, \\
\Pr[X_n = 1] &= q, \\
\Pr[X_n = 10] &= r.
\end{align*}
\]

Then \(X_1, X_2, \ldots \) is a sequence of \(L^2 \) random-variables.

For all \(n \in \mathbb{N} \), let \(T_n := X_1 + \cdots + X_n \).

Assuming \(N \) is large, our goal is to prove:

\[
\Pr \left[X_{N-1} = 0 = X_N \mid T_N = N \right] \approx p^2.
\]

To be more precise, we will prove:

\[
\text{as } n \to \infty, \quad \Pr \left[X_{n-1} = 0 = X_n \mid T_n = n \right] \to p^2.
\]

For all \(n \in \mathbb{N} \), define \(\psi_n : \mathbb{Z} \to \mathbb{R} \) by:

\[
\forall t \in \mathbb{Z}, \quad \psi_n(t) = \Pr[T_n = t].
\]

For all \(n \in \mathbb{N} \), let \(a_n := \psi_n(n + 2), \ z_n := \psi_n(n) \).

Since, \(\forall n \in \mathbb{N} \), we have

\[
\psi_n(n) = \Pr[T_n = n] = \Pr[X_1 + \cdots + X_n = n] \geq \Pr[X_1 = \cdots = X_n = 1] = q^n > 0,
\]

we conclude: \(\forall n \in \mathbb{N}, \ z_n > 0. \)

Claim: Let \(n \in [3..\infty) \). Then

\[
\Pr[X_{n-1} = 0 = X_n \mid T_n = n] = p^2 \cdot \frac{a_{n-2}}{z_n}.
\]
Proof of Claim: We have $T_n = X_1 + \cdots + X_{n-2} + X_{n-1} + X_n$.

Since $\Pr[(X_{n-1} = 0 = X_n)\&(T_n = n)] = \Pr[(X_{n-1} = 0 = X_n)\&(X_1 + \cdots + X_{n-2} + X_{n-1} + X_n = n)] = \Pr[(X_{n-1} = 0 = X_n)\&(X_1 + \cdots + X_{n-2} + 0 + 0 = n)]$, it follows, from independence of X_1, \ldots, X_n, that $\Pr[(X_{n-1} = 0 = X_n)\&(T_n = n)] = (\Pr[X_{n-1} = 0]) \cdot (\Pr[X_n = 0]) \cdot (\Pr[X_1 + \cdots + X_{n-2} = n])$.

So, since $\Pr[X_{n-1} = 0] = p = \Pr[X_n = 0]$, we get: $\Pr[(X_{n-1} = 0 = X_n)\&(T_n = n)] = p^2 \cdot (\Pr[T_{n-2} = n])$.

Then $\Pr[X_{n-1} = 0 = X_n \mid T_n = n] = \frac{\Pr[(X_{n-1} = 0 = X_n)\&(T_n = n)]}{\Pr[T_n = n]} = p^2 \cdot \frac{\psi_{n-2}(n)}{\psi(n)} = p^2 \cdot \frac{a_{n-2}}{z_n}$.

End of proof of Claim.

Because of the Claim, we want to show: as $n \to \infty$, $p^2 \cdot \frac{a_{n-2}}{z_n} \to p^2$.

Want: as $n \to \infty$, $\frac{a_{n-2}}{z_n} \to 1$.

We compute: $\forall n \in \mathbb{N}$, $E[X_n] = q + 10r$.

Recall (§7): $q + 10r = 1$. Then: $\forall n \in \mathbb{N}$, $E[X_n] = 1$.

We compute: $\forall n \in \mathbb{N}$, $\text{Var}[X_n] = q + 100r - 1$.

Let $v := q + 100r - 1$. Then: $\forall n \in \mathbb{N}$, $\text{Var}[X_n] = v$.

Since $v = (q + 10r - 1) + 90r = 0 + 90r = 90r$, and since $0 < r < \infty$, we get: $0 < v < \infty$. Let $\tau := 1/\sqrt{2\pi v}$. Then: $0 < \tau < \infty$.

Let $\alpha := 1$. Then, $\alpha \in \mathbb{Z}$ and $\forall n \in \mathbb{N}$, $E[X_n] = \alpha$.

Let $E := \{0, 1, 10\}$. Then, $\forall n \in \mathbb{N}$, $\{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E$.

Also, E is residue-unconstrained.

By Theorem 10.9, as $n \to \infty$, $\sqrt{n} \cdot (\Pr[T_n = n\alpha]) \to 1/\sqrt{2\pi v}$.

Then: as $n \to \infty$, $\sqrt{n} \cdot (\Pr[T_n = n]) \to \tau$.

Then: as $n \to \infty$, $\sqrt{n} \cdot (\psi(n)) \to \tau$.

Then: as $n \to \infty$, $\sqrt{n} \cdot z_n \to \tau$.

Let $t_0 := 2$. Then $t_0 \in \mathbb{Z}$ and $\forall n \in \mathbb{N}$, $t_0 + n\alpha = n + 2$.

By Theorem 10.7, as $n \to \infty$, $\sqrt{n} \cdot (\Pr[T_n = t_0 + n\alpha]) \to 1/\sqrt{2\pi v}$.

Then: as $n \to \infty$, $\sqrt{n} \cdot (\Pr[T_n = n + 2]) \to \tau$.

Then: as $n \to \infty$, $\sqrt{n} \cdot (\psi(n + 2)) \to \tau$.
Then: as \(n \to \infty \), \(\sqrt{n} \cdot a_n \to \tau \).

Then: as \(n \to \infty \), \(\sqrt{n - \frac{\delta}{2}} \cdot a_{n-2} \to \tau \).

Recall: as \(n \to \infty \), \(\sqrt{n} \cdot z_n \to \tau \).

Dividing the last two limits, we get:
\[
\text{as } n \to \infty, \quad \frac{\sqrt{n - \frac{\delta}{2}} \cdot a_{n-2}}{\sqrt{n} \cdot z_n} \to 1.
\]

Also,
\[
\text{as } n \to \infty, \quad \frac{\sqrt{n}}{\sqrt{n - \frac{\delta}{2}}} \to 1.
\]

Multiplying these last two limits, we get:
\[
\text{as } n \to \infty, \quad \frac{a_{n-2} \cdot z_n}{z_n} \to 1.
\]

15. **Fraction of professors getting a zero award**

Let
\[
(p, q, r) := \left(1, \frac{9^{-1/10}}{10}, \frac{9^{-1}}{10}\right).
\]

We compute \((p, q, r) \approx (0.5225, 0.4194, 0.0581)\), all accurate to four decimal places.

Let \(X_1, X_2, \ldots \) be \(\mathbb{Z} \)-valued iid random-variables s.t., \(\forall n \in \mathbb{N} \),
\[
\Pr[X_n = 0] = p,
\]
\[
\Pr[X_n = 1] = q,
\]
\[
\Pr[X_n = 10] = r.
\]

For all \(n \in \mathbb{N} \), let \(T_n := X_1 + \cdots + X_n \).

For all \(n \in \mathbb{N} \), let \(I_n \) be the indicator variable of the event: \(X_n = 0 \).

For all \(n \in \mathbb{N} \), let \(J_n := (I_1 + \cdots + I_n)/n \).

Using the GFA’s first (or third) awards system, the random-variable \(J_N \) conditioned on \(T_N = N \)
represents the fraction of professors receiving a $0 award.

In this section, we will prove the following:

Claim: \(\forall \delta > 0 \), as \(n \to \infty \), \(\Pr\left[p - \delta < J_n < p + \delta \mid T_n = n\right] \to 1.\)

Assume, for a moment, that this Claim is true.

Then: as \(n \to \infty \), \(\Pr\left[p - 0.02 < J_n < p + 0.02 \mid T_n = n\right] \to 1.\)

From this, it follows that, if \(N \) is sufficiently large, then
\[
\Pr\left[p - 0.02 < J_N < p + 0.02 \mid T_N = N\right] > 0.99,
\]
so
\[
\Pr\left[p - 0.02 < J_N \mid T_N = N\right] > 0.99,
\]
so
\[
\Pr\left[J_N > p - 0.02 \mid T_N = N\right] > 0.99.
\]

Since \(p \approx 0.5225 \), accurate to four decimal places, we get
\[
p - 0.02 > 0.5,
\]
We have:
\[J_N > p - 0.02 \] \implies \[J_n > 0.5 \].

Therefore, if \(N \) is sufficiently large, then, since
\[\Pr \left[J_N > p - 0.02 \middle| T_N = N \right] \leq \Pr \left[J_N > 0.5 \middle| T_N = N \right] \]
and so both
\[\Pr \left[J_N > p - 0.02 \middle| T_N = N \right] \geq \Pr \left[J_N > p - 0.02 \middle| T_N = N \right] > 0.99, \]
we conclude: under the GFA’s first system, with probability > 99%,
over 50% of the professors receive $0.

\textbf{Proof of Claim:}

\textit{Given} \(\delta > 0 \), \textit{want:} as \(n \to \infty \), \(\Pr \left[p - \delta < J_n < p + \delta \middle| T_n = n \right] \to 1. \)

\textit{Let} \(E := \{0, 1, 10\} \). Then \(E \) is residue-unconstrained.

Also, \(\forall n \in \mathbb{N}, \ \{ t \in \mathbb{Z} \mid \Pr[X_n = t] > 0 \} = E. \)

\textit{Let} \(\alpha := 1 \). Then: \(\alpha \in \mathbb{Z} \) and \(\forall n \in \mathbb{N}, \ E[X_n] = \alpha. \)

For all \(n \in \mathbb{N} \), let \(\kappa_n := \Pr \left[I_n \middle| T_n = n \right]. \)

Then: \(\forall n \in \mathbb{N}, \ \kappa_n = \Pr \left[X_n = 0 \middle| T_n = n \right]. \)

By Theorem 12.5, we get:
\[\text{as} \ n \to \infty, \ \Pr[X_n = 0 \mid X_1 + \cdots + X_n = n\alpha] \to p. \]
That is, \(\text{as} \ n \to \infty, \ \Pr[X_n = 0 \mid T_n = n] \to p. \)

Then: \(\text{as} \ n \to \infty, \ \kappa_n \to p. \)

So, \(\exists n_0 \in \mathbb{N} \) s.t., \(\forall n \in [n_0, \infty) \),
we have \(p - \delta < \kappa_n < p + \delta \),
and so both \(p - \delta < \kappa_n - \delta/2 \) and \(\kappa_n + \delta/2 < p + \delta \),
and so \([\kappa_n - \delta/2 < J_n < \kappa_n + \delta/2] \) \implies \([p - \delta < J_n < p + \delta] \),
and so
\[\Pr[\kappa_n - \delta/2 < J_n < \kappa_n + \delta/2 \mid T_n = n] \]
\leq \[\Pr[\ p - \delta < J_n < p + \delta \mid T_n = n]. \]

It therefore suffices to show:
\[\text{as} \ n \to \infty, \ \Pr[\kappa_n - \delta/2 < J_n < \kappa_n + \delta/2 \mid T_n = n] \to 1. \]

We have: \(\forall n \in \mathbb{N}, \ T_n \) is invariant under permutation of \(X_1, \ldots, X_n \),
as is the joint-distribution of \(X_1, \ldots, X_n \).

Then: \(\forall n \in \mathbb{N}, \ E \left[I_i \mid T_n = n \right] = \Pr \left[I_n \mid T_n = n \right]. \)

Then: \(\forall n \in \mathbb{N}, \ E \left[I_i \mid T_n = n \right] = \kappa_n. \)

Since, \(\forall n \in \mathbb{N}, \ J_n = (I_1 + \cdots + I_n)/n, \) we get:
\[\forall n \in \mathbb{N}, \ E \left[J_n \mid T_n = n \right] = \left(\sum_{i=1}^{\kappa_n} \Pr \left[I_i \mid T_n = n \right] \right) / n. \]

Then: \(\forall n \in \mathbb{N}, \ E \left[J_n \mid T_n = n \right] = \left(\sum_{i=1}^{n\kappa_n} \kappa_n \right) / n. \)

Then: \(\forall n \in \mathbb{N}, \ E \left[J_n \mid T_n = n \right] = \kappa_n. \)

For all \(n \in \mathbb{N}, \) let \(v_n := \Var \left[J_n \mid T_n = n \right]. \)
Then, by Chebyshev’s inequality, we have: \(\forall n \in \mathbb{N} \),
\[
\Pr \left[\kappa_n - (\delta/2) < J_n < \kappa_n + (\delta/2) \mid T_n = n \right] \geq 1 - (v_n/(\delta/2)^2).
\]

It therefore suffices to show: as \(n \to \infty \), \(v_n \to 0 \).

Recall: as \(n \to \infty \), \(\kappa_n \to p \).

Since \(\forall n \in \mathbb{N} \), \(v_n = \text{Var}[J_n \mid T_n = n] \),
\[
= \left(E\left[J_n^2 \mid T_n = n \right] \right) - \left(E\left[J_n \mid T_n = n \right] \right)^2
\]
we want: as \(n \to \infty \), \(E\left[J_n^2 \mid T_n = n \right] \to p^2 \).

For all \(n \in [2..\infty) \), let \(\lambda_n := E\left[I_{n-1} \cdot I_n \mid T_n = n \right] \).

Then: \(\forall n \in [2..\infty) \), \(\lambda_n = \Pr \left[X_{n-1} = 0 = X_n \mid T_n = n \right] \).

So, by the result of §14, we get: as \(n \to \infty \), \(\lambda_n \to p^2 \).

For all \(n \in \mathbb{N} \), since \(I_n \) is an indicator variable, we get: \(I_n \in \{0,1\} \) a.s.

Then: \(\forall n \in \mathbb{N} \), \(I_n = I_n^2 \) a.s.

Then: \(\forall n \in \mathbb{N} \), \(E\left[I_n \mid T_n = n \right] = E\left[I_n^2 \mid T_n = n \right] \).

Recall: \(\forall n \in \mathbb{N} \), \(E\left[I_n \mid T_n = n \right] = \kappa_n \).

Then: \(\forall n \in \mathbb{N} \), \(\kappa_n = E\left[I_n^2 \mid T_n = n \right] \).

For all \(n \in \mathbb{N} \), for all \(i,j \in [1..n] \), let \(c_{ijn} := E\left[I_i \cdot I_j \mid T_n = n \right] \).

We have: \(\forall n \in \mathbb{N} \), \(T_n \) is invariant under permutation of \(X_1, \ldots, X_n \),
as is the joint-distribution of \(X_1, \ldots, X_n \).

Then \(\forall n \in \mathbb{N} \), \(\forall i \in [1..n] \), \(E\left[I_i^2 \mid T_n = n \right] = E\left[I_i^2 \mid T_n = n \right] \).

so, \(\forall n \in \mathbb{N} \), \(\forall i \in [1..n] \), \(E\left[I_i^2 \mid T_n = n \right] = \kappa_n \).

so, \(\forall n \in \mathbb{N} \), \(\forall i \in [1..n] \), \(c_{iin} = \kappa_n \).

Similarly, \(\forall n \in [2..\infty) \), \(\forall i,j \in [1..n] \), if \(i \neq j \), then
\[
E\left[I_i \cdot I_j \mid T_n = n \right] = E\left[I_{n-1} \cdot I_n \mid T_n = n \right],
\]
so, \(\forall n \in [2..\infty) \), \(\forall i,j \in [1..n] \), if \(i \neq j \), then
\[
E\left[I_i \cdot I_j \mid T_n = n \right] = \lambda_n.
\]
so, \(\forall n \in [2..\infty) \), \(\forall i,j \in [1..n] \), if \(i \neq j \), then
\[
c_{ij} = \lambda_n.
\]

Then: \(\forall n \in \mathbb{N} \), \(\forall i,j \in [1..n] \), \(c_{ij} = \begin{cases} \kappa_n, & \text{if } i = j \\ \lambda_n, & \text{if } i \neq j \end{cases} \).

Then: \(\forall n \in \mathbb{N} \), \(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} = n \cdot \kappa_n + (n^2 - n) \cdot \lambda_n \).

Recall: as \(n \to \infty \), \(\kappa_n \to p \) and \(\lambda_n \to p^2 \).

Since \(\forall n \in \mathbb{N} \), \(J_n = (I_1 + \cdots + I_n)/n \),
we get: \(\forall n \in \mathbb{N} \), \(J_n^2 = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} [I_i \cdot I_j] \right) / n^2 \).

Then: \(\forall n \in \mathbb{N} \), \(E\left[J_n^2 \mid T_n = n \right] = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \right) / n^2 \).

Then: \(\forall n \in \mathbb{N} \), \(E\left[J_n^2 \mid T_n = n \right] = (1/n) \cdot \kappa_n + (1 - (1/n)) \cdot \lambda_n \).
16. **Boltzmann distributions on nonempty finite sets**

Recall (§9): \(\forall \) countable set \(\Theta \),

\[
\mathcal{M}_\Theta \quad \text{is the set of measures on } \Theta
\]

and \(\mathcal{FM}_\Theta^\times \) is the set of nonzero finite measures on \(\Theta \)

and \(\mathcal{P}_\Theta \) is the set of probability measures on \(\Theta \).

Recall (§9): \(\forall \) nonempty countable set \(\Theta \), \(\forall \mu \in \mathcal{FM}_\Theta^\times \),

\[
\mathcal{N}(\mu) \quad \text{is the normalization of } \mu.
\]

DEFINITION 16.1. Let \(E \subseteq \mathbb{R} \) be nonempty and finite, \(\beta \in \mathbb{R} \).

The **unnormalized-\(\beta \)-Boltzmann distribution on \(E \)** is

the measure \(\hat{B}^E_\beta \in \mathcal{FM}_E^\times \) defined by:

\[
\forall \varepsilon \in E, \quad \hat{B}^E_\beta(\varepsilon) = e^{-\beta \varepsilon}.
\]

Also, the **\(\beta \)-Boltzmann distribution on \(E \)** is

\[
\hat{B}^E_\beta := \mathcal{N}^{\hat{B}^E_\beta} \in \mathcal{P}_E.
\]

Then: \(\forall \varepsilon \in E \), we have: \(B^E_\beta(\varepsilon) = (\hat{B}^E_\beta(\varepsilon))/ (\hat{B}^E_\beta(E)) \).

Example: Let \(E := \{0, 1, 10\} \) and let \(\beta \in \mathbb{R} \).

Then: \(\hat{B}^E_\beta(0) = 1 \), \(\hat{B}^E_\beta(1) = e^{-\beta} \), \(\hat{B}^E_\beta(10) = e^{-10\beta} \).

Let \(C := 1/(1 + e^{-\beta} + e^{-10\beta}) \).

Then: \(B^E_\beta(0) = C \), \(B^E_\beta(1) = Ce^{-\beta} \), \(B^E_\beta(10) = Ce^{-10\beta} \).

Example: Let \(E := \{2, 4, 8, 9\} \) and let \(\beta \in \mathbb{R} \).

Then: \(\hat{B}^E_\beta(2) = e^{-2\beta} \), \(\hat{B}^E_\beta(4) = e^{-4\beta} \),

\(\hat{B}^E_\beta(8) = e^{-8\beta} \), \(\hat{B}^E_\beta(9) = e^{-9\beta} \).

Let \(C := 1/(e^{-2\beta} + e^{-4\beta} + e^{-8\beta} + e^{-9\beta}) \).

Then: \(B^E_\beta(2) = Ce^{-2\beta} \), \(B^E_\beta(4) = Ce^{-4\beta} \),

\(B^E_\beta(8) = Ce^{-8\beta} \), \(B^E_\beta(9) = Ce^{-9\beta} \).

Recall (§9): For any countable set \(\Theta \), for any \(\mu \in \mathcal{M}_\Theta \),

\(S_\mu \) is the support of \(\mu \).

Note: \(\forall \) nonempty finite \(E \subseteq \mathbb{R} \), \(\forall \beta \in \mathbb{R} \), we have: \(S_{\hat{B}^E_\beta} = E = S_{B^E_\beta} \).
THEOREM 16.2. Let $E \subseteq \mathbb{R}$ be nonempty and finite. Let $\varepsilon_0 \in E$, $\beta, \xi \in \mathbb{R}$. Then: $B_{\beta}^{E-\xi}\{\varepsilon_0 - \xi\} = B_{\beta}^{E}\{\varepsilon_0\}$.

Proof. We have:

$$B_{\beta}^{E-\xi}\{\varepsilon_0 - \xi\} = \sum_{\varepsilon \in E} \left[e^{\beta(\varepsilon - \xi)} \right]$$

$$= \sum_{\varepsilon \in E} \left[e^{\beta(\varepsilon_0 - \xi)} \right]$$

$$= e^{\beta \xi} \sum_{\varepsilon \in E} \left[e^{\beta(\varepsilon - \xi)} \right]$$

$$= \sum_{\varepsilon \in E} \left[e^{\beta(\varepsilon - \xi)} \right] = B_{\beta}^{E}\{\varepsilon_0\}. \quad \Box$$

Recall (§9): Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{P}_\Theta$. Assume $\#S_\mu < \infty$. Then $|\mu|_1 < \infty$ and M_μ is the mean of μ and V_μ is the variance of μ.

Let $E \subseteq \mathbb{R}$ be nonempty and finite. Let $\beta \in \mathbb{R}$. We define:

$$\Gamma_{\beta}^{E} := \sum_{\varepsilon \in E} [\varepsilon \cdot e^{\beta \varepsilon}],$$

$$\Delta_{\beta}^{E} := \sum_{\varepsilon \in E} [e^{\beta \varepsilon}],$$

$$A_{\beta}^{E} := \frac{\Gamma_{\beta}^{E}}{\Delta_{\beta}^{E}}.$$

Then: $\Gamma_{\beta}^{E} = \sum_{\varepsilon \in E} \left[\varepsilon \cdot (\hat{B}_{\beta}^{E}\{\varepsilon\}) \right]$. Also, $\Delta_{\beta}^{E} = \sum_{\varepsilon \in E} \left[\hat{B}_{\beta}^{E}\{\varepsilon\} \right]$, and so $\Delta_{\beta}^{E} = \hat{B}_{\beta}^{E}(E)$.

Since

$$\frac{\Gamma_{\beta}^{E}}{\Delta_{\beta}^{E}} = \frac{\sum_{\varepsilon \in E} [\varepsilon \cdot (\hat{B}_{\beta}^{E}\{\varepsilon\})]}{\hat{B}_{\beta}^{E}(E)} = \sum_{\varepsilon \in E} [\varepsilon \cdot (\hat{B}_{\beta}^{E}\{\varepsilon\})],$$

we conclude: $A_{\beta}^{E} = M_{\beta}^{E}$. Then: A_{β}^{E} is the average value of any E-valued random-variable whose distribution in E is B_{β}^{E}.

THEOREM 16.3. Let $E \subseteq \mathbb{R}$ be nonempty and finite. Let $\beta, \xi \in \mathbb{R}$. Then: $A_{\beta}^{E-\xi} = A_{\beta}^{E} - \xi$.

Proof. Want: $M_{\beta}^{E-\xi} = M_{\beta}^{E} - \xi$.

Let $\lambda := B_{\beta}^{E-\xi}$, $\mu := B_{\beta}^{E}$. Then:

$$M_\lambda = M_\mu - \xi.$$
\begin{align*}
&= \sum_{\varepsilon \in E} [\varepsilon \cdot (\mu\{\varepsilon\}) - \xi \cdot (\mu\{\varepsilon\})] \\
&= (\sum_{\varepsilon \in E} [\varepsilon \cdot (\mu\{\varepsilon\})]) - (\sum_{\varepsilon \in E} [\xi \cdot (\mu\{\varepsilon\})]) \\
&= M - \xi \cdot (\mu(E)) = M - \xi \cdot 1 = M - \xi. \quad \square
\end{align*}

Theorem 16.4. Let $E \subseteq \mathbb{R}$ be nonempty and finite. Then:

\begin{itemize}
 \item as $\beta \to \infty$, $A^E_\beta \to \min E$
 \item and as $\beta \to -\infty$, $A^E_\beta \to \max E$.
\end{itemize}

The proof is a matter of bookkeeping, best explained by example:

Let $E := \{2, 4, 8, 9\}$. Then $\min E = 2$ and $\max E = 9$.

Since, \quad \forall \beta \in \mathbb{R}, \quad A^E_\beta = \frac{2e^{-2\beta} + 4e^{-4\beta} + 8e^{-8\beta} + 9e^{-9\beta}}{e^{-2\beta} + e^{-4\beta} + e^{-8\beta} + e^{-9\beta}},

we get \quad as $\beta \to \infty$, \quad $A^E_\beta \to 2/1$

and \quad as $\beta \to -\infty$, \quad $A^E_\beta \to 9/1$.

\begin{itemize}
 \item as $\beta \to \infty$, \quad $A^E_\beta \to \min E$
 \item and as $\beta \to -\infty$, \quad $A^E_\beta \to \max E$.
\end{itemize}

For all nonempty, finite $E \subseteq \mathbb{R}$, define $A^E_\bullet : \mathbb{R} \to \mathbb{R}$ by:

\forall \beta \in \mathbb{R}, \quad A^E_\bullet (\beta) = A^E_\beta.

Recall (§2): “C^ω” means “real-analytic”.

Theorem 16.5. Let $E \subseteq \mathbb{R}$. Assume: $2 \leq \#E < \infty$.

Then: A^E_\bullet is a strictly-decreasing C^ω-diffeomorphism from \mathbb{R} onto $(\min E; \max E)$.

Proof. Let $\kappa := \#E$. Choose $\varepsilon_1, \ldots, \varepsilon_\kappa \in \mathbb{R}$ s.t. $E = \{\varepsilon_1, \ldots, \varepsilon_\kappa\}$.

Then: $2 \leq \kappa < \infty$ and $\varepsilon_1, \ldots, \varepsilon_\kappa$ are distinct.

Then: \forall $\beta \in \mathbb{R}$, $A^E_\bullet(\beta) = \frac{\sum_{i=1}^{\kappa} [\varepsilon_i \cdot e^{-\beta \cdot \varepsilon_i}]}{\sum_{j=1}^{\kappa} [e^{-\beta \cdot \varepsilon_j}]}$. Then $A^E_\bullet : \mathbb{R} \to \mathbb{R}$ is C^ω.

So, by Theorem 16.4 and the C^ω-Inverse Function Theorem and the Mean Value Theorem, it suffices to show: $(A^E_\bullet)'(\beta) < 0$ on \mathbb{R}.

Given $\beta \in \mathbb{R}$, want: $(A^E_\bullet)'(\beta) < 0$.

Let $P := \sum_{i=1}^{\kappa} [\varepsilon_i \cdot e^{-\beta \cdot \varepsilon_i}]$, $P' := \sum_{i=1}^{\kappa} [(-\varepsilon_i^2) \cdot e^{-\beta \cdot \varepsilon_i}]$.

Let $Q := \sum_{j=1}^{\kappa} [e^{-\beta \cdot \varepsilon_j}]$, $Q' := \sum_{j=1}^{\kappa} [(-\varepsilon_j) \cdot e^{-\beta \cdot \varepsilon_j}]$.

Then $Q > 0$. Also, by the Quotient Rule, $(A^E_\bullet)'(\beta) = [QP' - PQ']/Q^2$.

Want: $QP' - PQ' < 0$.

We have: $QP' = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} [(-\varepsilon_i^2) \cdot e^{-\beta \cdot (\varepsilon_i + \varepsilon_j)}]$.

We have: $PQ' = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} [(\varepsilon_i \varepsilon_j) \cdot e^{-\beta \cdot (\varepsilon_i + \varepsilon_j)}]$.
Then: \[QP' - PQ' = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \left[(-\varepsilon_i^2 + \varepsilon_j \varepsilon_i) \cdot e^{-\beta (\varepsilon_i + \varepsilon_j)} \right] .\]

Interchanging \(i\) and \(j\), we get:
\[QP' - PQ' = \sum_{j=1}^{\kappa} \sum_{i=1}^{\kappa} \left[(-\varepsilon_j^2 + \varepsilon_i \varepsilon_j) \cdot e^{-\beta (\varepsilon_j + \varepsilon_i)} \right] .\]

By commutativity of addition and multiplication, adding the last two equations gives:
\[2 \cdot (QP' - PQ') = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \left[(-\varepsilon_i^2 - \varepsilon_j^2 + 2\varepsilon_i \varepsilon_j) \cdot e^{-\beta (\varepsilon_i + \varepsilon_j)} \right] .\]

Then: \(2 \cdot (QP' - PQ') = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \left[-\varepsilon_i^2 \varepsilon_j^2 \cdot e^{-\beta (\varepsilon_i + \varepsilon_j)} \right] .\)

Then: \(2 \cdot (QP' - PQ') < 0.\) Then: \(QP' - PQ' < 0.\) \(\square\)

DEFINITION 16.6. Let \(E \subseteq \mathbb{R}\).

Assume: \(2 \leq \# E < \infty.\) Let \(\alpha \in (\min E; \max E).\)

The \(\alpha\)-Boltzmann-parameter on \(E\) is: \(BP^E_\alpha := (A^E_\alpha)^{-1}(\alpha).\)

So the \(\alpha\)-Boltzmann-parameter on \(E\) is the unique \(\beta \in \mathbb{R}\) s.t. \(A^E_\beta = \alpha.\)

Example: Computations at the end of §6 show:
\[
\forall \beta \in \mathbb{R}, \quad \frac{e^{-\beta} + 10e^{-10\beta}}{1 + e^{-\beta} + 10e^{-10\beta}} = 1, \text{ then } e^{-\beta} = 9^{-1/10}.
\]

Then, \(\forall \beta \in \mathbb{R}, \) if \(A^{[0,1,10]}_\bullet(\beta) = 1, \) then \(\beta = (\ln 9)/10.\)

Then: \((A^{[0,1,10]}_\bullet)^{-1}(1) = (\ln 9)/10.\)

Then: \(BP^{[0,1,10]}_1 = (\ln 9)/10.\)

Example: Let \(E := \{2, 4, 8, 9\}, \) \(\alpha := 5, \) \(\beta := BP^E_\alpha.\)

To compute \(\beta,\) we need to solve \(A^E_\beta = 5\) for \(\beta.\)

Since \(A^E_\bullet\) is strictly-decreasing, there are iterative methods of solution, and we get: \(\beta \approx 0.0918,\) accurate to four decimal places.

(Thanks to C. Prouty for these calculations. See §28.)

THEOREM 16.7. Let \(E \subseteq \mathbb{R}.\) Assume: \(2 \leq \# E < \infty.\)

Let \(\alpha \in (\min E; \max E).\) Let \(\xi \in \mathbb{R}.\) Then: \(BP^E_{\alpha - \xi} = BP^E_\alpha.\)

Proof. Let \(\beta := BP^E_\alpha.\) Want: \(BP^E_{\alpha - \xi} = \beta.\)

Since \(\beta = BP^E_\alpha = (A^E_\alpha)^{-1}(\alpha),\) we get: \((A^E_\alpha)(\beta) = \alpha.\)

By Theorem 16.3, \(A^E_{\alpha - \xi} = A^E_\beta - \xi.\)

Since \((A^E_{\alpha - \xi})(\beta) = A^E_{\alpha - \xi} = A^E_\beta - \xi = ((A^E_\alpha)(\beta)) - \xi = \alpha - \xi,\)

we get: \(\beta = (A^E_{\alpha - \xi})^{-1}(\alpha - \xi).\)

So, since \(BP^E_{\alpha - \xi} = (A^E_{\alpha - \xi})^{-1}(\alpha - \xi),\) we get: \(BP^E_{\alpha - \xi} = \beta.\) \(\square\)
17. Residue-unconstrained finite sets

In the next three theorems, we generalize our work in §13 from \{0, 1, 10\} to arbitrary finite residue-unconstrained sets. In the example at the end of this section, we show that Theorem 17.3 below reproduces the result of §13.

Recall (§9): \(\forall\) countable set \(\Theta\),
\[
\mathcal{FM}_\Theta \quad \text{is the set of finite measures on } \Theta
\]
and \(\mathcal{FM}_\Theta^\ast \) is the set of nonzero finite measures on \(\Theta\) and \(\mathcal{P}_\Theta \) is the set of probability measures on \(\Theta\).

Recall (§9): \(\forall\) nonempty finite set \(F\), \(\forall f \in F\), \(\nu_F \{f\} = 1/(\#F)\).

Recall (Definition 9.2): \(\forall\) countable set \(\Theta\), \(\forall \mu \in \mathcal{FM}_\Theta\),
\[
\forall x \in \Theta^n, \quad \mu^n \{x\} = (\mu \{x_1\} \cdots (\mu \{x_n\})).
\]

THEOREM 17.1. Let \(E \subseteq \mathbb{Z}\) be finite and residue-unconstrained.

Let \(\alpha \in (\min E; \max E)\). **Let** \(\beta := \text{BP}^E_\alpha\).

Let \(t_1, t_2, \ldots \in \mathbb{Z}\). Assume: \(\{t_n - n\alpha \mid n \in \mathbb{N}\}\) is bounded.

For all \(n \in \mathbb{N}\), let \(\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = t_n\}\). Let \(\varepsilon_0 \in E\). Then: as \(n \to \infty\), \(\nu_{\Omega_n} \{f \in \Omega_n \mid f_n = \varepsilon_0\} \to B^E_\beta \{\varepsilon_0\}\).

Recall (§9): \(\nu_{\emptyset} (\emptyset) = -1\).

So, since \(B^E_\beta \{\varepsilon_0\} > 0\), part of the content of this theorem is:
\[
\forall \text{sufficiently large } n \in \mathbb{N}, \quad \Omega_n \neq \emptyset.
\]

See Claim 1 in the proof below.

Proof. **Let** \(\mu := B^E_\beta\). Then: \(\mu \in \mathcal{P}_E\) and \(S_\mu = E\).

By hypothesis, \(E\) is finite. Then \(S_\mu\) is finite.

So, since \(\mu \in \mathcal{P}_E \subseteq \mathcal{FM}_E\), we get: \(|\mu|_1 < \infty\) and \(|\mu|_2 < \infty\).

Since \(\beta = \text{BP}^E_\alpha = (A^E_\alpha)^{-1}(\alpha)\), we get: \((A^E_\alpha)(\beta) = \alpha\).

So, since \((A^E_\alpha)(\beta) = A^E_\beta = M_{B^E_\beta} = M_\mu\), we get: \(M_\mu = \alpha\).

For all \(n \in \mathbb{N}\), **define** \(\psi_n : \mathbb{Z} \to \mathbb{R}\) by:
\[
\forall t \in \mathbb{Z}, \quad \psi_n(t) = \mu^n \{f \in E^n \mid f_1 + \cdots + f_n = t\}.
\]

Then: \(\forall n \in \mathbb{N}, \quad \psi_n(t_n) = \mu^n(\Omega_n)\).

Let \(v := V_\mu\). By Theorem 10.6, we get: \(0 < v < \infty\).

Let \(\tau := 1/\sqrt{2\pi v}\). Then: \(0 < \tau < \infty\).

By Theorem 10.6, we get:
\[
\text{as } n \to \infty, \quad \sqrt{n} \cdot \left(\mu^n \{f \in E^n \mid f_1 + \cdots + f_n = t_n\}\right) \to 1/\sqrt{2\pi v}.
\]

Then: \(\text{as } n \to \infty, \quad \sqrt{n} \cdot (\psi_n(t_n)) \to \tau\).

So, since \(\tau > 0\), **choose** \(n_0 \in \mathbb{N}\) s.t.: \(\forall n \in [n_0, \infty), \sqrt{n} \cdot (\psi_n(t_n)) > 0\).
Claim 1: Let \(n \in [n_0, \infty) \). Then: \(\mu^n(\Omega_n) > 0 \).

Proof of Claim 1: Recall: \(\psi_n(t_n) = \mu^n(\Omega_n) \). \[\text{Want: } \psi_n(t_n) > 0. \]
By the choice of \(n_0 \), we get: \(\sqrt{n} \cdot (\psi_n(t_n)) > 0 \). Then: \(\psi_n(t_n) > 0 \).

End of proof of Claim 1.

Recall: \(\mu^\prime \in \mathcal{P}_F \).
Then: \(\forall n \in \mathbb{N}, \mu^n \in \mathcal{P}_E^n \), so \(\mu^n(\Omega_n) \leq 1 \).
So, by Claim 1, \(\forall n \in [n_0, \infty) \), \(0 < \mu^n(\Omega_n) \leq 1 \).
Also, we have: \(\forall n \in \mathbb{N} \), \((\mu^n|_{\Omega_n})(\Omega_n) = \mu^n(\Omega_n) \).
Then: \(\forall n \in [n_0, \infty) \), \(0 < (\mu^n|_{\Omega_n})(\Omega_n) \leq 1 \).
Then: \(\forall n \in [n_0, \infty) \), \(\mu^n|_{\Omega_n} \in \mathcal{F} \mathcal{M}^{\times}_{\Omega_n} \).
Then: \(\forall n \in [n_0, \infty) \), \(\mathcal{N}(\mu^n|_{\Omega_n}) \in \mathcal{P}_{\Omega_n} \).

Claim 2: Let \(n \in [n_0, \infty) \). Then: \(\mathcal{N}(\mu^n|_{\Omega_n}) = \nu_{\Omega_n} \).

Proof of Claim 2: Let \(\theta := \mathcal{N}(\mu^n|_{\Omega_n}) \), \(F := \Omega_n \). Then \(\theta \in \mathcal{P}_F \).
\[\text{Want: } \theta = \nu_F. \]
By Theorem 9.9, given \(f, g \in F \), want: \(\theta\{f\} = \theta\{g\} \).
By Claim 1, we have: \(\mu^n(\Omega_n) > 0 \).

Since \((\mu^n|_{\Omega_n})(\Omega_n) = \mu^n(\Omega_n) \) and \(\theta = \mathcal{N}(\mu^n|_{\Omega_n}) \), we get: \(\theta = \frac{\mu^n|_{\Omega_n}}{\mu^n(\Omega_n)} \).

\[\text{Want: } \frac{\mu^n|_{\Omega_n}}{\mu^n(\Omega_n)} = \frac{\mu^n|_{\Omega_n}}{\mu^n(\Omega_n)} \]
\[\text{Want: } (\mu^n|_{\Omega_n})\{f\} = (\mu^n|_{\Omega_n})\{g\} \]

Since \(f, g \in F = \Omega_n \), we get:
\[(\mu^n|_{\Omega_n})\{f\} = \mu^n\{f\} \text{ and } (\mu^n|_{\Omega_n})\{g\} = \mu^n\{g\} \]

Want:
\[\mu^n\{f\} = \mu^n\{g\} \]

Since \(\#E \geq 2 \), we get: \(E \neq \emptyset \). Then \(\hat{B}_\beta(E) > 0 \).

Let \(C := 1/(\hat{B}_\beta(E)) \). Then \(\mathcal{N}(\hat{B}_\beta) = C \cdot \hat{B}_\beta \)

By definition of \(\hat{B}_\beta \); we have:
\[\forall \varepsilon \in E, \hat{B}_\beta\{\varepsilon\} = e^{-\beta \varepsilon} \]
So, since \(\mu = B_\beta = \mathcal{N}(\hat{B}_\beta) = C \cdot \hat{B}_\beta \), we get:
\[\forall \varepsilon \in E, \mu\{\varepsilon\} = Ce^{-\beta \varepsilon} \]

Since \(f \in F = \Omega_n \), by definition of \(\Omega_n \), we get: \(f_1 + \cdots + f_n = t_n \).
Since \(g \in F = \Omega_n \), by definition of \(\Omega_n \), we get: \(g_1 + \cdots + g_n = t_n \).
Since \(f_1 + \cdots + f_n = t_n = g_1 + \cdots + g_n \), we get:
\[C e^{-\beta (f_1 + \cdots + f_n)} = C e^{-\beta (g_1 + \cdots + g_n)} \]

Then: \((Ce^{-\beta f_1}) \cdots (Ce^{-\beta f_n}) = (Ce^{-\beta g_1}) \cdots (Ce^{-\beta g_n}) \).

Then: \((\mu\{f_1\}) \cdots (\mu\{f_n\}) = (\mu\{g_1\}) \cdots (\mu\{g_n\}) \).

Then:
\[\mu^n\{f\} = \mu^n\{g\} \]
By hypothesis, E is residue-unconstrained and $\varepsilon_0 \in E$ and $t_1, t_2, \ldots \in \mathbb{Z}$ and \(\{t_n - n\alpha \mid n \in \mathbb{N} \} \) is bounded.

Recall: $\mu \in \mathcal{P}_E$ and $S_\mu = E$ and $|\mu|_2 < \infty$ and $M_\mu = \alpha$.

Let $P := \mu(\varepsilon_0)$. Then, since $\mu = B_\beta^E$, we get: $P = B_\beta^E(\varepsilon_0)$.

We want: as $n \to \infty$, $\nu_{\Omega_n}(\{f \in \Omega_n \mid f_n = \varepsilon_0\}) \to P$.

By Theorem 12.2, as $n \to \infty$, $(\mathcal{N}(\mu^n|\Omega_n))\{f \in \Omega_n \mid f_n = \varepsilon_0\} \to P$.

So, by Claim 2, as $n \to \infty$, $\nu_{\Omega_n}(\{f \in \Omega_n \mid f_n = \varepsilon_0\}) \to P$. \square

Recall ($\S 2$): $\forall t \in \mathbb{R}$, $\lfloor t \rfloor$ is the floor of t.

We record the $t_n = \lfloor n\alpha \rfloor$ version of the preceding theorem:

THEOREM 17.2. Let $E \subseteq \mathbb{Z}$ be finite and residue-unconstrained.

Let $\alpha \in (\min E; \max E)$. Let $\beta := B_\alpha^E$.

For all $n \in \mathbb{N}$, let $\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = [na]\}$.

Let $\varepsilon_0 \in E$. Then: as $n \to \infty$, $\nu_{\Omega_n}(\{f \in \Omega_n \mid f_n = \varepsilon_0\}) \to B_\beta^E(\varepsilon_0)$.

We record the $\alpha \in \mathbb{Z}$ special case of the preceding theorem:

THEOREM 17.3. Let $E \subseteq \mathbb{Z}$ be finite and residue-unconstrained.

Let $\alpha \in (\min E; \max E)$. Let $\beta := B_\alpha^E$. Assume $\alpha \in \mathbb{Z}$.

For all $n \in \mathbb{N}$, let $\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = n\alpha\}$.

Let $\varepsilon_0 \in E$. Then: as $n \to \infty$, $\nu_{\Omega_n}(\{f \in \Omega_n \mid f_n = \varepsilon_0\}) \to B_\beta^E(\varepsilon_0)$.

Example: Suppose $E = \{0, 1, 10\}$ and $\alpha = 1$.

Then $\Omega_N = \{f \in E^N \mid f_1 + \cdots + f_N = N\}$, so Ω_N represents the set of all GFA dispensations, as described in $\S 3$.

The measure ν_{Ω_N} gives equal probability to each dispensation, so ν_{Ω_N} represents the GFA’s first system for awarding grants, also described in $\S 3$.

Since $\beta = B_\alpha^E = B_1^{0,1,10}$, we calculate: $\beta = (\ln 9)/10$.

More calculation gives: $(B_\beta^E(0), B_\beta^E(1), B_\beta^E(10)) = (1, 9^{-1/10}, 9^{-1})$.

Since N is large, by Theorem 17.3, we get:

$\nu_{\Omega_N}(\{f \in \Omega_N \mid f_N = \varepsilon_0\}) \approx B_\beta^E(\varepsilon_0)$.

So, if I am the Nth professor, then, under the first system, my probability of receiving ε_0 dollars is approximately equal to $B_\beta^E(\varepsilon_0)$.

Thus Theorem 17.3 reproduces the result of $\S 13$.

End of proof of Claim 2.
18. RATIONAL AWARD SETS

In this section, we investigate what happens if the set of awards is an arbitrary set of rational numbers. Recall that, on our Earth, which is Earth-1218, grants are $0, $1, $10, with average grant $1.

Example: In a parallel universe, on Earth-googol-plex, there are \(N \) professors applying for grants from its GFA. By GFA rules, grant amounts are $10, $14.45, $54, and Congress allocates $13.37 per professor. Earth-googol-plex has its own GFA. This GFA there is using the “first system” for awarding grants, in which every dispensation is equally likely.

Question: Under this system, for any professor, what is the approximate probability of receiving $10? $14.45? $54?

To simplify this problem, we can imagine that the GFA makes two rounds of awards. In the first round, it simply dispenses $10 to each professor. In the second round, using the first system, it dispenses additional grants of $0, $4.45, $44, with average grant $3.37.

We seek the approximate probability of the additional grant being each of the numbers $0, $4.45, $44.

To simplify this problem still more, we can change monetary units so that the grant amounts are all integers: Additional grants, in pennies, are 0, 445, 4400, with average grant 337, and we seek the approximate probability of receiving 0, 445, 4400.

Unfortunately, \(\{0, 445, 4400\} \) \(\subseteq \mathbb{Z} + 0 \), so \(\{0, 445, 4400\} \) is not residue-unconstrained, making it difficult to apply the Discrete Local Limit Theorem. Since \(\gcd\{0, 445, 4400\} = 5 \), we can change monetary units again: Additional grants, in nickels, are 0, 89, 880, with average grant \(337/5 \), and we seek the approximate probability of receiving 0, 89, 880.

Let \(E := \{0, 89, 880\} \) and **let** \(\alpha := 337/5 \).

Since \(0 \in E \) and \(\gcd(E) = 1 \), we get: \(E \) is residue-unconstrained. The amount of money (in nickels) allocated by Congress is \(N_0 \alpha \), to be dispensed among the \(N_0 \) professors. Unfortunately, a census reveals that: \(N_0 \) is not divisible by 5.
Recall: $\alpha = 337/5$. Then $N_0 \alpha \notin \mathbb{Z}$, while $0, 89, 880 \in \mathbb{Z}$.

It is therefore **impossible** to dispense the grant money.

The bureaucracy seizes up, there is pandemonium in the streets, and the military steps in to impose order.

The superheroes of Earth-googol-plex are committed to democracy, and so they reverse time and select a different time-line.

On this new time-line, E and α are unchanged, but there is a new number, N_1, of professors, and N_1 is blissfully divisible by 5. Then: $N_1 \alpha \in \mathbb{Z}$.

Let $\varepsilon_0 \in E$ **be given.**

We want: the approximate probability of receiving ε_0 nickels.

Recall ($\S 2$): $\forall t \in \mathbb{R}$, $[t]$ is the floor of t.

For all $n \in \mathbb{N}$, **let** $\Omega_n := \{ f \in E^n \mid f_1 + \cdots + f_n = [n\alpha] \}$.

Since $N_1 \alpha \in \mathbb{Z}$, we get: $\Omega_{N_1} = \{ f \in E^{N_1} \mid f_1 + \cdots + f_{N_1} = N_1 \alpha \}$.

We want: an approximation to $\nu_{\Omega_{N_1}} \{ f \in \Omega_{N_1} \mid f_{N_1} = \varepsilon_0 \}$.

Recall: E is residue-unconstrained.

Let $\beta := \text{BP}_E^\alpha$. By Theorem 17.2, we have:

$$
\nu_{\Omega_n} \{ f \in \Omega_n \mid f_n = \varepsilon_0 \} \to B_\beta^E \{ \varepsilon_0 \}.
$$

So, assuming N_1 is large, we get

$$
\nu_{\Omega_{N_1}} \{ f \in \Omega_{N_1} \mid f_{N_1} = \varepsilon_0 \} \approx B_\beta^E \{ \varepsilon_0 \}.
$$

For each $\varepsilon_0 \in \{0, 89, 880\}$, we want to compute $B_\beta^E \{ \varepsilon_0 \}$.

We therefore want to compute $(B_\beta^E \{0\}, B_\beta^E \{89\}, B_\beta^E \{880\})$.

Since $\beta = \text{BP}_E^\alpha = \text{BP}_{337/5}^{(0,89,880)}$, we see that:

to evaluate β, we must solve $A_{(0,89,880)}(\beta) = 337/5$ for β.

Since, by Theorem 16.5, $A_{(0,89,880)}$ is strictly-decreasing,

there are simple iterative methods to do this.

We calculate $\beta = 0.003144$, accurate to six decimals.

We also calculate

$$
(B_\beta^E \{0\}, B_\beta^E \{89\}, B_\beta^E \{880\}) = (0.5498, 0.4156, 0.0345),
$$

all accurate to four decimals.

(Thanks to C. Prouty for this calculation. See $\S 28$.)

Recall ($\S 3$): N is a large positive integer.

More generally: Imagine a parallel universe with N professors.

Let E_0 denote the set of grant-awards.

Assume $E_0 \subseteq \mathbb{Q}$ and $2 \leq \#E_0 < \infty$.

Let $\alpha_0 \in (\min E; \max E)$ denote the average award.
Since \(\#E_0 \geq 2 \), we get: \(E_0 \neq \emptyset \). Choose \(\varepsilon_0 \in E_0 \). Then \(\varepsilon_0 \in \mathbb{Q} \).

Let \(E_1 := E_0 - \varepsilon_0 \), \(\alpha_1 := \alpha_0 - \varepsilon_0 \). Then \(\alpha_1 \in (\min E_1; \max E_1) \).

Also, since \(\varepsilon_0 - \varepsilon_0 \in E_0 - \varepsilon_0 = E_1 \), we get: \(0 \in E_1 \).

So, by giving out awards in two rounds (first \(\varepsilon_0 \), then the remainder),
we are reduced to a case where \(0 \) is a possible grant-award.

Since \(E_1 = E_0 - \varepsilon_0 \subseteq \mathbb{Q} \), choose \(m \in \mathbb{N} \) s.t. \(m E_1 \subseteq \mathbb{Z} \).

Let \(E_2 := m E_1 \), \(\alpha_2 := m \alpha_1 \). Then: \(0 \in E_2 \subseteq \mathbb{Z} \).

So, by change of monetary unit,
we are reduced to a case where every grant-award is an integer
and where \(0 \) is a possible grant-award.

Let \(g := \gcd(E_2) \), \(E := E_2/g \), \(\alpha := \alpha_2/g \). Then \(\alpha \in (\min E; \max E) \).

Also, \(0 \in E \) and \(\gcd(E) = 1 \), so \(E \) is residue-unconstrained.

So, by change of monetary unit, we are reduced to a case where
the set of grant-awards is a residue-unconstrained set of integers.

If \(N \alpha \in \mathbb{Z} \), then, since every grant-award is an integer,
no dispensation is possible, leading to
your typical military dictatorship and superhero intervention.

If \(N \alpha \notin \mathbb{Z} \), then, using Theorem 17.2,
we can compute the approximate probability of each award.

19. Irrational awards

In this section, we briefly discuss what can happen if
NOT every grant award is a rational number.

Here, we only present an example to show that
the award probabilities may NOT follow a Boltzmann distribution.

Example: On Earth-aleph-1, the GFA gives
grants of \(\sqrt{2} \), \(\sqrt{3} \), \(10 - \sqrt{2} - \sqrt{3} \) dollars,
with an average grant of 1 dollar,
giving equal probability to every possible dispensation.

Assume: \(N \) is the number of professors and \(N \) is divisible by 10.

Let \(M := N/10 \). Then \(M \in \mathbb{N} \) and there are \(10M \) professors.
Moreover, since the average grant is 1 dollar, we conclude:
there are \(10M \) dollars to dispense among the \(10M \) professors.

Claim: On Earth-aleph-1, every dispensation of awards has
\begin{align*}
7M & \text{ grants of } 0 \text{ dollars,} \\
M & \text{ grants of } \sqrt{2} \text{ dollars,}
\end{align*}
Proof of Claim: Given a dispensation,
let \(w \) be the number of 0 dollar grants and
let \(x \) be the number of \(\sqrt{2} \) dollar grants and
let \(y \) be the number of \(\sqrt{3} \) dollar grants and
let \(z \) be the number of \(10 - \sqrt{2} - \sqrt{3} \) dollar grants,

want: \(w = 7M \) and \(x = y = z = M \).

Because the total money dispensed is \(10M \) dollars, we get:

\[
w \cdot 0 + x \cdot \sqrt{2} + y \cdot \sqrt{3} + z \cdot (10 - \sqrt{2} - \sqrt{3}) = 10M.
\]
Then: \((10z - 10M) \cdot 1 + (x - z) \cdot \sqrt{2} + (y - z) \cdot \sqrt{3} = 0 \).
So, since \(1, \sqrt{2}, \sqrt{3} \) are linearly independent over \(\mathbb{Q} \), we get:

\[
10z - 10M = 0 \text{ and } x - z = 0 \text{ and } y - z = 0.
\]
Then \(z = M \) and \(x = z \) and \(y = z \). Then \(x = y = z = M \).

It remains only to show: \(w = 7M \).

Because there are \(10M \) professors, we get: \(w + x + y + z = 10M \).
Then: \(w + M + M + M = 10M \). Then: \(w = 7M \).

End of proof of Claim.

By the claim, in each dispensation, there are

\(M \) grants of \(\sqrt{3} \) dollars,

\(M \) grants of \(10 - \sqrt{2} - \sqrt{3} \) dollars.

Of the four grant amounts, the largest is \(10 - \sqrt{2} - \sqrt{3} \).
So, if I am one of the \(10M \) professors, then I would hope to be among

the lucky \(M \) receiving \(10 - \sqrt{2} - \sqrt{3} \) dollars.

My probability of being so lucky is: \(M/(10M) \), i.e., 10%.
That is, we obtain a probability of:

\(10\% \) for \(10 - \sqrt{2} - \sqrt{3} \) dollars.

Extending this reasoning, we obtain probabilities of:

\(70\% \) for \(0 \) dollars,

\(10\% \) for \(\sqrt{2} \) dollars,

\(10\% \) for \(\sqrt{3} \) dollars,

\(10\% \) for \(10 - \sqrt{2} - \sqrt{3} \) dollars.

In a Boltzmann distribution, depending on whether \(\beta = 0 \) or \(\beta \neq 0 \),
either the probabilities are all equal
or the probabilities are all distinct from one another.
The numbers 70,10,10,10 are neither all equal nor all distinct.
Thus, the 70-10-10-10 distribution above is NOT Boltzmann.
20. Earth-minimum-Mahlo-cardinal and the BUA

Next, we wish to handle thermodynamic systems in which many states may have a single energy-level. One says that such an energy-level is “degenerate”. In this section, we develop a whimsical example. In §21 and §22, we will develop a general theory.

Recall that $N \in \mathbb{N}$ is large.

In a parallel universe, on Earth-minimum-Mahlo-cardinal, the BUA (Best University Anywhere) employs N professors. Each professor has a number, from 1 to N. Each professor wanders the campus, carrying two bags: one red, one blue. Each bag is closed from view, but has money in it or is empty. The “state” of a professor is the pair $\sigma = (\sigma_1, \sigma_2)$ such that σ_1 is the number of dollars in the professor’s red bag, σ_2 is the number of dollars in the professor’s blue bag; the professor’s “wealth” is $\sigma_1 + \sigma_2$ dollars.

So, if I am one of the professors, and if my state is $(3, 2)$, then I have: $\$3$ in my red bag and $\$2$ in my blue bag, and my wealth is $\$5$.

By BUA rules, the amount of money in any bag is always $\$0$ or $\$1$ or $\$2$ or $\$3$ or $\$4$, and each professor’s wealth is always $\leq \$7$.

Therefore, the set of allowable states is $(\{0.4\} \times \{0.4\}) \setminus \{(4, 4)\}$. Let $\Sigma := (\{0.4\} \times \{0.4\}) \setminus \{(4, 4)\}$. Since $\#(\{0.4\} \times \{0.4\}) = 5 \cdot 5 = 25$, we get: $\#\Sigma = 24$.

Define $\varepsilon : \Sigma \to [0..7]$ by: $\forall \sigma \in \Sigma$, $\varepsilon(\sigma) = \sigma_1 + \sigma_2$.

For convenience of notation, $\forall \sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

If I am one of the professors, and if my state is $\sigma = (\sigma_1, \sigma_2) \in \Sigma$, then I have: $\$\sigma_1$ in my red bag and $\$\sigma_2$ in my blue bag, and my wealth is $\$\varepsilon_\sigma$.

Since $\varepsilon_{(3,2)} = 5 = \varepsilon_{(1,4)}$, we see that ε is not one-to-one, and we have a so-called “degeneracy” at 5.

This function ε has many other degeneracies, as well.
Recall: The professors are numbered, from 1 to N.
At random moments, random pairs of wandering professors cross paths, and interact.
Each interaction involves three steps:
- a game
- a verbal offer
- a rejection or a money transfer.

The first step, the game, is played as follows:
- one of the two professors flips a fair coin
 - if heads, then the lower-numbered professor wins
 - if tails, then the higher-numbered professor wins.

Next, without touching any money,
- the losing professor verbally offers $1 to the winning professor.

The losing professor then flips a fair coin,
- if heads, then the loser’s red bag is opened
- if tails, then the loser’s blue bag is opened.

If the loser’s open bag is empty, then
- the winner gallantly rejects the $1 offer
- the opened bag is closed, the interaction is over,
- the professors continue their wanderings.

On the other hand, if the loser’s open bag is NOT empty, then,
- both of the winner’s bags are opened.
Recall that, by BUA rules, every professor’s wealth must be ≤ 7.
If the winner’s wealth is 7,
- then the winner rejects the $1 offer
- the opened bags are closed, the interaction is over,
- the professors continue their wanderings.

On the other hand, if the winner’s wealth is ≤ 6,
- then the winner flips a fair coin,
 - if heads, then the winner’s red bag is closed
 - if tails, then the winner’s blue bag is closed.

At this point, the winner has one open bag, as does the loser.
Moreover, the loser’s open bag is NOT empty.
Recall that no bag may have more than 4.
If the winner’s open bag has 4,
- then the winner rejects the $1 offer
- the opened bags are closed, the interaction is over,
the professors continue their wanderings.

On the other hand, if the winner’s open bag has ≤ 3, then 1 is transferred from the losing professor’s open bag to the winning professor’s open bag; then the opened bags are closed, the interaction is over, and the professors continue their wanderings.

Because of these interactions, the wealth of an individual professor may change over time, but the sum of the wealths of all of them is constant; there is “conservation of (total) wealth”.

An audit reveals that, at the BUA, that total wealth is always N.

Recall: $\Sigma = ([0..4] \times [0..4]) \setminus \{(4, 4)\}$ is the set of states.

A “state-dispensation” is a function $[1..N] \to \Sigma$, representing the states of all N professors.

So, if, at some point in time, the state-dispensation is $\omega : [1..N] \to \Sigma$, then for every $\ell \in [1..N]$, the state of Professor $\#\ell$ is $\omega(\ell)$, and the wealth of Professor $\#\ell$ is $\epsilon_{\omega(\ell)}$; therefore, the total wealth of all the professors is $\sum_{\ell=1}^{N} \epsilon_{\omega(\ell)}$.

As we mentioned, at the BUA, that total wealth is N.

Let $\Omega^* := \left\{ \omega : [1..N] \to \Sigma \mid \sum_{\ell=1}^{N} \epsilon_{\omega(\ell)} = N \right\}$.

Then Ω^* represents the set of all state-dispensations at the BUA.

The random interactions, described above, induce a discrete Markov-chain on Ω^*.

This, in turn, induces a map $\Pi : \mathcal{P}_{\Omega^*} \to \mathcal{P}_{\Omega^*}$.

Let $T := \#\Omega^*$. Fix an ordering of Ω^*, i.e., a bijection $[1..T] \leftrightarrow \Omega^*$.

The Markov-chain then has a $T \times T$ transition-matrix Φ, with entries in $[0; 1]$, whose column-sums are all 1.

For every $\phi, \psi \in \Omega^*$, the probability of transitioning from ϕ to ψ is equal to the probability of transitioning from ψ to ϕ.

That is, the transition-matrix Φ is symmetric.

So, since the column-sums of Φ are all 1, ...
we get: the row-sums of Φ are all 1.

Let v be a $T \times 1$ column vector whose entries are all 1. Then $\Phi v = v$.

Let $w := v/T$. Then: all the entries of w are $1/T$ and $\Phi w = w$.

Recall that the probability-distribution $\nu_{\Omega^*} \in \mathcal{P}_{\Omega^*}$ assigns equal probability to each state-dispensation in Ω^*.

That is, $\forall \omega \in \Omega^*, \nu_{\Omega^*}(\omega) = 1/T$.

Since the entries of w are equal to these ν_{Ω^*}-probabilities, and since $\Phi w = w$, we get: $\Pi(\nu_{\Omega^*}) = \nu_{\Omega^*}$.

We will say that two state-dispensations $\phi, \psi \in \Omega^*$ are “adjacent”,

if there is an interaction that carries ϕ to ψ.

For any $\phi, \psi \in \Omega^*$,

\exists a finite sequence of interactions that carries ϕ to ψ.

That is: $\forall \phi, \psi \in \Omega^*, \exists m \in \mathbb{N}, \exists \omega_0, \ldots, \omega_m \in \Omega^*$

$s.t. \quad \phi = \omega_0$ and $\omega_m = \psi$

and $s.t. \quad \forall i \in [1..m], \omega_{i-1}$ is adjacent to ω_i.

That is, any two state-dispensations are connected by an adjacency-path.

That is, the Markov-chain on Ω^* is irreducible.

Recall that some interactions result in a rejection;

such interactions do not change the state-dispensation.

So, a state-dispensation is sometimes adjacent to itself.

That is, there are adjacency-cycles of length 1.

It follows that the Markov-chain is aperiodic.

So, since the Markov-chain is irreducible and since $\Pi(\nu_{\Omega^*}) = \nu_{\Omega^*}$, by the Perron-Frobenius Theorem, we get:

$\forall \mu \in \mathcal{P}_{\Omega^*}, \mu, \Pi(\mu), \Pi(\Pi(\mu)), \Pi(\Pi(\Pi(\mu))), \ldots \rightarrow \nu_{\Omega^*}$.

That is, for any starting probability-distribution on Ω^*, after enough random interactions, the resulting probability-distribution on Ω^* will be approximately equal to ν_{Ω^*}, to any desired level of accuracy.

Problem: Suppose I am Professor #N at the BUA.

Suppose that the probability-distribution μ of state-dispensations is approximately equal to ν_{Ω^*}.

For each $\sigma \in \Sigma$, compute my probability of being in state σ.

That is, $\forall \sigma \in \Sigma$, compute $\mu\{\omega \in \Omega^* | \omega(N) = \sigma\}$.
Since \(\#\Sigma = 24 \), there will be 24 answers. Approximate answers are acceptable.

To make a precise mathematical problem, we, in fact, assume that \(\mu \) is exactly equal to \(\nu_{\Omega^*} \), and we seek the exact “thermodynamic limit”, meaning we replace \(N \) with a variable \(n \in \mathbb{N} \), and let \(n \to \infty \).

In the next two sections, we will develop a theory to solve problems like this one. We need only adapt our earlier methods to allow for degeneracies.

Our main theorems are Theorem 22.1 and Theorem 22.2 and Theorem 22.3, and the solution to the above “precise mathematical problem” appears in the example at the end of §22.

21. BOOLTZMANN DISTRIBUTIONS ON FINITE SETS WITH DEGENERACY

We begin by adapting our work on Boltzmann distributions to allow for degeneracies.

DEFINITION 21.1. Let \(\Sigma \) be a nonempty finite set. Let \(\varepsilon : \Sigma \to \mathbb{R} \). Let \(\beta \in \mathbb{R} \).

Then \(\hat{B}_\beta^\varepsilon \in \mathcal{F}_\Sigma^\varepsilon \) is defined by: \(\forall \sigma \in \Sigma, \hat{B}_\beta^\varepsilon \{\sigma\} = e^{-\beta(\varepsilon(\sigma))} \).

Also, we define: \(B_\beta^\varepsilon := \mathcal{N}(\hat{B}_\beta^\varepsilon) \in \mathcal{P}_\Sigma \).

Then: \(\forall \text{nonempty finite set } \Sigma, \forall \varepsilon : \Sigma \to \mathbb{R}, \forall \beta \in \mathbb{R} \),
\[
\hat{B}_\beta^\varepsilon (\Sigma) > 0 \quad \text{and} \quad \forall \sigma \in \Sigma, \quad B_\beta^\varepsilon \{\sigma\} = (\hat{B}_\beta^\varepsilon \{\sigma\}) / (\hat{B}_\beta^\varepsilon (\Sigma))
\]
and \(S_{B_\beta^\varepsilon} = \Sigma = S_{\hat{B}_\beta^\varepsilon} \).

Example: Let \(\Sigma := \{0, 1, 10\} \) and let \(\beta \in \mathbb{R} \).

Define \(\varepsilon : \Sigma \to \mathbb{R} \) by: \(\forall \sigma \in \Sigma, \varepsilon(\sigma) = \sigma \).

Then: \(\hat{B}_\beta^\varepsilon \{0\} = 1, \quad \hat{B}_\beta^\varepsilon \{1\} = e^{-\beta}, \quad \hat{B}_\beta^\varepsilon \{10\} = e^{-10\beta} \).

Let \(C := 1/(1 + e^{-\beta} + e^{-10\beta}) \).

Then: \(B_\beta^\varepsilon \{0\} = C, \quad B_\beta^\varepsilon \{1\} = Ce^{-\beta}, \quad B_\beta^\varepsilon \{10\} = Ce^{-10\beta} \).

Example: Let \(\Sigma := \{2, 4, 8, 9\} \) and let \(\beta \in \mathbb{R} \).
Define \(\varepsilon : \Sigma \rightarrow \mathbb{R} \) by: \(\forall \sigma \in \Sigma, \; \varepsilon(\sigma) = \sigma \). Then:
\[
\begin{align*}
\hat{B}_\beta^\varepsilon(2) &= e^{-2\beta}, & \hat{B}_\beta^\varepsilon(4) &= e^{-4\beta}, \\
\hat{B}_\beta^\varepsilon(8) &= e^{-8\beta}, & \hat{B}_\beta^\varepsilon(9) &= e^{-9\beta}.
\end{align*}
\]
Let \(C := 1/(e^{-2\beta} + e^{-4\beta} + e^{-8\beta} + e^{-9\beta}) \).
Then:
\[
\begin{align*}
B_\beta^\varepsilon(2) &= Ce^{-2\beta}, & B_\beta^\varepsilon(4) &= Ce^{-4\beta}, \\
B_\beta^\varepsilon(8) &= Ce^{-8\beta}, & B_\beta^\varepsilon(9) &= Ce^{-9\beta}.
\end{align*}
\]

Example: Let \(\Sigma := \{1, 2, 3, 4\} \) and let \(\beta \in \mathbb{R} \).
Define \(\varepsilon : \Sigma \rightarrow \mathbb{R} \) by:
\[
\begin{align*}
\varepsilon(1) &= 2, & \varepsilon(2) &= 4, & \varepsilon(3) &= 8, & \varepsilon(4) &= 9.
\end{align*}
\]
Then:
\[
\begin{align*}
\hat{B}_\beta^\varepsilon(1) &= e^{-2\beta}, & \hat{B}_\beta^\varepsilon(2) &= e^{-4\beta}, \\
\hat{B}_\beta^\varepsilon(3) &= e^{-8\beta}, & \hat{B}_\beta^\varepsilon(4) &= e^{-9\beta}.
\end{align*}
\]
Let \(C := 1/(e^{-2\beta} + e^{-4\beta} + e^{-8\beta} + e^{-9\beta}) \).
Then:
\[
\begin{align*}
B_\beta^\varepsilon(1) &= Ce^{-2\beta}, & B_\beta^\varepsilon(2) &= Ce^{-4\beta}, \\
B_\beta^\varepsilon(3) &= Ce^{-8\beta}, & B_\beta^\varepsilon(4) &= Ce^{-9\beta}.
\end{align*}
\]
In the preceding three examples, \(\varepsilon \) is one-to-one.
That is, \(\varepsilon \) has no degeneracies.
In the next, \(\varepsilon \) has one degeneracy, at energy-level 9.

Example: Let \(\Sigma := \{1, 2, 3, 4\} \) and define \(\varepsilon : \Sigma \rightarrow \mathbb{R} \) by:
\[
\begin{align*}
\varepsilon(1) &= 2, & \varepsilon(2) &= 4, & \varepsilon(3) &= 9, & \varepsilon(4) &= 9.
\end{align*}
\]
Then:
\[
\begin{align*}
\hat{B}_\beta^\varepsilon(1) &= e^{-2\beta}, & \hat{B}_\beta^\varepsilon(2) &= e^{-4\beta}, \\
\hat{B}_\beta^\varepsilon(3) &= e^{-9\beta}, & \hat{B}_\beta^\varepsilon(4) &= e^{-9\beta}.
\end{align*}
\]
Let \(C := 1/(e^{-2\beta} + e^{-4\beta} + 2e^{-9\beta}) \).
Then:
\[
\begin{align*}
B_\beta^\varepsilon(1) &= Ce^{-2\beta}, & B_\beta^\varepsilon(2) &= Ce^{-4\beta}, \\
B_\beta^\varepsilon(3) &= Ce^{-9\beta}, & B_\beta^\varepsilon(4) &= Ce^{-9\beta}.
\end{align*}
\]
In the next example, \(\varepsilon \) has many degeneracies.

Example: Let \(\Sigma := \{[0..4] \times [0..4]\} \setminus \{(4, 4)\} \).
Let \(\beta \in \mathbb{R} \) and define \(\varepsilon : \Sigma \rightarrow \mathbb{R} \) by:
\(\forall \sigma \in \Sigma, \; \varepsilon(\sigma) = \sigma_1 + \sigma_2 \).
Then:
\[
\begin{align*}
\hat{B}_\beta^\varepsilon((3, 2)) &= e^{-5\beta}, & \hat{B}_\beta^\varepsilon((1, 4)) &= e^{-5\beta}, & \hat{B}_\beta^\varepsilon((0, 0)) &= 1.
\end{align*}
\]
Generally, \(\forall \sigma \in \Sigma, \; \hat{B}_\beta^\varepsilon(\sigma) = e^{-(\sigma_1 + \sigma_2)\beta} \).
Let \(C := 1/(\sum_{\sigma \in \Sigma} e^{-(\sigma_1 + \sigma_2)\beta}) \).
Then:
\[
\begin{align*}
B_\beta^\varepsilon((3, 2)) &= Ce^{-5\beta}, & B_\beta^\varepsilon((1, 4)) &= Ce^{-5\beta}, & B_\beta^\varepsilon((0, 0)) &= C.
\end{align*}
\]
Generally, \(\forall \sigma \in \Sigma, \; B_\beta^\varepsilon(\sigma) = Ce^{-(\sigma_1 + \sigma_2)\beta} \).
THEOREM 21.2. Let Σ be a nonempty finite set.

Let $\varepsilon : \Sigma \to \mathbb{R}, \; \xi, \beta \in \mathbb{R}$. Then: $B_\beta^\varepsilon = B_\beta^{\varepsilon - \xi}$.

Proof. For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

Since, $\forall \sigma \in \Sigma$, $\hat{B}_\beta^\varepsilon(\sigma) = e^{-\beta \cdot \varepsilon_\sigma} = e^{-\beta \cdot \varepsilon} \cdot (\hat{B}_\beta^{\varepsilon - \xi}(\sigma))$,
we get: $\hat{B}_\beta^\varepsilon = e^{-\beta \cdot \varepsilon} \cdot \hat{B}_\beta^{\varepsilon - \xi}$.

Since $e^{-\beta \xi} > 0$, we get: $\mathcal{N}(e^{-\beta \xi} \cdot \hat{B}_\beta^{\varepsilon - \xi}) = \mathcal{N}((\hat{B}_\beta^{\varepsilon - \xi})$.

Then: $B_\beta^\varepsilon = \mathcal{N}(\hat{B}_\beta^\varepsilon) = \mathcal{N}(e^{-\beta \xi} \cdot \hat{B}_\beta^{\varepsilon - \xi}) = B_\beta^{\varepsilon - \xi}$. \quad \Box

DEFINITION 21.3. Let Σ be a nonempty finite set, $\varepsilon : \Sigma \to \mathbb{R}$.

For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

For all $\beta \in \mathbb{R}$, let

$\Gamma_\beta^\varepsilon := \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \cdot \varepsilon}]$,

$\Delta_\beta^\varepsilon := \sum_{\sigma \in \Sigma} [e^{-\beta \cdot \varepsilon}]$,

$A_\beta^\varepsilon := \frac{\Gamma_\beta^\varepsilon}{\Delta_\beta^\varepsilon}$.

Let Σ be a nonempty finite set, $\varepsilon : \Sigma \to \mathbb{R}$.

Since $\Gamma_\beta^\varepsilon = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (\hat{B}_\beta^\varepsilon(\sigma))]$,
we get: Γ_β^ε is the integral of ε wrt $\hat{B}_\beta^\varepsilon$.

Since $\Delta_\beta^\varepsilon = \sum_{\sigma \in \Sigma} [\hat{B}_\beta^\varepsilon(\sigma)]$,
we get: $\Delta_\beta^\varepsilon = \hat{B}_\beta^\varepsilon(\Sigma)$.

Since $\Gamma_\beta^\varepsilon = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (\hat{B}_\beta^\varepsilon(\sigma))]$,
we get: $A_\beta^\varepsilon = \frac{\sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (\hat{B}_\beta^\varepsilon(\sigma))]}{\hat{B}_\beta^\varepsilon(\Sigma)}$.

Then: A_β^ε is the average value of ε wrt $\hat{B}_\beta^\varepsilon$.

Recall (§2) the notations \mathbb{I}_f, f^*A. Recall (§9) the notation $\varepsilon_*\mu$.

Recall (Definition 9.5) the notation M_μ.

THEOREM 21.4. Let Σ be a nonempty finite set.

Let $\varepsilon : \Sigma \to \mathbb{R}, \; \beta \in \mathbb{R}$. Then: $M_{\varepsilon_*B_\beta^\varepsilon} = A_\beta^\varepsilon$.

Proof. For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

Because Σ is the disjoint union, over $t \in \mathbb{I}_\varepsilon$, of $\varepsilon^*(t)$,
we get: $\sum_{t \in \mathbb{I}_\varepsilon} \sum_{\sigma \in \varepsilon^*(t)} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))] = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))]$.

Also, $A_\beta^\varepsilon = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))]$.

Then: $\sum_{t \in \mathbb{I}_\varepsilon} \sum_{\sigma \in \varepsilon^*(t)} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))] = A_\beta^\varepsilon$.

So, since $\sum_{t \in \mathbb{I}_\varepsilon} [t \cdot (\varepsilon_*B_\beta^\varepsilon(\sigma))] = M_{\varepsilon_*B_\beta^\varepsilon}$,
we want: $\sum_{t \in \mathbb{I}_\varepsilon} [t \cdot (\varepsilon_*B_\beta^\varepsilon(\sigma))] = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))]$.

Want: $\forall t \in \mathbb{I}_\varepsilon$, $t \cdot (\varepsilon_*B_\beta^\varepsilon(\sigma)) = \sum_{\sigma \in \varepsilon^*(t)} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))]$.

Given \(t \in \mathbb{I}_\varepsilon \), want: \(t \cdot (\varepsilon^*_s B^\varepsilon_\beta(s)) = \sum_{\sigma \in \varepsilon^*_t \{t\}} \varepsilon_\sigma \cdot (B^\varepsilon_\beta(s)) \).

For all \(\sigma \in \varepsilon^*_t \), since \(\varepsilon_\sigma = \varepsilon(\sigma) \in \{t\} \), we get: \(\varepsilon_\sigma = t \).

Want: \(t \cdot (\varepsilon^*_s B^\varepsilon_\beta(s)) = \sum_{\sigma \in \varepsilon^*_t \{t\}} [t \cdot (B^\varepsilon_\beta(s))] \).

Because \(\varepsilon^*_t \) is the disjoint union, over \(\sigma \in \varepsilon^*_t \), of \(\{\sigma\} \), we get:
\[
B^\varepsilon_\beta(\varepsilon^*_t) = \sum_{\sigma \in \varepsilon^*_t \{t\}} [B^\varepsilon_\beta(s)]
\]

Also, \((\varepsilon^*_s B^\varepsilon_\beta(s)) = B^\varepsilon_\beta(\varepsilon^*_t) \).

Then: \(t \cdot (\varepsilon^*_s B^\varepsilon_\beta(s)) = t \cdot (B^\varepsilon_\beta(\varepsilon^*_t)) = \sum_{\sigma \in \varepsilon^*_t \{t\}} [t \cdot (B^\varepsilon_\beta(s))] \).

\[\square \]

THEOREM 21.5. Let \(\Sigma \) be a nonempty finite set.

Let \(\varepsilon : \Sigma \to \mathbb{R}, \beta, \xi \in \mathbb{R} \). Then: \(A^\varepsilon_\beta - \xi = A^\varepsilon_\beta - \xi \).

Proof. \(\varepsilon : \Sigma \to \mathbb{R} \), \(\beta, \xi \in \mathbb{R} \).

For all \(\sigma \in \Sigma \), let \(\varepsilon_\sigma := \varepsilon(\sigma) \).

Then: \(A^\varepsilon_\beta - \xi = \sum_{\sigma \in \Sigma} [(\varepsilon_\sigma - \xi) \cdot (B^\varepsilon_\beta(\sigma))] \)
\[
= \sum_{\sigma \in \Sigma} [(\varepsilon_\sigma - \xi) \cdot (B^\varepsilon_\beta(\sigma))] \\
= (\sum_{\sigma \in \Sigma} \varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))) - (\sum_{\sigma \in \Sigma} \xi \cdot (B^\varepsilon_\beta(\sigma))) \\
= (\sum_{\sigma \in \Sigma} \varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))) - \xi \cdot (\sum_{\sigma \in \Sigma} B^\varepsilon_\beta(\sigma)) \\
= A^\varepsilon_\beta - \xi \cdot (B^\varepsilon_\beta(\Sigma)) = A^\varepsilon_\beta - \xi \cdot 1 = A^\varepsilon_\beta - \xi. \]

\[\square \]

THEOREM 21.6. Let \(\Sigma \) be a nonempty finite set, \(\varepsilon : \Sigma \to \mathbb{R} \).

Then: \(\varepsilon : \Sigma \to \mathbb{R} \), \(\beta \to \infty \), \(A^\varepsilon_\beta \to \min \mathbb{I}_\varepsilon \)

and \(\beta \to -\infty \), \(A^\varepsilon_\beta \to \max \mathbb{I}_\varepsilon \).

The proof is a matter of bookkeeping, best explained by example:

Let \(\Sigma := \{1, 2, 3, 4\} \) and **define** \(\varepsilon : \Sigma \to \mathbb{R} \) by:

\(\varepsilon(1) = 2 \), \(\varepsilon(2) = 4 \), \(\varepsilon(3) = 9 \), \(\varepsilon(4) = 9 \).

Then \(\mathbb{I}_\varepsilon = \{2, 4, 9\} \), so \(\min \mathbb{I}_\varepsilon = 2 \) and \(\max \mathbb{I}_\varepsilon = 9 \).

Since \(\forall \beta \in \mathbb{R}, A^\varepsilon_\beta = \frac{2e^{-2\beta} + 4e^{-4\beta} + 9e^{-9\beta} + 9e^{-9\beta}}{e^{-23} + 2e^{-43} + 9e^{-93} + e^{-93}}, \)
\[
= \frac{2e^{-2\beta} + 4e^{-4\beta} + 18e^{-93} + 2e^{-93}}{e^{-23} + 2e^{-43} + 4e^{-93}},
\]

we get \(\beta \to \infty \), \(A^\varepsilon_\beta \to 2/1 \)

and \(\beta \to -\infty \), \(A^\varepsilon_\beta \to 18/2 \).

and so \(\beta \to \infty \), \(A^\varepsilon_\beta \to \min \mathbb{I}_\varepsilon \)

and \(\beta \to -\infty \), \(A^\varepsilon_\beta \to \max \mathbb{I}_\varepsilon \).

For any nonempty finite set \(\Sigma \), \(\forall \varepsilon : \Sigma \to \mathbb{R} \),

define \(A^\varepsilon_\beta : \mathbb{R} \to \mathbb{R} \) by: \(\forall \beta \in \mathbb{R}, A^\varepsilon_\beta(\beta) = A^\varepsilon_\beta \).
Recall (§2): “C^ω” means “real-analytic”.

THEOREM 21.7. Let Σ be a finite set.

Let $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\#\Sigma \geq 2$.

Then: A_ε is a strictly-decreasing C^ω-diffeomorphism
from \mathbb{R} onto $(\min I_\varepsilon; \max I_\varepsilon)$.

Proof. For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

We have: $\forall \beta \in \mathbb{R}, A_\varepsilon(\beta) = \sum_{\sigma \in \Sigma} \left[\varepsilon_\sigma \cdot e^{-\beta \varepsilon_\sigma} \right] \cdot \sum_{\tau \in \Sigma} \left[e^{-\beta \varepsilon_\tau} \right]$. Then $A_\varepsilon : \mathbb{R} \to \mathbb{R}$ is C^ω.

So, by Theorem 21.6 and the C^ω-Inverse Function Theorem and the Mean Value Theorem, it suffices to show: $(A_\varepsilon)'(\beta) < 0$ on \mathbb{R}.

Given $\beta \in \mathbb{R}$, want: $(A_\varepsilon)'(\beta) < 0$.

Let $P := \sum_{\sigma \in \Sigma} \left[\varepsilon_\sigma \cdot e^{-\beta \varepsilon_\sigma} \right]$, $P' := \sum_{\sigma \in \Sigma} \left[(-\varepsilon_\sigma^2) \cdot e^{-\beta \varepsilon_\sigma} \right]$.

Let $Q := \sum_{\tau \in \Sigma} \left[e^{-\beta \varepsilon_\tau} \right]$, $Q' := \sum_{\tau \in \Sigma} \left[(-\varepsilon_\tau) \cdot e^{-\beta \varepsilon_\tau} \right]$. Then $Q > 0$.

Also, by the Quotient Rule, $(A_\varepsilon)'(\beta) = \frac{QP' - PQ'}{Q^2}$.

Want: $QP' - PQ' < 0$.

We have: $QP' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\sigma^2) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)} \right]$.

We have: $PQ' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)} \right]$.

Then: $QP' - PQ' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\sigma^2 + \varepsilon_\varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)} \right]$.

Interchanging σ and τ, we get:

Adding the last two equations gives:

$2 \cdot (QP' - PQ') = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\sigma^2 - \varepsilon_\tau^2 + 2 \varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)} \right]$.

Then: $2 \cdot (QP' - PQ') = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[-(\varepsilon_\sigma - \varepsilon_\tau)^2 \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)} \right]$.

Then: $2 \cdot (QP' - PQ') < 0$. Then: $QP' - PQ' < 0$. \(\square \)

DEFINITION 21.8. Let Σ be a finite set. Let $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $\#\Sigma \geq 2$. Let $\alpha \in (\min I_\varepsilon; \max I_\varepsilon)$.

The **α-Boltzmann-parameter on ε** is: $BP^\varepsilon_\alpha := (A_\varepsilon)^{-1}(\alpha)$.

So the α-Boltzmann-parameter on ε is the unique $\beta \in \mathbb{R}$ s.t. $A_\varepsilon^{\beta} = \alpha$.

Example: Let $\Sigma := \{0, 1, 10\}$, and define $\varepsilon : \Sigma \to \mathbb{R}$ by:

$\forall \sigma \in \Sigma, \varepsilon(\sigma) = \sigma$.

Computation shows: $A_{\ln 9}^{\varepsilon} = 1$. Then: $BP^\varepsilon_1 = (\ln 9)/10$.

Example: Let $\Sigma := \{2, 4, 8, 9\}$, and define $\varepsilon : \Sigma \to \mathbb{R}$ by:
To evaluate BP^ε_5, we must solve $A^\varepsilon_5(\beta) = 5$ for β.

and, since, by Theorem 21.7, A^ε_5 is strictly-decreasing,

there are simple iterative methods to do this.

We compute: $BP^\varepsilon_5 \approx 0.0918$, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §28.)

Next, let $\Sigma := \{1, 2, 3, 4\}$, and define $\varepsilon : \Sigma \to \mathbb{R}$ by:

$\varepsilon(1) = 2$, $\varepsilon(2) = 4$, $\varepsilon(3) = 8$, $\varepsilon(4) = 9$.

Then $A^\varepsilon_5 = A^\varepsilon_4$, so $BP^\varepsilon_5 = BP^\varepsilon_5$.

Then $BP^\varepsilon_5 \approx 0.0918$, accurate to four decimal places.

Example: Let $\Sigma := \{1, 2, 3, 4\}$ and define $\varepsilon : \Sigma \to \mathbb{R}$ by:

$\varepsilon(1) = 2$, $\varepsilon(2) = 4$, $\varepsilon(3) = 9$, $\varepsilon(4) = 9$.

To evaluate BP^ε_5, we must solve $A^\varepsilon_5(\beta) = 5$ for β.

and, since, by Theorem 21.7, A^ε_5 is strictly-decreasing,

there are simple iterative methods to do this.

We compute: $BP^\varepsilon_5 \approx 0.1060$, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §28.)

Theorem 21.9. Let Σ be a finite set.

Let $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\#I_\varepsilon \geq 2$.

Let $\alpha \in (\min I_\varepsilon, \max I_\varepsilon)$. Let $\xi \in \mathbb{R}$. Then: $BP^\varepsilon_{\alpha-\xi} = BP^\varepsilon_0$.

Proof. Let $\beta := BP^\varepsilon_\alpha$.

Want: $BP^\varepsilon_{\alpha-\xi} = \beta$.

Since $\beta = BP^\varepsilon_\alpha = (A^\varepsilon_\alpha)^{-1}(\alpha)$, we get: $(A^\varepsilon_\alpha)(\beta) = \alpha$.

By Theorem 21.5, $A^{\varepsilon-\xi}_\beta = A^{\varepsilon}_\beta - \xi$.

Since $(A^{\varepsilon-\xi}_\beta)(\beta) = A^{\varepsilon-\xi}_\beta - \xi = ((A^\varepsilon_\alpha)(\beta)) - \xi = \alpha - \xi$,

we get: $\beta = (A^{\varepsilon-\xi}_\alpha)^{-1}(\alpha - \xi)$.

So, since $BP^\varepsilon_{\alpha-\xi} = (A^{\varepsilon-\xi}_\alpha)^{-1}(\alpha - \xi)$, we get: $BP^\varepsilon_{\alpha-\xi} = \beta$. □
THEOREM 22.1. Let Σ be a finite set.
Let $\epsilon : \Sigma \to \mathbb{Z}$. Assume i_ϵ is residue-unconstrained.
Let $\alpha \in (\min \|i_\epsilon\|; \max \|i_\epsilon\|)$.
Let $\beta := BP_\alpha^\epsilon$.
Let $t_1, t_2, \ldots \in \mathbb{Z}$. Assume: $\{t_n - n \alpha \mid n \in \mathbb{N}\}$ is bounded.
For all $n \in \mathbb{N}$, let $\Omega_n := \{f \in \Sigma^n \mid (\epsilon(f_1)) + \cdots + (\epsilon(f_n)) = t_n\}$.
Let $\sigma_0 \in \Sigma$. Then: as $n \to \infty$, $\nu_{\Omega_n} \{f \in \Omega_n \mid f_n = \sigma_0\} \to B_\beta^\sigma(\sigma_0)$.

Recall (§9): $\nu_{\emptyset}(\emptyset) = -1$.
So, since $B_\beta^\sigma(\sigma_0) > 0$, part of the content of Theorem 22.1 is:

\forall sufficiently large $n \in \mathbb{N}$, $\Omega_n \neq \emptyset$.

See Claim 1 in the proof below.

Proof. Since i_ϵ is residue-unconstrained, we get: $i_\epsilon \neq \emptyset$.
So, since $\epsilon : \Sigma \to \mathbb{Z}$, we conclude: $\Sigma \neq \emptyset$.
By hypothesis, Σ is finite. Then: Σ is a nonempty finite set.
Since $\beta = BP_\alpha^\epsilon = (A_\alpha^\epsilon)^{-1}(\alpha)$, we get: $A_\alpha^\epsilon(\beta) = \alpha$.
By Theorem 21.4, we have: $M_{\epsilon \Sigma B_\beta^\sigma} = A_\beta^\epsilon$.
So, since $A_\beta^\epsilon = A_\alpha^\epsilon(\beta) = \alpha$, we get: $M_{\epsilon \Sigma B_\beta^\mu} = \mu$.

Let $\mu := B_\beta^\sigma$. Then: $\mu \in \mathcal{P}_\Sigma$ and $M_{\epsilon \Sigma \mu} = \alpha$.

Let $E := i_\epsilon$, $\tilde{\mu} := \epsilon \Sigma \mu$. Then: $\tilde{\mu} \in \mathcal{P}_E$ and $M_{\tilde{\mu}} = \alpha$.

By hypothesis, E is residue-unconstrained.

Since $\epsilon : \Sigma \to \mathbb{Z}$, we get: $E \subseteq \mathbb{Z}$.
Since Σ is finite, we get: E is finite.
So, since $\tilde{\mu} \in \mathcal{P}_E \subseteq \mathcal{F}M_E$, we get: $|\tilde{\mu}|_1 < \infty$ and $|\tilde{\mu}|_2 < \infty$.

For all $\sigma \in \Sigma$, let $\epsilon_{\sigma} := \epsilon(\sigma)$.

Then: $\forall n \in \mathbb{N}$, $\Omega_n = \{f \in \Sigma^n \mid \epsilon f_1 + \cdots + \epsilon f_n = t_n\}$.

For all $n \in \mathbb{N}$, define $\epsilon^n : \Sigma^n \to E^n$ by:

$\forall f_1, \ldots, f_n \in \Sigma$, $\epsilon^n(f_1, \ldots, f_n) = (\epsilon f_1, \ldots, \epsilon f_n)$.

Then, since $\epsilon \Sigma \mu = \tilde{\mu}$, we get: $\forall n \in \mathbb{N}$, $(\epsilon^n)_{\sigma}(\mu^n) = \tilde{\mu}^n$.

For all $n \in \mathbb{N}$, let $\tilde{\Omega}_n := \{\tilde{f} \in E^n \mid \tilde{f}_1 + \cdots + \tilde{f}_n = t_n\}$;
then $(\epsilon^n)^{\sigma} \tilde{\Omega}_n = \Omega_n$.

Then: $\forall n \in \mathbb{N}$, $\mu^n((\epsilon^n)^{\sigma} \tilde{\Omega}_n) = \mu^n(\Omega_n)$.

Then: $\forall n \in \mathbb{N}$, $((\epsilon^n)_{\sigma}(\mu^n))(\tilde{\Omega}_n) = \mu^n(\Omega_n)$.

Then: $\forall n \in \mathbb{N}$, $\tilde{\mu}^n(\tilde{\Omega}_n) = \mu^n(\Omega_n)$.

For all $n \in \mathbb{N}$, define $\psi_n : \mathbb{Z} \to \mathbb{R}$ by:
\[\forall t \in \mathbb{Z}, \quad \psi_n(t) = \hat{\mu}_n^v(\{\hat{f} \in E^n \mid \hat{f}_1 + \cdots + \hat{f}_n = t\}). \]

Then: \(\forall n \in \mathbb{N}, \quad \psi_n(t_n) = \hat{\mu}_n^v(\Omega_n) \).

Since \(E \) is finite and residue-unconstrained, we get: \(2 \leq \#E < \infty \).

Since \(\varepsilon : \Sigma \rightarrow \mathbb{Z}, \) we get: \(S_{\beta^\varepsilon} = \Sigma \).

So, since \(\mu = B_{\beta^\varepsilon} \), we get: \(S_{\mu} = \Sigma \).

So, since \(\varepsilon : \Sigma \rightarrow \mathbb{Z}, \) we get: \(S_{\varepsilon \cdot \mu} = \mathbb{I} \).

So, since \(\varepsilon \cdot \mu = \hat{\mu} \) and \(\mathbb{I} = E \), we get: \(\hat{\mu} = E \).

Since \(E \) is finite, we get: \(E \) is countable.

\[\text{Let } v := V \hat{\mu}. \quad \text{By Theorem 10.6, we get: } 0 < v < \infty. \]

\[\text{Let } \tau := 1/\sqrt{2\pi v}. \quad \text{Then: } 0 < \tau < \infty. \]

By Theorem 10.6, we get:

\[\lim_{n \to \infty} \sqrt{n} \cdot (\psi_n(t_n)) \rightarrow 1/\sqrt{2\pi v}. \]

Then: \(\lim_{n \to \infty} \sqrt{n} \cdot (\psi_n(t_n)) \rightarrow \tau. \)

So, since \(\tau > 0 \), choose \(n_0 \in [2, \infty) \) such that:

\[\forall n \in [n_0, \infty), \quad \sqrt{n} \cdot (\psi_n(t_n)) > 0. \]

Claim 1: \[\text{Let } n \in [n_0, \infty). \quad \text{Then: } \mu_n(\Omega_n) > 0. \]

Proof of Claim 1: Recall: \(\hat{\mu}_n^v(\hat{\Omega}_n) = \mu_n(\Omega_n) \) and \(\psi_n(t_n) = \hat{\mu}_n^v(\hat{\Omega}_n) \).

By the choice of \(n_0 \), we get: \(\sqrt{n} \cdot (\psi_n(t_n)) > 0. \) Then: \(\psi_n(t_n) > 0. \)

Then: \(\mu_n(\Omega_n) = \hat{\mu}_n^v(\hat{\Omega}_n) = \psi_n(t_n) > 0. \)

End of proof of Claim 1.

Recall: \(\Sigma \neq \emptyset \) and \(\varepsilon : \Sigma \rightarrow \mathbb{Z} \).

\[\text{Let } C := 1/(\hat{B}_{\beta^\varepsilon}(\Sigma)). \quad \text{Then } N(\hat{B}_{\beta^\varepsilon}) = C \cdot \hat{B}_{\beta^\varepsilon} \]

By definition of \(\hat{B}_{\beta^\varepsilon} \), we have:

\[\forall \sigma \in \Sigma, \quad \hat{B}_{\beta^\varepsilon}(\sigma) = e^{-\beta \cdot \varepsilon \sigma}. \]

So, since \(\mu = B_{\beta^\varepsilon} = N(\hat{B}_{\beta^\varepsilon}) = C \cdot \hat{B}_{\beta^\varepsilon} \), we get:

\[\forall \sigma \in \Sigma, \quad \mu(\sigma) = C e^{-\beta \cdot \varepsilon \sigma}. \]

Since \(\mu \in \mathcal{P}_\Sigma \), we get: \(\forall n \in \mathbb{N}, \quad \mu_n \in \mathcal{P}_{\Sigma^n} \), so \(\mu_n(\Omega_n) \leq 1 \).

So, by Claim 1, \(\forall n \in [n_0, \infty), \quad 0 < \mu_n(\Omega_n) \leq 1 \).

Also, we have:

\[\forall n \in \mathbb{N}, \quad (\mu^n|_{\Omega_n})(\Omega_n) = \mu_n(\Omega_n). \]

Then:

\[\forall n \in [n_0, \infty), \quad 0 < (\mu^n|_{\Omega_n})(\Omega_n) \leq 1. \]

Then:

\[\forall n \in [n_0, \infty), \quad \mu^n|_{\Omega_n} \in \mathcal{F} \mathcal{M}_{\Omega_n}. \]

Then:

\[\forall n \in [n_0, \infty), \quad N(\mu^n|_{\Omega_n}) \in \mathcal{P}_{\Omega_n}. \]

Also:

\[\forall n \in \mathbb{N}, \forall S \subseteq \Omega_n, \quad (\mu^n|_{\Omega_n})(S) = \mu^m(S). \]

Then:

\[\forall n \in \mathbb{N}, \quad (\mu^n|_{\Omega_n})(\Omega_n) = \mu_n(\Omega_n). \]

For all \(n \in \mathbb{N} \), let \(z_n := \mu^n(\Omega_n) \).

Then:

\[\forall n \in [n_0, \infty), \quad (\mu^n|_{\Omega_n})(\Omega_n) = z_n \text{ and } 0 < z_n \leq 1. \]
For all \(n \in [n_0..\infty) \), let \(\lambda_n := \mathcal{N}(\mu^n|\Omega_n) \).
Then: \(\forall n \in [n_0..\infty) \), \(\lambda_n = (\mu^n|\Omega_n)/z_n \).
Then: \(\forall n \in [n_0..\infty) \), \(\forall S \subseteq \Omega_n \), \(\lambda_n(S) = (\mu^n(S))/z_n \).

Claim 2: Let \(n \in [n_0..\infty) \). Then: \(\lambda_n = \nu_{\Omega_n} \).

Proof of Claim 2: Let \(F := \Omega_n \). **Want:** \(\lambda_n = \nu_F \).
Since \(\lambda_n = \mathcal{N}(\mu^n|\Omega_n) = \mathcal{N}(\mu^n|F) \), we get: \(\lambda_n \in \mathcal{P}_{F} \).
By Theorem 9.9, **given** \(f,g \in F \), **want:** \(\lambda_n\{f\} = \lambda_n\{g\} \).
Want: \((\mu^n\{f\})/z_n = (\mu^n\{g\})/z_n \). **Want:** \(\mu^n\{f\} = \mu^n\{g\} \).
For all \(i \in [1..n] \), let \(\tilde{f}_i := \varepsilon_{f_i} \) and \(\tilde{g}_i := \varepsilon_{g_i} \).
Recall: \(\forall \sigma \in \Sigma \), \(\mu_\sigma = Ce^{\beta_{\varepsilon_{\sigma}}} \).
Then: \(\forall i \in [1..n] \), \(\mu_\sigma(f_i) = Ce^{\beta_{\tilde{f}_i}} \) and \(\mu_\sigma(g_i) = Ce^{\beta_{\tilde{g}_i}} \).
Since \(f \in F = \Omega_n \), we get: \(\varepsilon_{f_1} + \cdots + \varepsilon_{f_n} = t_n \).
Since \(g \in F = \Omega_n \), we get: \(\varepsilon_{g_1} + \cdots + \varepsilon_{g_n} = t_n \).
Since \(\tilde{f}_1 + \cdots + \tilde{f}_n = \varepsilon_{f_1} + \cdots + \varepsilon_{f_n} = t_n \)
we get: \(\varepsilon_{g_1} + \cdots + \varepsilon_{g_n} = \tilde{g}_1 + \cdots + \tilde{g}_n \).
Then: \(Ce^{\beta_{\tilde{f}_1}} \cdots Ce^{\beta_{\tilde{f}_n}} = Ce^{\beta_{\tilde{g}_1}} \cdots Ce^{\beta_{\tilde{g}_n}} \).
Then: \((\mu_\sigma(f_1)) \cdots (\mu_\sigma(f_n)) = (\mu_\sigma(g_1)) \cdots (\mu_\sigma(g_n)) \).
Then: \(\mu^n\{f\} = \mu^n\{g\} \).
End of proof of Claim 2.

Claim 3: Let \(\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \). Then: \(\mu_\sigma = \mu_{\{\sigma_0\}} \).

Proof of Claim 3: Since \(\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \), we get: \(\varepsilon(\sigma) \in \{\varepsilon_{\sigma_0}\} \).
Since \(\varepsilon_{\sigma} = \varepsilon(\sigma) \in \{\varepsilon_{\sigma_0}\} \), we get: \(\varepsilon_{\sigma} = \varepsilon_{\sigma_0} \).
Then: \(\mu_\sigma = Ce^{\beta_{\varepsilon_{\sigma}}} = Ce^{\beta_{\varepsilon_{\sigma_0}}} = \mu_{\{\sigma_0\}} \).
End of proof of Claim 3.

Since \(\varepsilon(\sigma_0) = \varepsilon_{\sigma_0} \in \{\varepsilon_{\sigma_0}\} \), we get: \(\sigma_0 \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \).
Then \(\varepsilon^*\{\varepsilon_{\sigma_0}\} \neq \emptyset \), so \(\#(\varepsilon^*\{\varepsilon_{\sigma_0}\}) \geq 1 \).
Let \(k := \#(\varepsilon^*\{\varepsilon_{\sigma_0}\}) \). Then: \(k \geq 1 \).

Claim 4: \(\mu(\varepsilon^*\{\varepsilon_{\sigma_0}\}) = k \cdot (\mu\{\sigma_0\}) \).

Proof of Claim 4: Since \(\varepsilon^*\{\varepsilon_{\sigma_0}\} \) is equal to the disjoint union, over \(\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \), of \(\{\sigma\} \),
we get: \(\mu(\varepsilon^*\{\varepsilon_{\sigma_0}\}) = \sum_{\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\}} [\mu\{\sigma\}] \).
So, by Claim 3, we get: \(\mu(\varepsilon^*\{\varepsilon_{\sigma_0}\}) = \sum_{\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\}} [\mu\{\sigma_0\}] \).
So, since \(k = \#(\varepsilon^*\{\varepsilon_{\sigma_0}\}) \), we get: \(\mu(\varepsilon^*\{\varepsilon_{\sigma_0}\}) = k \cdot (\mu\{\sigma_0\}) \).

End of proof of Claim 4.

Claim 5: Let \(n \in \mathbb{Z}_{\geq 2} \). Let \(\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \).

Then: \(\mu^n\{ f \in \Omega_n \mid f_n = \sigma \} = \mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \} \).

Proof of Claim 5:

Let \(X := \{ f \in \Sigma_{n-1} \mid \varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} = t_n - \varepsilon_{\sigma} \} \).

Recall: \(\Omega_n = \{ f \in \Sigma_n \mid \varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{f_n} = t_n \} \).

Since \(\{ f \in \Omega_n \mid f_n = \sigma \} \)

\(= \{ f \in \Sigma_n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{f_n} = t_n] \& [f_n = \sigma] \} \)

\(= \{ f \in \Sigma_n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{\sigma} = t_n] \& [f_n = \sigma] \} \)

\(= \{ f \in \Sigma_n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} = t_n - \varepsilon_{\sigma}] \& [f_n = \sigma] \} \),

it follows that, under the standard bijection \(\Sigma_n \leftrightarrow \Sigma_{n-1} \times \Sigma \), we have:

\(\{ f \in \Omega_n \mid f_n = \sigma \} \subseteq \Sigma^n \)

corresponds to \(X \times \{ \sigma \} \subseteq \Sigma^{n-1} \times \Sigma \).

Then: \(\mu^n\{ f \in \Omega_n \mid f_n = \sigma \} = (\mu^{n-1}(X)) \cdot (\mu\{\sigma\}) \).

Want: \(\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \} = (\mu^{n-1}(X)) \cdot (\mu\{\sigma_0\}) \).

By Claim 3, we have:

\(\mu\{\sigma\} = \mu\{\sigma_0\} \).

Want: \(\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \} = (\mu^{n-1}(X)) \cdot (\mu\{\sigma_0\}) \).

Since \(\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \), we get: \(\varepsilon(\sigma) \in \{\varepsilon_{\sigma_0}\} \).

Since \(\varepsilon_{\sigma} = \varepsilon(\sigma) \in \{\varepsilon_{\sigma_0}\} \), we get: \(\varepsilon_{\sigma} = \varepsilon_{\sigma_0} \).

Then \(X = \{ f \in \Sigma_{n-1} \mid \varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} = t_n - \varepsilon_{\sigma_0} \} \).

Since \(\{ f \in \Omega_n \mid f_n = \sigma_0 \} \)

\(= \{ f \in \Sigma_n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{f_n} = t_n] \& [f_n = \sigma_0] \} \)

\(= \{ f \in \Sigma_n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{\sigma_0} = t_n] \& [f_n = \sigma_0] \} \)

\(= \{ f \in \Sigma_n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} = t_n - \varepsilon_{\sigma_0}] \& [f_n = \sigma_0] \} \),

it follows that, under the standard bijection \(\Sigma_n \leftrightarrow \Sigma_{n-1} \times \Sigma \), we have:

\(\{ f \in \Omega_n \mid f_n = \sigma_0 \} \subseteq \Sigma^n \)

corresponds to \(X \times \{ \sigma_0 \} \subseteq \Sigma^{n-1} \times \Sigma \).

Then: \(\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \} = (\mu^{n-1}(X)) \cdot (\mu\{\sigma_0\}) \).

End of proof of Claim 5.

Claim 6: Let \(n \in \mathbb{Z}_{\geq 2} \).

Then: \(\mu^n\{ \tilde{f} \in \tilde{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = k \cdot (\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \}) \).

Proof of Claim 6:

Recall: \((\varepsilon^n)^*\tilde{\Omega}_n = \Omega_n \).

Then \(\mu^n((\varepsilon^n)*\tilde{f} \in \tilde{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0}) = \{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \} \).

and so \(\mu^n((\varepsilon^n)*\tilde{f} \in \tilde{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0}) = \mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \} \).

Then: \(((\varepsilon^n)*\mu^n)\{ \tilde{f} \in \tilde{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = \mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \} \).
Recall: $(\varepsilon^n)_*(\mu^n) = \tilde{\mu}^n$.

Then:
\[\tilde{\mu}^n\{ f \in \Omega_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = \mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \}. \]

Want: $\mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \} = k \cdot (\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \})$.

Since
\[\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \} \]

is the disjoint union, over $\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\}$, of
\[\{ f \in \Omega_n \mid f_n = \sigma \}, \]

we get:
\[\mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \} = \sum_{\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\}} [\mu^n\{ f \in \Omega_n \mid f_n = \sigma \}]. \]

Then, by Claim 5, we conclude:
\[\mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \} = \sum_{\sigma \in \varepsilon^*\{\varepsilon_{\sigma_0}\}} [\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \}]. \]

So, since $k = \#(\varepsilon^*\{\varepsilon_{\sigma_0}\})$, we get:
\[\mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{\varepsilon_{\sigma_0}\} \} = k \cdot (\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \}). \]

End of proof of Claim 6.

Recall: $\forall n \in \mathbb{N}$,
\[\mu^n(\Omega_n) = \tilde{\mu}^n(\tilde{\Omega}_n). \]

Recall: $\forall n \in [n_0, \infty)$,
\[0 < \mu^n(\Omega_n) \leq 1. \]

Then:
\[\forall n \in [n_0, \infty), \quad 0 < \tilde{\mu}^n(\tilde{\Omega}_n) \leq 1. \]

Also, $\forall n \in \mathbb{N}, \forall S \subseteq \tilde{\Omega}_n$,
\[(\tilde{\mu}^n(\tilde{\Omega}_n)(S)) = \tilde{\mu}^n(S). \]

Then:
\[\forall n \in \mathbb{N}, \quad (\tilde{\mu}^n(\tilde{\Omega}_n)(\tilde{\Omega}_n)) = \tilde{\mu}^n(\tilde{\Omega}_n). \]

By dividing the last two equations, we get:
\[\forall n \in [n_0, \infty), \forall S \subseteq \tilde{\Omega}_n, \quad (\mathcal{N}(\tilde{\mu}^n)(\tilde{\Omega}_n)(S)) = (\tilde{\mu}^n(S))/(\tilde{\mu}^n(\tilde{\Omega}_n)). \]

For all $n \in [n_0, \infty)$, let
\[\tilde{\lambda}_n := \mathcal{N}(\tilde{\mu}^n)(\tilde{\Omega}_n). \]

Then:
\[\forall n \in [n_0, \infty), \forall S \subseteq \tilde{\Omega}_n, \quad \tilde{\lambda}_n(S) = (\tilde{\mu}^n(S))/(\tilde{\mu}^n(\tilde{\Omega}_n)). \]

So, since $\forall n \in \mathbb{N}$,
\[\tilde{\lambda}_n(S) = \mu^n(\Omega_n) = \tilde{\mu}^n(\tilde{\Omega}_n), \]

we get:
\[\forall n \in [n_0, \infty), \forall S \subseteq \tilde{\Omega}_n, \quad \tilde{\lambda}_n(S) = (\mu^n(S))/(\mu^n(\Omega_n)). \]

Recall: $\forall n \in [n_0, \infty)$,
\[\lambda_n = \mathcal{N}(\mu^n)|_{\Omega_n}. \]

Recall: $\forall n \in [n_0, \infty)$,
\[\lambda_n(S) = (\mu^n(S))/(\mu^n(\Omega_n)). \]

Claim 7: Let $n \in [n_0, \infty)$.

Then:
\[\tilde{\lambda}_n\{ f \in \Omega_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = k \cdot (\lambda_n\{ f \in \Omega_n \mid f_n = \sigma_0 \}). \]

Proof of Claim 7: By choice of n_0, we have: $n_0 \in [2, \infty)$.

Then $[n_0, \infty) \subseteq [2, \infty)$, so, since $n \in [n_0, \infty)$, we get: $n \in [2, \infty)$.

Then, by Claim 6,
\[\tilde{\mu}^n\{ f \in \Omega_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = k \cdot (\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \}). \]

Dividing this last equation by λ_n yields
\[\tilde{\lambda}_n\{ f \in \Omega_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = k \cdot (\lambda_n\{ f \in \Omega_n \mid f_n = \sigma_0 \}). \]

End of proof of Claim 7.

Let $P := \mu\{\sigma_0\}$ and $\tilde{P} := \tilde{\mu}\{\varepsilon_{\sigma_0}\}$. Recall: $k \geq 1$.
By Claim 4, we have: \[\mu(\varepsilon^*\{\varepsilon_{\sigma_0}\}) = k \cdot (\mu(\{\sigma_0\})). \]

Recall: \(\bar{\mu} = \varepsilon_{\ast\mu}. \)

Since \(\bar{P} = \bar{\mu}(\varepsilon_{\sigma_0}) = (\varepsilon_{\ast\mu})(\varepsilon_{\sigma_0}) = \mu(\varepsilon^*\{\varepsilon_{\sigma_0}\}) = k \cdot (\mu(\{\sigma_0\})) = k \cdot P, \)
we get: \(\bar{P} / k = P. \)

Recall: \(M_{\bar{\mu}} = \alpha \) and \(\bar{\mu} \in P_E \) and \(S_{\bar{\mu}} = E. \)

Recall: \(E \) is residue-unconstrained and \(|\bar{\mu}|_2 < \infty. \)

Since \(\varepsilon_{\sigma_0} = \varepsilon(\sigma_0) \in \mathbb{I}_\varepsilon = E, \) we get: \(\varepsilon_{\sigma_0} \in E. \)

Let \(\bar{\varepsilon}_0 := \varepsilon_{\sigma_0}. \)
Then: \(\bar{\varepsilon}_0 \in E \) and \(\bar{P} = \bar{\mu}(\bar{\varepsilon}_0). \)

Recall: \(\forall n \in \mathbb{N}, \quad \bar{\Omega}_n := \{ \bar{f} \in E^n \mid \bar{f}_1 + \cdots + \bar{f}_n = t_n \}. \)
By hypothesis, \(t_1, t_2, \ldots \in \mathbb{Z} \) and \(\{ t_n - n \alpha \mid n \in \mathbb{N} \} \) is bounded.

By Theorem 12.2, as \(n \to \infty, \) \(\mathcal{N}(\bar{\mu}^n)\bar{\Omega}_n(\bar{f} \in \bar{\Omega}_n \mid \bar{f}_n = \bar{\varepsilon}_0) \to \bar{P}. \)

Recall: \(\forall n \in [n_0, \infty), \) \(\lambda_n = \mathcal{N}(\bar{\mu}^n)\bar{\Omega}_n. \)
Then: \(\lambda_n(\bar{f} \in \bar{\Omega}_n \mid \bar{f}_n = \bar{\varepsilon}_0) \to \bar{P}. \)

So, by Claim 7, as \(n \to \infty, \) \(k \cdot (\lambda_n(\bar{f} \in \bar{\Omega}_n \mid f_n = \sigma_0)) \to \bar{P}. \)

Recall: \(\mu = B_\beta^\varepsilon. \)
Then, since \(\bar{P} / k = P = \mu(\sigma_0) = B_\beta^\varepsilon(\sigma_0), \) we get:
\[\lambda_n(\{ f \in \Omega_n \mid f_n = \sigma_0 \}) \to B_\beta^\varepsilon(\sigma_0). \]

The possibility of degeneracy at \(\bar{\varepsilon}_0 \) (i.e., the possibility that \(k \neq 1 \)) causes a number of complications in the preceding proof.

Here is another approach to proving Theorem 22.1:

By density of the set of injective functions \(\Sigma \to \mathbb{R} \) in the topological space of all functions \(\Sigma \to \mathbb{R}, \)
we reduce to the case where \(\varepsilon \) is injective.

Then the proof can follow the proof of Theorem 17.1, avoiding the degeneracy complications in the preceding proof.

Recall (§2): \(\forall t \in \mathbb{R}, \mid t \mid \) is the floor of \(t. \)

Next, we record the \(t_n = \lfloor n \alpha \rfloor \) version of the preceding theorem.

THEOREM 22.2. Let \(\Sigma \) be a finite set.
Let \(\varepsilon : \Sigma \to \mathbb{Z}. \) Assume \(\mathbb{I}_\varepsilon \) is residue-unconstrained.
Let \(\alpha \in (\min \mathbb{I}_\varepsilon, \max \mathbb{I}_\varepsilon). \)
Let \(\beta := \text{BP}_\alpha^\varepsilon. \)

For all \(n \in \mathbb{N}, \) let \(\Omega_n := \{ \bar{f} \in \Sigma^n \mid (\varepsilon(\bar{f}_1)) + \cdots + (\varepsilon(\bar{f}_n)) = \lfloor n \alpha \rfloor \}. \)
Let \(\sigma_0 \in \Sigma. \) Then: as \(n \to \infty, \) \(\nu_{\Omega_n}(\{ f \in \Omega_n \mid f_n = \sigma_0 \}) \to B_\beta^\varepsilon(\sigma_0). \)
We record the \(\alpha \in \mathbb{Z} \) special case of the preceding theorem:

THEOREM 22.3. Let \(\Sigma \) be a finite set.

Let \(\varepsilon : \Sigma \to \mathbb{Z} \). Assume \(\mathbb{I}_\varepsilon \) is residue-unconstrained.

Let \(\alpha \in (\min \mathbb{I}_\varepsilon ; \max \mathbb{I}_\varepsilon) \). Assume \(\alpha \in \mathbb{Z} \). Let \(\beta := \text{BP}_\alpha \).

For all \(n \in \mathbb{N} \), let \(\Omega_n := \{ f \in \Sigma^n | (\varepsilon(f)) + \cdots + (\varepsilon(f_n)) = n\alpha \} \).

Let \(\sigma_0 \in \Sigma \). Then: as \(n \to \infty \), \(\nu_{\Omega_n} \{ f \in \Omega_n | f_n = \sigma_0 \} \to B_\beta^\varepsilon(\sigma_0) \).

Example: Suppose \(\Sigma = \{0, 1, 10\} \) and \(\alpha = 1 \).

Suppose, also, \(\forall \sigma \in \Sigma, \varepsilon(\sigma) = \sigma \).

Then \(\Omega_N \) represents the set of all GFA dispensations to the \(N \) professors.

Since \(\nu_{\Omega_N} \) gives equal probability to each dispensation, \(\nu_{\Omega_N} \) represents the GFA’s first system for awarding grants.

Since \(\beta = \text{BP}_\alpha^\varepsilon = \text{BP}_1^\varepsilon \), we calculate: \(\beta = (\ln 9)/10 \).

More calculation gives: \((B_\beta^\varepsilon(0), B_\beta^\varepsilon(1), B_\beta^\varepsilon(10)) = (1, 9^{-1/10}, 9^{-1}) \).

Since \(N \) is large, by Theorem 22.3, we get: \(\nu_{\Omega_N} \{ f \in \Omega_N | f_N = \sigma_0 \} \approx B_\beta^\varepsilon(\sigma_0) \).

So, if I am the \(N \)th professor, then, under the first system, my probability of receiving \(\sigma_0 \) dollars is approximately equal to \(B_\beta^\varepsilon(\sigma_0) \).

Thus Theorem 22.3 reproduces the result of §13.

Example: Suppose \(\Sigma = ([0..4] \times [0..4]) \smallsetminus \{(4, 4)\} \).

Suppose, also, \(\alpha = 1 \) and \(\forall \sigma \in \Sigma, \varepsilon(\sigma) = \sigma_1 + \sigma_2 \).

Then \(\Omega_N \) represents the set of all state-distributions at the BUA. (See §20.)

Since \(\beta = \text{BP}_\alpha^\varepsilon = \text{BP}_1^\varepsilon \), we calculate:

\[\beta \approx 1.0670, \text{ accurate to four decimal places.} \]

Let \(M \in \mathbb{R}^{5 \times 5} \) be the matrix defined by: \(M_{55} = 0 \) and \(\forall (i, j) \in ([0..5] \times [0..5]) \smallsetminus \{(5, 5)\}, \quad M_{ij} = B_{\beta}^\varepsilon((i - 1, j - 1)) \).

Then \(M \approx \begin{bmatrix}
0.4345 & 0.1495 & 0.0514 & 0.0177 & 0.0061 \\
0.1495 & 0.0514 & 0.0177 & 0.0061 & 0.0021 \\
0.0514 & 0.0177 & 0.0061 & 0.0021 & 0.0007 \\
0.0177 & 0.0061 & 0.0021 & 0.0007 & 0.0002 \\
0.0061 & 0.0021 & 0.0007 & 0.0002 & 0
\end{bmatrix} \)

all accurate to four decimal places.

(Thanks to C. Prouty for these calculations. See §28.)

According to Theorem 22.3, this answers...
the problem formulated near the end of §20.
Then \(B_{\beta}((0, 0)) = M_{11} \approx 0.4345 \), and it is possible (cf. §15) to prove:
If \(N \) is sufficiently large, then, more than 99\% of the time,
over 43\% of the BUA professors have \(\$0 \) wealth.

23. \(\infty \)-properness and \((-\infty)\)-properness

Recall (§2): the notations \(\mathbb{I}_f \) and \(f^*A \).

DEFINITION 23.1. Let \(\Sigma \) be a set. Let \(\varepsilon : \Sigma \rightarrow \mathbb{R} \).
By \(\varepsilon \) is \((\infty \)-proper\), we mean: \(\forall t \in \mathbb{R}, \# \{ \sigma \in \Sigma | \varepsilon(\sigma) \leq t \} < \infty \).
That is, \(\forall t \in \mathbb{R}, \# (\varepsilon^*(-\infty ; t)) < \infty \).

Note that, for any finite set \(\Sigma \), for any \(\varepsilon : \Sigma \rightarrow \mathbb{R} \),
we have: \(\varepsilon \) is \(\infty \)-proper.

THEOREM 23.2. Let \(\Sigma \) be a nonempty set.
If \(\exists \varepsilon : \Sigma \rightarrow \mathbb{R} \) s.t. \(\varepsilon \) is \(\infty \)-proper, then \(\Sigma \) is countable.
The next result asserts that, for a nonempty set \(\Sigma \),
if \(\varepsilon : \Sigma \rightarrow \mathbb{R} \) is \(\infty \)-proper,
then its image, \(\mathbb{I}_\varepsilon \), has a minimal element, i.e., \(\min \mathbb{I}_\varepsilon \) exists.

THEOREM 23.3. Let \(\Sigma \) be a set. Let \(\varepsilon : \Sigma \rightarrow \mathbb{R} \).
Assume: \(\Sigma \neq \emptyset \). Then: \(\exists t_0 \in \mathbb{I}_\varepsilon \) s.t., \(\forall t \in \mathbb{I}_\varepsilon \), \(t \geq t_0 \).

THEOREM 23.4. Let \(\Sigma \) be a set. Let \(\varepsilon : \Sigma \rightarrow \mathbb{R} \) be \(\infty \)-proper.
Then: \(\mathbb{I}_\varepsilon \) is bounded below and \(\forall t \in \mathbb{I}_\varepsilon \), \(\varepsilon^*\{t\} \) is finite.

The preceding three theorems are basic; we omit proofs.
When \(\varepsilon \) is \(\mathbb{Z} \)-valued, the converse of Theorem 23.4 is also true:

THEOREM 23.5. Let \(\Sigma \) be a set. Let \(\varepsilon : \Sigma \rightarrow \mathbb{Z} \).
Then: \(\varepsilon \) is \(\infty \)-proper \(\iff \) \(\{ \, (\mathbb{I}_\varepsilon \) is bounded below \} \) & \(\{ \forall t \in \mathbb{I}_\varepsilon \), \(\varepsilon^*\{t\} \) is finite \} \).

The preceding is basic; we omit proof.
The following two results are corollaries of Theorem 23.5:

THEOREM 23.6. Let \(\Sigma \) be a set. Let \(\varepsilon : \Sigma \rightarrow \mathbb{Z} \) be injective.
Then: \(\varepsilon \) \(\infty \)-proper \(\iff \mathbb{I}_\varepsilon \) is bounded below \).

THEOREM 23.7. Let \(\Sigma \subseteq \mathbb{Z} \).
Define \(\varepsilon : \Sigma \rightarrow \mathbb{R} \) by: \(\forall \sigma \in \Sigma , \varepsilon(\sigma) = \sigma \).
Then: \(\varepsilon \) \(\infty \)-proper \(\iff \Sigma \) is bounded below \).
DEFINITION 23.8. Let Σ be a set. Let $\varepsilon: \Sigma \to \mathbb{R}$.

By ε is $(-\infty)$-proper, we mean: $\forall t \in \mathbb{R}, \#\{\sigma \in \Sigma | \varepsilon(\sigma) \geq t\} < \infty$.

Let Σ be a set, $\varepsilon: \Sigma \to \mathbb{R}$.

Then: $(\varepsilon$ is $(-\infty)$-proper $) \iff (-\varepsilon$ is ∞-proper $)$.

THEOREM 23.9. Let Σ be a finite set.

Then: $\forall \varepsilon: \Sigma \to \mathbb{R}, \varepsilon$ is both ∞-proper and $(-\infty)$-proper.

THEOREM 23.10. Let Σ be a set.

Assume: $\exists \varepsilon: \Sigma \to \mathbb{R}$ s.t. ε is both ∞-proper and $(-\infty)$-proper.

Then: Σ is finite.

The preceding two theorems are basic; we omit proofs.

24. BOLTZMANN DISTRIBUTIONS ON COUNTABLE SETS

In the next few sections, we generalize our earlier work on Boltzmann distributions (§21) to allow for a countably infinite set of states.

DEFINITION 24.1. Let Σ be a set, $\varepsilon: \Sigma \to \mathbb{R}$, $\beta \in \mathbb{R}$.

For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

Then: $\Delta_\beta^\varepsilon := \sum_{\sigma \in \Sigma} [e^{-\beta \varepsilon_\sigma}] \in [0; \infty]$.

We have: \forall nonempty set Σ, $\forall \varepsilon: \Sigma \to \mathbb{R}$, $\forall \beta \in \mathbb{R}$, $\Delta_\beta^\varepsilon > 0$.

DEFINITION 24.2. Let Σ be a set, $\varepsilon: \Sigma \to \mathbb{R}$.

Then the Delta-finite-set of ε is: $DF_\varepsilon := \{\beta \in \mathbb{R} | \Delta_\beta^\varepsilon < \infty\}$.

We have: \forall finite set Σ, $\forall \varepsilon: \Sigma \to \mathbb{R}$, $\forall \beta \in \mathbb{R}$, $\Delta_\beta^\varepsilon < \infty$.

Then: \forall finite set Σ, $\forall \varepsilon: \Sigma \to \mathbb{R}$, $DF_\varepsilon = \mathbb{R}$.

Let Σ be a set, $\varepsilon: \Sigma \to \mathbb{R}$.

Since $\forall \beta \in \mathbb{R}$, $\Delta_{-\beta}^\varepsilon = \Delta_\beta^\varepsilon$, we get: $DF_{-\varepsilon} = -DF_\varepsilon$.

Let Σ be a set, $\varepsilon: \Sigma \to \mathbb{R}$, $\xi \in \mathbb{R}$.

Since $\forall \beta \in \mathbb{R}$, $\Delta_{\beta+\xi}^\varepsilon = e^{-\beta \xi} \cdot \Delta_\beta^\varepsilon$, we get: $DF_{\varepsilon+\xi} = DF_\varepsilon$.

Recall (§9) the notations: \mathcal{M}_Θ, $\mathcal{F}\mathcal{M}_\Theta$, \mathcal{P}_Θ, $\mathcal{N}(\mu)$.

DEFINITION 24.3. Let Σ be a countable set, $\varepsilon: \Sigma \to \mathbb{R}$, $\beta \in \mathbb{R}$.

Then $\hat{B}_\beta^\varepsilon \in \mathcal{M}_\Sigma$ is defined by: $\forall \sigma \in \Sigma$, $\hat{B}_\beta^\varepsilon(\sigma) = e^{-\beta(\varepsilon(\sigma))}$.

Let Σ be a countable set, $\varepsilon : \Sigma \to \mathbb{R}$, $\beta \in \mathbb{R}$.

Since $\Delta_{\beta} = \sum_{\sigma \in \Sigma} [\hat{B}_{\beta}(\sigma)]$, we get: $\Delta_{\beta} = \hat{B}_{\beta}(\Sigma)$.

For any countable set Σ, for any $\varepsilon : \Sigma \to \mathbb{R}$, for any $\beta \in \mathbb{R}$,

\[(\Sigma \neq \emptyset \text{ and } \beta \in \text{DF}_\varepsilon) \iff (0 < \Delta_{\beta} < \infty) \iff (0 < \hat{B}_{\beta}(\Sigma) < \infty) \iff (\hat{B}_{\beta} \in \mathcal{F}M^\beta_{\Sigma}).\]

DEFINITION 24.4. Let Σ be a countable set, $\varepsilon : \Sigma \to \mathbb{R}$, $\beta \in \mathbb{R}$.

Assume: $0 < \Delta_{\beta} < \infty$. Then: $\delta_{\beta} := N(\hat{B}_{\beta}) \in \mathcal{P}_{\Sigma}$.

Let Σ be a countable set, $\varepsilon : \Sigma \to \mathbb{R}$.

If $\text{DF}_\varepsilon = \emptyset$, then, $\forall \beta \in \mathbb{R}$, since $\hat{B}_{\beta}(\Sigma) = \Delta_{\beta} = \infty$,

we see that \hat{B}_{β} cannot be normalized, i.e., there is no B_{β}.

So, if $\text{DF}_\varepsilon = \emptyset$, then we have no Boltzmann distributions to study.

So, going forward, we often focus on cases where $\text{DF}_\varepsilon \neq \emptyset$.

If $\Sigma = \emptyset$, ε is the empty function, and there is nothing to say.

If Σ is nonempty and finite,

we already developed a satisfactory Boltzmann theory, in §21.

So, going forward, we often focus on cases where Σ is infinite.

Recall (§2): the notations I_f and f^*A.

THEOREM 24.5. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Then: $\varepsilon^*\mathbb{R} = \Sigma$.

We have: $(-\infty; 0] \bigcup [0; \infty) = \mathbb{R}$.

Since $(\varepsilon^*(-\infty; 0]) \bigcup (\varepsilon^*[0; \infty)) = \varepsilon^*\mathbb{R} = \Sigma$,

we get: either $\varepsilon^*(-\infty; 0]$ is infinite or $\varepsilon^*[0; \infty)$ is infinite.

Assuming Σ is countable,

the Boltzmann theory splits into these two cases;

replacing ε with $-\varepsilon$ interchanges the two cases,

so the theory in one case parallels the theory in the other. Also, by Theorem 24.7 below, if $\text{DF}_\varepsilon \neq \emptyset$,

then only one of the two cases can happen.

THEOREM 24.5. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $\varepsilon^*[0; \infty)$ is infinite. Then: $\text{DF}_\varepsilon \subseteq (0; \infty)$.

Proof. Given $\beta \in \text{DF}_\varepsilon$, want: $\beta \in (0; \infty)$.

Since $\text{DF}_\varepsilon \subseteq \mathbb{R}$, we get: $\beta \in \mathbb{R}$.

Want: $\beta > 0$. Assume: $\beta \leq 0$. Want: Contradiction.
For all \(\sigma \in \Sigma \), let \(\varepsilon_{\sigma} := \varepsilon(\sigma) \).

For all \(\sigma \in \varepsilon^*[0; \infty) \), since \(\varepsilon_{\sigma} = \varepsilon(\sigma) \in [0; \infty) \), we get: \(\varepsilon_{\sigma} \geq 0 \).

So, since \(\beta \leq 0 \), we get: \(\forall \sigma \in \varepsilon^*[0; \infty), \quad -\beta \cdot \varepsilon_{\sigma} \geq 0. \)

Then:
\[
\forall \sigma \in \varepsilon^*[0; \infty), \quad e^{-\beta \cdot \varepsilon_{\sigma}} \geq 1.
\]

So, since \(\varepsilon^*[0; \infty) \) is infinite, we get:
\[
\sum_{\sigma \in \varepsilon^*[0; \infty)} [e^{-\beta \cdot \varepsilon_{\sigma}}] = \infty.
\]

Since
\[
\Delta^\varepsilon_\beta = \sum_{\sigma \in \Sigma} [e^{-\beta \cdot \varepsilon_{\sigma}}] \geq \sum_{\sigma \in \varepsilon^*[0; \infty)} [e^{-\beta \cdot \varepsilon_{\sigma}}] = \infty,
\]
we get:
\[
\beta \not\in DF_\varepsilon. \quad \text{Contradiction.} \quad \square
\]

THEOREM 24.6. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R} \).
Assume: \(\varepsilon^*(-\infty; 0] \) is infinite. Then: \(DF_\varepsilon \subseteq (-\infty; 0) \).

Proof. Since \((-\varepsilon)^*[0; \infty) = \varepsilon^*(-\infty; 0] \), we get: \((-\varepsilon)^*[0; \infty) \) is infinite.

Then, by Theorem 24.5, we get: \(DF_{-\varepsilon} \subseteq (0; \infty) \).

Then:
\[
DF_\varepsilon = -DF_{-\varepsilon} \subseteq -(0; \infty) = (-\infty; 0). \quad \square
\]

THEOREM 24.7. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R} \).
Assume: \(\varepsilon^*(-\infty; 0] \) and \(\varepsilon^*[0; \infty) \) are both infinite. Then: \(DF_\varepsilon = \emptyset \).

Proof. By Theorem 24.5, we get: \(DF_\varepsilon \subseteq (0; \infty) \).

By Theorem 24.6, we get: \(DF_\varepsilon \subseteq (-\infty; 0) \).

Since \(DF_\varepsilon \subseteq (-\infty; 0) \cap (0; \infty) = \emptyset \), we get: \(DF_\varepsilon = \emptyset \). \quad \square

THEOREM 24.8. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R} \).
Assume: \(DF_\varepsilon \cap [0; \infty) \neq \emptyset \). Then: \(\varepsilon \) is \(\infty \)-proper.

Proof. Given \(t \in \mathbb{R} \), let \(\Sigma_0 := \{ \sigma \in \Sigma | \varepsilon(\sigma) \leq t \} \), want: \#\(\Sigma_0 \) < \(\infty \).

Since \(DF_\varepsilon \cap [0; \infty) \neq \emptyset \), choose \(\beta \in DF_\varepsilon \cap [0; \infty) \).

Then \(\beta \in DF_\varepsilon \) and \(\beta \in [0; \infty) \).

Since \(\beta \in DF_\varepsilon \), we get: \(\Delta^\varepsilon_\beta < \infty \). Then: \(e^{\beta \cdot t} \cdot \Delta^\varepsilon_\beta < \infty \).

For all \(\sigma \in \Sigma \), let \(\varepsilon_{\sigma} := \varepsilon(\sigma) \).

Then: \(\Delta^\varepsilon_\beta = \sum_{\sigma \in \Sigma} [e^{-\beta \cdot \varepsilon_{\sigma}}] \).

By definition of \(\Sigma_0 \), we have: \(\forall \sigma \in \Sigma_0, \quad \varepsilon(\sigma) \leq t \).

Since \(\beta \in [0; \infty) \) and since \(\forall \sigma \in \Sigma_0, \quad t \geq \varepsilon(\sigma) = \varepsilon_{\sigma} \),
we get:
\[
\forall \sigma \in \Sigma_0, \quad -\beta \cdot t \leq -\beta \cdot \varepsilon_{\sigma}.
\]

Then:
\[
\forall \sigma \in \Sigma_0, \quad e^{-\beta \cdot t} \leq e^{-\beta \cdot \varepsilon_{\sigma}}.
\]

Then:
\[
\#\Sigma_0 = \sum_{\sigma \in \Sigma_0} [1] = e^{\beta \cdot t} \cdot \sum_{\sigma \in \Sigma_0} [e^{-\beta \cdot t}] \leq e^{\beta \cdot t} \cdot \sum_{\sigma \in \Sigma_0} [e^{-\beta \cdot \varepsilon_{\sigma}}] \leq e^{\beta \cdot t} \cdot \sum_{\sigma \in \Sigma} [e^{-\beta \cdot \varepsilon_{\sigma}}] = e^{\beta \cdot t} \cdot \Delta^\varepsilon_\beta < \infty. \quad \square
\]

THEOREM 24.9. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R} \).
Assume: \(DF_\varepsilon \cap (-\infty; 0] \neq \emptyset \). Then: \(\varepsilon \) is \((-\infty) \)-proper.

Proof. Since
\[
-(DF_\varepsilon \cap (-\infty; 0]) \neq \emptyset,
\]
we get:
\[
DF_{-\varepsilon} \cap [0; \infty) \neq \emptyset.
\]

Then, by Theorem 24.8, \(-\varepsilon \) is \(\infty \)-proper, and so \(\varepsilon \) is \((-\infty) \)-proper. \quad \square
THEOREM 24.10. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $DF_\varepsilon \neq \emptyset$. Then: Σ is countable.

Proof. Since $(DF_\varepsilon \cap (-\infty; 0]) \cup (DF_\varepsilon \cap [0; \infty)) = DF_\varepsilon \neq \emptyset$, it follows that: either $DF_\varepsilon \cap (-\infty; 0] \neq \emptyset$ or $DF_\varepsilon \cap [0; \infty) \neq \emptyset$. Then, by Theorem 24.9 or Theorem 24.8, we get: either ε is ∞-proper or ε is $-\infty$-proper. Then: either $-\varepsilon$ is ∞-proper or ε is ∞-proper. In either case, by Theorem 23.2, we get: Σ is countable. □

THEOREM 24.11. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $DF_\varepsilon \cap (-\infty; 0] \neq \emptyset \neq DF_\varepsilon \cap [0; \infty)$. Then: Σ is finite.

Proof. By Theorem 24.8, we get: ε is ∞-proper. By Theorem 24.9, we get: ε is $-\infty$-proper. Then, by Theorem 23.10, we get: Σ is finite. □

THEOREM 24.12. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\varepsilon^* [0; \infty)$ is infinite and $DF_\varepsilon \neq \emptyset$. Then: ε is ∞-proper.

Proof. By Theorem 24.5, we have: $DF_\varepsilon \subseteq (0; \infty)$. Since $DF_\varepsilon \subseteq (0; \infty) \subseteq [0; \infty)$, we get: $DF_\varepsilon \cap [0; \infty) = DF_\varepsilon$. Since $DF_\varepsilon \cap [0; \infty) = DF_\varepsilon \neq \emptyset$, by Theorem 24.8, we get: ε is ∞-proper. □

THEOREM 24.13. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\varepsilon^* (-\infty; 0]$ is infinite and $DF_\varepsilon \neq \emptyset$. Then: ε is $(-\infty)$-proper.

Proof. Since $(-\varepsilon)^* [0; \infty) = \varepsilon^* (-\infty; 0]$, we get: $(-\varepsilon)^* [0; \infty)$ is infinite. Since $DF_{-\varepsilon} = -DF_\varepsilon$, we get: $DF_{-\varepsilon} \neq \emptyset$. Then, by Theorem 24.12, $-\varepsilon$ is ∞-proper, so ε is $(-\infty)$-proper. □

DEFINITION 24.14. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$, $\beta \in \mathbb{R}$. For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$. Then, $\forall \rho \in [0; \infty)$, the ρ-exponent (β, ε)-absolute-sum is:

$$\overline{X'^{\rho}}_{\beta} := \sum_{\sigma \in \Sigma} |\varepsilon_\sigma|^\rho \cdot |e^{-\beta \varepsilon_\sigma}| \in [0; \infty].$$

Also, $\forall \rho \in [0; \infty)$, if $\overline{X'^{\rho}}_{\beta} < \infty$,

then the ρ-exponent (β, ε)-sum is:

$$\overline{X'^{\rho}}_{\beta} := \sum_{\sigma \in \Sigma} \varepsilon_\sigma^\rho \cdot e^{-\beta \varepsilon_\sigma} \in \mathbb{R}.$$

Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$, $\beta \in \mathbb{R}$, $\rho \in [0; \infty)$. If $\overline{X'^{\rho}}_{\beta} < \infty$, then, by subadditivity of absolute value,
we get: \[|X^\sigma S^e_{\beta}| \leq \overline{X}^\sigma S^e_{\beta}. \]

Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R}, \ \beta \in \mathbb{R}. \)

Recall our convention (§2): \(0^0 = 1. \) Then: \(\overline{X}^0 S^e_{\beta} = \Delta^\varepsilon_{\beta}. \)

Also, if \(\overline{X}^0 S^e_{\beta} < \infty, \) then \(X^0 S^e_{\beta} = \Delta^\varepsilon_{\beta}. \)

THEOREM 24.15. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R}. \)

Assume: \(DF_\varepsilon \neq \emptyset \) and \(\mathbb{I}_\varepsilon \) is bounded below. Let \(\rho \geq 0 \) be real.

Let \(\beta \in DF_\varepsilon \) and let \(\gamma > \beta \) be real. Then: \(\overline{X}^\rho S^e_{\gamma} < \infty. \)

We cannot replace “\(\gamma > \beta \)” with “\(\gamma \geq \beta \)”; see Theorem 24.17 below.

Proof. Since \(\mathbb{I}_\varepsilon \) is bounded below, choose \(t_0 \in \mathbb{R} \) s.t. \(\forall \sigma \in \Sigma, \varepsilon(\sigma) \geq t_0. \)

For all \(\sigma \in \Sigma, \) let \(\varepsilon_\sigma := \varepsilon(\sigma). \) Then: \(\forall \sigma \in \Sigma, \ \varepsilon_\sigma \geq t_0. \)

Let \(\delta := \gamma - \beta. \) Then \(\delta > 0, \) so, as \(t \to \infty, \ |t|^\rho \cdot e^{-\delta t} \to 0. \)

So, since \(t \mapsto |t|^\rho \cdot e^{-\delta t} : [t_0; \infty) \to \mathbb{R} \) is continuous,

by the Extreme Value Theorem, choose \(M \in \mathbb{R} \) s.t.,

\[\forall t \geq t_0, \ |t|^\rho \cdot e^{-\delta t} \leq M. \] Recall: \(\forall \sigma \in \Sigma, \ \varepsilon_\sigma \geq t_0. \)

Then: \(\forall \sigma \in \Sigma, \ |\varepsilon_\sigma|^\rho \cdot e^{-\delta \varepsilon_\sigma} \leq M. \)

By definition of \(\overline{X}^\rho S^e_{\gamma}, \) we get: \(\overline{X}^\rho S^e_{\gamma} = \sum_{\sigma \in \Sigma} \left[|\varepsilon_\sigma|^\rho \cdot e^{-\gamma \varepsilon_\sigma} \right]. \)

So, since \(-\gamma = -\delta - \beta, \) we get: \(\overline{X}^\rho S^e_{\gamma} = \sum_{\sigma \in \Sigma} \left[|\varepsilon_\sigma|^\rho \cdot e^{-\delta \varepsilon_\sigma} \cdot (e^{-\beta \varepsilon_\sigma}) \right]. \)

Since \(\beta \in DF_\varepsilon, \) we get: \(\Delta^\varepsilon_{\beta} < \infty. \) Then: \(M \cdot \Delta^\varepsilon_{\beta} < \infty. \)

Then:
\[
\overline{X}^\rho S^e_{\gamma} = \sum_{\sigma \in \Sigma} \left[(|\varepsilon_\sigma|^\rho \cdot e^{-\delta \varepsilon_\sigma}) \cdot (e^{-\beta \varepsilon_\sigma}) \right] \\
\leq \sum_{\sigma \in \Sigma} \left[M \cdot (e^{-\beta \varepsilon_\sigma}) \right] \\
= M \cdot \left(\sum_{\sigma \in \Sigma} (e^{-\beta \varepsilon_\sigma}) \right) = M \cdot \Delta^\varepsilon_{\beta} < \infty. \quad \square
\]

THEOREM 24.16. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R}, \ \beta, \rho \in \mathbb{R}. \)

Assume: \(\rho \geq 0, \ \varepsilon \) is \(\infty\)-proper, \(\overline{X}^\rho S^\beta_{\varepsilon} < \infty. \) Then: \(\beta \in DF_\varepsilon. \)

The proof below shows that we can weaken the hypothesis

“\(\varepsilon \) is \(\infty\)-proper” to “\(\{ \sigma \in \Sigma \mid \varepsilon(\sigma) \leq 1 \} \) is finite”.

However, it cannot be dropped altogether; see Theorem 24.18 below.

Proof. **Want:** \(\Delta^\varepsilon_{\beta} < \infty. \)

Let \(F := \{ \sigma \in \Sigma \mid \varepsilon(\sigma) \leq 1 \}. \) Since \(\varepsilon \) is \(\infty\)-proper, we get: \(F \) is finite.

For all \(\sigma \in \Sigma, \) let \(\varepsilon_\sigma := \varepsilon(\sigma). \) Then: \(F = \{ \sigma \in \Sigma \mid \varepsilon_\sigma \leq 1 \}. \)

Since \(F \) is finite, we get: \(\sum_{\sigma \in F} \left[e^{-\beta \varepsilon_\sigma} \right] < \infty. \)

So, since \(\Delta^\varepsilon_{\beta} = \left(\sum_{\sigma \in F} \left[e^{-\beta \varepsilon_\sigma} \right] \right) + \left(\sum_{\sigma \in \Sigma \setminus F} \left[e^{-\beta \varepsilon_\sigma} \right] \right), \)

it suffices to show:
\[\sum_{\sigma \in \Sigma \setminus F} \left[e^{-\beta \varepsilon_\sigma} \right] < \infty. \]

Since \(F = \{ \sigma \in \Sigma \mid \varepsilon_\sigma \leq 1 \}, \)

we get: \(\forall \sigma \in \Sigma \setminus F, \ \varepsilon_\sigma > 1. \)
Theorem 24.17. Let $\Sigma := [3, \infty)$. Define $\varepsilon : \Sigma \to \mathbb{R}$ by: $\forall k \in \Sigma$, $\varepsilon(k) = (\ln k) + 2 \cdot (\ln(\ln k))$. Let $\beta := 1$, $\gamma := 1$, $\rho := 1$. Then: $\beta \in \text{DF}_\varepsilon$ and $\overline{X}^\beta S_\gamma^\varepsilon = \infty$.

Proof. For all $k \in \Sigma$, let $\varepsilon_k := \varepsilon(k)$. Then: $\forall k \in [3, \infty)$, $\varepsilon_k = (\ln k) + 2 \cdot (\ln(\ln k))$. Since $\Delta_\beta^\varepsilon = \Delta_1^\varepsilon = \sum_{k \in \Sigma} [e^{-\varepsilon_k}] = \sum_{k=3}^{\infty} [e^{-\varepsilon_k}]$

$$= \sum_{k=3}^{\infty} \left[\frac{1}{e^{\varepsilon_k}} \right] = \sum_{k=3}^{\infty} \left[\frac{1}{e^{(\ln k)+2(\ln(\ln k))}} \right] = \sum_{k=3}^{\infty} \left[\frac{1}{k \cdot (\ln k)^2} \right] < \infty,$$

we get: $\beta \in \text{DF}_\varepsilon$. It remains only to show: $\overline{X}^\beta S_\gamma^\varepsilon = \infty$. We have: $\forall k \in [3, \infty)$, $k > e$, so $\ln k > 1$, so $\ln(\ln k) > 0$. For all $k \in [3, \infty)$, since $\varepsilon_k = (\ln k) + 2 \cdot (\ln(\ln k)) > 1 + 2 \cdot 0 = 1 > 0$, we get: $|\varepsilon_k| = \varepsilon_k$.

Since $\overline{X}^\beta S_\gamma^\varepsilon = \overline{X}^1 S_1^\varepsilon = \sum_{k \in \Sigma} [|\varepsilon_k| \cdot e^{-\varepsilon_k}]$

$$= \sum_{k=3}^{\infty} \left[|\varepsilon_k| \cdot e^{-\varepsilon_k} \right] = \sum_{k=3}^{\infty} \left[\varepsilon_k \cdot e^{-\varepsilon_k} \right]$

$$= \sum_{k=3}^{\infty} \left[\frac{\varepsilon_k}{e^{\varepsilon_k}} \right] = \sum_{k=3}^{\infty} \left[\frac{(\ln k) + 2 \cdot (\ln(\ln k))}{e^{(\ln k)+2(\ln(\ln k))}} \right]$

$$= \sum_{k=3}^{\infty} \left[\frac{(\ln k) + 2 \cdot (\ln(\ln k))}{k \cdot (\ln k)^2} \right]$$

$$\geq \sum_{k=3}^{\infty} \left[\frac{\ln k}{k \cdot (\ln k)^2} \right]$$

$$= \sum_{k=3}^{\infty} \left[\frac{1}{k \cdot (\ln k)} \right] = \infty,$$

we get: $\overline{X}^\beta S_\beta^\varepsilon = \infty$. □

Theorem 24.18. Let $\Sigma := \mathbb{N}$. Define $\varepsilon : \Sigma \to \mathbb{R}$ by: $\forall k \in \Sigma$, $\varepsilon(k) = 1/k^2$. Let $\beta := 1$, $\rho := 1$. Then: $\overline{X}^\beta S_\beta^\varepsilon < \infty$ and $\beta \notin \text{DF}_\varepsilon$.
Proof. For all $k \in \Sigma$, let $\varepsilon_k := \varepsilon(k)$. Then: $\forall k \in \Sigma, \ \varepsilon_k = 1/k^2$.

We have: $\forall k \in \mathbb{N}$, both $|\varepsilon_k| = 1/k^2$ and $-\varepsilon_k = -1/k^2$.

Since $\bar{X}^\varepsilon S_{\beta}^\varepsilon = \bar{X}^\varepsilon S_{\beta}^\varepsilon = \sum_{k \in \Sigma} |\varepsilon_k| \cdot e^{-\varepsilon_k}$

Then: $\varepsilon_k = \sum_{k=1}^{\infty} \left| \varepsilon_k \right| \cdot e^{-\varepsilon_k}$

Since $\frac{1}{k^2} \cdot e^{-1/k^2}$

Then:

$\sum_{k=1}^{\infty} (1/k^2) \cdot e^{-1/k^2}$

$\leq \sum_{k=1}^{\infty} \left(1/k^2 \cdot 1 \right)$

$\therefore \sum_{k=1}^{\infty} \left(1/k^2 \right) < \infty$,

it remains only to show: $\beta \notin DF_\varepsilon$ \quad \text{Want:} \quad \Delta_\beta^\varepsilon = \infty.$

We have: as $k \to \infty$, $e^{-1/k^2} \to 1$. Then: $\sum_{k=1}^{\infty} [e^{-1/k^2}] = \infty$.

Then: $\Delta_\beta^\varepsilon = \Delta_\beta^\varepsilon = \sum_{k \in \Sigma} [e^{-\varepsilon_k}] = \sum_{k=1}^{\infty} [e^{-\varepsilon_k}] = \sum_{k=1}^{\infty} [e^{-1/k^2}] = \infty$. \quad \Box

THEOREM 24.19. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $DF_\varepsilon \neq \emptyset$ and I_ε is bounded below. \quad \text{Let} \quad p \geq 0 be real.

Let $\beta_0 := \inf DF_\varepsilon$ and \quad \text{let} \quad \gamma \in (\beta_0; \infty)$. \quad Then: $\bar{X}^p S_\gamma^\varepsilon < \infty$.

Proof. Since $\gamma > \beta_0 = \inf DF_\varepsilon$, choose $\beta \in DF_\varepsilon$ \quad s.t. \quad $\gamma > \beta$.

Then: by Theorem 24.15, we get: $\bar{X}^p S_\gamma^\varepsilon < \infty$. \quad \Box

THEOREM 24.20. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $DF_\varepsilon \neq \emptyset$ and I_ε is bounded below.

Let $\beta_0 := \inf DF_\varepsilon$ and \quad \text{let} \quad \gamma \in (\beta_0; \infty)$. \quad Then: $\gamma \in DF_\varepsilon$.

Proof. By Theorem 24.19, we have: $\bar{X}^0 S_\gamma^\varepsilon < \infty$.

Since $\Delta_\gamma^\varepsilon = \bar{X}^0 S_\gamma^\varepsilon < \infty$, we get: $\gamma \in DF_\varepsilon$. \quad \Box

THEOREM 24.21. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $\varepsilon[0; \infty)$ is infinite \quad and \quad $DF_\varepsilon \neq \emptyset$. \quad \text{Let} \quad \beta_0 := \inf DF_\varepsilon$.

Then: $0 \leq \beta_0 < \infty \quad \text{and} \quad (\beta_0; \infty) \subseteq DF_\varepsilon$.

Proof. By Theorem 24.5, $DF_\varepsilon \subseteq (0; \infty)$. Then: $\inf DF_\varepsilon \geq \inf(0; \infty)$.

Since $DF_\varepsilon \neq \emptyset$, we get: $\inf DF_\varepsilon < \infty$.

Since $\beta_0 = \inf DF_\varepsilon \geq \inf(0; \infty) = 0$ and since $\beta_0 = \inf DF_\varepsilon < \infty$,

we get: $0 \leq \beta_0 < \infty$.

It remains to show: $\beta_0 \neq \gamma \subseteq DF_\varepsilon$.

Given $\gamma \in (\beta_0; \infty)$, \quad want: $\gamma \notin DF_\varepsilon$.

By Theorem 24.12, we have: ε is ∞-proper.

Then, by Theorem 23.4, we have: I_ε is bounded below.

Then, by Theorem 24.20, we have: $\gamma \notin DF_\varepsilon$. \quad \Box

THEOREM 24.22. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $\varepsilon[0; \infty)$ is infinite \quad and \quad $DF_\varepsilon \neq \emptyset$. \quad \text{Let} \quad \beta_0 := \inf DF_\varepsilon$.
Then either
\((\text{DF}_\varepsilon = [\beta_0; \infty) \text{ and } 0 < \beta_0 < \infty) \)
\text{ or }
\((\text{DF}_\varepsilon = (\beta_0; \infty) \text{ and } 0 \leq \beta_0 < \infty).\)

Proof. By Theorem 24.21, we get:
\(0 \leq \beta_0 < \infty \) and \((\beta_0; \infty) \subseteq \text{DF}_\varepsilon.\)

Since \(\beta_0 = \inf \text{DF}_\varepsilon,\) we get: \(\text{DF}_\varepsilon \subseteq [\beta_0; \infty)\).

By Theorem 24.5, we get: \(\text{DF}_\varepsilon \subseteq (0; \infty).\)

Case 1: \(\beta_0 \in \text{DF}_\varepsilon.\) **Want:** \(\text{DF}_\varepsilon = [\beta_0; \infty)\) and \(0 < \beta_0 < \infty).\)

Recall: \((\beta_0; \infty) \subseteq \text{DF}_\varepsilon\) and \(\text{DF}_\varepsilon \subseteq [\beta_0; \infty)\) and \(\text{DF}_\varepsilon \subseteq (0; \infty).\)

Since \(\beta_0 \in \text{DF}_\varepsilon\) and \((\beta_0; \infty) \subseteq \text{DF}_\varepsilon,\)
we get: \(\{\beta_0\} \cup (\beta_0; \infty) \subseteq \text{DF}_\varepsilon.\)

Since \([\beta_0; \infty) = \{\beta_0\} \cup (\beta_0; \infty) \subseteq \text{DF}_\varepsilon\) and since \(\text{DF}_\varepsilon \subseteq [\beta_0; \infty),\)
we get: \(\text{DF}_\varepsilon = [\beta_0; \infty).\)

It remains only to show: \(0 < \beta_0 < \infty.\)

Recall: \(0 \leq \beta_0 < \infty.\) Then:
\(\beta_0 < \infty.\)

It remains only to show: \(0 < \beta_0.\)

Since \(\beta_0 \in [\beta_0; \infty) = \text{DF}_\varepsilon \subseteq (0; \infty),\) we get: \(0 < \beta_0.\)

End of Case 1.

Case 2: \(\beta_0 \notin \text{DF}_\varepsilon.\) **Want:** \(\text{DF}_\varepsilon = (\beta_0; \infty)\) and \(0 \leq \beta_0 < \infty.\)

Recall: \(0 \leq \beta_0 < \infty.\)

It remains only to show: \(\text{DF}_\varepsilon = (\beta_0; \infty).\)

Recall: \(\text{DF}_\varepsilon \subseteq [\beta_0; \infty),\)

Since \(\beta_0 \notin \text{DF}_\varepsilon\) and \(\text{DF}_\varepsilon \subseteq [\beta_0; \infty),\)
we get: \(\text{DF}_\varepsilon \subseteq [\beta_0; \infty) \backslash \{\beta_0\}.\)

Recall: \((\beta_0; \infty) \subseteq \text{DF}_\varepsilon.\)

Since \(\text{DF}_\varepsilon \subseteq [\beta_0; \infty) \backslash \{\beta_0\} = (\beta_0; \infty)\) and \((\beta_0; \infty) \subseteq \text{DF}_\varepsilon,\)
we get: \(\text{DF}_\varepsilon = (\beta_0; \infty).\)

End of Case 2. \(\square\)

THEOREM 24.23. Let \(\Sigma\) be a set, \(\varepsilon: \Sigma \to \mathbb{R}.\)
Assume: \(\varepsilon^*(-\infty; 0]\) is infinite and \(\text{DF}_\varepsilon \neq \emptyset.\) Let \(\beta_0 := -\sup \text{DF}_\varepsilon.\)

Then one of the following holds:

Either \(\text{DF}_\varepsilon = (-\infty; -\beta_0]\) and \(0 < \beta_0 < \infty\)

or \(\text{DF}_\varepsilon = (-\infty; -\beta_0)\) and \(0 \leq \beta_0 < \infty\).

Proof. Since \((-\varepsilon)^*[0; \infty)\) is infinite and \(\text{DF}_{-\varepsilon} \neq \emptyset\) and \(\beta_0 = \inf \text{DF}_{-\varepsilon},\)
by Theorem 24.22, we get:

either \(\text{DF}_{-\varepsilon} = [\beta_0; \infty)\) and \(0 < \beta_0 < \infty\)

or \(\text{DF}_{-\varepsilon} = (\beta_0; \infty)\) and \(0 \leq \beta_0 < \infty.\)
Then: either \(DF_\varepsilon = (-\infty; -\beta_0] \) and \(0 < \beta_0 < \infty \)
or \(DF_\varepsilon = (-\infty; -\beta_0) \) and \(0 \leq \beta_0 < \infty \). \(\Box \)

THEOREM 24.24. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \rightarrow \mathbb{R} \). Assume: \(DF_\varepsilon \neq \emptyset \).
Then one of the following is true:

(i) \(DF_\varepsilon = \mathbb{R} \).

(ii) \(\exists \beta_0 \geq 0 \) s.t. \(DF_\varepsilon = (\beta_0; \infty) \).

(iii) \(\exists \beta_0 > 0 \) s.t. \(DF_\varepsilon = [\beta_0; \infty) \).

(iii') \(\exists \beta_0 > 0 \) s.t. \(DF_\varepsilon = (-\infty; -\beta_0) \).

(ii') \(\exists \beta_0 \geq 0 \) s.t. \(DF_\varepsilon = [\beta_0; \infty) \).

Below, in each of Theorem 24.28, Theorem 24.30, Theorem 24.32, we give examples of \(\varepsilon : \Sigma \rightarrow \mathbb{Z} \) such that \(DF_\varepsilon \neq \emptyset \), \(DF_\varepsilon = (\beta_0; \infty) \), \(DF_\varepsilon = [\beta_0; \infty) \), respectively; it follows that \(-\varepsilon \) is \((\infty) \)-proper and \(DF_{-\varepsilon} = \emptyset \), \(DF_{-\varepsilon} = (-\infty; -\beta_0) \), \(DF_{-\varepsilon} = (-\infty; -\beta_0] \), respectively.

Proof. Since \(\varepsilon : \Sigma \rightarrow \mathbb{R} \), we get: \(\varepsilon \mathbb{Z} = \Sigma \).

Since \((-\infty; 0] \cup [0; \infty) = \mathbb{R} \), we get: \(\varepsilon \mathbb{Z} = \Sigma \).
In case \#\(\Sigma < \infty \), we get: (i) holds. We therefore assume \#\(\Sigma = \infty \).

Want: (ii) or (ii') or (iii) or (iii') holds.

Because \(\varepsilon \mathbb{Z} = \Sigma \), we get:

either \(\varepsilon \mathbb{Z} \) is infinite or \(\varepsilon \mathbb{Z} \) is infinite.

Then, by Theorem 24.23 or Theorem 24.22, we get:

either (iii) or (iii') holds or (ii) or (ii') holds.

Then: (ii) or (ii') or (iii) or (iii') holds. \(\Box \)

THEOREM 24.25. Let \(n_1, n_2, \ldots \in [0..\infty) \).

Let \(\Sigma := \{(k, j) \in \mathbb{N} \times \mathbb{N} | j \leq n_k \} \).

Define \(\varepsilon : \Sigma \rightarrow [0..\infty) \) by: \(\forall (k, j) \in \Sigma, \ \varepsilon(k, j) = k - 1 \).

Then: \(\forall k \in \mathbb{N}, \ \#(\varepsilon[k - 1; k)) = n_k \).

Proof. Given \(k \in \mathbb{N} \), want: \(\#(\varepsilon[k - 1; k)) = n_k \).

Since \(\varepsilon[k - 1; k) = \{(\ell, j) \in \Sigma | \varepsilon(\ell, j) \in [k - 1; k)\} \)

\(= \{(\ell, j) \in \Sigma | \ell - 1 \in [k - 1; k)\} \)

\(= \{(\ell, j) \in \Sigma | \ell - 1 = k - 1\} \)

\(= \{(\ell, j) \in \Sigma | \ell = k\} \)

\(= \{(\ell, j) \in \mathbb{N} \times \mathbb{N} | \ell = k, j \leq n_k\} \)

\(= \{(\ell, j) \in \mathbb{N} \times \mathbb{N} | \ell = k, j \leq n_k\} \)
THEOREM 24.26. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \rightarrow [0; \infty) \).
For all \(k \in \mathbb{N} \), let \(n_k := \#(\varepsilon^*[k-1; k)) \).
Let \(\beta \in [0; \infty) \). Then: \((\beta \in \text{DF}_\varepsilon) \iff (\sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty) \).

Proof. For all \(\sigma \in \Sigma \), let \(\varepsilon_\sigma := \varepsilon(\sigma) \).

Proof of \(\Rightarrow \): Assume: \(\beta \in \text{DF}_\varepsilon \). Want: \(\sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty \).
Since \(\beta \in \text{DF}_\varepsilon \), we get: \(\Delta^\varepsilon_\beta < \infty \).
Because \(\Sigma \) is the disjoint union, over \(k = 1 \) to \(\infty \), of \(\varepsilon^*[k-1; k) \),
we get: \(\sum_{\sigma \in \Sigma} [e^{-\beta \varepsilon_\sigma}] = \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta \varepsilon_\sigma}] \).
For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1; k) \), since \(\varepsilon_\sigma = \varepsilon(\sigma) \in [k-1; k) \),
we have: \(k > \varepsilon_\sigma \).
Since \(\beta \in [0; \infty) \), we get: \(-\beta \leq 0 \).
For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1; k) \), we have: \(-\beta \cdot k \leq -\beta \cdot \varepsilon_\sigma \).
For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1; k) \), we have: \(e^{-\beta k} \leq e^{-\beta \varepsilon_\sigma} \).
Then: \(\forall k \in \mathbb{N}, \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta k}] \leq \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta \varepsilon_\sigma}] \).
Also, \(\forall k \in \mathbb{N}, \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta k}] = n_k e^{-\beta k} \).
Then: \(\forall k \in \mathbb{N}, n_k e^{-\beta k} \leq \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta \varepsilon_\sigma}] \).
Then:
\[
\sum_{k=1}^{\infty} [n_k e^{-\beta k}] \leq \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta \varepsilon_\sigma}] = \sum_{\sigma \in \Sigma} [e^{-\beta \varepsilon_\sigma}] = \Delta^\varepsilon_\beta < \infty.
\]
End of proof of \(\Rightarrow \).

Proof of \(\Leftarrow \): Assume: \(\sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty \). Want: \(\beta \in \text{DF}_\varepsilon \).
Because \(\Sigma \) is the disjoint union, over \(k = 1 \) to \(\infty \), of \(\varepsilon^*[k-1; k) \),
we get: \(\sum_{\sigma \in \Sigma} [e^{-\beta (\varepsilon_\sigma + 1)}] = \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta (\varepsilon_\sigma + 1)}] \).
For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1; k) \), since \(\varepsilon_\sigma = \varepsilon(\sigma) \in [k-1; k) \),
we have: \(\varepsilon_\sigma \geq k - 1 \).
For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1; k) \), we have: \(\varepsilon_\sigma + 1 \geq k \).
Since \(\beta \in [0; \infty) \), we get: \(-\beta \leq 0 \).
For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1; k) \), we have: \(-\beta \cdot (\varepsilon_\sigma + 1) \leq -\beta \cdot k \).
For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1; k) \), we have: \(e^{-\beta (\varepsilon_\sigma + 1)} \leq e^{-\beta k} \).
Then: \(\forall k \in \mathbb{N}, \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta (\varepsilon_\sigma + 1)}] \leq \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta k}] \).
Also, \(\forall k \in \mathbb{N}, n_k e^{-\beta k} = \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta k}] \).
Then: \(\forall k \in \mathbb{N}, \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta (\varepsilon_\sigma + 1)}] \leq n_k e^{-\beta k} \).
Then:
\[
\sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta (\varepsilon_\sigma + 1)}] \leq \sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty.
\]
By assumption, \(\sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty \). Then \(e^\beta \cdot \sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty \).
THEOREM 24.27. Let Σ be a set, $\varepsilon : \Sigma \to [0; \infty)$.
For all $k \in \mathbb{N}$, let $n_k := \#(\varepsilon^*[k-1; k))$.
Assume: $\forall k \in \mathbb{N}, \ n_k \geq e^{k^2}$. Then: $DF_\varepsilon = \emptyset$.

Proof. Since $\forall k \in \mathbb{N}, \ n_k \geq e^{k^2} > 1$, we get: $\sum_{k=1}^{\infty} n_k = \infty$.
Since $\sum_{k=1}^{\infty} \#(\varepsilon^*[k-1; k)) = \sum_{k=1}^{\infty} n_k = \infty$,
it follows, from Theorem 24.5, that: $DF_\varepsilon \subseteq (0; \infty)$.

It therefore suffices to show: $\forall \beta \in (0; \infty), \ \beta \notin DF_\varepsilon$.

Given $\beta \in (0; \infty)$, want: $\beta \notin DF_\varepsilon$.

Since, as $k \to \infty$, $e^{k^2 - \beta^k} \to \infty$, we get: $\sum_{k=1}^{\infty} [e^{k^2 - \beta^k}] = \infty$.
Since $\sum_{k=1}^{\infty} [n_k e^{-\beta^k}] \geq \sum_{k=1}^{\infty} [e^{k^2 - \beta^k}] = \sum_{k=1}^{\infty} [e^{k^2 - \beta^k}] = \infty$,
and since $\beta \in (0; \infty) \subseteq [0; \infty)$,
by Theorem 24.26, we get: $\beta \notin DF_\varepsilon$. □

Recall (\S): $\forall t \in \mathbb{R}, \ [t]$ denotes the floor of t.

THEOREM 24.28. For all $k \in \mathbb{N}$, let $n_k := \lfloor e^{k^2} + 1 \rfloor$.
Let $\Sigma := \{(k, j) \in \mathbb{N} \times \mathbb{N} \mid j \leq n_k \}$.
Define $\varepsilon : \Sigma \to [0..\infty)$ by: $\forall (k, j) \in \Sigma, \ \varepsilon(k, j) = k - 1$.
Then: $DF_\varepsilon = \emptyset$.

Proof. We have: $\forall k \in \mathbb{N}, \ n_k \geq e^{k^2}$.
By Theorem 24.25, we get: $\forall k \in \mathbb{N}, \ \#(\varepsilon^*[k-1; k)) = n_k$.
Then, by Theorem 24.27, we get: $DF_\varepsilon = \emptyset$. □

THEOREM 24.29. Let Σ be a set.
Let $\varepsilon : \Sigma \to [0; \infty)$ be α-proper.
For all $k \in \mathbb{N}$, let $n_k := \#(\varepsilon^*[k-1; k))$.
Let $\beta_0 \in [0; \infty)$.
Assume: as $k \to \infty$, $n_k e^{-\beta_0 k} \to 1$. Then: $DF_\varepsilon = (\beta_0; \infty)$.

Proof. Since as $k \to \infty$, $n_k e^{-\beta_0 k} \to 1$, we get:
$\#\{k \in \mathbb{N} \mid n_k e^{-\beta_0 k} = 0\} < \infty$.
Then: $\#\{k \in \mathbb{N} \mid n_k = 0\} < \infty$.
Then $\#\{k \in \mathbb{N} \mid n_k \geq 1\} = \infty$, and so $\sum_{k=1}^{\infty} n_k = \infty$.
Since $\#(\varepsilon^*[0; \infty)) = \sum_{k=1}^{\infty} [\#(\varepsilon^*[k-1; k))] = \sum_{k=1}^{\infty} n_k = \infty$, we get: $\beta \in DF_\varepsilon$. □
it follows, from Theorem 24.5, that: \(\text{DF}_\varepsilon \subseteq (0; \infty) \).

Since \(\text{DF}_\varepsilon \subseteq (0; \infty) \subseteq [0; \infty) \), we get: \(\text{DF}_\varepsilon \cap [0; \infty) = \text{DF}_\varepsilon \).

Since \(\beta_0 \in [0; \infty) \), we get: \((\beta_0; \infty) \subseteq (0; \infty) \).

Since \((\beta_0; \infty) \subseteq (0; \infty) \subseteq [0; \infty) \), we get: \((\beta_0; \infty) \cap [0; \infty) = (\beta_0; \infty) \).

We have: \(\forall \beta \in \mathbb{R}, \forall k \in \mathbb{N}, \ [n_ke^{-\beta k}] / [e^{-(\beta - \beta_0)k}] = n_ke^{-\beta_0 k} \).

By hypothesis, as \(k \to \infty \), \(n_ke^{-\beta_0 k} \to 1 \).

Then: \(\forall \beta \in \mathbb{R}, \text{ as } k \to \infty, \ [n_ke^{-\beta k}] / [e^{-(\beta - \beta_0)k}] \to 1 \).

Then: \(\forall \beta \in \mathbb{R}, \ (\sum_{k=1}^{\infty} [n_ke^{-\beta k}] < \infty) \iff (\sum_{k=1}^{\infty} [e^{-(\beta - \beta_0)k}] < \infty) \).

Also, \(\forall \beta \in \mathbb{R}, \ (\beta > \beta_0) \iff (\sum_{k=1}^{\infty} [e^{-(\beta - \beta_0)k}] < \infty) \).

Then: \(\forall \beta \in \mathbb{R}, \ (\sum_{k=1}^{\infty} [n_ke^{-\beta k}] < \infty) \iff (\beta > \beta_0) \).

Then, by Theorem 24.26,

\[\forall \beta \in [0; \infty) \quad (\beta \in \text{DF}_\varepsilon) \iff (\beta > \beta_0) \]

Then \(\text{DF}_\varepsilon \cap [0; \infty) = (\beta_0; \infty) \cap [0; \infty) = (\beta_0; \infty). \)

\[\Box \]

THEOREM 24.30. Let \(\beta_0 \in [0; \infty) \). For all \(k \in \mathbb{N} \), let \(n_k := \lfloor e^{\beta_0 k} \rfloor \).

Let \(\Sigma := \{(k, j) \in \mathbb{N} \times \mathbb{N} | j \leq n_k \} \).

Define \(\varepsilon : \Sigma \to [0..\infty) \) by: \(\forall (k, j) \in \Sigma, \ \varepsilon(k, j) = k - 1 \).

Then: \(\text{DF}_\varepsilon = (\beta_0; \infty). \)

Proof. We have: \(\text{as } k \to \infty, \ n_ke^{-\beta_0 k} \to 1 \).

By Theorem 24.25, we get: \(\forall k \in \mathbb{N}, \#(\varepsilon*[k-1; k)) = n_k. \)

Then, by Theorem 24.29, we get: \(\text{DF}_\varepsilon = (\beta_0; \infty). \)

\[\Box \]

THEOREM 24.31. Let \(\Sigma \) be a set.

Let \(\varepsilon : \Sigma \to [0; \infty) \) be \(\infty \)-proper.

For all \(k \in \mathbb{N} \), let \(n_k := \#(\varepsilon*[k-1; k)) \).

Let \(p \in (1; \infty), \ \beta_0 \in (0; \infty) \).

Assume: \(\text{as } k \to \infty, \ k^p n_ke^{-\beta_0 k} \to 1 \). Then: \(\text{DF}_\varepsilon = [\beta_0; \infty). \)

Proof. Since \(\text{as } k \to \infty, \ k^p n_ke^{-\beta_0 k} \to 1 \), we get:

\[\#\{k \in \mathbb{N} | k^p n_ke^{-\beta_0 k} = 0\} < \infty. \]

Then

\[\#\{k \in \mathbb{N} | n_k = 0\} < \infty. \]

Then

\[\#\{k \in \mathbb{N} | n_k \geq 1\} = \infty, \text{ and so } \sum_{k=1}^{\infty} n_k = \infty. \]

Since \(\#(\varepsilon*[0; \infty)) = \sum_{k=1}^{\infty} [\#(\varepsilon*[k-1; k))] = \sum_{k=1}^{\infty} n_k = \infty, \)

it follows, from Theorem 24.5, that: \(\text{DF}_\varepsilon \subseteq (0; \infty) \).

Since \(\text{DF}_\varepsilon \subseteq (0; \infty) \subseteq [0; \infty) \), we get: \(\text{DF}_\varepsilon \cap [0; \infty) = \text{DF}_\varepsilon \).

Since \(\beta_0 \in (0; \infty) \), we get: \([\beta_0; \infty) \subseteq (0; \infty) \).

Since \([\beta_0; \infty) \subseteq (0; \infty) \subseteq [0; \infty) \), we get: \([\beta_0; \infty) \cap [0; \infty) = [\beta_0; \infty). \)

We have: \(\forall \beta \in \mathbb{R}, \forall k \in \mathbb{N}, \ [n_ke^{-\beta k}] / [k^p e^{-(\beta - \beta_0)k}] = k^p n_ke^{-\beta_0 k}. \)
By hypothesis, as $k \to \infty$,
\[k^p n_k e^{-\beta_0 k} \to 1. \]
Then: $\forall \beta \in \mathbb{R}$, as $k \to \infty$,
\[[n_k e^{-\beta k}] / [k^{-p} e^{-(\beta - \beta_0)k}] \to 1. \]
Also, since $p \in (1; \infty)$, we get:
\[(\sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty) \iff (\sum_{k=1}^{\infty} [k^{-p} e^{-(\beta - \beta_0)k}] < \infty). \]

Theorem 24.32. Let $\beta_0 \in (0; \infty)$. For all $k \in \mathbb{N}$, let $n_k := [k^{-2} e^{\beta_0 k}]$.

Let $\Sigma := \{(k, j) \in \mathbb{N} \times \mathbb{N} | j \leq n_k \}$.

Define $\varepsilon : \Sigma \to [0, \infty)$ by: $\forall (k, j) \in \Sigma$, $\varepsilon(k, j) = k - 1$.

Then: $DF_{\varepsilon} = [\beta_0; \infty)$.

Proof. We have: as $k \to \infty$, $k^2 n_k e^{-\beta_0 k} \to 1$.

By Theorem 24.25, we get: $\forall k \in \mathbb{N}$, $\#(\varepsilon*[k - 1; k]) = n_k$.

Then, by Theorem 24.31, we get: $DF_{\varepsilon} = [\beta_0; \infty)$. \(\square\)

Let Σ be an infinite set. Let $\varepsilon : \Sigma \to [0, \infty)$ be ∞-proper.

For all $k \in \mathbb{N}$, let $n_k := \#(\varepsilon*[k - 1; k])$.

In many applications, the sequence n_1, n_2, \ldots is subexponential.

By the next theorem, whenever that happens, we get: $DF_{\varepsilon} = (0; \infty)$.

Theorem 24.33. Let Σ be an infinite set.

Let $\varepsilon : \Sigma \to [0, \infty)$ be ∞-proper.

For all $k \in \mathbb{N}$, let $n_k := \#(\varepsilon*[k - 1; k])$.

Assume: $\forall \beta \in (0, \infty)$, as $k \to \infty$, $n_k e^{-\beta_0 k} \to 0$.

Then: $DF_{\varepsilon} = (0; \infty)$.

Proof. Since $\varepsilon : \Sigma \to [0, \infty)$, we get: $\varepsilon*[0, \infty) = \Sigma$.

So, since Σ is infinite, we get: $\varepsilon*[0, \infty)$ is infinite.

It follows, from Theorem 24.5, that: $DF_{\varepsilon} \subseteq (0; \infty)$.

Want: $(0; \infty) \subseteq DF_{\varepsilon}$.

Given $\beta \in (0; \infty)$, want: $\beta \in DF_{\varepsilon}$.

Since $\beta \in (0; \infty) \subseteq [0; \infty)$, by Theorem 24.26,

it suffices to show: $\sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty$.

Let $\beta' := \beta/2$. Since $\beta \in (0; \infty)$, we get: $\beta' \in (0; \infty)$.
Then, by hypothesis, we have: as $k \to \infty$, $n_k e^{-\beta' k} \to 0$. It follows that: $\{n_k e^{-\beta' k} \mid k \in \mathbb{N}\}$ is bounded.

Choose $M \in \mathbb{R}$ s.t., $\forall k \in \mathbb{N}$, $n_k e^{-\beta' k} \leq M$.

Since $\beta' \in (0; \infty)$, it follows that $1 - e^{-\beta'} > 0$ and that $e^{-\beta'} + e^{-2\beta'} + e^{-3\beta'} + \cdots = e^{-\beta'}/(1 - e^{-\beta'})$.

Then: $e^{-\beta'} + e^{-2\beta'} + e^{-3\beta'} + \cdots < \infty$.

Then: $M \cdot (e^{-\beta'} + e^{-2\beta'} + e^{-3\beta'} + \cdots) < \infty$.

Then: $\sum_{k=1}^{\infty} [n_k e^{-\beta' k}] = \sum_{k=1}^{\infty} [n_k e^{-2\beta' k}] = \sum_{k=1}^{\infty} [n_k e^{-\beta' k}] = M \cdot \sum_{k=1}^{\infty} [e^{-\beta' k}] < \infty$. □

Example: Let $\Sigma := [0, \infty)$. Define $\varepsilon : \Sigma \to \mathbb{R}$ by: $\forall \sigma \in \Sigma$, $\varepsilon(\sigma) = \sigma$.

Then, $\forall k \in \mathbb{N}$, $\varepsilon^* [k-1; k) = \{k-1\}$, and so $(\varepsilon^* [k-1; k)) = 1$.

Then, by Theorem 24.33, we get: $DF_\varepsilon = (0; \infty)$.

DEFINITION 24.34. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Then: IDF_ε denotes the interior in \mathbb{R} of DF_ε.

THEOREM 24.35. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $DF_\varepsilon \neq \emptyset$.

Then one of the following is true:

(i) $\text{IDF}_\varepsilon = \mathbb{R}$.

(ii) $\exists \beta_0 \in [0; \infty)$ s.t. $\text{IDF}_\varepsilon = (\beta_0; \infty)$.

(iii) $\exists \beta_0 \in [0; \infty)$ s.t. $\text{IDF}_\varepsilon = (-\infty; -\beta_0)$.

The preceding theorem is a corollary of Theorem 24.24.

THEOREM 24.36. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Then:

$DF_\varepsilon = \emptyset \iff \text{IDF}_\varepsilon = \emptyset$.

Proof. Since $\text{IDF}_\varepsilon \subseteq DF_\varepsilon$, we get:

$(DF_\varepsilon = \emptyset) \Rightarrow (\text{IDF}_\varepsilon = \emptyset)$.

Want: $(DF_\varepsilon \neq \emptyset) \Rightarrow (\text{IDF}_\varepsilon \neq \emptyset)$.

Assume $DF_\varepsilon \neq \emptyset$. Want: $\text{IDF}_\varepsilon \neq \emptyset$.

By Theorem 24.35, one of the following is true:

(i) $\text{IDF}_\varepsilon = \mathbb{R}$.

(ii) $\exists \beta_0 \in [0; \infty)$ s.t. $\text{IDF}_\varepsilon = (\beta_0; \infty)$.

(iii) $\exists \beta_0 \in [0; \infty)$ s.t. $\text{IDF}_\varepsilon = (-\infty; -\beta_0)$.

Then: $\text{IDF}_\varepsilon \neq \emptyset$.

THEOREM 24.37. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Then:

$(\text{IDF}_\varepsilon = \mathbb{R}) \iff (\Sigma \text{ is finite})$.
Proof. Proof of \Rightarrow:
Use Theorem 24.38 and Theorem 24.39.
MORE LATER
End of proof of \Rightarrow.

Proof of \Leftarrow:
MORE LATER
End of proof of \Leftarrow.

THEOREM 24.38. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Then:
($\exists \beta_0 \in [0; \infty)$ s.t. $\text{IDF}_\varepsilon = (\beta_0; \infty)$) \Rightarrow (ε is ∞-proper).

Proof. Use Theorem 24.8.
MORE LATER

THEOREM 24.39. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Then:
($\exists \beta_0 \in [0; \infty)$ s.t. $\text{IDF}_\varepsilon = (-\infty; -\beta_0)$) \Rightarrow (ε is $(-\infty)$-proper).

Proof. Use Theorem 24.9.
MORE LATER

25. Convergence, complex-differentiation, C^ω results

THEOREM 25.1. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.
Assume: $\emptyset \neq \text{DF}_\varepsilon \subseteq (0; \infty)$. Let $\gamma \in \text{IDF}_\varepsilon$.
For all $n \in \mathbb{N}$, let $\Sigma_n := \varepsilon^*(-\infty; n]$ and let $\varepsilon_n := \varepsilon|\Sigma_n$.
Then: ($\overline{X}^n\varepsilon_\gamma < \infty$) and (as $n \to \infty$, $X^n\varepsilon_n \to X^n\varepsilon_\gamma$).

Proof. Let $\beta_0 := \inf \text{DF}_\varepsilon$. Then $\text{IDF}_\varepsilon = (\beta_0; \infty)$.
Since $\gamma \in (\beta_0; \infty)$, by Theorem 24.19,
we get: $\overline{X}^n\varepsilon_\gamma < \infty$.

It remains to show: as $n \to \infty$, $X^n\varepsilon_n \to X^n\varepsilon_\gamma$.

For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

Define $f : \Sigma \to \mathbb{R}$ by: $\forall \sigma \in \Sigma$, $f(\sigma) = \varepsilon_\sigma^\gamma \cdot e^{-\gamma \varepsilon_\sigma}$.

By Theorem 8.4, as $n \to \infty$, $\sum_{\sigma \in \Sigma_n} [f(\sigma)] \to \sum_{\sigma \in \Sigma} [f(\sigma)]$.
So, since $\forall n \in \mathbb{N}$, $\sum_{\sigma \in \Sigma_n} [f(\sigma)] = X^n\varepsilon_n$
and since $\sum_{\sigma \in \Sigma} [f(\sigma)] = X^n\varepsilon_\gamma$,
we get: as $n \to \infty$, $X^n\varepsilon_n \to X^n\varepsilon_\gamma$.

Recall (\S2): the notations \mathbb{I}_f and $f^\star A$ and $\Re(z)$ and $\Im(z)$.
Recall (\S8): for $f : S \to \mathbb{C}$, the notation $\sum_{x \in S} [f(s)]$.

\end{document}
Theorem 25.2 is a standard result on commuting of limits and derivatives. We omit proof.

Definition 25.3. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$, $z \in \mathbb{C}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma} := \varepsilon(\sigma)$.
Then, $\forall \rho \in [0; \infty)$, the ρ-exponent (z, ε)-absolute-sum is:

$$X^\rho S^\varepsilon_z := \sum_{\sigma \in \Sigma} [\varepsilon_{\sigma}]^\rho \cdot |e^{-z\varepsilon_{\sigma}}| \in [0; \infty].$$

Also, $\forall \rho \in [0, \infty)$, if $X^\rho S^\varepsilon_z < \infty$,
then the ρ-exponent (z, ε)-sum is:

$$X^\rho S^\varepsilon_z := \sum_{\sigma \in \Sigma} [\varepsilon_{\sigma}]^\rho \cdot e^{-z\varepsilon_{\sigma}} \in \mathbb{C}.$$

We have: \forall set Σ, $\forall \varepsilon : \Sigma \rightarrow \mathbb{R}$, $\forall z \in \mathbb{C}$, $\forall \rho \in [0; \infty)$,

$$X^\rho S^\varepsilon_z = X^\rho S^\varepsilon_{\Re(z)}.$$

Then: \forall set Σ, $\forall \varepsilon : \Sigma \rightarrow \mathbb{R}$, $\forall z \in \mathbb{R}^*DF_{\varepsilon}$, $\forall \rho \in [0; \infty)$,

$$X^\rho S^\varepsilon_z < \infty,$$
and so $X^\rho S^\varepsilon_z$ is defined.

Definition 25.4. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$, $\rho \in [0, \infty)$.

For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma} := \varepsilon(\sigma)$.

Then $X^{\rho\varepsilon}_{\sigma} : IDF_{\varepsilon} \rightarrow \mathbb{R}$ is defined by:

$$\forall \beta \in IDF_{\varepsilon}, \quad (X^{\rho\varepsilon}_{\sigma})(\beta) = X^{\rho\varepsilon}_{\beta}.$$

Also, $X^{\rho\varepsilon}_{\sigma} : \mathbb{R}^*IDF_{\varepsilon} \rightarrow \mathbb{C}$ is defined by:

$$\forall z \in \mathbb{R}^*IDF_{\varepsilon}, \quad (X^{\rho\varepsilon}_{\sigma})(z) = X^{\rho\varepsilon}_{\gamma}.$$
THEOREM 25.6. Let Σ be a finite set, $\rho \in [0, \infty)$, $\varepsilon : \Sigma \to \mathbb{R}$.
Then:
$$X^\rho \sigma_{C} \text{ is complex-differentiable on } \mathbb{C}.$$
and
$$(X^\rho \sigma_{C})' = -X^{\rho+1} \sigma_{C} \text{ on } \mathbb{C}.$$

Proof. For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma} := \varepsilon(\sigma)$. We have: $\forall z \in \mathbb{C}$,
$$\left(X^\rho \sigma_{C}\right)'(z) = \sum_{\sigma \in \Sigma} \left[\varepsilon_{\sigma}^{\rho} \cdot e^{-z \cdot \varepsilon_{\sigma}}\right].$$
Since Σ is finite, we may differentiate term-by-term, yielding:
$$\forall z \in \mathbb{C}, \quad \left(X^\rho \sigma_{C}\right)'(z) = \sum_{\sigma \in \Sigma} \left[\varepsilon_{\sigma}^{\rho} \cdot e^{-z \cdot \varepsilon_{\sigma}} \cdot (-\varepsilon_{\sigma})\right].$$
Thus $X^\rho \sigma_{C}$ is complex-differentiable on \mathbb{C}.

It remains to show:
$$\left(X^\rho \sigma_{C}\right)' = -X^{\rho+1} \sigma_{C} \text{ on } \mathbb{C}.$$
Since $\forall z \in \mathbb{C}$, we have:
$$\left(X^\rho \sigma_{C}\right)'(z) = -\sum_{\sigma \in \Sigma} \left[\varepsilon_{\sigma}^{\rho+1} \cdot e^{-z \cdot \varepsilon_{\sigma}}\right] = -(X^\rho S^\varepsilon)(z),$$
we conclude:
$$\left(X^\rho \sigma_{C}\right)' = -X^{\rho+1} \sigma_{C} \text{ on } \mathbb{C}. \quad \square$$

In Theorem 25.6, we assumed Σ was finite.

We next investigate what happens without that assumption:

THEOREM 25.7. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.
Assume: $\emptyset \neq \text{DF}_{\varepsilon} \subseteq (0, \infty)$.
Let $\rho \in [0, \infty)$. Then: $X^\rho \sigma_{C} \text{ is complex-differentiable on } \mathbb{R}^{*} \text{DF}_{\varepsilon}$
and
$$(X^\rho \sigma_{C})' = -X^{\rho+1} \sigma_{C} \text{ on } \mathbb{R}^{*} \text{DF}_{\varepsilon}.$$

Proof. Let $\beta_{0} := \inf \text{DF}_{\varepsilon}$. Then $\text{DF}_{\varepsilon} = (\beta_{0}; \infty)$.
For all $n \in \mathbb{N}$, let $\Sigma_{n} := \varepsilon^{*}(-\infty; n]$ and let $\varepsilon_{n} := \varepsilon|\Sigma_{n}$.

Given $z \in \mathbb{R}^{*}(\beta_{0}; \infty)$, want: $X^\rho \sigma_{C} \text{ is complex-differentiable at } z$
and
$$\left(X^\rho \sigma_{C}\right)'(z) = -(X^{\rho+1} \sigma_{C})(z).$$

Let $\beta := \mathbb{R}(z)$. Let $\gamma := (\beta_{0} + \beta)/2$. Then $\beta_{0} < \gamma < \beta$.

It suffices to show: $X^\rho \sigma_{C} \text{ is complex-differentiable on } \mathbb{R}^{*}(\gamma; \infty)$
and
$$\left(X^\rho \sigma_{C}\right)' = -X^{\rho+1} \sigma_{C} \text{ on } \mathbb{R}^{*}(\gamma; \infty).$$

By Theorem 25.5, as $n \to \infty$, we have both
$$X^\rho \sigma_{C} \to X^\rho \sigma_{C} \text{ uniformly on } \mathbb{R}^{*}(\gamma; \infty)$$
and
$$X^{\rho+1} \sigma_{C} \to X^{\rho+1} \sigma_{C} \text{ uniformly on } \mathbb{R}^{*}(\gamma; \infty).$$

For all $n \in \mathbb{N}$, since Σ_{n} is finite, by Theorem 25.6, we see that
$$X^\rho \sigma_{C} \text{ is complex-differentiable at } z$$
and
$$\left(X^\rho \sigma_{C}\right)' = -X^{\rho+1} \sigma_{C} \text{ on } \mathbb{R}^{*}(\beta_{0}; \infty).$$

Then, as $n \to \infty$, we have both
$$X^\rho \sigma_{C} \to X^\rho \sigma_{C} \text{ pointwise on } \mathbb{R}^{*}(\gamma; \infty)$$
and
$$\left(X^\rho \sigma_{C}\right)' \to -X^{\rho+1} \sigma_{C} \text{ uniformly on } \mathbb{R}^{*}(\gamma; \infty).$$

Then, by Theorem 25.2, we get:
Note that, by Theorem 24.16, if \(\varepsilon \neq \emptyset \), then \(\varepsilon \)-properness holds.

By Theorem 24.17, even with \(\varepsilon \neq \emptyset \), this fails, see Theorem 24.18.

Finally, we assume \(\varepsilon \neq \emptyset \)-properness, this fails, see Theorem 24.18.

DEFINITION 26.2. Let \(\varepsilon \neq \emptyset \neq \emptyset \rightarrow \mathbb{R} \).

Assume: \(X^1S_{\varepsilon}^\beta < \infty \) and \(\beta \in \text{DF}_\varepsilon \).

Then: \(A_{\beta}^\varepsilon := \Gamma_{\beta}^\varepsilon / \Delta_{\beta}^\varepsilon \).

Note that, by Theorem 24.16, if \(\varepsilon \) is \(\infty \)-proper, then \((X^1S_{\varepsilon}^\beta < \infty) \Rightarrow (\beta \in \text{DF}_\varepsilon) \).

Without \(\infty \)-properness, this fails, see Theorem 24.18.

By Theorem 24.17, even with \(\infty \)-properness, \((\beta \in \text{DF}_\varepsilon) \Rightarrow (X^1S_{\varepsilon}^\beta < \infty) \).
THEOREM 26.3. Let Σ be a nonempty countable set, $\varepsilon : \Sigma \to \mathbb{R}$. Let $\beta \in \text{DF}_\varepsilon$. Assume $\overline{X}^1 S^\varepsilon_\beta < \infty$. Then $|\varepsilon_s B^\varepsilon_\beta|_1 < \infty$ and $A^\varepsilon_\beta = M_{\varepsilon_s} B^\varepsilon_\beta$.

Proof. Since $\beta \in \text{DF}_\varepsilon$, we get: $\text{DF}_\varepsilon \neq \emptyset$. Then Σ is countable.

Since $\Sigma \neq \emptyset$, we get: $\Delta^\varepsilon_\beta > 0$.

Since $\beta \in \text{DF}_\varepsilon$, we get: $\Delta^\varepsilon_\beta < \infty$.

Then $0 < \Delta^\varepsilon_\beta < \infty$, so, since $\Delta^\varepsilon_\beta = \hat{B}^\varepsilon_\beta(\Sigma)$,

we get: $0 < \hat{B}^\varepsilon_\beta(\Sigma) < \infty$.

For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

Since

$$\sum_{\sigma \in \Sigma} |\varepsilon_\sigma \cdot (\hat{B}^\varepsilon_\beta(\sigma))| = \sum_{\sigma \in \Sigma} [|\varepsilon_\sigma| \cdot e^{-\beta \cdot \varepsilon_\sigma}] = \overline{X}^1 S^\varepsilon_\beta < \infty,$$

dividing by $\hat{B}^\varepsilon_\beta(\Sigma)$, we get:

$$\sum_{\sigma \in \Sigma} |\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))| < \infty.$$

Then $|B^\varepsilon_\beta|_1 < \infty$.

Then, by Theorem 8.5,

we get: $\forall t \in \mathbb{I}_\varepsilon$, $\sum_{\sigma \in \varepsilon^t} |\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))| < \infty$ and

$$\sum_{t \in \mathbb{I}_\varepsilon} \sum_{\sigma \in \varepsilon^t} |\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))| < \infty$$

Also,

$$A^\varepsilon_\beta = \sum_{\sigma \in \Sigma} |\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))|.$$

Then:

$$\sum_{t \in \mathbb{I}_\varepsilon} \sum_{\sigma \in \varepsilon^t} |\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))| = A^\varepsilon_\beta.$$

So, since

$$\sum_{t \in \mathbb{I}_\varepsilon} |t \cdot (\varepsilon_s B^\varepsilon_\beta(\sigma))| = \sum_{t \in \mathbb{I}_\varepsilon} \sum_{\sigma \in \varepsilon^t} |\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))|,$$

we want:

$$\forall t \in \mathbb{I}_\varepsilon, t \cdot (\varepsilon_s B^\varepsilon_\beta(\sigma)) = \sum_{\sigma \in \varepsilon^t} |\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))|.$$

Given $t \in \mathbb{I}_\varepsilon$, want: $t \cdot (\varepsilon_s B^\varepsilon_\beta(\sigma)) = \sum_{\sigma \in \varepsilon^t} |\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))|.$

For all $\sigma \in \varepsilon^t$, since $\varepsilon_\sigma = \varepsilon(\sigma) \in \{t\}$, we get: $t = \varepsilon_\sigma$.

Want: $t \cdot (\varepsilon_s B^\varepsilon_\beta(\sigma)) = \sum_{\sigma \in \varepsilon^t} |t \cdot (B^\varepsilon_\beta(\sigma))|.$

Because ε^t is the disjoint union, over $\sigma \in \varepsilon^t$, of $\{\sigma\}$, we get:

$$B^\varepsilon_\beta(\varepsilon^t) = \sum_{\sigma \in \varepsilon^t} B^\varepsilon_\beta(\sigma) \cdot \mathbb{I}.$$
THEOREM 26.6. Let Σ be a set.

Let $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\#\mathbb{I}_\varepsilon \geq 2$.

Then: A^ε_σ is a strictly-decreasing C^ω-diffeomorphism from IDF_ε onto $(\inf \mathbb{I}_{A^\varepsilon_\sigma} ; \sup \mathbb{I}_{A^\varepsilon_\sigma})$.

Proof. For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

We have: $\forall \beta \in \text{IDF}_\varepsilon, A^\varepsilon_\sigma(\beta) = \frac{\sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \varepsilon_\sigma}]}{\sum_{\tau \in \Sigma} [e^{-\beta \varepsilon_\tau}]}$.

We have: $\forall \beta \in \text{IDF}_\varepsilon, \left(A^\varepsilon_\sigma \right)'(\beta) = \frac{\sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \varepsilon_\sigma}]}{\sum_{\tau \in \Sigma} [e^{-\beta \varepsilon_\tau}]} \cdot \Delta \varepsilon_\sigma(\beta)$.

We have: $\forall \beta \in \text{IDF}_\varepsilon, A^\varepsilon_\sigma(\beta) = \frac{\sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \varepsilon_\sigma}]}{\sum_{\tau \in \Sigma} [e^{-\beta \varepsilon_\tau}]} \cdot \frac{\sum_{\sigma \in \Sigma} [(X^{1}\mathbb{S}_\varepsilon^\sigma)(\beta)]}{\sum_{\tau \in \Sigma} [(X^{0}\mathbb{S}_\varepsilon^\sigma)(\beta)]}$.

By Theorem 25.7, $X^{1}\mathbb{S}_\varepsilon^\sigma$ and $X^{0}\mathbb{S}_\varepsilon^\sigma$ are both C^ω. So, since $X^{0}\mathbb{S}_\varepsilon^\sigma \neq 0$ on IDF_ε, we conclude: A^ε_σ is C^ω.

By Theorem 25.7, we have:

$\forall \beta \in \text{IDF}_\varepsilon, (X^{1}\mathbb{S}_\varepsilon^\sigma)'(\beta) = -(X^{2}\mathbb{S}_\varepsilon^\sigma)(\beta)$,

and $\forall \beta \in \text{IDF}_\varepsilon, (X^{0}\mathbb{S}_\varepsilon^\sigma)'(\beta) = -(X^{1}\mathbb{S}_\varepsilon^\sigma)(\beta)$.

Then: $\forall \beta \in \text{IDF}_\varepsilon, (X^{1}\mathbb{S}_\varepsilon^\sigma)'(\beta) = \sum_{\sigma \in \Sigma} [(-\varepsilon_\sigma^2) \cdot e^{-\beta \varepsilon_\sigma}]$,

and $\forall \beta \in \text{IDF}_\varepsilon, (X^{0}\mathbb{S}_\varepsilon^\sigma)'(\beta) = \sum_{\tau \in \Sigma} [(-\varepsilon_\tau) \cdot e^{-\beta \varepsilon_\tau}]$.

So, by the C^ω-Inverse Function Theorem and the Mean Value Theorem, it suffices to show: $(A^\varepsilon_\sigma)'(\beta) < 0$ on IDF_ε.

Given $\beta \in \text{IDF}_\varepsilon$, want: $(A^\varepsilon_\sigma)'(\beta) < 0.$

Let $P := \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \varepsilon_\sigma}]$, $P' := \sum_{\sigma \in \Sigma} [(-\varepsilon_\sigma^2) \cdot e^{-\beta \varepsilon_\sigma}]$.

Let $Q := \sum_{\tau \in \Sigma} [e^{-\beta \varepsilon_\tau}]$, $Q' := \sum_{\tau \in \Sigma} [(-\varepsilon_\tau) \cdot e^{-\beta \varepsilon_\tau}]$.

Then $Q > 0$. Also, by the Quotient Rule, $(A^\varepsilon_\sigma)'(\beta) = \frac{QP' - PQ'}{Q^2}$.

Want: $QP' - PQ' < 0$.

We have: $QP' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [(-\varepsilon_\sigma^2) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}]$.

We have: $PQ' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [(-\varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}]$.

Then: $QP' - PQ' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [(-\varepsilon_\sigma^2 + \varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}]$.

Interchanging σ and τ, we get:

$QP' - PQ' = \sum_{\tau \in \Sigma} \sum_{\sigma \in \Sigma} [(-\varepsilon_\tau^2 + \varepsilon_\tau \varepsilon_\sigma) \cdot e^{-\beta (\varepsilon_\tau + \varepsilon_\sigma)}]$.

By commutativity of addition and multiplication, adding the last two equations gives:

$2 \cdot (QP' - PQ') = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [(-\varepsilon_\sigma^2 - \varepsilon_\sigma^2 + 2\varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}]$.

Then: $2 \cdot (QP' - PQ') = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [-(\varepsilon_\sigma - \varepsilon_\tau)^2 \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}]$.

Then: $2 \cdot (QP' - PQ') < 0$. Then: $QP' - PQ' < 0$. □

Recall (Theorem 23.3):

If ε is ∞-proper, then \mathbb{I}_ε has a minimum element, i.e., $\min \mathbb{I}_\varepsilon$ exists.
THEOREM 26.7. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \rightarrow \mathbb{R} \).
Assume: \(\varepsilon^*[0; \infty) \) is infinite and \(DF_\varepsilon \neq \emptyset \).
Then: \(\varepsilon \) is \(\infty \)-proper and as \(\beta \rightarrow \infty \), \(A^\varepsilon_\beta \rightarrow \min I_\varepsilon \).

Proof. By Theorem 24.12, \(\varepsilon \) is \(\infty \)-proper.

It remains to show: as \(\beta \rightarrow \infty \), \(A^\varepsilon_\beta \rightarrow \min I_\varepsilon \).

Let \(t_0 := \min I_\varepsilon \). \textbf{Want:} \(A^\varepsilon_\beta \rightarrow t_0 \).

Let \(\Sigma' := \Sigma \setminus (\varepsilon^*\{t_0\}) \). Let \(n_0 := \#(\varepsilon^*\{t_0\}) \).

Since \(\{t_0\} \subseteq (-\infty; t_0] \), we get \(\varepsilon^*\{t_0\} \subseteq \varepsilon^*(-\infty; t_0] \).

Since \(\varepsilon \) is \(\infty \)-proper, we get: \(\varepsilon^*(-\infty; t_0] \) is finite.

Then \(\varepsilon^*\{t_0\} \) is finite. That is, \(n_0 < \infty \).

Since \(t_0 \in I_\varepsilon \), we get \(\varepsilon^*\{t_0\} \neq \emptyset \), and so \(n_0 > 0 \). Then \(0 < n_0 < \infty \).

For all \(\beta \in (\beta_0; \infty) \), we have:

\[
A^\varepsilon_\beta = \frac{n_0 \cdot t_0 \cdot e^{-\beta \cdot t_0} + \sum_{\sigma \in \Sigma'} [\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}]}{n_0 \cdot e^{-\beta \cdot t_0} + \sum_{\sigma \in \Sigma'} e^{-\beta \cdot \varepsilon_{\sigma}}}.
\]

Let \(\beta_1 := \beta_0 + 1 \).

Then, for all \(\beta \in [\beta_1; \infty) \), for all \(\sigma \in \Sigma \), we have:

\[
|\varepsilon_{\sigma} \cdot e^{-\beta \cdot (\varepsilon_{\sigma} - t_0)}| = |\varepsilon_{\sigma} \cdot e^{-\beta \cdot (\varepsilon_{\sigma} - t_0)}|
\]

and

\[
|e^{-\beta \cdot (\varepsilon_{\sigma} - t_0)}| = e^{-\beta \cdot (\varepsilon_{\sigma} - t_0)}.
\]

We have:

\[
\sum_{\sigma \in \Sigma} [\varepsilon_{\sigma} \cdot e^{-\beta \cdot (\varepsilon_{\sigma} - t_0)}] = \overline{X}^1 S^\varepsilon_{\beta_1}.
\]

Also,

\[
\sum_{\sigma \in \Sigma} [e^{-\beta \cdot (\varepsilon_{\sigma} - t_0)}] = \overline{X}^0 S^\varepsilon_{\beta_1}.
\]

By Theorem 26.4, we have: \(\overline{X}^1 S^\varepsilon_{\beta_1} < \infty \) and \(\overline{X}^0 S^\varepsilon_{\beta_1} < \infty \).

So, by the Dominated Convergence Theorem, as \(\beta \rightarrow \infty \),

\[
\sum_{\sigma \in \Sigma} [\varepsilon_{\sigma} \cdot e^{-\beta \cdot (\varepsilon_{\sigma} - t_0)}] \rightarrow 0
\]

and

\[
\sum_{\sigma \in \Sigma} [e^{-\beta \cdot (\varepsilon_{\sigma} - t_0)}] \rightarrow 0.
\]

Then:

\[
as \beta \rightarrow \infty \rightarrow A^\varepsilon_\beta \rightarrow n_0 \cdot t_0 + \frac{0}{0}.
\]

Then:

\[
as \beta \rightarrow \infty \rightarrow A^\varepsilon_\beta \rightarrow t_0.
\]

\[\square\]

Let \(\Sigma \) be a set and let \(\varepsilon : \Sigma \rightarrow [0; \infty) \) be \(\infty \)-proper.

Assume: \(\varepsilon^*[0; \infty) \) is infinite and \(\sup I_\varepsilon = \infty \) and \(DF_\varepsilon \neq \emptyset \).

Let \(\beta_0 := \inf DF_\varepsilon \). By Theorem 24.21, \((\beta_0; \infty) \subseteq DF_\varepsilon \).

Even though \(\sup I_\varepsilon = \infty \), it does NOT necessarily follow that: as \(\beta \rightarrow (\beta_0)^+ \), \(A^\varepsilon_\beta \rightarrow \infty \).

Here is an example:
THEOREM 26.8. For all $k \in \mathbb{N}$, let $n_k := \lfloor e^k/k^3 \rfloor$.

Let $\Sigma := \{(k, j) \in \mathbb{N} \times \mathbb{N} \mid k \in \mathbb{N}, j \in [1..n_k]\}$.

Define $\varepsilon : \Sigma \to [0, \infty)$ by: $\forall k \in \mathbb{N}, \forall j \in [1..n_k], \varepsilon(k, j) = k - 1$.

Then $I_{A_1^\varepsilon}$ is bounded.

Proof. We have $DF_\varepsilon = [1; \infty)$, so $\inf DF_\varepsilon = 1$.

Also, $\Gamma_1^\varepsilon < \infty$ and $0 < \Delta_1^\varepsilon < \infty$, so $A_1^\varepsilon < \infty$.

Also, by the Dominated Convergence Theorem, we have:

\[\text{as } \beta \to 1^+, \text{ both } \Gamma_1^\varepsilon \to \Gamma_1^\varepsilon \text{ and } \Delta_1^\varepsilon \to \Delta_1^\varepsilon. \]

Then, as $\beta \to 1^+$, $A_1^\varepsilon \to A_1^\varepsilon < \infty$.

Then $I_{A_1^\varepsilon}$ is bounded. \qed

Theorem 26.8 leads to an open problem, as follows:

For all $k \in \mathbb{N}$, let $n_k := \lfloor e^k/k^3 \rfloor$.

Let $\Sigma := \{(k, j) \in \mathbb{N} \times \mathbb{N} \mid k \in \mathbb{N}, j \in [1..n_k]\}$.

Define $\varepsilon : \Sigma \to \mathbb{N}$ by: $\forall k \in \mathbb{N}, \forall j \in [1..n_k], \varepsilon(k, j) = k$.

By Theorem 26.6, A_1^ε is strictly-decreasing, and so

and since as $\beta \to 1^+$, $A_1^\varepsilon \to A_1^\varepsilon$, we get:

$I_{A_1^\varepsilon}$ is bounded above by A_1^ε.

Let $\alpha \in \mathbb{N}$. Assume: $\alpha > A_1^\varepsilon$. Then: $\alpha \notin I_{A_1^\varepsilon}$.

Suppose N professors, numbered 1 to N, have states in Σ.

Suppose each state $\sigma \in \Sigma$ has wealth $\varepsilon(\sigma)$.

Suppose the total wealth of all professors is $N\alpha$.

Give equal probability to every dispensation of states.

For each $\sigma_0 \in \Sigma$, we seek a method to approximate

the probability that Professor#N is in state σ_0.

More precisely: For all $n \in \mathbb{N}$,

let $\Omega_n := \{\omega : [1..n] \to \Sigma \mid \sum_{\ell=1}^n [\varepsilon(\omega(\ell))] = n\alpha\}$.

Then Ω_n represents the set of all state-dispensations.

Open Problem: For each $\sigma_0 \in \Sigma$,

determine whether

the limit, as $n \to \infty$, of $\nu_{\Omega_n}\{\omega \in \Omega_n \mid \omega(n) = \sigma_0\}$ exists,

and, if it does, compute it.

This is a well-defined mathematical problem.

However, since $\alpha \notin I_{A_1^\varepsilon}$, we cannot solve $A_1^\varepsilon = \alpha$ for β,

so our earlier techniques do not immediately apply.

THEOREM 26.9. Let $\beta_0 \in \mathbb{R}$, $I := (\beta_0; \infty)$, $g : I \to \mathbb{R}$.

Assume: g is differentiable on I and g' is semi-decreasing on I.

Assume: as $\beta \to (\beta_0)^+$, $g(\beta) \to -\infty$.
Then: as $\beta \to (\beta_0)^+$, $g'(\beta) \to \infty$.

Proof. Let $M := \sup \mathbb{I}_{g'} \in (-\infty; \infty]$. Since g' is strictly-decreasing, we get: as $\beta \to (\beta_0)^+$, $g'(\beta) \to M$.

Want: $M = \infty$. Assume $M < \infty$. Want: Contradiction.

Let $\beta_1 := \beta_0 + 1$.
Since, as $\beta \to (\beta_0)^+$, $g(\beta) \to -\infty$,
choose $\gamma \in (\beta_0; \beta_1)$ s.t. $g(\gamma) < (g(\beta_1)) - M$.

By the Mean Value Theorem, choose $\xi \in (\gamma; \beta_0 + 1)$ s.t.

$$
\frac{(g(\beta)) - (g(\gamma))}{\beta_1 - \gamma} = g'()\xi.
$$

Since $M = \sup \mathbb{I}_{g'}$, we get: $g'(\xi) \leq M$.

Since $\gamma \in (\beta_0; \beta_1)$, we get: $\beta_1 - \gamma > 0$.
Then $$(g'(\xi)) \cdot (\beta_1 - \gamma) \leq M \cdot (\beta_1 - \gamma).$$

Since $$(g(\beta)) - (g(\gamma)) = (g'(\xi)) \cdot (\beta_1 - \gamma) \leq M \cdot (\beta_1 - \gamma),$$
we get: $g(\gamma) \geq (g(\beta)) - M \cdot (\beta_1 - \gamma)$.

By the choice of γ, we get $\gamma \in (\beta_0; \beta_1)$, and so $\gamma - \beta_0 > 0$.

By the choice of γ, we get:

$$
(g(\beta)) - M > g(\gamma).
$$

Since $(g(\beta)) - M > g(\gamma) \geq (g(\beta)) - M \cdot (\beta_1 - \gamma),$
we get: $M < M \cdot (\beta_1 - \gamma)$.

Then: $M \cdot (\gamma + 1 - \beta_1) < 0$.

Since $\beta_1 = \beta_0 + 1$, we get: $1 - \beta_1 = -\beta_0$.
Then: $M \cdot (\gamma - \beta_0) < 0$.

So, since $\gamma - \beta_0 > 0$, we get: $M < 0$.
Recall: $I = (\beta_0; \infty)$ and g is differentiable on I and $\sup \mathbb{I}_{g'} = M$.

So, since $M < 0$, we get: $g' < 0$ on I.

Then, by the Mean Value Theorem, g is strictly-decreasing on I.

We conclude: $\forall \beta \in (\beta_0; \beta_1)$, $g(\beta) < g(\beta_1)$.
This contradicts the hypothesis that, as $\beta \to (\beta_0)^+$, $g(\beta) \to -\infty$. \[\square \]

THEOREM 26.10. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$, $\beta_0 \in \mathbb{R}$.
Assume: $DF_\varepsilon = (\beta_0; \infty)$. Then: as $\beta \to (\beta_0)^+$, $\Delta_\beta^\varepsilon \to \infty$.

Proof. By Theorem 24.38, ε is ∞-proper.
Then, by Theorem 23.4, \mathbb{I}_ε is bounded below.

Choose $\xi \in \mathbb{R}$ s.t. $\xi + \mathbb{I}_\varepsilon \subseteq (0; \infty)$. Let $\tilde{\varepsilon} := \varepsilon + \xi$.
Then $\Delta_\beta^\xi = e^{i\beta} \cdot \Delta_\beta^\tilde{\varepsilon}$. Want: as $\beta \to (\beta_0)^+$, $\Delta_\beta^\tilde{\varepsilon} \to \infty$.

Otherwise, since $\beta \mapsto \Delta_\beta^\xi$ is strictly-decreasing,
we get \(\{ \Delta_{\|} \beta \in \text{DF}_{\|} \} \) is bounded above.

Let \(M \) be an upper bound.

Since \(\beta_0 \notin (\beta_0; \infty) = \text{DF}_{\|} \), we get: \(\Delta_{\|} = \infty \).

That is, \(\sum_{\sigma \in \Sigma} [e^{-\beta \bar{\sigma} \sigma}] = \infty \).

Choose a finite subsum that is \(> M \).

Perturb \(\beta_0 \) to a slightly larger \(\beta \).

If the perturbation is small enough,

then the finite subsum stays \(> M \).

Then \(\Delta_{\|} \geq \beta \) perturbed finite subsum \(> M \),

contradicting that \(M \) is an upper bound.

\[\square \]

THEOREM 26.11. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R} \), \(\beta_0 \in \mathbb{R} \).

Assume: \(\text{DF}_{\varepsilon} = (\beta_0; \infty) \). Then: as \(\beta \to (\beta_0)^+ \), \(A_{\beta}^\varepsilon \to \infty \).

Proof. Let \(I := (\beta_0; \infty) \). Define \(f : I \to \mathbb{R} \) by: \(\forall \beta \in I \), \(f(\beta) = \Delta_{\beta}^\varepsilon \).

Then \(f = X^0S_{\varepsilon} \), so, by Theorem 25.7, we get: \(f' = -X^1S_{\varepsilon} \).

We have:

\(\forall \beta \in I \), \(X^1S_{\beta} = \Gamma_{\beta}^\varepsilon \).

Then:

\(\forall \beta \in I \), \(f'(\beta) = -\Gamma_{\beta}^\varepsilon \).

Define \(g : I \to \mathbb{R} \) by:

\(\forall \beta \in I \), \(g(\beta) = -(\ln(f(\beta))) \).

Then: \(g \) is differentiable on \(I \) and,

by the Chain Rule, \(\forall \beta \in I \), \(g'(\beta) = -(f'(\beta))/(f(\beta)) \).

Then:

\(\forall \beta \in I \), \(g'(\beta) = \Gamma_{\beta}^\varepsilon / \Delta_{\beta}^\varepsilon \).

Then:

\(\forall \beta \in I \), \(g'(\beta) = A_{\beta}^\varepsilon \).

Want: as \(\beta \to (\beta_0)^+ \), \(g'(\beta) \to \infty \).

By Theorem 26.6, we get: \(g' \) is strictly-decreasing on \(I \).

By Theorem 26.10, we get: as \(\beta \to (\beta_0)^+ \), \(\Delta_{\beta}^\varepsilon \to \infty \).

Then:

\(\beta \to (\beta_0)^+ \), \(f(\beta) \to \infty \).

Then:

\(\beta \to (\beta_0)^+ \), \(\ln(f(\beta)) \to \infty \).

Then:

\(\beta \to (\beta_0)^+ \), \(g(\beta) \to -\infty \).

Then, by Theorem 26.9, we get: as \(\beta \to (\beta_0)^+ \), \(g'(\beta) \to \infty \).

\[\square \]

27. **Countably infinite sets of states**

MORE LATER
28. Appendix: Python code

Thanks once again to C. Prouty, for writing the Python code to do the Boltzmann computations in this paper:

First code: The GFA and 0, 2, 20 dollar awards, with average 3 dollars.

```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def F(beta):
    z = np.zeros(3)
    z[0] = 1
    z[1] = np.exp(-2 * beta)
    z[2] = np.exp(-20 * beta)
    return z

def G(beta):
    z = np.zeros(3)
    z[0] = 0
    z[1] = 2 * np.exp(-2 * beta)
    z[2] = 20 * np.exp(-20 * beta)
    return z

def f(beta):
    return np.sum(F(beta))

def g(beta):
    return np.sum(G(beta))

def bisection(minval, maxval, y, fn):
    mid = (maxval + minval) / 2
    while((fn(mid) - y) ** 2 > 0.0000001):
        if(fn(mid) < y):
            maxval = mid
        else:
            minval = mid
        mid = (maxval + minval) / 2
    return mid

fn = lambda x: g(x) / f(x)
```
target = bisection(-25, 25, 3, fn)
b = 0.07410049 # hard-coded result of bisection
r = F(b) / f(b)
df = pd.DataFrame(r)
df.to_excel("results2.xlsx", index=False)
betas = np.linspace(-25, 25, 100000)
z = np.zeros(len(betas))
for i in range(len(betas)):
z[i] = fn(betas[i])
plt.plot(betas, z)
plt.show()

Second code: The BUA and red bags and blue bags

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def F(beta):
z = np.zeros(25).reshape(5,5)
for i in range(5):
 for j in range(5):
 z[i,j] = np.exp(-(i+j)*beta)
z[4,4] = 0
return z
def G(beta):
z = np.zeros(25).reshape(5,5)
for i in range(5):
 for j in range(5):
 z[i,j] = (i+j) * np.exp(-(i+j)*beta)
z[4,4] = 0
return z
def f(beta):
return np.sum(F(beta))
def g(beta):
return np.sum(G(beta))
def bisection(minval, maxval, y, fn):
\text{mid} = (\text{maxval} + \text{minval}) / 2 \\
\text{while}((\text{fn(mid)} - y) ** 2 > 0.0000001): \\
\text{if}(\text{fn(mid)} < y): \\
\text{maxval} = \text{mid} \\
\text{else}: \\
\text{minval} = \text{mid} \\
\text{mid} = (\text{maxval} + \text{minval}) / 2 \\
\text{return} \text{mid} \\
\text{fn} = \lambda x: \text{g}(x) / \text{f}(x) \\
\text{target} = \text{bisection}(-25, 25, 1, \text{fn}) \\
\text{b} = 1.06697083 \# \text{hard-coded result of bisection} \\
\text{r} = F(\text{b}) / \text{f}(\text{b}) \\
\text{df} = \text{pd.DataFrame(r)} \\
\text{df.to_excel}("\text{results5.xlsx}", \text{index=False}) \\
\text{betas} = \text{np.linspace}(-25, 25, 100000) \\
\text{z} = \text{np.zeros}((\text{len(betas)})) \\
\text{for} i \text{ in range}((\text{len(betas)})): \\
\text{z[i]} = \text{fn(betas[i])} \\
\text{plt.plot(betas, z)} \\
\text{plt.show()}