Professors and Grants

1. Introduction

This note is intended as a compliment and complement to B. Zhang’s very enjoyable “Coconuts and Islanders”, which motivates the Boltzmann distribution in the case where every nonnegative integer is a possible energy-level. Here, our initial focus is, instead, on Boltzmann distributions where 0 and 1 and 10 are the only possible energy-levels. Taking our cue from “Coconuts and Islanders”, we motivate by story.

Let N be a large positive integer. We analyze three systems for dispensing grant money to N professors. Congress allocates N dollars to award to the N professors. The grant rules stipulate: each professor receives 0 or 1 or 10. Each professor is identified by a number, from 1 to N.

By a dispensation, we mean a full complement of awards, with a specific amount (0 or 1 or 10) to Professor#1, a specific amount (0 or 1 or 10) to Professor#2, etc., up to and including Professor#N, such that the total of the awards is the N allocated by Congress.

The first system for awarding grants is very simple:

There are many possible dispensations, and, among all of them, one is selected randomly, giving equal probability to each possible dispensation.

The main problem is to figure out:

Using this first system, for a given professor, what is the probability of being awarded 0? 1? 10?

Later, second and third probabilistic award systems are described, each of which depends on three parameters p, q, r

satisfying $p, q, r > 0$ and $p + q + r = 1 = q + 10r$.

The second system uses an iid system of random-variables, X_1, \ldots, X_N

such that, $\forall \ell$, $\Pr[X_\ell = 0] = p$, $\Pr[X_\ell = 1] = q$, $\Pr[X_\ell = 10] = r$. 1
For all \(\ell \), the second system awards \(X_\ell \) dollars to Professor\#\(\ell \).

The total dollar payout \(X_1 + \cdots + X_N \) is then random:

- if \(X_1 = \cdots = X_N = 0 \), it could be as small as 0 dollars,
- and if \(X_1 = \cdots = X_N = 10 \), it could be as large as \(10N \) dollars.

The **third system**

- is obtained from the second, by conditioning on \(X_1 + \cdots + X_N = N \), so that the total payout is the N allocated by Congress.

KEY POINT: With exactly the right choice of \(p, q, r \), the first and third systems are shown to be equivalent.

In §6 and §7, we show that this parameter choice is Boltzmann, meaning: \((p, q, r)\) is, for some real number \(\beta \),

a scalar multiple of \((e^{-0-\beta}, e^{-1-\beta}, e^{-10-\beta}) \).

That is, \(\exists \beta, C \in \mathbb{R} \) s.t. \((p, q, r) = (C, Ce^{-\beta}, Ce^{-10\beta}) \).

The second and third systems are accessible by basic tools of probability theory, while our main problem involves the first system.

However, once we know the first and third systems are equivalent, we can bring these probabilistic tools to bear on the main problem.

Thanks to J. Steif, for pointing out to me that the Discrete Local Limit Theorem, which is described in §9, is the right tool for the main problem, which is solved in §12.

Boltzmann distributions are often motivated by entropy, but, from our perspective, what’s special about \((p, q, r) = (C, Ce^{-\beta}, Ce^{-10\beta})\) is:

For any \(i, j, k \geq 0 \), we have

\[
p^i q^j r^k = C^{i+j+k} \cdot e^{-\beta(i+j+10k)},
\]

so \(p^i q^j r^k \) depends only on: \(i + j + k \) and \(j + 10k \).

In the third system of grant awards, there exists a normalizing constant \(S > 0 \) s.t.,

for any dispensation in which

- \(i \) professors receive 0,
- \(j \) professors receive 1,
- \(k \) professors receive 10,

the probability of that dispensation is \(p^i q^j r^k / S \),

which is equal to \(C^{i+j+k} \cdot e^{-\beta(j+10k)} / S \).
That probability, then, depends only on
\[i + j + k, \] which is the number of professors,
and \[j + 10k, \] which is the total dollar payout.
So, since the number of professors is \(N \)
and the total dollar payout is also \(N \),
we conclude: each award-dispensation has probability \(C^N \cdot e^{-\beta \cdot N} / S \),
so they are all equally likely, which exactly describes the first system.
Therefore, under the Boltzmann assumption,
the first and third systems are equivalent.

In §14, we expose the inequity of the first system.
In fact, assuming \(N \) is sufficiently large, we show that:
with probability \(> 99\% \), over half of the professors receive \$0.
Thanks to V. Reiner for suggesting
applying Chebyshev's inequality to a sum of indicator variables,
to transition from individual statistics to population statistics.
In §15 and §16 and §17, we extend the theory to handle cases
where the award-sets are finite sets of rational numbers.
In §18, we show that
irrational award amounts can lead to non-Boltzmann statistics.
In §19 and §20 and §21, we extend our earlier results to include
degenerate energy-levels, with a finite set of states.
In §22 and §23 and §24, we extend these results further to include
cases that involve a countably infinite set of states.

Thanks to C. Prouty for help with many calculations.
For some of his Python code, see §25.

2. Some notation

A box around an expression indicates that it is global,
meaning that it is fixed to the end of these notes.
Unboxed variables are freed at the end of each section, if not earlier.

Let \(\mathbb{R}^* := (-\infty) \cup \mathbb{R} \cup \{\infty\} \), \(\mathbb{Z}^* := (-\infty) \cup \mathbb{Z} \cup \{\infty\} \).
For any \(s, t \in \mathbb{R}^* \), let
\[
\begin{align*}
(s,t) & := \{x \in \mathbb{R}^* \mid s < x < t\}, \\
[s,t) & := \{x \in \mathbb{R}^* \mid s \leq x < t\}, \\
(s,t] & := \{x \in \mathbb{R}^* \mid s < x \leq t\}, \\
[s,t] & := \{x \in \mathbb{R}^* \mid s \leq x \leq t\}.
\end{align*}
\]
For any $s,t \in \mathbb{R}$, let
\[
\begin{aligned}
(s..t) & := (s; t] \cap \mathbb{Z}, \\
[s..t) & := [s; t) \cap \mathbb{Z}.
\end{aligned}
\]

Let $\mathbb{N} := [1..\infty)$ be the set of positive integers.

For any finite set F, let $\#F$ be the number of elements in F.

For any infinite set F, let $\#F := \infty$. Then $\#\mathbb{Z} = \infty = \#\mathbb{R}$.

For all $t \in \mathbb{R}$, let $\lfloor t \rfloor := \max \{n \in \mathbb{N} \mid n \leq t\}$ be the floor of t.

For any sets Σ, T, for any function $\varepsilon : \Sigma \to T$, the image of ε is:
\[
\epsilon[\varepsilon] := \{\varepsilon(\sigma) \mid \sigma \in \Sigma\} \subseteq T.
\]

For any sets Σ, T, for any function $\varepsilon : \Sigma \to T$, for any set A, we define:
\[
\varepsilon^* A := \{\sigma \in \Sigma \mid \varepsilon(\sigma) \in A\}.
\]

By convention, in these notes, we define $0^0 := 1$.

3. First System of Grant Awards

Let $\overline{\mathbb{N}} \in \mathbb{N}$. Think of N as large.

Whenever we need to formulate and prove precise mathematical statements, we will “pass to the thermodynamic limit”, which means:

we replace N by a variable $n \in \mathbb{N}$, and let $n \to \infty$.

(Alternatively, within nonstandard analysis, the variable N could be taken as an infinite integer, and the various approximations involving N, could be taken as equality-modulo-infinitesimals.)

Suppose there are N professors, numbered 1 to N, who apply, once per year, to the GFA (Grant Funding Agency), seeking funding for the very important work they are doing.

Each year, Congress authorizes $\$N$ for the GFA to dispense to the N professors.

The GFA has the rule: every award is 0 or 1 or 10 dollars.

The set of grant-dispensations is represented by:
\[
\Omega := \{ \omega : [1..N] \to \{0, 1, 10\} \mid \sum_{\ell=1}^N [\omega(\ell)] = N \}.
\]

The GFA has set aside $\#\Omega$ pieces of paper, and has written down all possible dispensations, one on each piece of paper.

So, for example, there is a piece of paper that says:

Professors 1 to N each get $\$1$.

Another piece of paper says:
Professors 1 to $N - 10$ each get $\$1$ and Professors $N - 9$ to $N - 1$ each get $\$0$ and Professor N gets $\$10$.

Since N is large, it follows that $\#\Omega$ is large, and so there are many, many, many other pieces of paper.

Each year, a GFA bureaucrat places all the pieces of paper in a big bin, then selects one at random and makes the awards as indicated on that piece of paper.

Under this first system of awarding grants, we have:

$\forall \omega \in \Omega$, the probability that the selected grant-dispensation is ω is equal to $1/(\#\Omega)$.

Suppose I am one of the professors. Here is our main problem:

Calculate my probability of getting $\$0$.
Then calculate my probability of getting $\$1$.
Then calculate my probability of getting $\$10$.

Approximate answers are acceptable.

In §5 to §12 of this note, we reformulate and then solve this problem.

Spoiler: It’s a Boltzmann distribution, approximately.

4. PARTICLES AND ENERGY

Recall that $N \in \mathbb{N}$. Think of N as large.

Suppose there are N particles, numbered 1 to N, each of which has a certain amount of energy.

Suppose the total energy is N, dispensed among the N particles.

Suppose physicists have somehow determined that, for any particle, its possible energy-levels are: 0 or 1 or 10.

Recall: $\Omega = \left\{ \omega : [1..N] \rightarrow \{0, 1, 10\} \mid \sum_{\ell=1}^{N} [\omega(\ell)] = N \right\}$.

Then Ω represents the set of energy-dispensations.

Assume that physicists have somehow determined that this system of particles has a random energy-dispensation and that all energy-dispensations in Ω are equally probable.

That is, physicists tell us:

$\forall \omega \in \Omega$, the probability that
the energy-dispensation is ω

is equal to $1/(\#\Omega)$.

The equal probability of all energy-dispensations

is a recurring theme in microcanonical-ensemble thermodynamics,

and can often be motivated through

rules of random energy transfer between random pairs of particles.

For examples of this, either see §19 below or

search for “Coconuts and Islanders” by B. Zhang,

and, in particular, see the work leading up to

the last paragraph of §3.2 therein.

In §19 below,

instead of particles exchanging energy,

there are professors exchanging dollars,

but the principle is exactly the same.

In Zhang’s exposition,

instead of particles exchanging energy,

there are islanders exchanging coconuts,

but the principle is exactly the same.

Returing to our N particles, pick any one of them.

Problem: Calculate its probability of having energy-level 0.

Then calculate its probability of having energy-level 1.

Then calculate its probability of having energy-level 10.

Approximate answers are acceptable.

Spoiler: It’s a Boltzmann distribution, approximately.

Except for terminology, this problem is the same as

the main problem (end of §3) about professors and grants.

We will go back to professors and grants.

Mathematically it makes no difference, but it’s more fun.

5. Second and third systems of grant awards

In an effort to go paperless, the GFA changes to a new system:

In this second system, instead of all those pieces of paper,

the GFA chooses $p, q, r > 0$ s.t. $p + q + r = 1$,

and then, for each of the N professors,

awards $\$ 0$ with probability p,

$\$ 1$ with probability q,
$10 with probability r.

No professor’s award depends in any way on any other professor’s; the awards are independent.

The expected payout, for any professor, is $p \cdot 0 + q \cdot 1 + r \cdot 10$ dollars.

Under this second system, there is no guarantee that the total payout will be N dollars, which is a difficulty that we will discuss later.

However, recognizing that the average award is intended to be 1, the GFA chooses the numbers p, q, r subject to the constraint that $p \cdot 0 + q \cdot 1 + r \cdot 10 = 1$, i.e., $q + 10r = 1$.

For each function $\omega : [1..N] \rightarrow \{0, 1, 10\}$, let

\[
\begin{align*}
 i_\omega & := \#\{ \ell \in [1..N] \mid \omega(\ell) = 0 \}, \\
 j_\omega & := \#\{ \ell \in [1..N] \mid \omega(\ell) = 1 \}, \\
 k_\omega & := \#\{ \ell \in [1..N] \mid \omega(\ell) = 10 \};
\end{align*}
\]

that is, i_ω is the number of professors awarded 0 and j_ω is the number of professors awarded 1, and k_ω is the number of professors awarded 10.

Then, $\forall \omega : [1..N] \rightarrow \{0, 1, 10\}$, we have:

the total number of awards is $i_\omega + j_\omega + k_\omega$

and the total dollar payout is $i_\omega \cdot 0 + j_\omega \cdot 1 + k_\omega \cdot 10$, i.e., $j_\omega + 10k_\omega$.

Then, $\forall \omega : [1..N] \rightarrow \{0, 1, 10\}$, we have:

$i_\omega + j_\omega + k_\omega = N$ and $j_\omega + 10k_\omega = \sum_{\ell=1}^{N} [\omega(\ell)]$.

Recall: $\Omega = \left\{ \omega : [1..N] \rightarrow \{0, 1, 10\} \mid \sum_{\ell=1}^{N} [\omega(\ell)] = N \right\}$.

That is, Ω is the set of all payout functions $\omega : [1..N] \rightarrow \{0, 1, 10\}$ s.t. the total dollar payout is N.

Then: $\forall \omega : [1..N] \rightarrow \{0, 1, 10\}$, we have:

$\omega \in \Omega$ iff $j_\omega + 10k_\omega = N$.

For every $i, j, k \in [0..N]$,

\[
\begin{align*}
 \text{if } i + j + k = N \quad \text{and} \quad j + 10k = N, \\
 \text{then } \exists \omega \in \Omega \quad \text{s.t. } (i, j, k) = (i_\omega, j_\omega, k_\omega);
\end{align*}
\]

indeed, one such $\omega : [1..N] \rightarrow \{0, 1, 10\}$ is described by:

$\omega = 0$ on $[1..i]$, $\omega = 1$ on $(i..i+j]$, $\omega = 10$ on $(i+j..N]$.

Let $A := \{(i_\omega, j_\omega, k_\omega) \mid \omega \in \Omega\}$.

Then A is the set of all (i, j, k) s.t. $i, j, k \in [0..N]$ and $i + j + k = N$ and $j + 10k = N$.

Under the second system,
- each 0 award happens with probability p and
- each 1 award happens with probability q and
- each 10 award happens with probability r.

So, \(\forall \omega: \{1,..N\} \rightarrow \{0,1,10\} \), under the second system,
- the probability that the grant-dispensation is equal to \(\omega \)
is \(p^i q^j r^k \).

Let
\[
S := \sum_{\omega \in \Omega} p^i q^j r^k \omega.
\]
Then \(S \) is the probability (using the second system) that \(\omega \in \Omega \),
i.e., the probability that the total payout is exactly \(N \) dollars.

Assuming \(N \) is large, it turns out that \(S \) is close to zero.

So, under this second system,
- the probability of paying out exactly \(N \) dollars is very small.

Congress only allocates $N per year for the \(N \) professors.
So, using this second system, each year,
- with probability \(1-S \approx 1 \), the GFA will run a surplus or a deficit.

On the other hand, since \(q + 10r = 1 \), we see that,
- each year, the expected payout is $1 per professor,
 so, each year, the expected total payout is $N.

So these surpluses and deficits should, over time, cancel one another.
Unfortunately, Congress is a paragon of fiscal responsibility, and,
- as soon as it finds out about the GFA’s second system,
 it insists that the GFA never again underspend or overspend.

So the GFA changes its system one more time, as follows.
Under its **third system**, each year,
- before announcing any of the awards publicly,
 the GFA writes out, in an *internal* memo,
 a *tentative* proposal of awards that,
 independently, for each of the \(N \) professors,
 awards 0 with probability \(p \),
 1 with probability \(q \),
 10 with probability \(r \).

If the memo’s total award payout is NOT equal to $N,$
the GFA deems the memo as unacceptable,
deletes it, and starts over, making memo after memo,
until an acceptable one (meaning payout exactly N) appears.
Each memo has a probability \(S \) of being acceptable, so, each year,
the GFA will likely need to repeat the memo process many times to get to a memo with total payout exactly equal to $\$N$.

However, as soon as that happens, the GFA uses that first acceptable memo, and makes its dispensation of awards public.

Mathematically, we are conditioning on the event $\omega \in \Omega$.

So, using the third system, the probability that $\omega \notin \Omega$ is 0.

Also, for this third system, $\forall \omega \in \Omega$, the probability of ω is $p^{\omega} q^{\omega} r^{\omega} / S$.

The sum of these probabilities is 1:

$$\sum_{\omega \in \Omega} \frac{p^{\omega} q^{\omega} r^{\omega}}{S} = \frac{1}{S} \cdot \sum_{\omega \in \Omega} p^{\omega} q^{\omega} r^{\omega} = \frac{1}{S} \cdot S = 1.$$

This third system is not necessarily equivalent to the first, because in the first system, all the probabilities were $1 / (\#\Omega)$, whereas, in the third system, they are $p^{\omega} q^{\omega} r^{\omega} / S$.

So a new question arises:

Is it possible to choose $p, q, r > 0$ in such a way that

$$p + q + r = 1 \quad \text{and} \quad q + 10r = 1 \quad \text{and} \quad \forall \omega \in \Omega, \quad p^{\omega} q^{\omega} r^{\omega} / S = 1 / (\#\Omega) \quad ?$$

If yes, then, using that (p, q, r), the first and third systems are equivalent.

We will see that the answer to this new question, in fact, is yes.

In the next two sections, assuming $N \geq 10$,

we will show how to compute the only (p, q, r) that works.

Spoiler: It’s a Boltzmann distribution, exactly.

6. Computing $p, q, r \, \text{à la Boltzmann}$

As in the preceding section, let $p, q, r > 0$, $S := \sum_{\omega \in \Omega} p^{\omega} q^{\omega} r^{\omega}$.

We assume: $p + q + r = 1 \quad \text{and} \quad q + 10r = 1$.

We also assume: $\forall \omega \in \Omega, \quad p^{\omega} q^{\omega} r^{\omega} / S = 1 / (\#\Omega)$.

We will prove that, if $N \geq 10$, then there is at most one (p, q, r) that satisfies these conditions, specifically, $(p, q, r) = (1, 9^{-1/10}, 9^{-1}) / (1 + 9^{-1/10} + 9^{-1})$.

Define the dot product, \odot, on \mathbb{R}^3, by:

$$\forall x, y, z, X, Y, Z \in \mathbb{R}, \quad (x, y, z) \odot (X, Y, Z) = xx + yy + zz.$$

For all $u \in \mathbb{R}^3$, let $u^\perp := \{ v \in \mathbb{R}^3 \mid u \odot v = 0 \}$; then u^\perp is a vector subspace of \mathbb{R}^3.

For all $U \subseteq \mathbb{R}^3$, \textbf{let} $U^\perp := \{ v \in \mathbb{R}^3 \mid \forall u \in U, \ u \cap v = 0 \}$;

then U^\perp is a vector subspace of \mathbb{R}^3.

For all $u, v \in \mathbb{R}^3$, \textbf{let} $\langle u, v \rangle_{\text{span}}$ denote the \mathbb{R}-span of $\{u, v\}$, \textit{i.e.},

\[\langle u, v \rangle_{\text{span}} := \{ su + tv \mid s, t \in \mathbb{R} \}; \]

then $\langle u, v \rangle_{\text{span}}$ is a vector subspace of \mathbb{R}^3.

Recall (§3): $\Omega = \{ \omega : [1..N] \to \{0, 1, 10\} \mid \sum_{i=1}^{N} [\omega(P)] = N \}$.

Recall (§5): $A = \{(i_\omega, j_\omega, k_\omega) \mid \omega \in \Omega\}$.

Recall (§5): A is the set of all (i, j, k) s.t. $i, j, k \in \{0..N\}$ and $i + j + k = N$ and $j + 10k = N$.

Then: A is the set of all (i, j, k) s.t. $i, j, k \in \{0..N\}$ and $(1, 1, 1) \cap (i, j, k) = N$ and $(0, 1, 10) \cap (i, j, k) = N$.

For all $a, b \in A$, we have

\[
(1, 1, 1) \cap a = N = (1, 1, 1) \cap b \quad \text{and} \quad (0, 1, 10) \cap a = N = (0, 1, 10) \cap b,
\]

so we get

\[
(1, 1, 1) \cap (a - b) = 0 \quad \text{and} \quad (0, 1, 10) \cap (a - b) = 0,
\]

so $a - b \in (1, 1, 1)^\perp \cap (0, 1, 10)^\perp$.

\textbf{Let} $V := (1, 1, 1)^\perp \cap (0, 1, 10)^\perp$.

Then: \forall $a, b \in A$, $a - b \in V$.

Also, we have: $V \subseteq (1, 1, 1)^\perp$ and $V \subseteq (0, 1, 10)^\perp$.

Then: $V^\perp \supseteq (1, 1, 1)^\perp \cap (0, 1, 10)^\perp$ and $V^\perp \supseteq (0, 1, 10)^\perp$.

Since $(1, 1, 1) \in (1, 1, 1)^\perp \subseteq V^\perp$ and $(0, 1, 10) \in (0, 1, 10)^\perp \subseteq V^\perp$,

we get: $\langle (1, 1, 1), (0, 1, 10) \rangle_{\text{span}} \subseteq V^\perp$.

\textbf{Let} $W := \langle (1, 1, 1), (0, 1, 10) \rangle_{\text{span}}$. Then: $W \subseteq V^\perp$.

Assume $N \geq 10$. \textbf{Let} $a_1 := (0, N, 0)$, $a_2 := (9, N - 10, 1)$.

Then $a_1, a_2 \in A$. \textbf{Let} $d_1 := a_2 - a_1$. Then $d_1 \in D$.

Since $d_1 \neq (0, 0, 0)$, we get: $\dim d_1 = 2$.

Since $W = \langle (1, 1, 1), (0, 1, 10) \rangle_{\text{span}}$, we get: $\dim W = 2$.

Since $d_1 \in D \subseteq V$ and $W \subseteq V^\perp$, we get: $d_1^\perp \supseteq D^\perp \supseteq V^\perp \supseteq V^\perp$.

So, since $\dim d_1 = 2 = \dim W$, we get: $d_1^\perp = D^\perp = V^\perp = W$.

Then $D^\perp = W$. Recall: $\forall \omega \in \Omega$, $p^{i_\omega q^{j_\omega} r^{k_\omega}} / S = 1 / (\# \Omega)$.

So, since $A = \{(i_\omega, j_\omega, k_\omega) \mid \omega \in \Omega\}$, we get:

$\forall (i, j, k) \in A$, $p^{i_\omega q^{j_\omega} r^{k_\omega}} / S = 1 / (\# \Omega)$.

Equivalently, $\forall (i, j, k) \in A$,

\[
i \cdot (\ln p) + j \cdot (\ln q) + k \cdot (\ln r) - (\ln S) = -(\ln(\# \Omega)).
\]

Equivalently, $\forall (i, j, k) \in A$, \ldots
(i, j, k) ∩ (ln p, ln q, ln r) = (ln S) - (ln(#Ω)).

Then: ∀a, b ∈ A,

a ∩ (ln p, ln q, ln r) = (ln S) - (ln(#Ω)) = b ∩ (ln p, ln q, ln r),

so we get: (a - b) ∩ (ln p, ln q, ln r) = 0.

Then: ∀d ∈ D,

d ∩ (ln p, ln q, ln r) = 0.

Then: (ln p, ln q, ln r) ∈ D⊥.

Since (ln p, ln q, ln r) ∈ D⊥ = W = ⟨(1, 1, 1), (0, 1, 10)⟩span,

choose C > 0 and β ∈ ℝ s.t.

(ln p, ln q, ln r) = (ln C) · (1, 1, 1) - β · (0, 1, 10).

Then (ln p, ln q, ln r) = (ln C, (ln C) - β, (ln C) - 10β).

Then (p, q, r) = (C, Ceβ, Ce-10β).

Then (p, q, r) = C · (1, e-β, e-10β).

So, since p + q + r = 1, we get:

C · (1 + e-β + e-10β) = 1.

Then \(C = \frac{1}{1 + e^{-\beta} + e^{-10\beta}} \).

Then (p, q, r) = \(\frac{(1, e^{-\beta}, e^{-10\beta})}{1 + e^{-\beta} + e^{-10\beta}} \).

So, since q + 10r = 1, we get:

\(e^{-\beta} + 10e^{-10\beta} = 1 + e^{-\beta} + e^{-10\beta} \).

Then 9e-10β = 1.

Then e-10β = 9-1. Then e-β = 9-1/10. Then (p, q, r) = \(\frac{(1, 9^{-1/10}, 9^{-1})}{1 + 9^{-1/10} + 9^{-1}} \).

So this is the only (p, q, r) that can possibly work.

In the next section, we show that it does work.

7. Showing the Boltzmann p, q, r work

In this section, we prove

the converse of the result from the preceding section.

That is, we let (p, q, r) := \(\frac{(1, 9^{-1/10}, 9^{-1})}{1 + 9^{-1/10} + 9^{-1}} \) and S := \(\sum_{\omega \in \Omega} p^{i, i, i} q^{j, j, j} r^{k, k, k} \).

and we wish to show: p + q + r = 1 and q + 10r = 1 and

\(\forall \omega \in \Omega, \ p^{i, i, i} q^{j, j, j} r^{k, k, k} / S = 1 / (#\Omega) \).

Let β := (ln 9)/10. Then e-β = 9-1/10. Then e-10β = 9-1.

Then (p, q, r) = \(\frac{(1, e^{-\beta}, e^{-10\beta})}{1 + e^{-\beta} + e^{-10\beta}} \). Let C := \(\frac{1}{1 + e^{-\beta} + e^{-10\beta}} \).

Then (p, q, r) = C · (1, e-β, e-10β). Then (p, q, r) = (C, Ce-β, Ce-10β).

Let K := CN · e-β·N.

Recall (§3): Ω = \(\{ \omega : [1..N] \rightarrow \{0, 1, 10\} | \sum_{\ell=1}^{N} [\omega(\ell)] = N \} \).
Claim: \(\forall \omega \in \Omega, \ p^{j_\omega} q^{\ell_k \omega} = K. \)

Proof of Claim: Given \(\omega \in \Omega, \) want: \(p^{j_\omega} q^{\ell_k \omega} = K. \)

Recall (§5): \(i_\omega + j_\omega + k_\omega = N \) and \(j_\omega + 10k_\omega = \sum_{i=1}^{N} [\omega(\ell)]. \)

By definition of \(\Omega, \) since \(\omega \in \Omega, \) we get: \(\sum_{i=1}^{N} [\omega(\ell)] = N. \)

Then: \(j_\omega + 10k_\omega = N. \)

Recall: \((p,q,r) = (C,Ce^{-\beta},Ce^{-10\beta}). \)

Then: \[
p^{j_\omega} q^{\ell_k \omega} = C^{i_\omega} \cdot (Ce^{-\beta})^{j_\omega} \cdot (Ce^{-10\beta})^{k_\omega}
\]
\[
= C^{i_\omega + j_\omega + k_\omega} \cdot e^{-\beta(j_\omega + 10k_\omega)} = C^N \cdot e^{-\beta N} = K.
\]

End of proof of Claim.

By definition of \(S, \) we have: \(S = \sum_{\omega \in \Omega} p^{j_\omega} q^{\ell_k \omega}. \)

So, by the Claim, we get: \(S = (\#\Omega) \cdot K. \)

Then \(K/S = 1/(\#\Omega). \)

We have \(10/9 = 1 + (1/9). \)

That is, \(10 \cdot 9^{-1} = 1 + 9^{-1}. \)

So, since \(e^{-10\beta} = 9^{-1}, \) we get: \(10e^{-10\beta} = 1 + e^{-10\beta}. \)

Then: \(e^{-\beta} + 10e^{-10\beta} = 1 + e^{-\beta} + e^{-10\beta}. \)

By definition of \(C, \) we get: \(C \cdot (1 + e^{-\beta} + e^{-10\beta}) = 1. \)

Recall: \((p,q,r) = C \cdot (1,e^{-\beta},e^{-10\beta}). \)

Since \(p + q + r = C \cdot (1 + e^{-\beta} + e^{-10\beta}) = 1 \)

and since \(q + 10r = C \cdot (e^{-\beta} + 10e^{-10\beta}) = C \cdot (1 + e^{-\beta} + e^{-10\beta}) = 1, \)

it remains only to show: \(\forall \omega \in \Omega, \quad p^{j_\omega} q^{\ell_k \omega} / S = 1/(\#\Omega). \)

Given \(\omega \in \Omega, \) want: \(p^{j_\omega} q^{\ell_k \omega} / S = 1/(\#\Omega). \)

By the Claim, we get: \(p^{j_\omega} q^{\ell_k \omega} = K. \)

Recall: \(K/S = 1/(\#\Omega). \)

Then: \(p^{j_\omega} q^{\ell_k \omega} / S = K/S = 1/(\#\Omega). \)

8. Countable measure theory

By convention, in this note, any countable set is given its discrete Borel structure.

A measure \(\mu \) on a countable set \(\Theta \)

is completely determined by the function \(t \mapsto \mu\{t\} : \Theta \to [0; \infty], \)

because: \(\forall \Theta_0 \subseteq \Theta, \) we have \(\mu(\Theta_0) = \sum_{t \in \Theta_0} \mu\{t\}. \)

Definition 8.1. Let \(\Theta \) be a countable set.

Then \(\overline{M_\Theta} \) denotes the set of measures on \(\Theta, \)

and \(\overline{FM_\Theta} := \{ \mu \in M_\Theta \mid \mu(\Theta) < \infty \}, \)

and \(\overline{FM_\Theta}^* := \{ \mu \in M_\Theta \mid 0 < \mu(\Theta) < \infty \}, \)

and \(\overline{P_\Theta} := \{ \mu \in M_\Theta \mid \mu(\Theta) = 1 \}. \)
Then \(\mathcal{M}_\Theta \) is the set of measures on \(\Theta \) and \(\mathcal{F}\mathcal{M}_\Theta \) is the set of finite measures on \(\Theta \) and \(\mathcal{F}\hat{\mathcal{M}}_\Theta \) is the set of nonzero finite measures on \(\Theta \) and \(\mathcal{P}_\Theta \) is the set of probability measures on \(\Theta \).

The only measure on \(\emptyset \) is the zero measure. Therefore: \(\mathcal{F}\hat{\mathcal{M}}_\emptyset = \emptyset = \mathcal{P}_\emptyset \).

Definition 8.2. Let \(\Theta \) be a countable set, \(\mu \in \mathcal{F}\mathcal{M}_\Theta \). Let \(n \in \mathbb{N} \). Then \(\mu^n \in \mathcal{F}\mathcal{M}_{\Theta^n} \) is defined by:

\[
\forall x \in \Theta^n, \quad \mu^n\{x\} = (\mu\{x_1\}) \cdots (\mu\{x_n\}).
\]

The following is a basic fact, whose proof we omit:

Let \(\Theta \) be a countable set, \(\mu \in \mathcal{F}\mathcal{M}_\Theta \), \(n \in [2, \infty) \). Let \(Z \subseteq \Theta^n \), \(X \subseteq \Theta^{n-1} \), \(Y \subseteq \Theta \). Assume that:

under the standard bijection \(\Theta^n \leftrightarrow \Theta^{n-1} \times \Theta \), we have:

\[
Z \leftrightarrow X \times Y.
\]

Then:

\[
\mu^n(Z) = (\mu^{n-1}(X)) \cdot (\mu(Y)).
\]

It is common to identify \(Z \) with \(X \times Y \), in which case we have:

\[
\mu^n(X \times Y) = ((\mu^{n-1}(X)) \cdot (\mu(Y)).
\]

The countable sets that are of interest in this note all carry the discrete topology. We therefore define:

Definition 8.3. Let \(\Theta \) be a countable set, \(\mu \in \mathcal{M}_\Theta \). Then the **support of \(\mu \)** is:

\[
S_\mu := \{ t \in \Theta \mid \mu\{t\} \neq 0 \}.
\]

Definition 8.4. Let \(\Theta \subseteq \mathbb{R} \) be countable, \(\mu \in \mathcal{M}_\Theta \). Let \(\rho \geq 1 \) be real. Then:

\[
|\mu|_\rho := (\sum_{t \in \Theta} |t|^\rho \cdot (\mu\{t\}))^{1/\rho}.
\]

Note: \(\forall \text{countable } \Theta \subseteq \mathbb{R}, \; \forall \mu \in \mathcal{F}\mathcal{M}_\Theta, \;
\text{if } \#S_\mu < \infty, \; \text{then } \forall \rho \geq 1, \; |\mu|_\rho < \infty.\)

Definition 8.5. Let \(\Theta \subseteq \mathbb{R} \) be countable.

Let \(\mu \in \mathcal{P}_\Theta \). Assume: \(|\mu|_1 < \infty \).

Then the **mean of \(\mu \)** is:

\[
M_\mu := \sum_{t \in \Theta} [t \cdot (\mu\{t\})].
\]

Also, the **variance of \(\mu \)** is:

\[
V_\mu := \sum_{t \in \Theta} [t - (M_\mu)^2 \cdot (\mu\{t\})].
\]

Let \(\Theta \subseteq \mathbb{R} \) be countable, \(\mu \in \mathcal{P}_\Theta \). Assume: \(|\mu|_1 < \infty \).

Then, by subadditivity of absolute value, we get \(|M_\mu| \leq |\mu|_1 \). Also, by expanding the square in the formula for \(V_\mu \), we get \(V_\mu = |\mu|^2 - M_\mu^2 \); therefore \(V_\mu \leq |\mu|_2 \).
Let $\Theta \subseteq \mathbb{R}$ be countable and let X be a Θ-valued random-variable. Let μ denote the distribution on Θ of X.

i.e., define $\mu \in \mathcal{P}_\Theta$ by: $\forall t \in \Theta, \mu\{t\} = \Pr[X = t]$.

Then, \forall real $\rho \geq 1$, we have: $|\mu|_\rho$ is the L^ρ-norm of X.

Then, \forall real $\rho \geq 1$, we have: X is L^ρ iff $|\mu|_\rho < \infty$.

If X is L^1, then $M_\mu = \mathbb{E}[X]$ and $V_\mu = \text{Var}[X]$.

That is, if X is L^1, then M_μ is the mean (aka expected value, aka average value) of X and V_μ is the variance of X.

Theorem 8.6. Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{P}_\Theta$.

Assume: $|\mu|_1 < \infty$. Then: $(\#S_\mu \geq 2) \iff (V_\mu > 0)$.

The preceding result is basic. We omit its proof.

Because $\forall t \in \mathbb{Z}, |t| \leq t^2$, we conclude: for any \mathbb{Z}-valued random-variable X, $\mathbb{E}[|X|] \leq \mathbb{E}[X^2]$.

It follows that for any \mathbb{Z}-valued L^2 random-variable X, we have: X is L^1, and so $\mathbb{E}[X]$ is defined and finite.

Because $\forall t \in \mathbb{Z}, |t| \leq t^2$, we conclude:

$\forall \Theta \subseteq \mathbb{Z}, \forall \mu \in \mathcal{M}_\Theta$, $|\mu|_1 \leq |\mu|_2$;

it follows that if $|\mu|_2 < \infty$, then $|\mu|_1 < \infty$, and so M_μ is defined and finite.

Definition 8.7. Let Θ be a countable set.

Let $\mu_1, \mu_2, \ldots \in \mathcal{P}_\Theta$ and let $\lambda \in \mathcal{P}_\Theta$.

By $[\mu_1, \mu_2, \ldots \rightarrow \lambda]$, we mean: $\forall \Theta_0 \subseteq \Theta$, $\mu_1(\Theta_0), \mu_2(\Theta_0), \ldots \rightarrow \lambda(\Theta_0)$.

Recall (§2): \forall function ε, the notation: I_ε.

Recall (§2): \forall function ε, \forall set A, the notation: $\varepsilon^* A$.

For any countable set Σ, for any set T,

for any function $\varepsilon : \Sigma \rightarrow T$,

for any $\mu \in \mathcal{M}_\Sigma$,

we define $[\varepsilon^* \mu] \in \mathcal{M}_\varepsilon$ by:

$\forall A \subseteq I_\varepsilon$, $(\varepsilon^* \mu)(A) = \mu(\varepsilon^* A)$.

For any nonempty countable set Θ, for any $\mu \in \mathcal{F}_\mathcal{M}_\Theta$,

let $[\mathcal{N}(\mu)] := \frac{\mu}{\mu(\Theta)} \in \mathcal{P}_\Theta$; then $\forall \Theta_0 \subseteq \Theta$, $(\mathcal{N}(\mu))(\Theta_0) = \frac{\mu(\Theta_0)}{\mu(\Theta)}$.
and \(\mathcal{N}(\mu) \) is called the \textbf{normalization} of \(\mu \).

Let \(\hat{\Theta} \) be a countable set. Let \(\mu \in \mathcal{M}_{\hat{\Theta}} \). Let \(\Theta \subseteq \hat{\Theta} \). Then the \textbf{restriction} of \(\mu \) to \(\Theta \), denoted \(\mu|\Theta \in \mathcal{M}_{\Theta} \), is defined by: \(\forall \Theta_0 \subseteq \Theta, \ (\mu|\Theta)(\Theta_0) = \mu(\Theta_0) \).

NOTE: We have \(\mu|\Theta \pmb{P} M_{\Theta} \pmb{P} \Theta \). Then the \textbf{restriction} of \(\mu \) to \(\Theta \), denoted \(\mu|\Theta \pmb{P} M_{\Theta} \pmb{P} \Theta \), is defined by:

\[
\mu|\Theta \pmb{P} M_{\Theta} \pmb{P} \Theta \quad \forall \Theta_0 \subseteq \Theta, \ (\mathcal{N}(\mu)(\Theta))(\Theta_0) = \frac{\mu(\Theta_0)}{\mu(\Theta)}.
\]

DEFINITION 8.8. Let \(F \) be a nonempty finite set. Then we define \(\nu_F \in \mathcal{P}_F \) by: \(\forall f \in F, \ \nu_F \{f\} = 1/(\#F) \).

Also, we define \(\nu_\emptyset : \{\emptyset\} \rightarrow \{-1\} \) by: \(\nu_\emptyset(\emptyset) = -1 \).

THEOREM 8.9. Let \(F \) be a nonempty finite set. Let \(\theta \in \mathcal{P}_F \). Assume: \(\forall f, g \in F, \ \theta\{f\} = \theta\{g\} \). Then: \(\theta = \nu_F \).

Proof. Since \(F \) is nonempty, \(\textbf{choose} \ g_0 \in F \). \(\textbf{Let} \ b := \theta\{g_0\} \). Then: \(\forall f \in F, \ \theta\{f\} = b \). Then \(\sum_{f \in F} (\theta\{f\}) = (\#F) \cdot b \).

Since \(\theta \in \mathcal{P}_F \), we get: \(\theta(F) = 1 \).

Since \((\#F) \cdot b = \sum_{f \in F} (\theta\{f\}) = \theta(F) = 1 \), we get: \(b = 1/(\#F) \).

Since \(\forall f \in F, \ \theta\{f\} = b = 1/(\#F) = \nu_F \{f\} \), we get: \(\theta = \nu_F \). \(\square \)

9. The Discrete Local Limit Theorem

DEFINITION 9.1. Let \(E \subseteq \mathbb{Z} \).

By \(\textbf{E is residue-constrained} \), we mean:

\[\exists m \in [2..\infty), \exists n \in \mathbb{Z} \quad \text{s.t.} \quad E \subseteq m\mathbb{Z} + n. \]

By \(\textbf{E is residue-unconstrained} \), we mean:

\(E \) is not residue-constrained.

Since \(\emptyset \subseteq 2 \cdot \mathbb{Z} + 1 \), we get: \(\emptyset \) is residue-constrained.

For all \(b \in \mathbb{Z} \), since \(\{b\} \subseteq 2 \cdot \mathbb{Z} + b \), we get: \(\{b\} \) is residue-constrained.

Then: \(\forall \text{residue-unconstrained} \ E \subseteq \mathbb{Z}, \ \#E \geq 2 \).

We have: \(\{0, 2, 10\} \subseteq 2\mathbb{Z} + 0 \) and \(\{1, 3, 11\} \subseteq 2\mathbb{Z} + 1 \),

so \(\{0, 2, 10\} \) and \(\{1, 3, 11\} \) are both residue-constrained.

Here is a test for residue-unconstrainedness:

Let \(E \subseteq \mathbb{Z} \). Assume \#\(E \geq 2 \). \(\textbf{Let} \ \varepsilon_0 \in E \).

Then: \(\ (E \text{ is residue-unconstrained}) \iff (\gcd(E - \varepsilon_0) = 1) \).
By this test, we see that:

\{0, 1, 10\} and \{2, 4, 8, 9\} and \{3, 9, 13, 18\} are all residue-unconstrained.

DEFINITION 9.2. For all \(\alpha \in \mathbb{R}\), for all real \(v > 0\),

define \(\Phi_v^\alpha : \mathbb{R} \rightarrow (0; \infty)\) by:

\[
\Phi_v^\alpha(t) = \frac{\exp\left(-\frac{(t - \alpha)^2}{2v}\right)}{\sqrt{2\pi v}}.
\]

Note: \(\Phi_v^\alpha\) is a PDF of a normal variable with mean \(\alpha\) and variance \(v\).

The next result is a version of the Discrete Local Limit Theorem, this one is stated in probability-theoretic terms:

THEOREM 9.3. Let \(E \subseteq \mathbb{Z}\) be residue-unconstrained.

Let \(X_1, X_2, \ldots\) be an iid sequence of \(\mathbb{Z}\)-valued \(L^2\) random-variables.

Assume:

\[
\forall n \in \mathbb{N}, \quad \{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E.
\]

Let \(\alpha \in \mathbb{R}\), \(v \in [0; \infty]\). Assume: \(\forall n \in \mathbb{N}, E[X_n] = \alpha\) and \(\text{Var}[X_n] = v\).

Then:

\(0 < v < \infty\), and, \(\forall t_1, t_2, \ldots \in \mathbb{Z}\), as \(n \to \infty\),

\[
\sqrt{n} \cdot \left(\Pr[\sum X_n = t_n] - \Phi_v^\alpha(t_n)\right) \to 0.
\]

For a good exposition of this theorem and its proof, search on “Terence Tao Local Limit Theorem”.

Visit the website, and then expand “read the rest of this entry”, and then scroll down to “2. Local limit theorems –”.

In Theorem 9.3, since \(E \subseteq \mathbb{Z}\), we have, for each \(n \in \mathbb{N}\),

\(|X_n| \leq X_n^2\) a.s., so \(E[|X_n|] \leq E[X_n^2]\),

so, since \(X_n\) is \(L^2\), we get \(X_n\) is \(L^1\),

and so \(E[X_n]\) and \(\text{Var}[X_n]\) are both defined.

Moreover, for all \(n \in \mathbb{N}\), since \(E[X_n] \leq E[|X_n|] \leq E[X_n^2] < \infty\), we get: \(E[X_n]\) is finite.

In Theorem 9.3, the proof that \(v > 0\) is relatively simple:

Since \(E\) is residue-unconstrained, we get: \(#E \geq 2\).

Then, \(\forall n \in \mathbb{N}\), \(#\{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} \geq 2\), which implies that \(\text{Var}[X_n] > 0\), and so \(v > 0\).

In Theorem 9.3, the proof that \(v < \infty\) is relatively simple:

\(\forall n \in \mathbb{N}\), \(\text{Var}[X_n] = E[X_n^2] - (E[X_n])^2 \leq E[X_n^2] < \infty\), and so \(v < \infty\).

Next is another version of the Discrete Local Limit Theorem; this one is stated in measure-theoretic terms:
THEOREM 9.4. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(\mu \in \mathcal{P}_E \). Assume: \(S_\mu = E \). Assume: \(|\mu|_2 < \infty \).
Let \(\alpha := M_\mu \), \(v := V_\mu \). Then: \(0 < v < \infty \), and, \(\forall t_1, t_2, \ldots \in \mathbb{Z} \), as \(n \to \infty \), \(\sqrt{n} \cdot (\Phi_{n\alpha}(t_n)) \to 0 \).

In Theorem 9.4, since \(E \subseteq \mathbb{Z} \) we get: \(|\mu|_1 \leq |\mu|_2 \).
So, since \(|\mu|_1 \leq |\mu|_2 < \infty \), we get: \(M_\mu \) and \(V_\mu \) are both defined.
Moreover, since \(|M_\mu| \leq |\mu|_1 \leq |\mu|_2 < \infty \), we get: \(M_\mu \) is finite.
In Theorem 9.4, the proof that \(v > 0 \) is relatively simple:
Since \(E \) is residue-unconstrained, we get: \(\#E \geq 2 \).
Since \(\#S_\mu = \#E \geq 2 \), by Theorem 8.6, we get: \(v > 0 \).
In Theorem 9.4, the proof that \(v < \infty \) is relatively simple:
\[
v = V_\mu = |\mu|_2 - M_\mu^2 \leq |\mu|_2^2 < \infty.
\]

Here is an application of Theorem 9.3:

THEOREM 9.5. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.
Assume: \(\forall n \in \mathbb{N}, \{ t \in \mathbb{Z} | \Pr[X_n = t] > 0 \} = E \).
Let \(\alpha \in \mathbb{R}, v \in [0; \infty] \). Assume: \(\forall n \in \mathbb{N}, \Pr[X_n = \alpha] = v \) and \(\Var[X_n] = v \).
Then: \(0 < v < \infty \). Also, \(\forall t_1, t_2, \ldots \in \mathbb{Z} \),
\[\text{if } \{ t_n - n\alpha | n \in \mathbb{N} \} \text{ is bounded,}
\[\text{then, as } n \to \infty, \sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_n]) \to 1/\sqrt{2\pi v}.\]

Proof. By Theorem 9.3, we get \(0 < v < \infty \).
Given \(t_1, t_2, \ldots \in \mathbb{Z} \), assume \(\{ t_n - n\alpha | n \in \mathbb{N} \} \) is bounded,
want: as \(n \to \infty \), \(\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_n]) \to 1/\sqrt{2\pi v} \).
By Theorem 9.3, it suffices to show:
\[\text{as } n \to \infty, \sqrt{n} \cdot (\Phi_{n\alpha}(t_n)) \to 1/\sqrt{2\pi v}.\]
We have:
\[\forall n \in \mathbb{N}, \sqrt{n} \cdot (\Phi_{n\alpha}(t_n)) = \frac{\exp(-(t_n - n\alpha)^2 / (2nv))}{\sqrt{2\pi v}}.\]
Since \(\{ t_n - n\alpha | n \in \mathbb{N} \} \) is bounded and since \(0 < v < \infty \), we get:
\[\text{as } n \to \infty, -(t_n - n\alpha)^2 / (2nv) \to 0.\]
Then: as \(n \to \infty \), \(\exp(-(t_n - n\alpha)^2 / (2nv)) \to 1 \).
Then: as \(n \to \infty \), \(\sqrt{n} \cdot (\Phi_{n\alpha}(t_n)) \to 1/\sqrt{2\pi v}. \)

We record a measure-theoretic version of Theorem 9.5:

THEOREM 9.6. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(\mu \in \mathcal{P}_E \). Assume: \(S_\mu = E \) and \(|\mu|_2 < \infty \).
Let \(\alpha := M_\mu \), \(v := V_\mu \). Then: \(0 < v < \infty \).
Also, \(\forall t_1, t_2, \ldots \in \mathbb{Z} \),

if \(\{ t_n - n\alpha \mid n \in \mathbb{N} \} \) is bounded,

then, as \(n \to \infty \), \(\sqrt{n} \cdot \{ f \in E^n \mid f_1 + \cdots + f_n = t_n \} \) \(\to 1/\sqrt{2\pi v} \).

We also record the \(t_n = t_0 + n\alpha \) special case of the past two theorems:

THEOREM 9.7. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.

Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.

Assume: \(\forall n \in \mathbb{N}, \{ t \in \mathbb{Z} \mid \Pr[X_n = t] > 0 \} = E \).

Let \(t_0, \alpha \in \mathbb{Z}, v \in [0; \infty] \). Assume: \(\forall n \in \mathbb{N}, E[X_n] = \alpha \) and \(\text{Var}[X_n] = v \).

Then: \(0 < v < \infty \), and,

as \(n \to \infty \), \(\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_0 + n\alpha]) \) \(\to 1/\sqrt{2\pi v} \).

THEOREM 9.8. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.

Let \(\mu \in \mathcal{P}_E \). Assume: \(S_\mu = E \). Assume: \(|\mu|_2 < \infty \).

Let \(\alpha := M_\mu, \ v := V_\mu \). Assume: \(\alpha \in \mathbb{Z} \). Let \(t_0 \in \mathbb{Z} \).

Then: \(0 < v < \infty \), and,

as \(n \to \infty \), \(\sqrt{n} \cdot (\mu^n \{ f \in E^n \mid f_1 + \cdots + f_n = t_0 + n\alpha \}) \) \(\to 1/\sqrt{2\pi v} \).

We also record the \(t_0 = 0 \) special case of the past two theorems:

THEOREM 9.9. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.

Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.

Assume: \(\forall n \in \mathbb{N}, \{ t \in \mathbb{Z} \mid \Pr[X_n = t] > 0 \} = E \).

Let \(\alpha \in \mathbb{Z}, v \in [0; \infty] \). Assume: \(\forall n \in \mathbb{N}, E[X_n] = \alpha \) and \(\text{Var}[X_n] = v \).

Then: \(0 < v < \infty \), and,

as \(n \to \infty \), \(\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = n\alpha]) \) \(\to 1/\sqrt{2\pi v} \).

THEOREM 9.10. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.

Let \(\mu \in \mathcal{P}_E \). Assume: \(S_\mu = E \). Assume: \(|\mu|_2 < \infty \).

Let \(\alpha := M_\mu, \ v := V_\mu \). Assume: \(\alpha \in \mathbb{Z} \).

Then: \(0 < v < \infty \), and,

as \(n \to \infty \), \(\sqrt{n} \cdot (\mu^n \{ f \in E^n \mid f_1 + \cdots + f_n = n\alpha \}) \) \(\to 1/\sqrt{2\pi v} \).

10. **Average events have low information, particular case**

Suppose, in secret, I flip a coin 1000 times,

then reveal to you that

the total number of heads was 1000,

and then ask you to guess the last flip.

The answer is that, since all the coin flips were heads,

the last flip must have been a head.
Similarly, if I had told you that
the total number of heads was 0,
then you would have known that the last flip was a tail.
By contrast, if I had told you that
the total number of heads was 500,
it seems intuitively clear that
you’d have had very little information about the last flip.
We wish to generalize and formalize that intuition,
and then provide rigorous proof of the resulting formal statement.
Our main theorem is Theorem 11.5, in the next section.
In this section, we go carefully through a special case:

Let $X_1, X_2 \ldots$ be \mathbb{Z}-valued iid random-variables s.t.,
\[
\forall n \in \mathbb{N}, \quad \Pr[X_n = -1] = 1/2, \\
\Pr[X_n = 0] = 1/3, \\
\Pr[X_n = 3] = 1/6.
\]
Then, $\forall n \in \mathbb{N}$, X_n is L^1 and X_n is L^2.
Also, $\forall n \in \mathbb{N}$, $E[X_n] = 0$ and $\text{Var}[X_n] = 2$.
Also, $\forall n \in \mathbb{N}$, $-1 \leq X_n \leq 3$ a.s.
For all $n \in \mathbb{N}$, let $T_n := X_1 + \cdots + X_n$.
Then: $\forall n \in \mathbb{N}$, $-n \leq T_n \leq 3n$ a.s.
Then: $-1000 \leq T_{1000} \leq 3000$ a.s.
Also, $[T_{1000} = -1000] \Rightarrow [X_1 = \cdots = X_{1000} = -1]$,
and so $\Pr[X_{1000} = -1 | T_{1000} = -1000] = 1$.
Similarly, $\Pr[X_{1000} = 3 | T_{1000} = 3000] = 1$.
By contrast, the event $T_{1000} = 0$
would seem to give very little information about X_{1000}.

It therefore seems reasonable to expect that
\[
\Pr[X_{1000} = -1 | T_{1000} = 0] \approx 1/2 \quad \text{and} \\
\Pr[X_{1000} = 0 | T_{1000} = 0] \approx 1/3 \quad \text{and} \\
\Pr[X_{1000} = 3 | T_{1000} = 0] \approx 1/6.
\]
To make this precise, we will work “in the thermodynamic limit”,
which means: we replace 1000 by a variable $n \in \mathbb{N}$, and let $n \to \infty$.
That is, more precisely, we expect that, as $n \to \infty$,
\[
\Pr[X_n = -1 | T_n = 0] \to 1/2 \quad \text{and} \\
\Pr[X_n = 0 | T_n = 0] \to 1/3 \quad \text{and} \\
\Pr[X_n = 3 | T_n = 0] \to 1/6.
\]
We will focus on proving the third of these limits;
By definition of conditional probability, we wish to prove: As $n \to \infty$, \[
\frac{\Pr[(X_n = 3) \& (T_n = 0)]}{\Pr[T_n = 0]} \to \frac{1}{6}.
\]

Claim: Let $n \in [2, \infty)$. Then: \[
\Pr[(X_n = 3) \& (T_n = 0)] = \frac{1}{6} \cdot (\Pr[T_{n-1} = -3]).
\]

Proof of Claim: We have: \[
T_n = X_1 + \cdots + X_{n-1} + X_n.
\]

Since \[
\Pr[(X_n = 3) \& (T_n = 0)] = \Pr[(X_n = 3) \& (X_1 + \cdots + X_{n-1} = 0)] = \Pr[(X_n = 3) \& (X_1 + \cdots + X_{n-1} = 3 = 0)] = \Pr[(X_n = 3) \& (X_1 + \cdots + X_{n-1} = -3)],
\]

it follows, from independence of X_1, \ldots, X_n, that \[
\Pr[(X_n = 3) \& (T_n = 0)] = \Pr[X_n = 3] \cdot \Pr[X_1 + \cdots + X_{n-1} = -3].
\]

So, since \[
\Pr[X_n = 3] = \frac{1}{6} \text{ and } X_1 + \cdots + X_{n-1} = T_{n-1},
\]

we get: \[
\Pr[(X_n = 3) \& (T_n = 0)] = \frac{1}{6} \cdot (\Pr[T_{n-1} = -3]).
\]

End of proof of Claim.

By the claim, we wish to prove: As $n \to \infty$, \[
\frac{1}{6} \cdot (\Pr[T_{n-1} = -3]) \to 1/6.
\]

We wish to prove: As $n \to \infty$, \[
\frac{\Pr[T_{n-1} = -3]}{\Pr[T_n = 0]} \to 1.
\]

That is, we wish to prove: As $n \to \infty$, \[
\Pr[T_{n-1} = -3] \text{ is asymptotic to } \Pr[T_n = 0].
\]

So the question becomes:

How do we get a handle on the asymptotics, as $n \to \infty$, of \[
\Pr[T_{n-1} = -3] \text{ and } \Pr[T_n = 0]?
\]

The Discrete Local Limit Theorem turns out to be just what we need.

Recall: \[
\forall n \in \mathbb{N}, \quad E[X_n] = 0 \quad \text{and} \quad T_n = X_1 + \cdots + X_n.
\]

Let $\alpha := 0$ and $v := 2$. Then: both $\forall n \in \mathbb{N}$, $n\alpha = 0$ and $2\pi v = 4\pi$.

Also, \[
\forall n \in \mathbb{N}, \quad E[X_n] = \alpha \quad \text{and} \quad \text{Var}[X_n] = v.
\]

Let $E := \{-1, 0, 3\}$. Then E is residue-unconstrained.

Also, we have: \[
\forall n \in \mathbb{N}, \quad \{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E.
\]

By Theorem 9.9, as $n \to \infty$, \[
\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = n\alpha]) \to 1/\sqrt{2\pi v},
\]
Then: as $n \to \infty$, $\sqrt{n} \cdot (\Pr[T_n = 0]) \to 1/\sqrt{4\pi}$,
so, as $n \to \infty$, $\Pr[T_n = 0]$ is asymptotic to $1/\sqrt{4\pi n}$.

Want: $\Pr[T_{n-1} = -3]$ is asymptotic to $1/\sqrt{4\pi n}$.

Let $n \alpha := -3$. Then, as $\forall n \in \mathbb{N}$, $t_0 + n\alpha = -3$.

By Theorem 9.7, as $n \to \infty$,
\[
\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_0 + n\alpha]) \to 1/\sqrt{2\pi v}.
\]
Then: as $n \to \infty$, $\sqrt{n} \cdot (\Pr[T_n = -3]) \to 1/\sqrt{4\pi}$.

Then, as $n \to \infty$, $\sqrt{n - 1} \cdot (\Pr[T_{n-1} = -3]) \to 1/\sqrt{4\pi}$.

Then, as $n \to \infty$, $\Pr[T_{n-1} = -3]$ is asymptotic to $1/\sqrt{4\pi(n-1)}$,
which is asymptotic to $1/\sqrt{4\pi n}$.

11. AVERAGE EVENTS HAVE LOW INFORMATION, GENERAL RESULT

We generalize the result of the last section:

THEOREM 11.1. Let $E \subset \mathbb{Z}$ be residue-unconstrained.

Let X_1, X_2, \ldots be an iid sequence of \mathbb{Z}-valued L^2 random-variables.

Assume: $\forall n \in \mathbb{N}$, $\{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E$. Let $\alpha, P \in \mathbb{R}$.

Assume: $\forall n \in \mathbb{N}$, $E[X_n] = \alpha$ and $\Pr[X_n = \varepsilon_0] = P$. Let $\varepsilon_0 \in E$.

Let $t_1, t_2, \ldots \in \mathbb{Z}$. Assume: $\{t_n - n\alpha \mid n \in \mathbb{N}\}$ is bounded.

Then: as $n \to \infty$, $\Pr[X_n = \varepsilon_0 \mid X_1 + \cdots + X_n = t_n] \to P$.

In Theorem 11.1, since $\varepsilon_0 \in E$, we have: $\forall n \in \mathbb{N}$, $\Pr[X_n = \varepsilon] > 0$.

It follows that $P > 0$, so part of the content of Theorem 11.1 is:

\forall sufficiently large $n \in \mathbb{N}$, $\Pr[X_1 + \cdots + X_n = t_n] > 0$.

In Theorem 11.1, I don’t know whether “L^2” can be replaced by “L^1”.

Proof. Since X_1, X_2, \ldots is identically distributed,
choose $v \in [0; \infty]$ s.t., $\forall n \in \mathbb{N}$, $\text{Var}[X_n] = v$.

By Theorem 9.5, we have: $0 < v < \infty$ and as $n \to \infty$,
\[
\sqrt{n} \cdot (\Pr[X_1 + \cdots + X_n = t_n]) \to 1/\sqrt{2\pi v}.
\]

For all $n \in \mathbb{N}$, let $T_n := X_1 + \cdots + X_n$.

Then: as $n \to \infty$, $\sqrt{n} \cdot (\Pr[T_n = t_n]) \to 1/\sqrt{2\pi v}$.

Want: as $n \to \infty$, $\Pr[X_n = \varepsilon_0 \mid T_n = t_n] \to P$.

Let $D_1 := \{t_n - n\alpha \mid n \in \mathbb{N}\}$. By hypothesis, D_1 is bounded.

Let $D_2 := \{t_n - n\alpha \mid n \in [2..\infty)\}$. Then $D_2 \subseteq D_1$.

Let $D_3 := \{t_{n+1} - n\alpha \mid n \in \mathbb{N}\}$. Then $D_3 = D_2$.

For all $n \in \mathbb{N}$, let $\tilde{t}_n := t_{n+1} - \varepsilon_0$.

Let $D_4 := \{\tilde{t}_n - n\alpha \mid n \in \mathbb{N}\}$.

Since \(D_4 - (\alpha - \varepsilon) = \{ \tilde{t}_n - n\alpha + \varepsilon \mid n \in \mathbb{N} \} \)
\[= \{ t_{n+1} - \varepsilon_0 - (n + 1) \cdot \alpha + \varepsilon \mid n \in \mathbb{N} \} \]
\[= \{ t_{n+1} - (n + 1) \cdot \alpha \mid n \in \mathbb{N} \} \]
\[= D_3 = D_2 \subseteq D_1, \]

and since \(D_4 - (\alpha - \varepsilon) \) is bounded.

Then: \(D_4 - (\alpha - \varepsilon) + (\alpha - \varepsilon) \) is bounded.

Then: \(D_4 \) is bounded.

Then, by Theorem 9.5, we have:
\[\text{as } n \to \infty, \quad \frac{\sqrt{n} \cdot (\Pr[T_n = \tilde{t}_n \mid T_n = \tilde{t}_n])}{1} \to \frac{1}{\sqrt{2\pi v}}.\]

Then, as \(n \to \infty, \quad \frac{\sqrt{n} \cdot (\Pr[T_{n-1} = \tilde{t}_{n-1} \mid T_{n-1} = \tilde{t}_{n-1}])}{1} \to \frac{1}{\sqrt{2\pi v}}.\]

We have: \(\forall n \in [2..\infty), \quad \tilde{t}_{n-1} = t_n - \varepsilon_0. \)

So, as \(n \to \infty, \quad \frac{\sqrt{n} \cdot (\Pr[T_{n-1} = t_n - \varepsilon_0])}{1} \to \frac{1}{\sqrt{2\pi v}}.\)

Recall: as \(n \to \infty, \quad \frac{\sqrt{n} \cdot (\Pr[T_n = t_n])}{1} \to \frac{1}{\sqrt{2\pi v}}.\)

Dividing the last two limits, we get:
\[\text{as } n \to \infty, \quad \frac{\sqrt{n} \cdot (\Pr[T_{n-1} = t_n - \varepsilon_0])}{\sqrt{n} \cdot (\Pr[T_n = t_n])} \to 1.\]

Also, as \(n \to \infty, \quad \frac{\sqrt{n} \cdot (\Pr[T_{n-1} = t_n - \varepsilon_0])}{\sqrt{n} \cdot (\Pr[T_n = t_n])} \to 1.\]

Multiplying the last two limits together, we get:
\[\text{as } n \to \infty, \quad \frac{\Pr[T_{n-1} = t_n - \varepsilon_0]}{\Pr[T_n = t_n]} \to 1.\]

Since, \(\forall n \in [2..\infty), \)
\[
\Pr[X_n = \varepsilon_0 \mid T_n = t_n] = \frac{\Pr[(X_n = \varepsilon_0) \& (T_n = t_n)]}{\Pr[T_n = t_n]} = \frac{\Pr[(X_n = \varepsilon_0) \& (T_{n-1} + X_n = t_n)]}{\Pr[T_n = t_n]} = \frac{\Pr[(X_n = \varepsilon_0) \& (T_{n-1} + \varepsilon_0 = t_n)]}{\Pr[T_n = t_n]} = \frac{\Pr[(X_n = \varepsilon_0) \& (T_{n-1} = t_n - \varepsilon_0)]}{\Pr[T_n = t_n]} = \left(\Pr[X_n = \varepsilon_0]\right) \cdot \Pr[T_{n-1} = t_n - \varepsilon_0] \cdot \frac{\Pr[T_n = t_n]}{\Pr[T_{n-1} = t_n - \varepsilon_0]} \to 1 \quad \text{as } n \to \infty.
\]

we get: \(\text{as } n \to \infty, \quad \Pr[X_n = \varepsilon_0 \mid T_n = t_n] \to P. \)
Recall (§8): \(\forall \text{countable set } \Theta, \)
\[
\mathcal{FM}_{\Theta}^\times \text{ is the set of nonzero finite measures on } \Theta
\]
and \(\mathcal{P}_{\Theta} \text{ is the set of probability measures on } \Theta. \)
Recall (§8): \(\forall \text{nonempty countable set } \Theta \text{, } \forall \mu \in \mathcal{FM}_{\Theta}^\times, \)
\[
\mathcal{N}(\mu) \text{ is the normalization of } \mu.
\]

Here is a measure-theoretic version of the preceding theorem:

THEOREM 11.2. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.

Let \(\mu \in \mathcal{P}_E. \) Assume: \(S_\mu = E. \) Assume: \(|\mu|_2 < \infty. \)
Let \(\alpha := M_\mu. \) Let \(\epsilon_0 \in E, \ P := \mu\{\epsilon_0\}. \)
Let \(t_1, t_2, \ldots \in \mathbb{Z}. \) Assume: \(\{t_n - n\alpha \mid n \in \mathbb{N}\} \) is bounded.
For all \(n \in \mathbb{N}, \) let \(\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = t_n\}. \)
Then: as \(n \to \infty, \) \((\mathcal{N}(\mu^n|\Omega_n))\{f \in \Omega_n \mid f_n = \epsilon_0\} \to P. \)

I don’t know whether “\(|\mu|_2 < \infty \)” can be replaced by “\(|\mu|_1 < \infty \)”.

Part of the content of Theorem 11.2 is:
\[
\forall \text{sufficiently large } n \in \mathbb{N}, \ \mu^n(\Omega_n) > 0,
\]
since, otherwise, \(\mu^n|\Omega_n \) would be the zero measure on \(\Omega_n, \)
and so \(\mathcal{N}(\mu^n|\Omega_n) \) would not be defined.

We record the \(t_n = t_0 + n\alpha \) special case of the past two theorems:

THEOREM 11.3. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained. Let \(t_0 \in \mathbb{Z}. \)
Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.
Assume: \(\forall n \in \mathbb{N}, \ \{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E. \) Let \(\alpha \in \mathbb{Z}, \ P \subseteq \mathbb{R}. \)
Let \(\epsilon_0 \in E. \) Assume: \(\forall n \in \mathbb{N}, \ E[X_n] = \alpha \text{ and } \Pr[X_n = \epsilon_0] = P. \)
Then: as \(n \to \infty, \) \(\Pr[X_n = \epsilon_0 \mid X_1 + \cdots + X_n = t_0 + n\alpha] \to P. \)

THEOREM 11.4. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained. Let \(t_0 \in \mathbb{Z}. \)
Let \(\mu \in \mathcal{P}_E. \) Assume: \(S_\mu = E. \) Assume: \(|\mu|_2 < \infty. \)
Let \(\alpha := M_\mu. \) Assume: \(\alpha \in \mathbb{Z}. \) Let \(\epsilon_0 \in E, \ P := \mu\{\epsilon_0\}. \)
For all \(n \in \mathbb{N}, \) let \(\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = t_0 + n\alpha\}. \)
Then: as \(n \to \infty, \) \((\mathcal{N}(\mu^n|\Omega_n))\{f \in \Omega_n \mid f_n = \epsilon_0\} \to P. \)

We record the \(t_0 = 0 \) special case of the past two theorems:

THEOREM 11.5. Let \(E \subseteq \mathbb{Z} \) be residue-unconstrained.
Let \(X_1, X_2, \ldots \) be an iid sequence of \(\mathbb{Z} \)-valued \(L^2 \) random-variables.
Assume: \(\forall n \in \mathbb{N}, \ \{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E. \) Let \(\alpha \in \mathbb{Z}, \ P \subseteq \mathbb{R}. \)
Let $\varepsilon_0 \in E$. Assume: $\forall n \in \mathbb{N}, \ E[X_n] = \alpha$ and $\Pr[X_n = \varepsilon_0] = P$. Then: as $n \to \infty$, $\Pr[X_n = \varepsilon_0 | X_1 + \cdots + X_n = n\alpha] \to P$.

THEOREM 11.6. Let $E \subseteq \mathbb{Z}$ be residue-constrained.
Let $\mu \in \mathcal{P}_E$. Assume: $S_\mu = E$. Assume: $|\mu|_2 < \infty$.
Let $\alpha := M_\mu$. Assume: $\alpha \in \mathbb{Z}$.
Let $\varepsilon_0 \in E$, $P := \mu(\varepsilon_0)$.
For all $n \in \mathbb{N}$, let $\Omega_n := \{f \in E^n | f_1 + \cdots + f_n = n\alpha\}$.
Then: as $n \to \infty$, $(N(\mu^n|\Omega_n))\{f \in \Omega_n | f_n = \varepsilon_0\} \to P$.

Example: Let $E := \{-1, 0, 3\}$, $\varepsilon_0 = 3$, $\alpha := 0$, $P := 1/6$.
Let $X_1, X_2 \ldots$ be \mathbb{Z}-valued iid random-variables s.t.,
$\forall n \in \mathbb{N}, \ Pr[X_n = -1] = 1/2,
Pr[X_n = 0] = 1/3,
Pr[X_n = 3] = 1/6.$
Then: $\forall n \in \mathbb{N}, \ Pr[X_n = \varepsilon_0] = P$.
Also, $\forall n \in \mathbb{N}, \ \{t \in \mathbb{Z} | Pr[X_n = t] > 0\} = E$.
Also, $\forall n \in \mathbb{N}, \ E[X_n] = \alpha$.
Then, by Theorem 11.5, we have:
as $n \to \infty$, $\Pr[X_n = \varepsilon_0 | X_1 + \cdots + X_n = n\alpha] \to P$.
The: as $n \to \infty$, $\Pr[X_n = 3 | X_1 + \cdots + X_n = 0] \to 1/6$.
Thus Theorem 11.5 reproduces the result of §10.

12. Solving the main problem

We finally have all we need to solve the main problem (end of §3).

Let $(p, q, r) := \frac{(1, 9^{-1/10}, 9^{-1})}{1 + 9^{-1/10} + 9^{-1}}$.
We compute $(p, q, r) \approx (0.5225, 0.4194, 0.0581)$,
all accurate to four decimal places.

Again, let’s say I am one of the professors applying to the GFA.

We will show: Under the GFA’s first system (§3),
my probability of getting $\$0$ is p, approximately and
my probability of getting $\$1$ is q, approximately and
my probability of getting $\$10$ is r, approximately.

Recall: $\Omega = \{ \omega : [1..N] \to \{0, 1, 10\} | \sum_{\ell=1}^{N} [\omega(\ell)] = N \}$.
Let $S := \sum_{\omega \in \Omega} p^{\omega} q^{\omega} r^{\omega}$.
By the work in §7, $p + q + r = 1$ and $q + 10r = 1$ and
$\forall \omega \in \Omega, \ p^{\omega} q^{\omega} r^{\omega} / S = 1 / (\#\Omega)$.
Let X_1, X_2, \ldots be \mathbb{Z}-valued iid random-variables s.t., $\forall n \in \mathbb{N}$,
\[
\Pr[X_n = 0] = p,
\Pr[X_n = 1] = q,
\Pr[X_n = 10] = r.
\]
Then X_1, X_2, \ldots is a sequence of L^2 random-variables.

Also, $\forall n \in \mathbb{N}$, \(E[X_n] = q + 10r\).
So, since $q + 10r = 1$, we get:
\[
\forall n \in \mathbb{N}, \quad E[X_n] = 1.
\]

We model the GFA’s second system (§5) by: $\forall \ell \in [1..N]$, Professor\#\ell receives X_ℓ dollars.

For all $n \in \mathbb{N}$, let $T_n := X_1 + \cdots + X_n$.
We model the GFA’s third system (§5) by: $\forall \ell \in [1..N]$, Professor\#\ell receives X_ℓ dollars, conditioned on $T_N = N$.

As we observed earlier (end of §5), since $\forall \omega \in \Omega, \quad p^{\omega} q^{\omega} r^{\omega} / S = 1 / (\# \Omega)$,
it follows that: the third system is equivalent to the first.

For definiteness, let’s assume that I am Professor\#N.
Then, assuming N is large, we wish to show:
\[
\Pr[X_n = 0 \mid T_N = N] \approx p \quad \text{and} \\
\Pr[X_n = 1 \mid T_N = N] \approx q \quad \text{and} \\
\Pr[X_n = 10 \mid T_N = N] \approx r.
\]
To be more precise, we wish to show: as $n \to \infty$,
\[
\Pr[X_n = 0 \mid T_n = n] \to p \quad \text{and} \\
\Pr[X_n = 1 \mid T_n = n] \to q \quad \text{and} \\
\Pr[X_n = 10 \mid T_n = n] \to r.
\]

Let $E := \{0, 1, 10\}$. Then: E is residue-unconstrained.

Given $\varepsilon_0 \in E$, let $P := \begin{cases} p, & \text{if } \varepsilon_0 = 0 \\ q, & \text{if } \varepsilon_0 = 1 \\ r, & \text{if } \varepsilon_0 = 10, \end{cases}$

want: as $n \to \infty$, \(\Pr[X_n = \varepsilon_0 \mid T_n = n] \to P\).

By definition of X_1, X_2, \ldots, we get: $\forall n \in \mathbb{N}, \quad \Pr[X_n = \varepsilon_0] = P$.
Let $\alpha := 1$. Then: $\alpha \in \mathbb{Z}$ and $\forall n \in \mathbb{N}, \quad E[X_n] = \alpha$.
Also, $\forall n \in \mathbb{N}$, \(\{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E\).

Then, by Theorem 11.5, we have:
\[
\text{as } n \to \infty, \quad \Pr[X_n = \varepsilon_0, X_1 + \cdots + X_n = n\alpha] \to P.
\]
Then: as $n \to \infty$, $\Pr[X_n = \varepsilon_0 \mid T_n = n] \to P$.
13. **Probability of two professors getting zero**

Under the GFA’s first system, since N is large, one would expect:

- the award amounts of two different professors are almost independent.

Then, for example, one would expect:

- the probability that two professors both receive zero dollars should be very close to the square of the probability that one professor receives zero dollars.

We will formalize this statement and prove it, below.

For definiteness, we will assume that the two professors are Professor #(N - 1) and Professor #N.

Let $(p, q, r) := \left(\frac{1, 9^{-1/10}, 9^{-1}}{1 + 9^{-1/10} + 9^{-1}}\right)$. Then (§7): $p + q + r = 1$.

Let X_1, X_2, \ldots be \mathbb{Z}-valued iid random-variables s.t., $\forall n \in \mathbb{N}$,

\[
\begin{align*}
\Pr[X_n = 0] &= p, \\
\Pr[X_n = 1] &= q, \\
\Pr[X_n = 10] &= r.
\end{align*}
\]

Then X_1, X_2, \ldots is a sequence of L^2 random-variables.

For all $n \in \mathbb{N}$, let $T_n := X_1 + \cdots + X_n$.

Assuming N is large, our goal is therefore to prove:

\[\Pr[X_{N-1} = 0 = X_N \mid T_N = N] \approx p^2.\]

To be more precise, we will prove:

\[\text{as } n \to \infty, \quad \Pr[X_{n-1} = 0 = X_n \mid T_n = n] \to p^2.\]

For all $n \in \mathbb{N}$, define $\psi_n : \mathbb{Z} \to \mathbb{R}$ by:

\[\forall t \in \mathbb{Z}, \quad \psi_n(t) = \Pr[T_n = t].\]

For all $n \in \mathbb{N}$, let $a_n := \psi_n(n + 2)$, $z_n := \psi_n(n)$.

Since, $\forall n \in \mathbb{N}$, we have

- both $z_n = \psi_n(n) = \Pr[T_n = n]$
- $\Pr[T_n = n] = \Pr[X_1 + \cdots + X_n = n]$
- $\geq \Pr[X_1 = \cdots = X_n = 1] = q^n > 0$, we conclude: $\forall n \in \mathbb{N}, \quad z_n = \Pr[T_n = n] > 0$.

Claim: Let $n \in [3..\infty)$. Then $\Pr[X_{n-1} = 0 = X_n \mid T_n = n] = p^2 \cdot \frac{a_{n-2}}{z_n}$.

Proof of Claim: We have $T_n = X_1 + \cdots + X_{n-2} + X_{n-1} + X_n$.

Since $\Pr[(X_{n-1} = 0 = X_n) \& (T_n = n)] = \Pr[(X_{n-1} = 0 = X_n) \& (X_1 + \cdots + X_{n-2} + X_{n-1} + X_n = n)]$
Then Proposition 9.7, so since \(\Pr[(X_{n-1} = 0 = X_n) \& (X_1 + \cdots + X_{n-2} + 0 + 0 = n)] \), it follows, from independence of \(X_1, \ldots, X_n \), that

\[
\Pr[(X_{n-1} = 0 = X_n) \& (X_1 + \cdots + X_{n-2} = n)] = (\Pr[X_{n-1} = 0]) \cdot (\Pr[X_n = 0]) \cdot (\Pr[X_1 + \cdots + X_{n-2} = n]).
\]

So, since \(\Pr[X_{n-1} = 0] = p = \Pr[X_n = 0] \)

and since \(X_1 + \cdots + X_{n-2} = T_{n-2} \), we get:

\[
\Pr[(X_{n-1} = 0 = X_n) \& (T_n = n)] = p^2 \cdot (\Pr[T_{n-2} = n])
\]

Then

\[
\Pr[X_{n-1} = 0 = X_n \mid T_n = n] = \frac{\Pr[(X_{n-1} = 0 = X_n) \& (T_n = n)]}{\Pr[T_n = n]} = p^2 \cdot \frac{\psi_{n-2}(n)}{\psi(n)} = p^2 \cdot \frac{a_{n-2}}{z_n}.
\]

End of proof of Claim.

Because of the Claim, we want to show: as \(n \to \infty \),

\[
p^2 \cdot \frac{a_{n-2}}{z_n} \to p^2.
\]

Want: as \(n \to \infty \),

\[
\frac{a_{n-2}}{z_n} \to 1.
\]

We compute:

\[
\forall n \in \mathbb{N}, \quad \mathbb{E}[X_n] = q + 10r.
\]

Recall (§7): \(q + 10r = 1 \). Then:

\[
\forall n \in \mathbb{N}, \quad \mathbb{E}[X_n] = 1.
\]

We compute:

\[
\forall n \in \mathbb{N}, \quad \text{Var}[X_n] = q + 100r - 1.
\]

Let \(v := q + 100r - 1 \). Then:

\[
\forall n \in \mathbb{N}, \quad \text{Var}[X_n] = v.
\]

Since \(v = (q + 10r - 1) + 90r = 0 + 90r = 90r \), and since \(0 < r < \infty \), we get:

\[
0 < v < \infty.
\]

Let \(\tau := 1/\sqrt{2\pi v} \). Then:

\[
\tau > 0.
\]

Let \(\alpha := 1 \). Then, \(\alpha \in \mathbb{Z} \) and \(\forall n \in \mathbb{N}, \quad \mathbb{E}[X_n] = \alpha \).

Let \(E := \{0, 1, 10\} \). Then, \(\forall n \in \mathbb{N}, \quad \{t \in \mathbb{Z} \mid \Pr[X_n = t] > 0\} = E \).

Also, \(E \) is residue-unconstrained.

By Theorem 9.9, as \(n \to \infty \),

\[
\sqrt{n} \cdot (\Pr[T_n = n\alpha]) \to 1/\sqrt{2\pi v}.
\]

Then:

\[
as n \to \infty, \quad \sqrt{n} \cdot (\Pr[T_n = n\alpha]) \to \tau.
\]

Then:

\[
as n \to \infty, \quad \sqrt{n} \cdot (\psi_n(n)) \to \tau.
\]

Then:

\[
as n \to \infty, \quad \sqrt{n} \cdot z_n \to \tau.
\]

Let \(t_0 := 2 \). Then \(t_0 \in \mathbb{Z} \) and \(\forall n \in \mathbb{N}, \quad t_0 + n\alpha = n + 2 \).

By Theorem 9.7, as \(n \to \infty \),

\[
\sqrt{n} \cdot (\Pr[T_n = t_0 + n\alpha]) \to 1/\sqrt{2\pi v}.
\]

Then:

\[
as n \to \infty, \quad \sqrt{n} \cdot (\Pr[T_n = n + 2]) \to \tau.
\]

Then:

\[
as n \to \infty, \quad \sqrt{n} \cdot (\psi_n(n + 2)) \to \tau.
\]

Then:

\[
as n \to \infty, \quad \sqrt{n} \cdot a_n \to \tau.
\]

Then:

\[
as n \to \infty, \quad \sqrt{n} \to \tau.
\]

Recall:

\[
as n \to \infty, \quad \sqrt{n} \cdot z_n \to \tau.
\]

Dividing the last two limits, we get:
as $n \to \infty$, \[\frac{\sqrt{n - 2} \cdot a_{n-2}}{\sqrt{n} \cdot z_n} \to 1. \]

Also, as $n \to \infty$, \[\frac{\sqrt{n}}{\sqrt{n - 2}} \to 1. \]

Multiplying these last two limits, we get:

as $n \to \infty$, \[\frac{a_{n-2}}{z_n} \to 1. \]

14. Fraction of professors getting a zero award

Let \((p, q, r) := \frac{(1, 9^{-1/10}, 9^{-1})}{1 + 9^{-1/10} + 9^{-1}}.\)

We compute \((p, q, r) \approx (0.5225, 0.4194, 0.0581),\)

all accurate to four decimal places.

Let \(X_1, X_2, \ldots\) be \(\mathbb{Z}\)-valued iid random variables s.t., \(\forall n \in \mathbb{N},\)

\[
\begin{align*}
\Pr[X_n = 0] &= p, \\
\Pr[X_n = 1] &= q, \\
\Pr[X_n = 10] &= r.
\end{align*}
\]

For all \(n \in \mathbb{N},\) let \(T_n := X_1 + \cdots + X_n.\)

For all \(n \in \mathbb{N},\) let \(I_n\) be the indicator variable of the event: \(X_n = 0.\)

For all \(n \in \mathbb{N},\) let \(J_n := (I_1 + \cdots + I_n)/n.\)

Using the GFA’s first or third awards system, the random variable \(J_N\) conditioned on \(T_N = N\)

represents the fraction of professors receiving a $0 award.

In this section, we will prove the following:

Claim: \(\forall \varepsilon > 0,\) as \(n \to \infty,\) \(\Pr \left[p - \varepsilon < J_n < p + \varepsilon \mid T_n = n \right] \to 1.\)

Assume, for a moment, that this Claim is true.

Then: as \(n \to \infty,\) \(\Pr \left[p - 0.02 < J_n < p + 0.02 \mid T_n = n \right] \to 1.\)

From this, it follows that, if \(N\) is sufficiently large, then

\[
\Pr \left[p - 0.02 < J_N < p + 0.02 \mid T_N = N \right] > 0.99,
\]

so

\[
\Pr \left[p - 0.02 < J_N \mid T_N = N \right] > 0.99,
\]

so

\[
\Pr \left[J_N > p - 0.02 \mid T_N = N \right] > 0.99.
\]

Since \(p \approx 0.5225,\) accurate to four decimal places, we get

\[
p - 0.02 > 0.5,
\]

so

\[
\left[J_N > p - 0.02 \right] \Rightarrow \left[J_n > 0.5 \right],
\]

so

\[
\Pr \left[J_N > p - 0.02 \mid T_N = N \right] \leq \Pr \left[J_N > 0.5 \mid T_N = N \right].
\]

Therefore, for \(N\) is sufficiently large, since
Pr [\(J_N > 0.5 \mid T_N = N \)]
\geq \Pr [J_N > p - 0.02 \mid T_N = N] > 0.99,

we conclude: under the GFA’s first system, with probability > 99%,
over 50% of the professors receive $0.

Proof of Claim:

Given \(\varepsilon > 0 \), want: as \(n \to \infty \), \(\Pr [p - \varepsilon < J_n < p + \varepsilon \mid T_n = n] \to 1 \).
Let \(E := \{0, 1, 10\} \). Then \(E \) is residue-unconstrained.
Also, \(\forall n \in \mathbb{N}, \{ t \in \mathbb{Z} \mid \Pr [X_n = t] > 0 \} = E \).
Let \(\alpha := 1 \). Then: \(\alpha \in \mathbb{Z} \) and \(\forall n \in \mathbb{N}, \ E [X_n] = \alpha \).
For all \(n \in \mathbb{N} \), let \(\kappa_n := \E [I_n \mid T_n = n] \).
Then: \(\forall n \in \mathbb{N}, \ \kappa_n = \Pr [X_n = 0 \mid T_n = n] \).
By Theorem 11.5, we get:

as \(n \to \infty \), \(\Pr [X_n = 0 \mid X_1 + \cdots + X_n = n \alpha] \to p \).
That is, as \(n \to \infty \), \(\Pr [X_n = 0 \mid T_n = n] \to p \).
Then: \(\kappa_n \to p \).

So, \(\exists n_0 \in \mathbb{N} \) s.t., \(\forall n \in [n_0, \infty) \),
we have \(p - (\varepsilon/2) < \kappa_n < p + (\varepsilon/2) \),
and so both \(p - \varepsilon < \kappa_n - (\varepsilon/2) \) and \(\kappa_n + (\varepsilon/2) < p + \varepsilon \),
and so \([\kappa_n - (\varepsilon/2) < J_n < \kappa_n + (\varepsilon/2)] \Rightarrow [p - \varepsilon < J_n < p + \varepsilon] \),
and so \(\Pr [\kappa_n - (\varepsilon/2) < J_n < \kappa_n + (\varepsilon/2) \mid T_n = n] \leq \Pr [p - \varepsilon < J_n < p + \varepsilon \mid T_n = n] \).

It therefore suffices to show:

as \(n \to \infty \), \(\Pr [\kappa_n - (\varepsilon/2) < J_n < \kappa_n + (\varepsilon/2) \mid T_n = n] \to 1 \).
We have: \(\forall n \in \mathbb{N}, \ T_n \) is invariant under permutation of \(X_1, \ldots, X_n \),
as is the joint-distribution of \(X_1, \ldots, X_n \).
Then: \(\forall n \in \mathbb{N}, \forall i \in [1..n], \ E \{ I_i \mid T_n = n \} = E \{ I_n \mid T_n = n \} \).
Then: \(\forall n \in \mathbb{N}, \forall i \in [1..n], \ E \{ I_i \mid T_n = n \} = \kappa_n \).
Since, \(\forall n \in \mathbb{N}, \ J_n = (I_1 + \cdots + I_n)/n \), we get:
\(\forall n \in \mathbb{N}, \ E \{ J_n \mid T_n = n \} = (\sum_{i=1}^{n} E \{ I_i \mid T_n = n \}) / n \).
Then: \(\forall n \in \mathbb{N}, \ E \{ J_n \mid T_n = n \} = (\sum_{i=1}^{n} \kappa_n) / n \).
Then: \(\forall n \in \mathbb{N}, \ E \{ J_n \mid T_n = n \} = \kappa_n \).
For all \(n \in \mathbb{N} \), let \(v_n := \text{Var} [J_n \mid T_n = n] \).
Then, by Chebyshev’s inequality, we have: \(\forall n \in \mathbb{N}, \ \Pr [\kappa_n - (\varepsilon/2) < J_n < \kappa_n + (\varepsilon/2) \mid T_n = n] \geq 1 - \frac{(v_n/(\varepsilon/2))^2}{n} \).

It therefore suffices to show: as \(n \to \infty \), \(v_n \to 0 \).
Since \(\forall n \in \mathbb{N}, \ v_n = \text{Var} [J_n \mid T_n = n] \)
= (\mathbb{E} [J_n^2 | T_n = n]) - (\mathbb{E} [J_n | T_n = n])^2.

and since, as \(n \to \infty \),

\[\kappa_n^2 \to p^2, \]

we want: as \(n \to \infty \), \(\mathbb{E} [J_n^2 | T_n = n] \to p^2. \)

For all \(n \in [2, \infty) \), let \(\lambda_n := \mathbb{E} [I_{n-1} \cdot I_n | T_n = n]. \)

Then: \(\forall n \in [2, \infty), \lambda_n = \mathbb{P} [X_{n-1} = 0 = X_n | T_n = n]. \)

So, by the result of §13, we get: as \(n \to \infty \), \(\lambda_n \to p^2. \)

For all \(n \in \mathbb{N} \), since \(I_n \) is an indicator variable, we get: \(I_n \in \{0, 1\} \) a.s.

Then:

\[(I_n = 1_n) \quad n \in \mathbb{N}. \]

Recall:

\[\forall n \in \mathbb{N}, \quad \mathbb{E} [I_n \mathbb{P} | T_n = n] = \mathbb{E} [I_n^2 | T_n = n] = \kappa_n. \]

Then:

\[\forall n \in \mathbb{N}, \quad \kappa_n = \mathbb{E} [I_n^2 | T_n = n]. \]

We have:

\[\forall n \in \mathbb{N}, \quad T_n \text{ is invariant under permutation of } X_1, \ldots, X_n, \]

as is the joint-distribution of \(X_1, \ldots, X_n. \)

Similarly, \(\forall n \in [2, \infty), \forall i, j \in [1..n], \text{ if } i \neq j \), then

\[\mathbb{E} [I_i \cdot I_j | T_n = n] = \mathbb{E} [I_{n-1} \cdot I_n | T_n = n], \]

so,

\[\forall n \in [2, \infty), \forall i, j \in [1..n], \text{ if } i \neq j \], then

\[\mathbb{E} [I_i \cdot I_j | T_n = n] = \lambda_n. \]

For all \(n \in \mathbb{N} \), for all \(i, j \in [1..n] \), let \(c_{ijn} := \mathbb{E} [I_i \cdot I_j | T_n = n] \)

Then:

\[\forall n \in \mathbb{N}, \forall i, j \in [1..n], \quad c_{ijn} = \begin{cases} \kappa_n, & \text{if } i = j \\ \lambda_n, & \text{if } i \neq j. \end{cases} \]

Then:

\[\kappa_n \to p \quad \text{and} \quad \lambda_n \to p^2. \]

Since \(\forall n \in \mathbb{N}, \quad J_n = (I_1 + \cdots + I_n)/n, \)

we get:

\[(J_n = (\sum_{i=1}^n I_i)/n). \]

Then:

\[\forall n \in \mathbb{N}, \quad \mathbb{E} [J_n^2 | T_n = n] = (\sum_{i=1}^n \sum_{j=1}^n c_{ijn}) / n^2. \]

Then:

\[\forall n \in \mathbb{N}, \quad \mathbb{E} [J_n^2 | T_n = n] = (1/n) \cdot \kappa_n + (1 - (1/n)) \cdot \lambda_n. \]

Then:

\[\text{as } n \to \infty, \quad \mathbb{E} [J_n^2 | T_n = n] \to 0 \cdot p + 1 \cdot p^2. \]

Then:

\[\text{as } n \to \infty, \quad \mathbb{E} [J_n^2 | T_n = n] \to p^2. \]

End of proof of Claim.

15. Boltzmann distributions on finite sets

Recall (§8): \(\forall \text{countable set } \Theta, \)

\[\mathcal{M}_\Theta \quad \text{is the set of measures on } \Theta \]

and \(\mathcal{F}_\Theta \quad \text{is the set of nonzero finite measures on } \Theta \)
and \(\mathcal{P}_\Theta \) is the set of probability measures on \(\Theta \).

Recall (§8): \(\forall \) nonempty countable set \(\Theta \), \(\forall \mu \in \mathcal{F} \mathcal{M}_\Theta^\times \), \(\mathcal{N}(\mu) \) is the normalization of \(\mu \).

DEFINITION 15.1. Let \(E \subseteq \mathbb{R} \) be nonempty and finite, \(\beta \in \mathbb{R} \). The **unnormalized-\(\beta \)-Boltzmann distribution on \(E \)** is the measure \(\hat{B}_\beta^E \in \mathcal{F} \mathcal{M}_E^\times \) defined by:

\[
\forall \varepsilon \in E, \quad \hat{B}_\beta^E \{ \varepsilon \} = e^{-\beta \varepsilon}.
\]

Also, the **\(\beta \)-Boltzmann distribution on \(E \)** is \(B_\beta^E \) defined as:

\[
B_\beta^E := \mathcal{N}(\hat{B}_\beta^E) \in \mathcal{P}_E.
\]

Then: \(\forall \varepsilon \in E \), we have: \(B_\beta^E \{ \varepsilon \} = (\hat{B}_\beta^E \{ \varepsilon \}) / (\hat{B}_\beta^E (E)) \).

Example: Let \(E := \{0, 1, 10\} \) and let \(\beta \in \mathbb{R} \).

Then: \(\hat{B}_\beta^E \{0\} = 1, \quad \hat{B}_\beta^E \{1\} = e^{-\beta}, \quad \hat{B}_\beta^E \{10\} = e^{-10\beta} \).

Let \(C := 1/(1 + e^{-\beta} + e^{-10\beta}) \).

Then: \(B_\beta^E \{0\} = C, \quad B_\beta^E \{1\} = Ce^{-\beta}, \quad B_\beta^E \{10\} = Ce^{-10\beta} \).

Example: Let \(E := \{2, 4, 8, 9\} \) and let \(\beta \in \mathbb{R} \).

Then: \(\hat{B}_\beta^E \{2\} = e^{-2\beta}, \quad \hat{B}_\beta^E \{4\} = e^{-4\beta} \),

\[
\hat{B}_\beta^E \{8\} = e^{-8\beta}, \quad \hat{B}_\beta^E \{9\} = e^{-9\beta}.
\]

Let \(C := 1/(e^{-2\beta} + e^{-4\beta} + e^{-8\beta} + e^{-9\beta}) \).

Then: \(B_\beta^E \{2\} = Ce^{-2\beta}, \quad B_\beta^E \{4\} = Ce^{-4\beta}, \quad B_\beta^E \{8\} = Ce^{-8\beta}, \quad B_\beta^E \{9\} = Ce^{-9\beta} \).

Recall (§8): For any countable set \(\Theta \), for any \(\mu \in \mathcal{M}_\Theta \), \(S_\mu \) is the support of \(\mu \).

Note: \(\forall \) nonempty finite \(E \subseteq \mathbb{R}, \forall \beta \in \mathbb{R} \), we have: \(S_{B_\beta^E} = E = S_{\hat{B}_\beta^E} \).

THEOREM 15.2. Let \(E \subseteq \mathbb{R} \) be nonempty and finite.

Let \(\varepsilon_0 \in E, \beta, \xi \in \mathbb{R} \). Then: \(B_{\beta}^E \{\varepsilon_0 - \xi\} = B_{\beta}^E \{\varepsilon_0\} \).

Proof. We have:

\[
B_{\beta}^E \{\varepsilon_0 - \xi\} = \frac{e^{-\beta(\varepsilon_0 - \xi)}}{\sum_{\varepsilon \in E} \left[e^{-\beta(\varepsilon - \xi)} \right]}.
\]

\[
= \frac{e^{-\beta\varepsilon_0} \cdot e^{\beta\xi}}{\sum_{\varepsilon \in E} \left[e^{-\beta\varepsilon} \cdot e^{\beta\xi} \right]}
\]
\[
\frac{e^{\beta \cdot \xi} \cdot e^{-\beta \cdot \epsilon_0}}{e^{\beta \cdot \xi} \cdot \sum_{\epsilon \in E} e^{-\beta \cdot \epsilon}} = \frac{\sum_{\epsilon \in E} e^{-\beta \cdot \epsilon}}{e^{-\beta \cdot \epsilon_0}} = B^E_\beta(\epsilon_0).
\]

Recall (§8): Let \(\Theta \subseteq \mathbb{R} \) be countable, \(\mu \in \mathcal{P}_\Theta \). Assume \(\#S_\mu < \infty \). Then \(|\mu|_1 < \infty \) and \(M_\mu \) is the mean of \(\mu \) and \(V_\mu \) is the variance of \(\mu \).

Let \(E \subseteq \mathbb{R} \) be nonempty and finite. Let \(\beta \in \mathbb{R} \). We **define**:

\[
\Gamma^E_\beta := \sum_{\epsilon \in E} [\epsilon \cdot e^{\beta \cdot \epsilon}], \\
\Delta^E_\beta := \sum_{\epsilon \in E} [e^{\beta \cdot \epsilon}], \\
A^E_\beta := \frac{\Gamma^E_\beta}{\Delta^E_\beta}.
\]

Then:

\[
\Gamma^E_\beta = \sum_{\epsilon \in E} [\epsilon \cdot (\hat{B}^E_\beta(\epsilon))].
\]

Also,

\[
\Delta^E_\beta = \sum_{\epsilon \in E} [\hat{B}^E_\beta(\epsilon)], \quad \text{and so} \quad \Delta^E_\beta = \hat{B}^E_\beta(E).
\]

Since

\[
\frac{\Gamma^E_\beta}{\Delta^E_\beta} = \frac{\sum_{\epsilon \in E} [\epsilon \cdot (\hat{B}^E_\beta(\epsilon))]}{\hat{B}^E_\beta(E)} = \sum_{\epsilon \in E} [\epsilon \cdot (B^E_\beta(\epsilon))],
\]

we conclude:

\[
A^E_\beta = M_{B^E_\beta}.
\]

Then: \(A^E_\beta \) is the average value of any \(E \)-valued random-variable whose distribution in \(E \) is \(B^E_\beta \).

THEOREM 15.3. Let \(E \subseteq \mathbb{R} \) be nonempty and finite. Let \(\beta, \xi \in \mathbb{R} \). Then:

\[
A^{E-\xi}_\beta = A^E_\beta - \xi.
\]

Proof.

Want: \(M_{B^{E-\xi}_\beta} = M_{B^E_\beta} - \xi \).

Let \(\lambda := B^{E-\xi}_\beta, \mu := B^E_\beta \).

We have: \(\lambda \in \mathcal{P}_{E-\xi} \) and \(\mu \in \mathcal{P}_E \).

By Theorem 15.2, we have:

\[
\forall \epsilon \in E, \quad B^{E-\xi}_\beta(\epsilon - \xi) = B^E_\beta(\epsilon).
\]

Then:

\[
\forall \epsilon \in E, \quad \lambda(\epsilon - \xi) = \mu(\epsilon).
\]

Since \(\mu \in \mathcal{P}_E \), we get: \(\mu(E) = 1 \).

Then:

\[
M_\lambda = \sum_{\epsilon \in E} [(\epsilon - \xi) \cdot (\lambda(\epsilon - \xi))]
= \sum_{\epsilon \in E} ((\epsilon - \xi) \cdot (\mu(\epsilon))]
= \sum_{\epsilon \in E} [\epsilon \cdot (\mu(\epsilon)) - \xi \cdot (\mu(\epsilon))] \\
= \sum_{\epsilon \in E} [\epsilon \cdot (\mu(\epsilon))] - \xi \cdot \sum_{\epsilon \in E} [\mu(\epsilon)]
= M_\mu - \xi \cdot (\mu(E)) = M_\mu - \xi \cdot 1 = M_\mu - \xi. \quad \square
\]
THEOREM 15.4. Let $E \subseteq \mathbb{R}$ be nonempty and finite. Then:

$$
\begin{align*}
\text{as } \beta & \to \infty, \quad A_E^\beta \to \min E \\
\text{and } \beta & \to -\infty, \quad A_E^\beta \to \max E.
\end{align*}
$$

The proof is a matter of bookkeeping, best explained by example: Let $E := \{2, 4, 8, 9\}$. Then $\min E = 2$ and $\max E = 9$.

Since,

$\forall \beta \in \mathbb{R}, \quad A_E^\beta = \frac{2e^{-2\beta} + 4e^{-4\beta} + 8e^{-8\beta} + 9e^{-9\beta}}{e^{-23\beta} + e^{-43\beta} + e^{-83\beta} + e^{-93\beta}},$

we get

$\text{as } \beta \to \infty, \quad A_E^\beta \to \frac{2}{1}$

and

$\text{as } \beta \to -\infty, \quad A_E^\beta \to \frac{9}{1},$

and so

$\text{as } \beta \to \infty, \quad A_E^\beta \to \min E$

and

$\text{as } \beta \to -\infty, \quad A_E^\beta \to \max E.$

For all nonempty, finite $E \subseteq \mathbb{R}$, define $A_E^\beta : \mathbb{R} \to \mathbb{R}$ by:

$\forall \beta \in \mathbb{R}, \quad A_E^\beta (\beta) = A_E^\beta.$

THEOREM 15.5. Let $E \subseteq \mathbb{R}$. Assume: $2 \leq \#E < \infty$.

Then: A_E^β is a strictly-decreasing C^ω-diffeomorphism

from \mathbb{R} onto $(\min E; \max E)$.

Proof. Let $\kappa := \#E$. Choose $\varepsilon_1, \ldots, \varepsilon_\kappa \in \mathbb{R}$ s.t. $E = \{\varepsilon_1, \ldots, \varepsilon_\kappa\}$.

Then: $2 \leq \kappa < \infty$ and $\varepsilon_1, \ldots, \varepsilon_\kappa$ are distinct.

Then:

$\forall \beta \in \mathbb{R}, \quad A_E^\beta (\beta) = \frac{\sum_{i=1}^{\kappa} \left[\varepsilon_i \cdot e^{-\beta \varepsilon_i} \right]}{\sum_{j=1}^{\kappa} \left[e^{-\beta \varepsilon_j} \right]}$. Then $A_E^\beta : \mathbb{R} \to \mathbb{R}$ is C^ω.

So, by Theorem 15.4 and the C^ω-Inverse Function Theorem and the Mean Value Theorem, it suffices to show: $(A_E^\beta)' < 0$ on \mathbb{R}.

Given $\beta \in \mathbb{R}$, **want** $(A_E^\beta)'(\beta) < 0$.

Let $P := \sum_{i=1}^{\kappa} \left[\varepsilon_i \cdot e^{-\beta \varepsilon_i} \right]$, $P' := \sum_{i=1}^{\kappa} \left[(-\varepsilon_i^2) \cdot e^{-\beta \varepsilon_i} \right]$.

Let $Q := \sum_{j=1}^{\kappa} \left[e^{-\beta \varepsilon_j} \right]$, $Q' := \sum_{j=1}^{\kappa} \left[(-\varepsilon_j) \cdot e^{-\beta \varepsilon_j} \right]$.

Then $Q > 0$. Also, by the Quotient Rule, $(A_E^\beta)'(\beta) = [QP' - PQ']/Q^2$.

Want $QP' - PQ' < 0$.

We have: $QP' = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \left[(-\varepsilon_i^2) \cdot e^{-\beta (\varepsilon_i + \varepsilon_j)} \right]$.

We have: $PQ' = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \left[(-\varepsilon_i \varepsilon_j) \cdot e^{-\beta (\varepsilon_i + \varepsilon_j)} \right]$.

Then: $QP' - PQ' = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \left[(-\varepsilon_i^2 + \varepsilon_i \varepsilon_j) \cdot e^{-\beta (\varepsilon_i + \varepsilon_j)} \right]$.

Interchanging i and j, we get:

$QP' - PQ' = \sum_{j=1}^{\kappa} \sum_{i=1}^{\kappa} \left[(-\varepsilon_j^2 + \varepsilon_j \varepsilon_i) \cdot e^{-\beta (\varepsilon_j + \varepsilon_i)} \right]$.

By commutativity of addition and multiplication, adding the last two equations gives:

$2 \cdot (QP' - PQ') = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \left[(-\varepsilon_i^2 - \varepsilon_j^2 + 2\varepsilon_i \varepsilon_j) \cdot e^{-\beta (\varepsilon_i + \varepsilon_j)} \right]$.

Then: $2 \cdot (QP' - PQ) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left[- (\varepsilon_i - \varepsilon_j)^2 \cdot e^{-\beta(\varepsilon_i + \varepsilon_j)} \right]$.
Then: $2 \cdot (QP' - PQ') < 0$.

Definition 15.6.
Let $E \subseteq \mathbb{R}$.
Assume $2 \leq \# E < \infty$.
Let $\alpha \in (\min E; \max E)$.
The α-Boltzmann parameter on E is: $BP^E_\alpha := (A^E_\alpha)^{-1}(\alpha)$.

So the α-Boltzmann parameter on E is the unique $\beta \in \mathbb{R}$ s.t. $A^E_\beta = \alpha$.

Example: Computations at the end of §6 show:

$\forall \beta \in \mathbb{R}$, if $\frac{e^{-\beta} + 10e^{-10\beta}}{1 + e^{-\beta} + 10e^{-10\beta}} = 1$, then $e^{-\beta} = 9^{-1/10}$.
Then, $\forall \beta \in \mathbb{R}$, if $A^{(0,1,10)}(\beta) = 1$, then $\beta = (\ln 9)/10$.
Then: $(A^{(0,1,10)})^{-1}(1) = (\ln 9)/10$.
Then: $BP^{(0,1,10)}_{(0,1,10)} = (\ln 9)/10$.

Example: Let $E := \{2, 4, 8, 9\}$, $\alpha := 5$, $\beta := BP^E_\alpha$.
To compute β, we need to solve $A^E_\beta = 5$ for β.
Since A^E_β is strictly-decreasing, there are iterative methods of solution, and we get: $\beta \approx 0.0918$, accurate to four decimals.
(Thanks to C. Prouty for these calculations. See §25.)

Theorem 15.7. Let $E \subseteq \mathbb{R}$. Assume $2 \leq \# E < \infty$.
Let $\alpha \in (\min E; \max E)$. Let $\xi \in \mathbb{R}$. Then: $BP^{E-\xi}_{\alpha-\xi} = BP^E_\alpha$.

Proof. Let $\beta := BP^E_\alpha$.
Want: $BP^{E-\xi}_{\alpha-\xi} = \beta$.

Since $\beta = BP^E_\alpha = (A^E_\alpha)^{-1}(\alpha)$, we get: $(A^E_\beta)(\beta) = \alpha$.
By Theorem 20.5, $A^{E-\xi}_{\beta} = A^E_{\beta - \xi}$.
Since $(A^E_{\beta - \xi})(\beta) = A^{E-\xi}_{\beta} = A^E_{\beta - \xi} = ((A^E_\beta)(\beta)) - \xi = \alpha - \xi$, we get: $\beta = (A^{E-\xi}_{\beta})^{-1}(\alpha - \xi)$.
So, since $BP^{E-\xi}_{\alpha-\xi} = (A^{E-\xi}_{\beta})^{-1}(\alpha - \xi)$, we get: $BP^{E-\xi}_{\alpha-\xi} = \beta$.

16. Residue-unconstrained finite sets

In the next three theorems, we generalize the result of §12 from $\{0, 1, 10\}$ to arbitrary finite residue-unconstrained sets.
See the example at the end of this section.

Recall (§8): \forall nonempty finite set F, $\forall f \in F$, $\nu_F\{f\} = 1/(\# F)$.
Recall (§8): \forall countable set Θ,
THEOREM 16.1. Let $E \subseteq \mathbb{Z}$ be finite and residue-unconstrained. Let $\alpha \in (\min E; \max E)$. Let $\beta := B \mathcal{P}_E^E$.

Let $t_1, t_2, \ldots \in \mathbb{Z}$. Assume: $\{t_n - n\alpha \mid n \in \mathbb{N}\}$ is bounded.

For all $n \in \mathbb{N}$, let $\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = t_n\}$.

Let $\varepsilon_0 \in E$. Then: as $n \to \infty$, $\nu_{\Omega_n} \{f \in \Omega_n \mid f_n = \varepsilon_0\} \to B_{\beta}^E(\varepsilon_0)$.

Recall: $\nu_\emptyset(\emptyset) = -1$.
So, since $B_{\beta}^E(\varepsilon_0) > 0$, part of the content of this theorem is:

\[\forall \text{sufficiently large } n \in \mathbb{N}, \quad \Omega_n \neq \emptyset. \]

See Claim 2 in the proof below.

Proof. Let $\mu := B_{\beta}^E$. Then: $\mu \in \mathcal{P}_E$ and $S_\mu = E$.

By hypothesis, E is finite. Then S_μ is finite.

So, since $\mu \in \mathcal{P}_E \subseteq \mathcal{F}\mathcal{M}_E$, we get: $|\mu|_1 < \infty$ and $|\mu|_2 < \infty$.

Since $\beta = B \mathcal{P}_E^E = (A_E^E)^{-1}(\alpha)$, we get: $(A_E^E)(\beta) = \alpha$.

So, since $(A_E^E)(\beta) = A_E^E = M_{B_E}^E = M_\mu$, we get: $M_\mu = \alpha$.

For all $n \in \mathbb{N}$, define $\psi_n : \mathbb{Z} \to \mathbb{R}$ by:

\[\forall t \in \mathbb{Z}, \quad \psi_n(t) = \mu^n \{f \in E^n \mid f_1 + \cdots + f_n = t\}. \]

Then: $\forall n \in \mathbb{N}, \psi_n(t_n) = \mu^n(\Omega_n)$.

Since E is finite and residue-unconstrained, we get: $2 \leq \#E < \infty$.

Since $\#S_\mu = \#E \geq 2$, by Theorem 8.6, we get: $V_\mu > 0$.

So, since $V_\mu = |\mu|^2 - M_\mu^2 \leq |\mu|^2 < \infty$, we conclude:

\[0 < V_\mu < \infty. \]

Let $v := V_\mu$. Then $0 < v < \infty$. Then $1/\sqrt{2\pi v} > 0$.

Let $\tau := 1/\sqrt{2\pi v}$. Then $\tau > 0$.

Claim 1: As $n \to \infty$, $\sqrt{n} \cdot (\psi_n(t_n)) \to \tau$.

Proof of Claim 1: By Theorem 9.6, we get:

as $n \to \infty$, $\sqrt{n} \cdot (\mu^n \{f \in E^n \mid f_1 + \cdots + f_n = t_n\}) \to 1/\sqrt{2\pi v}$.

Then: as $n \to \infty$, $\sqrt{n} \cdot (\psi_n(t_n)) \to \tau$.

End of proof of Claim 1.

Since $\tau > 0$, by Claim 1, choose $n_0 \in \mathbb{N}$ s.t.

\[\forall n \in [n_0, \infty), \quad \sqrt{n} \cdot (\psi_n(t_n)) > 0. \]

Claim 2: Let $n \in [n_0, \infty)$. Then: $\mu^n(\Omega_n) > 0$.
Proof of Claim 2: Recall: $\psi_n(t_n) = \mu^n(\Omega_n)$. \textbf{Want:} $\psi_n(t_n) > 0$.

By the choice of n_0, we get: $\sqrt{n} \cdot (\psi_n(t_n)) > 0$. Then: $\psi_n(t_n) > 0$.

\textbf{End of proof of Claim 2.}

Recall: $\mu \in \mathcal{P}_E$.

Then: $\forall n \in \mathbb{N}, \mu^n \in \mathcal{P}_{E^n}$, so $\mu^n(\Omega_n) \leq 1$.

So, by Claim 2, $\forall n \in [n_0, \infty)$, $0 < \mu^n(\Omega_n) \leq 1$.

Also, we have: $\forall n \in \mathbb{N}$, $(\mu^n|\Omega_n)(\Omega_n) = \mu^n(\Omega_n)$.

Then: $\forall n \in [n_0, \infty)$, $0 < (\mu^n|\Omega_n)(\Omega_n) \leq 1$.

Then: $\forall n \in [n_0, \infty)$, $\mu^n|\Omega_n \in \mathcal{F}_n$.

Then: $\forall n \in [n_0, \infty)$, $N(\mu^n|\Omega_n) \in \mathcal{P}_n$.

\textbf{Claim 3: Let} $n \in [n_0, \infty)$. \textbf{Then:} $N(\mu^n|\Omega_n) = \nu_{\Omega_n}$.

\textbf{Proof of Claim 3: Let} $\theta := N(\mu^n|\Omega_n)$, $F := \Omega_n$. \textbf{Then} $\theta \in \mathcal{P}_F$.

\textbf{Want:} $\theta = \nu_F$. By Theorem 8.9, given $f, g \in F$, \textbf{want:} $\theta\{f\} = \theta\{g\}$.

By Claim 2, we have: $\mu^n(\Omega_n) > 0$.

Since $(\mu^n|\Omega_n)(\Omega_n) = \mu^n(\Omega_n)$ and $\theta = N(\mu^n|\Omega_n)$, we get: $\theta = \frac{\mu^n|\Omega_n}{\mu^n(\Omega_n)}$.

\textbf{Want:} $\frac{(\mu^n|\Omega_n}\{f\}}{\mu^n(\Omega_n)} = \frac{(\mu^n|\Omega_n}\{g\}}{\mu^n(\Omega_n)}$.

\textbf{Want:} $(\mu^n|\Omega_n)\{f\} = (\mu^n|\Omega_n)\{g\}$.

Since $f, g \in F = \Omega_n$, we get:

$(\mu^n|\Omega_n)\{f\} = \mu^n\{f\}$ and $(\mu^n|\Omega_n)\{g\} = \mu^n\{g\}$.

\textbf{Want:} $\mu^n\{f\} = \mu^n\{g\}$.

Since $\#E \geq 2$, we get: $E \neq \emptyset$. Then $\hat{B}_E^E(E) > 0$.

Let $C := 1/(\hat{B}_E^E(E))$. Then $N(\hat{B}_E^E) = C \cdot \hat{B}_E^E$.

By definition of \hat{B}_E^E, we have: $\forall \varepsilon \in E$, $\hat{B}_E^E\{\varepsilon\} = e^{-\beta} e^{-\varepsilon}$.

So, since $\mu = B_E^E = N(\hat{B}_E^E) = C \cdot \hat{B}_E^E$,

we get: $\forall \varepsilon \in E$, $\mu\{\varepsilon\} = C e^{-\beta} e^{-\varepsilon}$.

Since $f \in F = \Omega_n$, by definition of Ω_n, we get: $f_1 + \cdots + f_n = t_n$.

Since $g \in F = \Omega_n$, by definition of Ω_n, we get: $g_1 + \cdots + g_n = t_n$.

Since $f_1 + \cdots + f_n = t_n = g_1 + \cdots + g_n$,

we get: $C \cdot e^{-\beta} (f_1 + \cdots + f_n) = C \cdot e^{-\beta} (g_1 + \cdots + g_n)$.

Then: $(C e^{-\beta} f_1) \cdots (C e^{-\beta} f_n) = (C e^{-\beta} g_1) \cdots (C e^{-\beta} g_n)$.

Then: $(\mu\{f_1\}) \cdots (\mu\{f_n\}) = (\mu\{g_1\}) \cdots (\mu\{g_n\})$.

Then: $\mu^n\{f\} = \mu^n\{g\}$.

\textbf{End of proof of Claim 3.}
By hypothesis, E is residue-unconstrained and $\varepsilon_0 \in E$ and $t_1, t_2, \ldots \in \mathbb{Z}$ and \{ $t_n - n\alpha$ \mid n \in \mathbb{N}$ \} is bounded. Recall: $\mu \in \mathcal{P}_E$ and $S_\mu = E$ and $|\mu|_2 < \infty$ and $M_\mu = \alpha$.

Let $P := \mu\{\varepsilon_0\}$. Then, since $\mu = B_\beta^E$, we get: $P = B_\beta^E\{\varepsilon_0\}$. We want: as $n \to \infty$, $\nu_{\Omega_n}\{f \in \Omega_n \mid f_n = \varepsilon_0\} \to P$.

By Theorem 11.2, as $n \to \infty$, $(\mathcal{N}(\mu^n|\Omega_n))\{f \in \Omega_n \mid f_n = \varepsilon_0\} \to P$. So, by Claim 3, as $n \to \infty$, $\nu_{\Omega_n}\{f \in \Omega_n \mid f_n = \varepsilon_0\} \to P$. □

Recall (§2): $\forall t \in \mathbb{R}$, $\lfloor t \rfloor$ is the floor of t.

We record the $t_n = \lfloor n\alpha \rfloor$ version of the preceding theorem:

THEOREM 16.2. Let $E \subseteq \mathbb{Z}$ be finite and residue-unconstrained.

Let $\alpha \in (\min E; \max E)$. Let $\beta := BP_\alpha^E$.

For all $n \in \mathbb{N}$, let $\Omega_n := \{ f \in E^n \mid f_1 + \cdots + f_n = \lfloor n\alpha \rfloor \}$.

Let $\varepsilon_0 \in E$. Then: as $n \to \infty$, $\nu_{\Omega_n}\{f \in \Omega_n \mid f_n = \varepsilon_0\} \to B_\beta^E\{\varepsilon_0\}$.

We record the $\alpha \in \mathbb{Z}$ special case of the preceding theorem:

THEOREM 16.3. Let $E \subseteq \mathbb{Z}$ be finite and residue-unconstrained.

Let $\alpha \in (\min E; \max E)$. Let $\beta := BP_\alpha^E$. Assume $\alpha \in \mathbb{Z}$.

For all $n \in \mathbb{N}$, let $\Omega_n := \{ f \in E^n \mid f_1 + \cdots + f_n = n\alpha \}$.

Let $\varepsilon_0 \in E$. Then: as $n \to \infty$, $\nu_{\Omega_n}\{f \in \Omega_n \mid f_n = \varepsilon_0\} \to B_\beta^E\{\varepsilon_0\}$.

Example: Suppose $E = \{0, 1, 10\}$ and $\alpha = 1$.

Then $\Omega_N = \{ f \in E^N \mid f_1 + \cdots + f_N = N \}$, so Ω_N represents the set of all GFA dispensations, as described in §3.

The measure ν_{Ω_N} gives equal probability to each dispensation, so ν_{Ω_N} represents the GFA’s first system for awarding grants, also described in §3.

Since $\beta = BP_\alpha^E = BP_1^{(0,1,10)}$, we calculate: $\beta = (\ln 9)/10$.

More calculation gives: $(B_\beta^E\{0\}, B_\beta^E\{1\}, B_\beta^E\{10\}) = \left(\frac{1}{9^{1/10} + 9^{-1}} \right)$.

Since N is large, by Theorem 16.3, we get:

$\nu_{\Omega_N}\{f \in \Omega_N \mid f_N = \varepsilon_0\} \approx B_\beta^E\{\varepsilon_0\}$.

So, if I am the Nth professor, then, under the first system, my probability of receiving ε_0 dollars is approximately equal to $B_\beta^E\{\varepsilon_0\}$.

Thus Theorem 16.3 reproduces the result of §12.
17. Rational award sets

In this section, we investigate what happens if the set of awards is an arbitrary set of rational numbers.

Recall that, on our Earth, which is Earth-1218, grants are $0, $1, $10, with average grant $1.

Example: In a parallel universe, on Earth-googol-plex,
there are N professors, and
grants are $10, $14.45, $54, with average grant $13.37,
Earth googol-plex has its own GFA.
This GFA there is using the “first system” for awarding grants,
in which every dispensation is equally likely.

Question: Under this system, for any professor,
what is the approximate probability of receiving $10? $14.45? $54?

To simplify this problem, we can imagine that the GFA makes two rounds of awards.
In the first round, it simply dispenses $10 to each professor.
In the second round, using the first system, it dispenses additional grants of $0, $4.45, $44, with average grant $3.37.
We seek the approximate probability of the additional grant being each of the numbers $0, $4.45, $44.
To simplify this problem still more, we can change monetary units so that the grant amounts are all integers:
Additional grants, in pennies, are 0, 445, 4400, with average grant 337,
and we seek the approximate probability of receiving 0, 445, 4400.
Unfortunately, \{0, 445, 4400\} \subseteq 5\mathbb{Z} + 0,
so \{0, 445, 4400\} is not residue-unconstrained,
making it difficult to apply the Discrete Local Limit Theorem.
Since gcd\{0, 445, 4400\} = 5, we can change monetary units again:
Additional grants, in nickels, are 0, 89, 880, with average grant 337/5,
and we seek the approximate probability of receiving 0, 89, 880.
Let $E := \{0, 89, 880\}$. Then gcd(E) = 1. Let $\alpha := 337/5$.
The amount of money (in nickels) allocated by Congress is $N\alpha$, to be dispensed among the N professors.
Unfortunately, a census reveals that: N is not divisible by 5.
Recall: $\alpha = 337/5$. Then $N\alpha \notin \mathbb{Z}$, while 0, 89, 880 \in \mathbb{Z}.
It is therefore impossible to dispense the grant money.
The bureaucracy seizes up, there is pandemonium in the streets,
and the military steps in to impose order.
The superheros of Earth googol-plex are committed to democracy,
and so they reverse time and select a different time-line.
On this new time-line, E and α are unchanged, but
the number, N, of professors
is now blissfully divisible by 5, so $N\alpha \in \mathbb{Z}$.

Let $\varepsilon_0 \in E$ be given.

We want: the approximate probability of receiving ε_0 nickels.
Recall (\S2): $\forall t \in \mathbb{R}, \lfloor t \rfloor$ is the floor of t.
For all $n \in \mathbb{N}$, let $\Omega_n := \{f \in E^n \mid f_1 + \cdots + f_n = \lfloor n\alpha \rfloor\}$.
Since $N\alpha \in \mathbb{Z}$, we get: $\Omega_N = \{f \in E^N \mid f_1 + \cdots + f_N = N\alpha \}$.

We want: an approximation to $\nu_{\Omega_N} \{f \in \Omega_N \mid f_N = \varepsilon_0\}$.
Since $0 \in E$ and $\gcd(E) = 1$, we get: E is residue-unconstrained.

Let $\beta := \text{BP}_E^{\alpha}$. By Theorem 16.2, we have:
as $n \to \infty$, $\nu_{\Omega_n} \{f \in \Omega_n \mid f_n = \varepsilon_0\} \to B^E_\beta\{\varepsilon_0\}$.
So, assuming N is large, we get
$\nu_{\Omega_N} \{f \in \Omega_N \mid f_N = \varepsilon_0\} \approx B^E_\beta\{\varepsilon_0\}$.
For each $\varepsilon_0 \in \{0, 89, 880\}$, we want to compute $B^E_\beta\{\varepsilon_0\}$.
We therefore want to compute $(B^E_\beta\{0\}, B^E_\beta\{89\}, B^E_\beta\{880\})$.

Since $\beta = \text{BP}_E^{\alpha} = \text{BP}_{\{337/5\}}$, we see that:
to evaluate β, we must solve $A_{\{337/5\}}(\beta) = 337/5$ for β.
Since, by Theorem 20.7, $A_{\{337/5\}}$ is strictly-decreasing,
there are simple iterative methods to do this.
We calculate $\beta = 0.003144$, accurate to six decimals.
We also calculate $(B^E_\beta\{0\}, B^E_\beta\{89\}, B^E_\beta\{880\}) = (0.5498, 0.4156, 0.0345)$,
all accurate to four decimals.
(Thanks to C. Prouty for this calculation. See \S25.)

More generally: Imagine some parallel universe.
Let E_0 denote the set of grant-awards.
Assume $E_0 \subseteq \mathbb{Q}$ and $2 \leq \#E_0 < \infty$.

Let α_0 denote the average award.
Since $\#E_0 \geq 2$, we get: $E_0 \neq \emptyset$. Choose $\varepsilon_0 \in E_0$. Then $\varepsilon_0 \in \mathbb{Q}$.

Let $E_1 := E_0 - \varepsilon_0$, $\alpha_1 := \alpha_0 - \varepsilon_0$. Then $0 \in E_1$.
So, by giving out awards in two rounds (first ε_0, then the remainder),
we are reduced to a case where 0 is a possible award.
Since $E_1 = E_0 - \varepsilon_0 \subseteq \mathbb{Q}$, choose $m \in \mathbb{N}$ s.t. $mE_1 \subseteq \mathbb{Z}$.

Let $E_2 := mE_1$, $\alpha_2 := m\alpha_1$. Then: $E_2 \subseteq \mathbb{Z}$.

So, by change of monetary unit,

we are reduced to a case where every grant-award is an integer.

Let $g := \gcd(E_2)$, $E := E_2/g$, $\alpha := \alpha_2/g$.
Then $0 \in E$ and $\gcd(E) = 1$, so E is residue-unconstrained.

So, by change of monetary unit, we are reduced to a case where the set of grant-awards is residue-unconstrained.

Since every grant-award is an integer,

if $N\alpha \notin \mathbb{Z}$, then no dispensation is possible, leading to your typical military dictatorship and superhero intervention.

On the other hand,

if $N\alpha \in \mathbb{Z}$, then, using Theorem 16.2,

we can compute the approximate probability of each award.

18. Irrational awards

In this section, we briefly discuss the case where NOT every grant award is a rational number.

Here, we only present an example to show that the award probabilities may NOT follow a Boltzmann distribution.

Example: On Earth-aleph-1, the GFA gives

grants of 0, $\sqrt{2}$, $\sqrt{3}$, $10 - \sqrt{2} - \sqrt{3}$ dollars,

with an average grant of 1 dollar,

giving equal probability to every possible dispensation.

Assume: N is the number of professors and N is divisible by 10.

Let $M := N/10$. Then $M \in \mathbb{N}$ and there are $10M$ professors.

Moreover, since the average grant is 1 dollar, we get:

there are $10M$ dollars to dispense among the $10M$ professors.

Claim: On Earth-aleph-1, every dispensation of awards has

$7M$ grants of 0 dollars,

M grants of $\sqrt{2}$ dollars,

M grants of $\sqrt{3}$ dollars,

M grants of $10 - \sqrt{2} - \sqrt{3}$ dollars.

Proof of Claim: Given a dispensation,

let w be the number of 0 dollar grants and

let x be the number of $\sqrt{2}$ dollar grants and
let y be the number of $\sqrt{3}$ dollar grants and let z be the number of $10 - \sqrt{2} - \sqrt{3}$ dollar grants, want: $w = 7M$ and $x = y = z = M$.

Because the total money dispensed is $10M$ dollars, we get:

$$w \cdot 0 + x \cdot \sqrt{2} + y \cdot \sqrt{3} + z \cdot (10 - \sqrt{2} - \sqrt{3}) = 10M.$$

Then:

$$(10z - 10M) \cdot 1 + (x - z) \cdot \sqrt{2} + (y - z) \cdot \sqrt{3} = 0.$$

So, since $1, \sqrt{2}, \sqrt{3}$ are linearly independent over \mathbb{Q}, we get:

$$10z - 10M = 0 \quad \text{and} \quad x - z = 0 \quad \text{and} \quad y - z = 0.$$

Then $z = M$ and $x = z$ and $y = z$. Then $x = y = z = M$.

It remains only to show: $w = 7M$.

Because there are $10M$ professors, we get: $w + x + y + z = 10M$.

Then: $w + M + M + M = 10M$. Then: $w = 7M$.

End of proof of Claim.

Of the four grant amounts, the largest is $10 - \sqrt{2} - \sqrt{3}$.

So, if I am one of the $10M$ professors, then I would hope to be among the lucky M who receive $10 - \sqrt{2} - \sqrt{3}$ dollars.

My probability of being so lucky is: $M/(10M)$, i.e., 10%.

That is, we obtain a probability of:

10% for $10 - \sqrt{2} - \sqrt{3}$ dollars.

Extending this reasoning, we obtain probabilities of:

70% for 0 dollars,

10% for $\sqrt{2}$ dollars,

10% for $\sqrt{3}$ dollars,

10% for $10 - \sqrt{2} - \sqrt{3}$ dollars.

In a Boltzmann distribution, depending on whether $\beta = 0$ or $\beta \neq 0$, either the probabilities are all equal

or the probabilities are all distinct from one another.

The numbers 70,10,10,10 are neither all equal nor all distinct.

Thus, the 70-10-10-10 distribution above is NOT Boltzmann.

19. Earth-minimum-Mahlo-cardinal and the BUA

Next, we wish to handle thermodynamic systems in which many states may have a single energy-level.

One says that such an energy-level is “degenerate”.

In this section, we develop a whimsical example.

In the next, we will develop a general theory.
Recall that $N \in \mathbb{N}$ is large.

In a parallel universe, on Earth-minimum-Mahlo-cardinal, the BUA (Best University Anywhere) employs N professors.

Each professor has a number, from 1 to N.

Each professor wanders the campus, carrying two bags: one red, one blue.

Each bag is closed from view, but has money in it or is empty.

The “state” of a professor is the pair $\sigma = (\sigma_1, \sigma_2)$ such that

- σ_1 is the number of dollars in the professor’s red bag,
- σ_2 is the number of dollars in the professor’s blue bag;

the professor’s “wealth” is $\sigma_1 + \sigma_2$ dollars.

So, if I am one of the professors, and if my state is $(3, 2)$, then I have: $\$3$ in my red bag and $\$2$ in my blue bag, and my wealth is $\$5$.

By BUA rules, the amount of money in any bag is always $\$0$ or $\$1$ or $\$2$ or $\$3$ or $\$4$, and each professor’s wealth is always $\leq \$7$.

Therefore, the set of allowable states is

$$\left([0..4] \times [0..4] \right) \setminus \{ (4, 4) \}.$$

Let $\Sigma := \left([0..4] \times [0..4] \right) \setminus \{ (4, 4) \}$.

Since $\#([0..4] \times [0..4]) = 5 \cdot 5 = 25$, we get: $\#\Sigma = 24$.

Define $\varepsilon : \Sigma \rightarrow [0..7]$ by: $\forall \sigma \in \Sigma, \ varepsilon(\sigma) = \sigma_1 + \sigma_2$.

For convenience of notation, $\forall \sigma \in \Sigma, \ \text{let } \varepsilon_\sigma := \varepsilon(\sigma)$.

If I am one of the professors, and if my state is $\sigma = (\sigma_1, \sigma_2) \in \Sigma$,

then I have: $\$\sigma_1$ in my red bag and $\$\sigma_2$ in my blue bag,

and my wealth is $\$\varepsilon_\sigma$.

Since $\varepsilon(3, 2) = 5 = \varepsilon(1, 4)$, we see that ε is not one-to-one, and we have a so-called “degeneracy” at 5.

This function ε has many other degeneracies, as well.

Recall: The professors are numbered, from 1 to N.

At random moments, random pairs of wandering professors cross paths, and interact.

Each interaction involves three steps:

- a game

- a verbal offer

and then

and then
a rejection or a money transfer.
The first step, the game, is played as follows:

one of the two professors flips a fair coin and
if heads, then the lower-numbered professor wins and
if tails, then the higher-numbered professor wins.

Next, without touching any money,
the losing professor verbally offers $1 to the winning professor.
The losing professor then flips a fair coin, and
if heads, then the loser’s red bag is opened and
if tails, then the loser’s blue bag is opened.
If the loser’s open bag is empty, then
then the winner gallantly rejects the $1 offer and
the opened bag is closed, the interaction is over, and
the professors continue their wanderings.
On the other hand, if the loser’s open bag is NOT empty, then,
both of the winner’s bags are opened.
Recall that, by BUA rules, every professor’s wealth must be ≤ 7.
If the winner’s wealth is 7,
then the winner rejects the $1 offer and
the opened bags are closed, the interaction is over, and
the professors continue their wanderings.
On the other hand, if the winner’s wealth is ≤ 6,
then the winner flips a fair coin, and
if heads, then the winner’s red bag is closed and
if tails, then the winner’s blue bag is closed.
At this point, the winner has one open bag, as does the loser.
Moreover, the loser’s open bag is NOT empty.
Recall that no bag may have more than 4.
If the winner’s open bag has 4,
then the winner rejects the $1 offer and
the opened bags are closed, the interaction is over, and
the professors continue their wanderings.
On the other hand, if the winner’s open bag has ≤ 3,
then 1 is transferred
from the losing professor’s open bag
to the winning professor’s open bag;
then the opened bags are closed, the interaction is over, and
the professors continue their wanderings.
Because of these interactions,
the wealth of an individual professor may change over time,
but the sum of the wealths of all of them is constant;
there is “conservation of (total) wealth”.

An audit reveals that, at the BUA, that total wealth is always N.

A “state-dispensation” is a function $[1..N] \rightarrow \Sigma$,
representing the states of all N professors.

So, if, at some point in time, the state-dispensation is $\omega : [1..N] \rightarrow \Sigma$,
then, for every $\ell \in [1..N]$, the state of Professor $\# \ell$ is $\omega(\ell)$,
and the wealth of Professor $\# \ell$ is $\varepsilon_{\omega(\ell)}$; therefore, the total wealth of all the professors is $\sum_{\ell=1}^{N} \varepsilon_{\omega(\ell)}$.

As we mentioned, at the BUA, that total wealth is N.

Let $\Omega^* := \{ \omega : [1..N] \rightarrow \Sigma \mid \sum_{\ell=1}^{N} \varepsilon_{\omega(\ell)} = N \}$.

Then Ω^* represents the set of all state-dispensations at the BUA.

The random interactions, described above,
induce a discrete Markov-chain on Ω^*.

This, in turn, induces a map $\Pi : \mathcal{P}_{\Omega^*} \rightarrow \mathcal{P}_{\Omega^*}$.

Let $T := \#\Omega^*$. Fix an ordering of Ω^*, i.e., a bijection $[1..T] \leftrightarrow \Omega^*$.

The Markov-chain then has a $T \times T$ transition-matrix Φ,
with entries in $[0; 1]$, whose column-sums are all 1.

For every $\phi, \psi \in \Omega^*$, the probability of transitioning from ϕ to ψ
is equal to the probability of transitioning from ψ to ϕ.

That is, the transition-matrix Φ is symmetric.

So, since the column-sums of Φ are all 1,
we get: the row-sums of Φ are all 1.

Let v be a $T \times 1$ column vector whose entries are all 1. Then $\Phi v = v$.

Let $w := v/T$. Then: all the entries of w are $1/T$ and $\Phi w = w$.

Recall that the probability-distribution $\nu_{\Omega^*} \in \mathcal{P}_{\Omega^*}$
assigns equal probability to each state-dispensation in Ω^*.
That is, $\forall \omega \in \Omega^*, \nu_{\Omega^*}(\omega) = 1/T$.

Since the entries of w are equal to these ν_{Ω^*}-probabilities,
and since $\Phi w = w$, we get: $\Pi(\nu_{\Omega^*}) = \nu_{\Omega^*}$.
We will say that two state-dispensations $\phi, \psi \in \Omega^*$ are “adjacent”,
if there is an interaction that carries ϕ to ψ.

For any $\phi, \psi \in \Omega^*$,
exists a finite sequence of interactions that carries ϕ to ψ.
That is: $\forall \phi, \psi \in \Omega^*$, $\exists m \in \mathbb{N}$, $\exists \omega_0, \ldots, \omega_m \in \Omega^*$
\[\text{s.t. } \phi = \omega_0 \text{ and } \omega_m = \psi \]
and $\text{s.t. } \forall i \in [1..m]$, ω_i is adjacent to ω_i.
That is, any two state-dispensations
are connected by an adjacency-path.
That is, the Markov-chain is irreducible.
Recall that some interactions result in a rejection;
such interactions do not change the state-dispensation.
So, a state-dispensation is sometimes adjacent to itself.
That is, there are adjacency-cycles of length 1.
It follows that the Markov-chain is aperiodic.
So, since the Markov-chain is irreducible and since $\Pi(\nu_\Omega) = \nu_\Omega^*$,
by the Perron-Frobenius Theorem, we get:
\[\forall \mu \in \mathcal{P}_{\Omega^*}, \quad \mu, \Pi(\mu), \Pi(\Pi(\mu)), \Pi(\Pi(\Pi(\mu))), \ldots \to \nu_\Omega^*. \]
That is, for any starting probability-distribution on Ω^*,
after enough random interactions,
the resulting probability-distribution on Ω^*
will be approximately equal to ν_Ω^*,
to any desired level of accuracy.

Problem: Suppose I am Professor #N at the BUA.
Suppose that the probability-distribution μ of state-dispensations
is approximately equal to ν_Ω^*.
For each $\sigma \in \Sigma$, compute my probability of being in state σ.
That is, $\forall \sigma \in \Sigma$, compute $\mu\{\omega \in \Omega^* | \omega(N) = \sigma\}$.
Since $\#\Sigma = 24$, there will be 24 answers.
Approximate answers are acceptable.

To make a precise mathematical problem,
we, in fact, assume that μ is exactly equal to ν_Ω^*,
and we seek the exact “thermodynamic limit”, meaning
we replace N with a variable $n \in \mathbb{N}$, and let $n \to \infty$.
In the next two sections, we will develop a theory to solve problems like this one. We need only adapt our earlier methods to allow for degeneracies.

Our main theorems are

20. BOLTZMANN DISTRIBUTIONS ON FINITE SETS WITH DEGENERACY

We begin by adapting our work on Boltzmann distributions to allow for degeneracies.

DEFINITION 20.1. Let Σ be a nonempty finite set. Let $\varepsilon : \Sigma \to \mathbb{R}$. Let $\beta \in \mathbb{R}$.

Then $\hat{B}^\varepsilon_\beta \in \mathcal{F}\mathcal{M}_\Sigma^\varepsilon$ is defined by: $\forall \sigma \in \Sigma$, $\hat{B}^\varepsilon_\beta\{\sigma\} = e^{-\beta(\varepsilon(\sigma))}$.

Also, we define:

\[
\hat{B}^\varepsilon_\beta := N(\hat{B}^\varepsilon_\beta) \in \mathcal{P}_\Sigma.
\]

Then: \forall nonempty finite set Σ, $\forall \varepsilon : \Sigma \to \mathbb{R}$, $\forall \beta \in \mathbb{R}$,

$B^\varepsilon_\beta(\Sigma) > 0$ and $\forall \sigma \in \Sigma$, $B^\varepsilon_\beta\{\sigma\} = (\hat{B}^\varepsilon_\beta(\sigma))/(\hat{B}^\varepsilon_\beta(\Sigma))$ and $S_{\hat{B}^\varepsilon_\beta} = \Sigma = S_{B^\varepsilon_\beta}$.

Example: Let $\Sigma := \{0, 1, 10\}$ and let $\beta \in \mathbb{R}$.

Define $\varepsilon : \Sigma \to \mathbb{R}$ by: $\forall \sigma \in \Sigma$, $\varepsilon(\sigma) = \sigma$.

Then: $\hat{B}^\varepsilon_\beta\{0\} = 1$, $\hat{B}^\varepsilon_\beta\{1\} = e^{-\beta}$, $\hat{B}^\varepsilon_\beta\{10\} = e^{-10\beta}$.

Let $C := 1/(1 + e^{-\beta} + e^{-10\beta})$.

Then: $B^\varepsilon_\beta\{0\} = C$, $B^\varepsilon_\beta\{1\} = C e^{-\beta}$, $B^\varepsilon_\beta\{10\} = C e^{-10\beta}$.

Example: Let $\Sigma := \{2, 4, 8, 9\}$ and let $\beta \in \mathbb{R}$.

Define $\varepsilon : \Sigma \to \mathbb{R}$ by: $\forall \sigma \in \Sigma$, $\varepsilon(\sigma) = \sigma$.

Then: $\hat{B}^\varepsilon_\beta\{2\} = e^{-2\beta}$, $\hat{B}^\varepsilon_\beta\{4\} = e^{-4\beta}$,

$\hat{B}^\varepsilon_\beta\{8\} = e^{-8\beta}$, $\hat{B}^\varepsilon_\beta\{9\} = e^{-9\beta}$.

Let $C := 1/(e^{-2\beta} + e^{-4\beta} + e^{-8\beta} + e^{-9\beta})$.

Then: $B^\varepsilon_\beta\{2\} = C e^{-2\beta}$, $B^\varepsilon_\beta\{4\} = C e^{-4\beta}$,

$B^\varepsilon_\beta\{8\} = C e^{-8\beta}$, $B^\varepsilon_\beta\{9\} = C e^{-9\beta}$.

Example: Let $\Sigma := \{1, 2, 3, 4\}$ and let $\beta \in \mathbb{R}$.
Define \(\varepsilon : \Sigma \to \mathbb{R} \) by:

\[
\varepsilon(1) = 2, \quad \varepsilon(2) = 4, \quad \varepsilon(3) = 9, \quad \varepsilon(4) = 9.
\]

Then:

\[
\hat{B}_\beta^\varepsilon(1) = e^{-2\beta}, \quad \hat{B}_\beta^\varepsilon(2) = e^{-4\beta},
\]

\[
\hat{B}_\beta^\varepsilon(3) = e^{-8\beta}, \quad \hat{B}_\beta^\varepsilon(4) = e^{-9\beta}.
\]

Let \(C := 1/(e^{-2\beta} + e^{-4\beta} + e^{-8\beta} + e^{-9\beta}) \).

Then:

\[
B_\beta^\varepsilon(1) = C e^{-2\beta}, \quad B_\beta^\varepsilon(2) = C e^{-4\beta},
\]

\[
B_\beta^\varepsilon(3) = C e^{-8\beta}, \quad B_\beta^\varepsilon(4) = C e^{-9\beta}.
\]

In the preceding three examples, \(\varepsilon \) is one-to-one.

That is, \(\varepsilon \) has no degeneracies.

In the next, \(\varepsilon \) has one degeneracy, at energy-level 9.

Example: Let \(\Sigma := \{1, 2, 3, 4\} \) and define \(\varepsilon : \Sigma \to \mathbb{R} \) by:

\[
\varepsilon(1) = 2, \quad \varepsilon(2) = 4, \quad \varepsilon(3) = 9, \quad \varepsilon(4) = 9.
\]

Then:

\[
\hat{B}_\beta^\varepsilon(1) = e^{-2\beta}, \quad \hat{B}_\beta^\varepsilon(2) = e^{-4\beta},
\]

\[
\hat{B}_\beta^\varepsilon(3) = e^{-9\beta}, \quad \hat{B}_\beta^\varepsilon(4) = e^{-9\beta}.
\]

Let \(C := 1/(e^{-2\beta} + e^{-4\beta} + 2 \cdot e^{-9\beta}) \).

Then:

\[
B_\beta^\varepsilon(1) = C e^{-2\beta}, \quad B_\beta^\varepsilon(2) = C e^{-4\beta},
\]

\[
B_\beta^\varepsilon(3) = C e^{-9\beta}, \quad B_\beta^\varepsilon(4) = C e^{-9\beta}.
\]

In the next example, \(\varepsilon \) has many degeneracies.

Example: Let \(\Sigma := (\mathbb{N} \times \mathbb{N}) \setminus \{(4, 4)\} \).

Let \(\beta \in \mathbb{R} \) and define \(\varepsilon : \Sigma \to \mathbb{R} \) by:

\[
\forall \sigma \in \Sigma, \quad \varepsilon(\sigma) = \sigma_1 + \sigma_2.
\]

Then:

\[
\hat{B}_\beta^\varepsilon((3, 2)) = e^{-5\beta}, \quad \hat{B}_\beta^\varepsilon((1, 4)) = e^{-5\beta}, \quad \hat{B}_\beta^\varepsilon((0, 0)) = 1.
\]

Generally,

\[
\forall \sigma \in \Sigma, \quad \hat{B}_\beta^\varepsilon(\sigma) = e^{-(\sigma_1 + \sigma_2)\beta}.
\]

Let \(C := 1/(\sum_{\sigma \in \Sigma} e^{-(\sigma_1 + \sigma_2)\beta}) \).

Then:

\[
B_\beta^\varepsilon((3, 2)) = C e^{-5\beta}, \quad B_\beta^\varepsilon((1, 4)) = C e^{-5\beta}, \quad B_\beta^\varepsilon((0, 0)) = C.
\]

Generally,

\[
\forall \sigma \in \Sigma, \quad B_\beta^\varepsilon(\sigma) = C e^{-(\sigma_1 + \sigma_2)\beta}.
\]

THEOREM 20.2. Let \(\Sigma \) be a nonempty finite set.

Let \(\varepsilon : \Sigma \to \mathbb{R}, \quad \xi, \beta \in \mathbb{R} \). Then:

\[
B_\beta^\varepsilon = B_\beta^{-\xi}.
\]

Proof. For all \(\sigma \in \Sigma, \) let \(\varepsilon_\sigma := \varepsilon(\sigma) \).

Since, \(\forall \sigma \in \Sigma, \quad \hat{B}_\beta^\varepsilon(\sigma) = e^{-\beta \cdot \varepsilon_\sigma} = e^{-\beta \xi} \cdot e^{-\beta \varepsilon_\sigma} = e^{-\beta \xi} \cdot (\hat{B}_\beta^{-\xi}(\sigma)) \),

we get:

\[
\hat{B}_\beta^\varepsilon = e^{-\beta \xi} \cdot \hat{B}_\beta^{-\xi}.
\]

Since \(e^{-\beta \xi} > 0 \), we get:

\[
\mathcal{N}(e^{-\beta \xi} \cdot \hat{B}_\beta^{-\xi}) = \mathcal{N}((\hat{B}_\beta^{-\xi})).
\]

Then:

\[
B_\beta^\varepsilon = \mathcal{N}(\hat{B}_\beta^{-\xi}) = \mathcal{N}(e^{-\beta \xi} \cdot \hat{B}_\beta^{-\xi}) = \mathcal{N}(\hat{B}_\beta^{-\xi}) = B_\beta^{-\xi}.
\]
THEOREM 20.4. Let \(\Sigma \) be a nonempty finite set, \(\varepsilon : \Sigma \to \mathbb{R} \).

For all \(\sigma \in \Sigma \), let \(\varepsilon_\sigma := \varepsilon(\sigma) \).

For all \(\beta \in \mathbb{R} \), let \[
\Gamma_\beta^\varepsilon := \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))],
\]
\[
\Delta_\beta^\varepsilon := \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \cdot \varepsilon_\sigma}],
\]
\[
A_\beta^\varepsilon := \Gamma_\beta^\varepsilon / \Delta_\beta^\varepsilon.
\]

Let \(\Sigma \) be a nonempty finite set, \(\varepsilon : \Sigma \to \mathbb{R} \).

Then:
\[
\Gamma_\beta^\varepsilon = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (\hat{B}_\beta^\varepsilon(\sigma))],
\]

Then:
\[
\Delta_\beta^\varepsilon = \int_{\Sigma} \varepsilon_\sigma \cdot (\hat{B}_\beta^\varepsilon(\sigma))
\]

Since
\[
\Delta_\beta^\varepsilon = \sum_{\sigma \in \Sigma} \hat{B}_\beta^\varepsilon(\sigma), \]

we get:
\[
\Delta_\beta^\varepsilon \cdot \hat{B}_\beta^\varepsilon(\Sigma)
\]

Then:
\[
A_\beta^\varepsilon = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (\hat{B}_\beta^\varepsilon(\sigma))].
\]

Recall (§2) the notations \(\mathbb{I}_\varepsilon \), \(\varepsilon^*A \). Recall (§8) the notation \(\varepsilon_*\mu \).

THEOREM 20.5. Let \(\Sigma \) be a nonempty finite set.

Let \(\varepsilon : \Sigma \to \mathbb{R} \), \(\beta \in \mathbb{R} \). Then: \(M_{\varepsilon^*B_\beta^\varepsilon} = A_\beta^\varepsilon \).

Proof. For all \(\sigma \in \Sigma \), let \(\varepsilon_\sigma := \varepsilon(\sigma) \).

Because \(\Sigma \) is the disjoint union, over \(t \in \mathbb{I}_\varepsilon \), of \(\varepsilon^*\{t\} \),

we get:
\[
\sum_{t \in \mathbb{I}_\varepsilon} \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))] = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))].
\]

Also,
\[
A_\beta^\varepsilon = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))].
\]

Then:
\[
\sum_{t \in \mathbb{I}_\varepsilon} \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))] = A_\beta^\varepsilon.
\]

So, since
\[
\sum_{t \in \mathbb{I}_\varepsilon} [t \cdot ((\varepsilon_*B_\beta^\varepsilon)\{t\})] = M_{\varepsilon^*B_\beta^\varepsilon},
\]

we want:
\[
\sum_{t \in \mathbb{I}_\varepsilon} [t \cdot ((\varepsilon_*B_\beta^\varepsilon)\{t\})] = \sum_{t \in \mathbb{I}_\varepsilon} \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))].
\]

Given \(t \in \mathbb{I}_\varepsilon \), want:
\[
t \cdot ((\varepsilon_*B_\beta^\varepsilon)\{t\}) = \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B_\beta^\varepsilon(\sigma))].
\]

For all \(\sigma \in \varepsilon^*\{t\} \), since \(\varepsilon_\sigma = \varepsilon(\sigma) \in \{t\} \), we get:
\[
t = \varepsilon_\sigma.
\]

Want:
\[
t \cdot ((\varepsilon_*B_\beta^\varepsilon)\{t\}) = \sum_{\sigma \in \varepsilon^*\{t\}} [t \cdot (B_\beta^\varepsilon(\sigma))].
\]

Because \(\varepsilon^*\{t\} \) is the disjoint union, over \(\sigma \in \varepsilon^*\{t\} \), \(\varepsilon^*\{t\} \),

we get:
\[
B_\beta^\varepsilon(\varepsilon^*\{t\}) = \sum_{\sigma \in \varepsilon^*\{t\}} [B_\beta^\varepsilon(\sigma)].
\]

Also,
\[
(\varepsilon_*B_\beta^\varepsilon)\{t\} = B_\beta^\varepsilon(\varepsilon^*\{t\}).
\]

Then:
\[
t \cdot ((\varepsilon_*B_\beta^\varepsilon)\{t\}) = t \cdot (B_\beta^\varepsilon(\varepsilon^*\{t\})) = \sum_{\sigma \in \varepsilon^*\{t\}} [t \cdot (B_\beta^\varepsilon(\sigma))].
\]
Proof. We have: \[B^e_\beta(\Sigma) = \sum_{\sigma \in \Sigma} \left[B^e_\beta \{ \sigma \} \right]. \]
Since \(B^e_\beta \in \mathcal{P}_\Sigma \), we get: \[B^e_\beta(\Sigma) = 1. \]
By Theorem 20.2, we have: \(B^e_\beta = B^{e-\xi}_\beta. \)
For all \(\sigma \in \Sigma \), let \(\varepsilon_\sigma := \varepsilon(\sigma). \)
Then: \[A^{e-\xi}_\beta = \sum_{\sigma \in \Sigma} \left[(\varepsilon_\sigma - \xi) \cdot (B^{e-\xi}_\beta \{ \sigma \}) \right] \]
\[= \sum_{\sigma \in \Sigma} \left[(\varepsilon_\sigma - \xi) \cdot (B^{e}_\beta \{ \sigma \}) \right] \]
\[= (\sum_{\sigma \in \Sigma} \varepsilon_\sigma \cdot (B^{e}_\beta(\sigma))) - \left(\sum_{\sigma \in \Sigma} \xi \cdot (B^{e}_\beta(\sigma)) \right) \]
\[= \left(\sum_{\sigma \in \Sigma} \varepsilon_\sigma \cdot (B^{e}_\beta(\sigma)) \right) - \xi \cdot \left(\sum_{\sigma \in \Sigma} B^{e}_\beta(\sigma) \right) \]
\[= A^{e}_\beta - \xi \cdot (B^{e}_\beta(\Sigma)) - A^{e}_\beta + \xi \cdot 1 \]
\[\therefore \quad A^{e}_\beta - \xi \cdot 1. \]

\[\Box \]

THEOREM 20.6. Let \(\Sigma \) be a nonempty finite set, \(\varepsilon : \Sigma \to \mathbb{R}. \)
Then: as \(\beta \to \infty \), \(A^{e}_\beta \to \min \mathbb{I}_\varepsilon \)
and as \(\beta \to -\infty \), \(A^{e}_\beta \to \max \mathbb{I}_\varepsilon. \)
The proof is a matter of bookkeeping, best explained by example:

Let \(\Sigma := \{1,2,3,4\} \) and **define** \(\varepsilon : \Sigma \to \mathbb{R} \) by:
\[\varepsilon(1) = 2, \quad \varepsilon(2) = 4, \quad \varepsilon(3) = 9, \quad \varepsilon(4) = 9. \]
Then \(\mathbb{I}_\varepsilon = \{2,4,9\} \), so \(\min \mathbb{I}_\varepsilon = 2 \) and \(\max \mathbb{I}_\varepsilon = 9. \)
Since \(\forall \beta \in \mathbb{R}, \quad A^{e}_\beta = \frac{2e^{-2\beta} + 4e^{-4\beta} + 9e^{-9\beta} + 9e^{-9\beta}}{e^{-2\beta} + 4e^{-4\beta} + e^{-9\beta} + 9e^{-9\beta}} \)
we get as \(\beta \to \infty \), \(A^{e}_\beta \to 2/1 \)
and as \(\beta \to -\infty \), \(A^{e}_\beta \to 18/2, \)
and so as \(\beta \to \infty \), \(A^{e}_\beta \to \min \mathbb{I}_\varepsilon \)
and as \(\beta \to -\infty \), \(A^{e}_\beta \to \max \mathbb{I}_\varepsilon. \)

For any nonempty finite set \(\Sigma \), for any \(\varepsilon : \Sigma \to \mathbb{R}, \)
define \(\underline{A^e} : \mathbb{R} \to \mathbb{R} \) by: \(\forall \beta \in \mathbb{R}, \quad \underline{A^e}(\beta) = \bar{A}^e_\beta. \)

THEOREM 20.7. Let \(\Sigma \) be a finite set.
Let \(\varepsilon : \Sigma \to \mathbb{R}. \quad \text{Assume:} \quad \#\mathbb{I}_\varepsilon \geq 2. \)
Then: \(\underline{A^e} \) is a strictly-decreasing \(C^\omega \)-diffeomorphism
from \(\mathbb{R} \) onto \((\min \mathbb{I}_\varepsilon; \max \mathbb{I}_\varepsilon) \).

Proof. For all \(\sigma \in \Sigma \), **let** \(\varepsilon_\sigma := \varepsilon(\sigma). \)
We have: \(\forall \beta \in \mathbb{R}, \quad A^e_\beta(\beta) = \sum_{\sigma \in \Sigma} \left[\varepsilon_\sigma \cdot e^{-\beta \varepsilon_\sigma} \right] \).
Then \(A^e_\beta : \mathbb{R} \to \mathbb{R} \) is \(C^\omega. \)
So, by Theorem 20.6 and the \(C^\omega \)-Inverse Function Theorem and the Mean Value Theorem, it **suffices to show:** \((A^e_\beta)' < 0 \) on \(\mathbb{R}. \)
Given \(\beta \in \mathbb{R}, \quad \text{want:} \quad (A^e_\beta)'(\beta) < 0. \)
Let \(P := \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \varepsilon_\sigma}] \), \(P' := \sum_{\sigma \in \Sigma} [(-\varepsilon_\sigma) \cdot e^{-\beta \varepsilon_\sigma}] \).

Let \(Q := \sum_{\tau \in \Sigma} [e^{-\beta \varepsilon_\tau}] \), \(Q' := \sum_{\tau \in \Sigma} [(-\varepsilon_\tau) \cdot e^{-\beta \varepsilon_\tau}] \).

Then \(Q > 0 \). Also, by the Quotient Rule, \((A_{\beta}^\varepsilon)'(\beta) = [QP' - PQ']/Q^2\).

Want: \(QP' - PQ' < 0 \).

We have: \(QP' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [(-\varepsilon_\sigma^2) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}] \).

We have: \(PQ' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [(-\varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}] \).

Then: \(QP' - PQ' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [(-\varepsilon_\sigma^2 + \varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}] \).

Interchanging \(\sigma \) and \(\tau \), we get:

\[QP' - PQ' = \sum_{\tau \in \Sigma} \sum_{\sigma \in \Sigma} [(-\varepsilon_\tau^2 - \varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}] \]

By commutativity of addition and multiplication,
adding the last two equations gives:
\[2 \cdot (QP' - PQ') = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [(-\varepsilon_\sigma^2 - \varepsilon_\tau^2 + 2\varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}] \]

Then: \(2 \cdot (QP' - PQ') = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} [-(\varepsilon_\sigma - \varepsilon_\tau)^2 \cdot e^{-\beta (\varepsilon_\sigma + \varepsilon_\tau)}] \)

Then: \(2 \cdot (QP' - PQ') < 0 \). Then: \(QP' - PQ' < 0 \). \(\square \)

DEFINITION 20.8. Let \(\Sigma \) be a finite set. Let \(\varepsilon : \Sigma \to \mathbb{R} \).

Assume: \(\#\Sigma \geq 2 \).

Let \(\alpha \in (\min \mathbb{I}_\varepsilon; \max \mathbb{I}_\varepsilon) \).

The **\(\alpha \)-Boltzmann parameter on \(\varepsilon \)** is: \[\text{BP}_\alpha^\varepsilon := (A_{\beta}^\varepsilon)^{-1}(\alpha). \]

So the \(\alpha \)-Boltzmann parameter on \(E \) is the unique \(\beta \in \mathbb{R} \) s.t. \(A_{\beta}^\varepsilon = \alpha \).

Example: Let \(\Sigma := \{0, 1, 10\} \), and **define** \(\varepsilon : \Sigma \to \mathbb{R} \) by:

\[\forall \sigma \in \Sigma, \ \varepsilon(\sigma) = \sigma. \]

Computation shows: \(A_{(\ln 9)/10}^\varepsilon = 1. \) Then: \(\text{BP}^\varepsilon_1 = (\ln 9)/10. \)

Example: Let \(\Sigma := \{2, 4, 8, 9\} \), and **define** \(\varepsilon : \Sigma \to \mathbb{R} \) by:

\[\forall \sigma \in \Sigma, \ \varepsilon(\sigma) = \sigma. \]

To evaluate \(\text{BP}_5^\varepsilon \), we must solve \(A_{\beta}^\varepsilon(\beta) = 5 \) for \(\beta \),

and, since, by Theorem 20.7, \(A_{\beta}^\varepsilon \) is strictly-decreasing,

there are simple iterative methods to do this.

We compute: \(\text{BP}^\varepsilon_5 \approx 0.0918 \), accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §25.)

Next, let \(\Sigma := \{1, 2, 3, 4\} \), and **define** \(\varepsilon : \Sigma \to \mathbb{R} \) by:

\[\varepsilon(1) = 2, \ \varepsilon(2) = 4, \ \varepsilon(3) = 8, \ \varepsilon(4) = 9. \]

Then \(A_{5}^\varepsilon = A_{4}^\varepsilon \), so \(\text{BP}^\varepsilon_5 = \text{BP}^\varepsilon_5 \).

Then \(\text{BP}^\varepsilon_5 \approx 0.0918 \), accurate to four decimal places.

Example: Let \(\Sigma := \{1, 2, 3, 4\} \) and **define** \(\varepsilon : \Sigma \to \mathbb{R} \) by:

\[\varepsilon(1) = 2, \ \varepsilon(2) = 4, \ \varepsilon(3) = 9, \ \varepsilon(4) = 9. \]
To evaluate BP_5^ϵ, we must solve $A_\epsilon^\beta = 5$ for β, and, since, by Theorem 20.7, A_ϵ^β is strictly-decreasing, there are simple iterative methods to do this.

We compute: $\text{BP}_5^\epsilon \approx 0.1060$, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §25.)

Example: Let $\Sigma := (\{0.4 \times [0.4]\}) \setminus \{(4, 4)\}$.

Define $\epsilon : \Sigma \to \mathbb{R}$ by: $\forall \sigma \in \Sigma, \ \epsilon(\sigma) = \sigma_1 + \sigma_2$.

To evaluate BP_4^ϵ, we must solve $A_\epsilon^\beta = 1$ for β, and, since, by Theorem 20.7, A_ϵ^β is strictly-decreasing, there are simple iterative methods to do this.

We compute: $\text{BP}_4^\epsilon \approx 1.0670$, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §25.)

THEOREM 20.9. Let Σ be a finite set.

Let $\epsilon : \Sigma \to \mathbb{R}$. Assume: $\# I_\epsilon \geq 2$.

Let $\alpha \in (\min I_\epsilon, \max I_\epsilon)$. Let $\xi \in \mathbb{R}$. Then: $\text{BP}_{\alpha-\xi}^\epsilon = \text{BP}_\alpha^\epsilon$.

Proof. Let $\beta := \text{BP}_\alpha^\epsilon$. Want: $\text{BP}_{\alpha-\xi}^\epsilon = \beta$.

Since $\beta = \text{BP}_\alpha^\epsilon = (A_\epsilon^\alpha)^{-1}(\alpha)$, we get: $(A_\epsilon^\alpha)(\beta) = \alpha$.

By Theorem 20.5, $A_\epsilon^\beta = A_\beta^\xi - \xi$.

Since $(A_\epsilon^{\beta-\xi})(\beta) = A_\beta^\xi - \xi = ((A_\epsilon^\alpha)(\beta)) - \xi = \alpha - \xi$, we get: $\beta = (A_\epsilon^{\beta-\xi})^{-1}(\alpha - \xi)$.

So, since $\text{BP}_{\alpha-\xi}^\epsilon = (A_\epsilon^{\beta-\xi})^{-1}(\alpha - \xi)$, we get: $\text{BP}_{\alpha-\xi}^\epsilon = \beta$. □

21. Degenerate energy levels

Recall (§2): the notations $I_\epsilon\supseteq A$.

THEOREM 21.1. Let Σ be a finite set.

Let $\epsilon : \Sigma \to \mathbb{Z}$. Assume I_ϵ is residue-unconstrained.

Let $\alpha \in (\min I_\epsilon, \max I_\epsilon)$. Let $\beta := \text{BP}_\alpha^\epsilon$.

Let $t_1, t_2, \ldots \in \mathbb{Z}$. Assume: $\{t_n - n\alpha \mid n \in \mathbb{N}\}$ is bounded.

For all $n \in \mathbb{N}$, let $\Omega_n := \{f \in \Sigma^n \mid (\epsilon(f_1)) + \cdots + (\epsilon(f_n)) = t_n\}$.

Let $\sigma_0 \in \Sigma$. Then: as $n \to \infty, \ \nu_{\Omega_n} \{f \in \Omega_n \mid f_n = \sigma_0\} \to B_\beta^\epsilon(\sigma_0)$.

Recall: $\nu_{\varnothing}(\varnothing) = -1$.

So, since $B_\beta^\epsilon(\sigma_0) > 0$, part of the content of Theorem 21.1 is:

\[\forall \text{sufficiently large } n \in \mathbb{N}, \quad \Omega_n \neq \varnothing. \]

See Claim 2 in the proof below.
Claim 1: As \(n \to \infty \), \(\sqrt{n} \cdot (\psi_n(t_n)) \to \tau \).
Proof of Claim 1: Recall: $E \subseteq \mathbb{Z}$, E is residue-unconstrained,
\[\tilde{\mu} \in \mathcal{P}_E, \quad S_{\tilde{\mu}} = E, \quad |\tilde{\mu}|_2 < \infty, \quad \alpha = M_{\tilde{\mu}}, \quad v = V_{\tilde{\mu}}. \]
By hypothesis, $t_1, t_2, \ldots \in \mathbb{Z}$ and \{\text{t}_n - n\alpha \mid n \in \mathbb{N}\} is bounded.
Then, by Theorem 9.6, we get:
\[\text{as } n \to \infty, \quad \sqrt{n} \cdot \left(\tilde{\mu}^n \{ \tilde{f} \in E^n \mid \tilde{f}_1 + \cdots + \tilde{f}_n = t_n \} \right) \to 1/\sqrt{2\pi v}. \]
Then, $\text{as } n \to \infty, \quad \sqrt{n} \cdot (\psi_n(t_n)) \to \tau.$
End of proof of Claim 1.

Since $\tau > 0$, by Claim 1, choose $n_0 \in [2, \infty)$ s.t.
\[\forall n \in [n_0, \infty), \quad \sqrt{n} \cdot (\psi_n(t_n)) > 0. \]

Claim 2: Let $n \in [n_0, \infty)$. Then: $\mu^n(\Omega_n) > 0.$
Proof of Claim 2: Recall: $\tilde{\mu}^n(\tilde{\Omega}_n) = \mu^n(\Omega_n)$ and $\psi_n(t_n) = \tilde{\mu}^n(\tilde{\Omega}_n)$.
By the choice of n_0, we get: $\sqrt{n} \cdot (\psi_n(t_n)) > 0.$ Then: $\psi_n(t_n) > 0.$
Then: $\mu^n(\Omega_n) = \tilde{\mu}^n(\tilde{\Omega}_n) = \psi_n(t_n) > 0.$
End of proof of Claim 2.

Recall: $\Sigma \neq \emptyset$ and $\varepsilon : \Sigma \to \mathbb{Z}$. Then $\hat{B}_\beta(\Sigma) > 0.$
Let $C := 1/(\hat{B}_\beta(\Sigma))$. Then $\mathcal{N}(\hat{B}_\beta^\varepsilon) = C \cdot \hat{B}_\beta^\varepsilon$.
By definition of $\hat{B}_\beta^\varepsilon$, we have:
\[\forall \sigma \in \Sigma, \quad \hat{B}_\beta^\varepsilon\{\sigma\} = e^{-\beta \varepsilon \sigma}. \]
So, since $\mu = B_\beta^\varepsilon = \mathcal{N}(\hat{B}_\beta^\varepsilon) = C \cdot \hat{B}_\beta^\varepsilon$,
we get:
\[\forall \sigma \in \Sigma, \quad \mu\{\sigma\} = C e^{-\beta \varepsilon \sigma}. \]
Since $\mu \in \mathcal{P}_\Sigma$, we get:
\[\forall n \in \mathbb{N}, \quad \mu^n \in \mathcal{P}_\Sigma^\mu, \quad \text{so} \quad \mu^n(\Omega_n) \leq 1. \]
So, by Claim 2, \[\forall n \in [n_0, \infty), \quad 0 < \mu^n(\Omega_n) \leq 1. \]
Also, we have:
\[\forall n \in \mathbb{N}, \quad (\mu^n|_{\Omega_n})(\Omega_n) = \mu^n(\Omega_n). \]
Then:
\[\forall n \in [n_0, \infty), \quad 0 < (\mu^n|_{\Omega_n})(\Omega_n) \leq 1. \]
Then:
\[\forall n \in [n_0, \infty), \quad \mu^n|_{\Omega_n} \in \mathcal{F}_\Omega. \]
Then:
\[\forall n \in [n_0, \infty), \quad \mathcal{N}(\mu^n|_{\Omega_n}) \in \mathcal{P}_\Omega. \]
Also, \[\forall n \in \mathbb{N}, \forall S \subseteq \Omega_n, \quad (\mu^n|_{\Omega_n})(S) = \mu^n(S). \]
Then:
\[\forall n \in \mathbb{N}, \quad (\mu^n|_{\Omega_n})(\Omega_n) = \mu^n(\Omega_n). \]
For all $n \in \mathbb{N}$, let $\lambda_n := \mu^n(\Omega_n)$.
Then:
\[\forall n \in [n_0, \infty), \quad (\mu^n|_{\Omega_n})(\Omega_n) = \lambda_n \text{ and } 0 < \lambda_n \leq 1. \]
For all $n \in [n_0, \infty)$, let $\lambda_n := \mathcal{N}(\mu^n|_{\Omega_n})$.
Then:
\[\forall n \in [n_0, \infty), \quad \lambda_n = (\mu^n|_{\Omega_n})/\lambda_n. \]
Then:
\[\forall n \in [n_0, \infty), \forall S \subseteq \Omega_n, \quad \lambda_n(S) = (\mu^n(S))/\lambda_n. \]

Claim 3: Let $n \in [n_0, \infty)$. Then: $\lambda_n = \nu_{\Omega_n}.$
Proof of Claim 3: Let \(F := \Omega_n \). Want: \(\lambda_n = \nu_F \).
Since \(\lambda_n = \mathcal{N}(\mu^n|\Omega_n) = \mathcal{N}(\mu^n|F) \), we get: \(\lambda_n \in \mathcal{P}_F \).
By Theorem 8.9, given \(f, g \in F \), want: \(\lambda_n \{ f \} = \lambda_n \{ g \} \).

Want: \((\mu^n \{ f \})/z_n = (\mu^n \{ g \})/z_n \).

For all \(i \in [1..n] \), let \(\tilde{f}_i := \varepsilon f_i \) and \(\tilde{g}_i := \varepsilon g_i \).
Then: \(\forall i \in [1..n] \), \(\mu \{ f_i \} = Ce^{-\beta \cdot \tilde{f}_i} \) and \(\mu \{ g_i \} = Ce^{-\beta \cdot \tilde{g}_i} \).
Since \(f \in F = \Omega_n \), we get: \(\varepsilon f_1 + \cdots + \varepsilon f_n = t_n \).
Since \(g \in F = \Omega_n \), we get: \(\varepsilon g_1 + \cdots + \varepsilon g_n = t_n \).

Since \(\tilde{f}_1 + \cdots + \tilde{f}_n = \varepsilon f_1 + \cdots + \varepsilon f_n = t_n \)
\(= \varepsilon g_1 + \cdots + \varepsilon g_n = \tilde{g}_1 + \cdots + \tilde{g}_n \),
we get: \(C^n e^{-\beta (\tilde{f}_1 + \cdots + \tilde{f}_n)} = C^n e^{-\beta (\tilde{g}_1 + \cdots + \tilde{g}_n)} \).
Then: \(\prod (Ce^{-\beta \tilde{f}_1}) \cdots (Ce^{-\beta \tilde{f}_n}) = (Ce^{-\beta \tilde{g}_1}) \cdots (Ce^{-\beta \tilde{g}_n}) \).
Then: \(\mu \{ f \} \cdots \mu \{ f_n \} = \mu \{ g \} \cdots \mu \{ g_n \} \).

Then: \(\mu^n \{ f \} = \mu^n \{ g \} \).

End of proof of Claim 3.

Claim 4: Let \(\sigma \in \varepsilon^* \{ \varepsilon \sigma_0 \} \). Then: \(\mu \{ \sigma \} = \mu \{ \sigma_0 \} \).

Proof of Claim 4: Since \(\sigma \in \varepsilon^* \{ \varepsilon \sigma_0 \} \), we get: \(\varepsilon (\sigma) \in \{ \varepsilon \sigma_0 \} \).
Since \(\varepsilon \sigma = \varepsilon (\sigma) \in \{ \varepsilon \sigma_0 \} \), we get: \(\varepsilon \sigma = \varepsilon \sigma_0 \).
Then: \(\mu \{ \sigma \} = Ce^{-\beta \varepsilon \sigma} = Ce^{-\beta \varepsilon \sigma_0} = \mu \{ \sigma_0 \} \).

End of proof of Claim 4.

Since \(\varepsilon (\sigma_0) = \varepsilon \sigma_0 \in \{ \varepsilon \sigma_0 \} \), we get: \(\sigma_0 \in \varepsilon^* \{ \varepsilon \sigma_0 \} \).
Then \(\varepsilon^* \{ \varepsilon \sigma_0 \} \neq \emptyset \), so \(\#(\varepsilon^* \{ \varepsilon \sigma_0 \}) \geq 1 \).
Let \(k := \#(\varepsilon^* \{ \varepsilon \sigma_0 \}) \). Then: \(k \geq 1 \).

Claim 5: \(\mu (\varepsilon^* \{ \varepsilon \sigma_0 \}) = k \cdot (\mu \{ \sigma_0 \}) \).

Proof of Claim 5: Since \(\varepsilon^* \{ \varepsilon \sigma_0 \} \) is equal to
the disjoint union, over \(\sigma \in \varepsilon^* \{ \varepsilon \sigma_0 \} \), of \{ \sigma \},
we get: \(\mu (\varepsilon^* \{ \varepsilon \sigma_0 \}) = \sum_{\sigma \in \varepsilon^* \{ \varepsilon \sigma_0 \}} [\mu \{ \sigma \}] \).
So, by Claim 4, we get: \(\mu (\varepsilon^* \{ \varepsilon \sigma_0 \}) = \sum_{\sigma \in \varepsilon^* \{ \varepsilon \sigma_0 \}} [\mu \{ \sigma_0 \}] \).
So, since \(k = \#(\varepsilon^* \{ \varepsilon \sigma_0 \}) \), we get: \(\mu (\varepsilon^* \{ \varepsilon \sigma_0 \}) = k \cdot (\mu \{ \sigma_0 \}) \).

End of proof of Claim 5.

Claim 6: Let \(n \in [2, \infty) \). Let \(\sigma \in \varepsilon^* \{ \varepsilon \sigma_0 \} \).
Then: \(\mu^n \{ f \in \Omega_n \mid f_n = \sigma \} = \mu^n \{ f \in \Omega_n \mid f_n = \sigma_0 \} \).

Proof of Claim 6:
Let \(X := \{ f \in \Sigma^{n-1} \mid \varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{f_n} = t_n - \varepsilon_{\sigma} \} \).

Recall: \(\Omega_n = \{ f \in \Sigma^n \mid \varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{f_n} = t_n \} \).

Since
\begin{align*}
\{ f \in \Omega_n \mid f_n = \sigma \} & = \{ f \in \Sigma^n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{f_n} = t_n] \& [f_n = \sigma] \} \\
& = \{ f \in \Sigma^n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{\sigma} = t_n] \& [f_n = \sigma] \} \\
& = \{ f \in \Sigma^n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} = t_n - \varepsilon_{\sigma}] \& [f_n = \sigma] \}.
\end{align*}

it follows that, under the standard bijection \(\Sigma^n \leftrightarrow \Sigma^{n-1} \times \Sigma \), we have:
\[\{ f \in \Omega_n \mid f_n = \sigma \} \subseteq \Sigma^n \]

corresponds to
\[X \times \{ \sigma \} \subseteq \Sigma^{n-1} \times \Sigma. \]

Then:
\[\mu^n \{ f \in \Omega_n \mid f_n = \sigma \} = (\mu^{n-1}(X)) \cdot (\mu(\sigma)). \]

Want:
\[\mu^n \{ f \in \Omega_n \mid f_n = \sigma_0 \} = (\mu^{n-1}(X)) \cdot (\mu(\sigma_0)). \]

By Claim 4, we have:
\[\mu(\sigma) = \mu(\sigma_0). \]

Want:
\[\mu^n \{ f \in \Omega_n \mid f_n = \sigma_0 \} = (\mu^{n-1}(X)) \cdot (\mu(\sigma_0)). \]

Since \(\sigma \in \varepsilon^* \{ \varepsilon_{\sigma_0} \} \), we get:
\[\varepsilon(\sigma) \in \{ \varepsilon_{\sigma_0} \}. \]

Since
\[\varepsilon_{\sigma} = \varepsilon(\sigma) \in \{ \varepsilon_{\sigma_0} \}, \]
we get:
\[\varepsilon_{\sigma} = \varepsilon_{\sigma_0}. \]

Then
\[X = \{ f \in \Sigma^{n-1} \mid \varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{f_n} = t_n - \varepsilon_{\sigma} \}. \]

Since
\begin{align*}
\{ f \in \Omega_n \mid f_n = \sigma_0 \} & = \{ f \in \Sigma^n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{f_n} = t_n] \& [f_n = \sigma_0] \} \\
& = \{ f \in \Sigma^n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} + \varepsilon_{\sigma_0} = t_n] \& [f_n = \sigma_0] \} \\
& = \{ f \in \Sigma^n \mid [\varepsilon_{f_1} + \cdots + \varepsilon_{f_{n-1}} = t_n - \varepsilon_{\sigma_0}] \& [f_n = \sigma_0] \},
\end{align*}

it follows that, under the standard bijection \(\Sigma^n \leftrightarrow \Sigma^{n-1} \times \Sigma \), we have:
\[\{ f \in \Omega_n \mid f_n = \sigma_0 \} \subseteq \Sigma^n \]

corresponds to
\[X \times \{ \sigma_0 \} \subseteq \Sigma^{n-1} \times \Sigma. \]

Then:
\[\mu^n \{ f \in \Omega_n \mid f_n = \sigma_0 \} = (\mu^{n-1}(X)) \cdot (\mu(\sigma_0)). \]

End of proof of Claim 6.

Claim 7: Let \(n \in [2, \infty). \)

Then:
\[\tilde{\mu}^n \{ f \in \tilde{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = k \cdot (\mu^n \{ f \in \Omega_n \mid f_n = \sigma_0 \}). \]

Proof of Claim 7: Recall: \(\tilde{\mu}^n = (\varepsilon^n)_* (\mu^n) \) and \((\varepsilon^n)^* \tilde{\Omega}_n = \Omega_n. \)

Since
\[\{ f \in \tilde{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = \{ f \in \Omega_n \mid f_n \in \varepsilon^* \{ \varepsilon_{\sigma_0} \} \}, \]
we get:
\[\mu^n ((\varepsilon^n)_* (\mu^n)) \{ f \in \tilde{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = \mu^n \{ f \in \Omega_n \mid f_n \in \varepsilon^* \{ \varepsilon_{\sigma_0} \} \}. \]

Then:
\[\mu^n \{ f \in \tilde{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = \mu^n \{ f \in \Omega_n \mid f_n \in \varepsilon^* \{ \varepsilon_{\sigma_0} \} \}. \]

Want:
\[\mu^n \{ f \in \Omega_n \mid f_n \in \varepsilon^* \{ \varepsilon_{\sigma_0} \} \} = k \cdot (\mu^n \{ f \in \Omega_n \mid f_n = \sigma_0 \}). \]

Since
\[\{ f \in \Omega_n \mid f_n \in \varepsilon^* \{ \varepsilon_{\sigma_0} \} \} \]
is the disjoint union, over \(\sigma \in \varepsilon^* \{ \varepsilon_{\sigma_0} \} \), of
\[\{ f \in \Omega_n \mid f_n = \sigma \}, \]
we get: $\mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{ \varepsilon_{\sigma_0} \} \} = \sum_{\sigma \in \varepsilon^*\{ \varepsilon_{\sigma_0} \}} [\mu^n\{ f \in \Omega_n \mid f_n = \sigma \}].$

Then, by Claim 6, we conclude:

$$\mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{ \varepsilon_{\sigma_0} \} \} = \sum_{\sigma \in \varepsilon^*\{ \varepsilon_{\sigma_0} \}} [\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \}].$$

So, since $k = \#(\varepsilon^*\{ \varepsilon_{\sigma_0} \})$, we get:

$$\mu^n\{ f \in \Omega_n \mid f_n \in \varepsilon^*\{ \varepsilon_{\sigma_0} \} \} = k \cdot (\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \}).$$

End of proof of Claim 7.

Recall: $\forall n \in \mathbb{N},$

$$\mu^n(\Omega_n) = \tilde{\mu}^n(\Omega_n).$$

Recall: $\forall n \in [n_0, \infty),$

$$0 < \mu^n(\Omega_n) \leq 1.$$

Then: $\forall n \in [n_0, \infty),$

$$0 < \tilde{\mu}^n(\Omega_n) \leq 1.$$

Also, $\forall n \in \mathbb{N}, \forall S \subseteq \Omega_n,$

$$\tilde{\mu}^n(\Omega_n)(S) = \tilde{\mu}^n(\Omega_n).$$

Then: $\forall n \in \mathbb{N},$

$$\tilde{\mu}^n(\Omega_n) = \tilde{\mu}^n(\Omega_n).$$

By dividing the last two equations, we get:

$$\forall n \in [n_0, \infty), \forall S \subseteq \Omega_n,$$

$$(\tilde{\mu}^n(\Omega_n))(S) = (\mu^n(S))/(\tilde{\mu}^n(\Omega_n)).$$

For all $n \in [n_0, \infty),$ let $\tilde{\lambda}_n := \mathcal{N}(\tilde{\mu}^n|\Omega_n).$

Then: $\forall n \in [n_0, \infty),$

$$\tilde{\lambda}_n(S) = (\tilde{\mu}^n(S))/(\tilde{\mu}^n(\Omega_n)).$$

So, since $\forall n \in \mathbb{N},$

$$z_n = \mu^n(\Omega_n) = \tilde{\mu}^n(\Omega_n),$$

we get:

$$\forall n \in [n_0, \infty), \forall S \subseteq \Omega_n,$$

$$\tilde{\lambda}_n(S) = (\mu^n(S))/z_n.$$

Recall: $\forall n \in [n_0, \infty),$

$$\lambda_n = \mathcal{N}(\mu^n|\Omega_n).$$

Recall: $\forall n \in [n_0, \infty), \forall S \subseteq \Omega_n,$

$$\lambda_n(S) = (\mu^n(S))/z_n.$$

Claim 8: Let $n \in [n_0, \infty).$

Then:

$$\tilde{\lambda}_n\{ f \in \Omega_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = k \cdot (\lambda_n\{ f \in \Omega_n \mid f_n = \sigma_0 \}).$$

Proof of Claim 8: By choice of $n_0,$ we have: $n_0 \in [2, \infty).$

Then $[n_0, \infty) \subseteq [2, \infty),$ so, since $n \in [n_0, \infty),$ we get: $n \in [2, \infty).$

Then, by Claim 7,

$$\tilde{\mu}^n\{ f \in \Omega_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} = k \cdot (\mu^n\{ f \in \Omega_n \mid f_n = \sigma_0 \}).$$

Dividing this last equation by z_n yields

$$\tilde{\lambda}_n\{ f \in \Omega_n \mid f_n = \varepsilon_{\sigma_0} \} = k \cdot (\lambda_n\{ f \in \Omega_n \mid f_n = \sigma_0 \}).$$

End of proof of Claim 8.

Let $P := \mu\{\sigma_0\}$ and $\tilde{P} := \tilde{\mu}\{\varepsilon_{\sigma_0}\}.$

Recall: $k \geq 1.$

By Claim 5, we have: $\mu(\varepsilon^*\{\varepsilon_{\sigma_0}\}) = k \cdot (\mu\{\sigma_0\}).$

Recall: $\tilde{\mu} = \varepsilon^*\mu.$

Since $\tilde{P} = \tilde{\mu}\{\varepsilon_{\sigma_0}\} = (\varepsilon^*\mu)\{\varepsilon_{\sigma_0}\} = \mu(\varepsilon^*\{\varepsilon_{\sigma_0}\}) = k \cdot (\mu\{\sigma_0\}) = k \cdot P,$

we get: $\tilde{P}/k = P.$

Recall: $M_{\tilde{\mu}} = \alpha$ and $\tilde{\mu} \in \mathcal{P}_E$ and $S_{\tilde{\mu}} = E.$

Recall: E is residue-unconstrained and $|\tilde{\mu}|_2 < \infty.$
Since $\varepsilon_{\sigma_0} = \varepsilon(\sigma_0) \in \mathbb{I}_\varepsilon = E$, we get: $\varepsilon_{\sigma_0} \in E$.

Let $\tilde{e}_0 := \varepsilon_{\sigma_0}$. Then: $\tilde{e}_0 \in E$ and $\tilde{P} = \tilde{\mu}(\tilde{e}_0)$.

Recall: $\Omega_n := \{ \tilde{f} \in E^n \mid \tilde{f}_1 + \cdots + \tilde{f}_n = t_n \}$.

By hypothesis, $t_1, t_2, \ldots \in \mathbb{Z}$ and $\{t_n - n\alpha \mid n \in \mathbb{N}\}$ is bounded.

By Theorem 11.2, as $n \to \infty$, $\mathcal{N}(\tilde{\mu}^n|\Omega_n)\{ \tilde{f} \in \Omega_n \mid \tilde{f}_n = \tilde{e}_0 \} \to \tilde{P}$.

Recall: $\forall n \in [n_0, \infty)$, $\lambda_n = \mathcal{N}(\tilde{\mu}^n|\overline{\Omega}_n)$.

Then: as $n \to \infty$, $\lambda_n\{ \tilde{f} \in \Omega_n \mid \tilde{f}_n = \tilde{e}_0 \} \to \tilde{P}$.

Then: as $n \to \infty$, $\lambda_n\{ \tilde{f} \in \overline{\Omega}_n \mid \tilde{f}_n = \varepsilon_{\sigma_0} \} \to \tilde{P}$.

So, by Claim 8, as $n \to \infty$, $k \cdot (\lambda_n\{ f \in \Omega_n \mid f_n = \sigma_0 \}) \to \tilde{P}$.

Then: as $n \to \infty$, $\lambda_n\{ f \in \Omega_n \mid f_n = \sigma_0 \} \to \tilde{P}/k$.

So, by Claim 3, as $n \to \infty$, $\nu_{\Omega_n}\{ f \in \Omega_n \mid f_n = \sigma_0 \} \to \tilde{P}/k$.

Recall: $\mu = B^e_\beta$.

Then, since $\tilde{P}/k = P = \mu\{\sigma_0\} = B^e_\beta\{\sigma_0\}$, we get:

as $n \to \infty$, $\nu_{\Omega_n}\{ f \in \Omega_n \mid f_n = \sigma_0 \} \to B^e_\beta\{\sigma_0\}$. □

The possibility of degeneracy at \tilde{e}_0 (i.e., the possibility that $k \neq 1$) causes a number of complications in the preceding proof.

Here is another approach to proving Theorem 21.1:

By density of the set of injective functions $\Sigma \to \mathbb{R}$ in the topological space of all functions $\Sigma \to \mathbb{R}$, we reduce to the case where ε is injective.

Then the proof can follow the proof of Theorem 16.1, avoiding the degeneracy complications in the preceding proof.

Recall (§2): $\forall t \in \mathbb{R}$, $[t]$ is the floor of t.

Next, we record the $t_n = [n\alpha]$ version of the preceding theorem:

THEOREM 21.2. Let Σ be a finite set.

Let $\varepsilon : \Sigma \to \mathbb{Z}$. Assume \mathbb{I}_ε is residue-unconstrained.

Let $\alpha \in (\min \mathbb{I}_\varepsilon; \max \mathbb{I}_\varepsilon)$. Let $\beta := \text{BP}^e_\alpha$.

For all $n \in \mathbb{N}$, let $\Omega_n := \{ f \in \Sigma^n \mid (\varepsilon(f_1)) + \cdots + (\varepsilon(f_n)) = [n\alpha] \}$.

Let $\sigma_0 \in \Sigma$. Then: as $n \to \infty$, $\nu_{\Omega_n}\{ f \in \Omega_n \mid f_n = \sigma_0 \} \to B^e_\beta\{\sigma_0\}$.

We record the $\alpha \in \mathbb{Z}$ special case of the preceding theorem:

THEOREM 21.3. Let Σ be a finite set.

Let $\varepsilon : \Sigma \to \mathbb{Z}$. Assume \mathbb{I}_ε is residue-unconstrained.

Let $\alpha \in (\min \mathbb{I}_\varepsilon; \max \mathbb{I}_\varepsilon)$. Assume $\alpha \in \mathbb{Z}$. Let $\beta := \text{BP}^e_\alpha$.

For all $n \in \mathbb{N}$, let $\Omega_n := \{ f \in \Sigma^n \mid (\varepsilon(f_1)) + \cdots + (\varepsilon(f_n)) = n\alpha \}$.

Let $\sigma_0 \in \Sigma$. Then: as $n \to \infty$, $\nu_{\Omega_n}\{ f \in \Omega_n \mid f_n = \sigma_0 \} \to B^e_\beta\{\sigma_0\}$.
Example: Suppose $\Sigma = \{0, 1, 10\}$ and $\alpha = 1$.

Suppose, also, $\forall \sigma \in \Sigma$, $\varepsilon(\sigma) = \sigma$.

Then Ω_N represents the set of all GFA dispensations to the N professors.

Since ν_{Ω_N} gives equal probability to each dispensation, ν_{Ω_N} represents the GFA’s first system for awarding grants.

Since $\beta = BP^\varepsilon_\alpha = BP^\varepsilon_1$, we calculate: $\beta = (\ln 9)/10$.

More calculation gives: $(B^\varepsilon_\beta\{0\}, B^\varepsilon_\beta\{1\}, B^\varepsilon_\beta\{10\}) = (1, 9^{-1/10}, 9^{-1})/(1 + 9^{-1/10} + 9^{-1})$.

Since N is large, by Theorem 21.3, we get:

$$\nu_{\Omega_N}\{ f \in \Omega_N \mid f_N = \sigma_0 \} \approx B^\varepsilon_\beta(\sigma_0).$$

So, if I am the Nth professor, then, under the first system, my probability of receiving σ_0 dollars is approximately equal to $B^\varepsilon_\beta(\sigma_0)$.

Thus Theorem 21.3 reproduces the result of §12.

Example: Suppose $\Sigma = ([0..4] \times [0..4]) \setminus \{(4, 4)\}$.

Suppose, also, $\alpha = 1$ and $\forall \sigma \in \Sigma$, $\varepsilon(\sigma) = \sigma_1 + \sigma_2$.

Then Ω_N represents the set of all state-distributions at the BUA. (See §19.)

Since $\beta = BP^\varepsilon_\alpha = BP^\varepsilon_1$, we calculate:

$$\beta \approx 1.0670,$$

accurate to four decimal places.

Let $M \in \mathbb{R}^{5 \times 5}$ be the matrix defined by: $M_{55} = 0$ and $\forall (i, j) \in ([1..5] \times [1..5]) \setminus \{(5, 5)\}$, $M_{ij} = B^\varepsilon_\beta\{(i - 1, j - 1)\}$.

Then

$$M \approx \begin{bmatrix}
0.4345 & 0.1495 & 0.0514 & 0.0177 & 0.0061 \\
0.1495 & 0.0514 & 0.0177 & 0.0061 & 0.0021 \\
0.0514 & 0.0177 & 0.0061 & 0.0021 & 0.0007 \\
0.0177 & 0.0061 & 0.0021 & 0.0007 & 0.0002 \\
0.0061 & 0.0021 & 0.0007 & 0.0002 & 0
\end{bmatrix}$$

all accurate to four decimal places.

(Thanks to C. Prouty for these calculations. See §25.)

According to Theorem 21.3, this answers the problem formulated near the end of §19.

Since $B^\varepsilon_\beta\{(0, 0)\} = M_{11} = 0.4345$, it is possible (cf. §14) to prove:

If N is sufficiently large, then, more than 99% of the time, over 43% of the BUA professors have $\$0$ wealth.
22. ∞-properness

Recall (\S2): the notations I_ε and ε^*A.

DEFINITION 22.1. Let Σ be a set. Let $\varepsilon : \Sigma \to \mathbb{R}$. By ε is \text{\underline{∞-proper}}], we mean: $\forall t \in \mathbb{R}, \# \{ \sigma \in \Sigma \mid \varepsilon(\sigma) \leq t \} < \infty$.

That is, $\forall t \in \mathbb{R}, \# \{ \sigma \in \Sigma \mid \varepsilon(\sigma) \geq t \} < \infty$.

Note that, for any finite set Σ, for any $\varepsilon : \Sigma \to \mathbb{R}$, we have: ε is ∞-proper.

THEOREM 22.2. Let Σ be a nonempty set. Let $\varepsilon : \Sigma \to \mathbb{R}$. Assume: ε is ∞-proper. Then: Σ is countable.

THEOREM 22.3. Let Σ be a nonempty set. Let $\varepsilon : \Sigma \to \mathbb{R}$. Assume: ε is ∞-proper. Then: $\exists \zeta_0 \in I_\varepsilon$ s.t., $\forall \sigma \in \Sigma, \varepsilon(\sigma) \geq \zeta_0$.

In other words, the set I_ε has a minimum element.

THEOREM 22.4. Let Σ be a set. Let $\varepsilon : \Sigma \to \mathbb{R}$ be ∞-proper. Then: I_ε is bounded below and $\forall t \in I_\varepsilon$, $\varepsilon^*(t)$ is finite.

The preceding three results are basic; we omit the proofs.

When ε is \mathbb{Z}-valued, the converse of Theorem 22.4 is also true:

THEOREM 22.5. Let Σ be a set. Let $\varepsilon : \Sigma \to \mathbb{Z}$. If: [ε is ∞-proper] iff [I_ε is bounded below] & ($\forall t \in I_\varepsilon, \varepsilon^*(t)$ is finite)].

The preceding is basic; we omit the proof.

The following two results are corollaries of Theorem 22.5:

THEOREM 22.6. Let Σ be a set. Let $\varepsilon : \Sigma \to \mathbb{Z}$ be injective. Then: [ε ∞-proper] iff [I_ε is bounded below].

THEOREM 22.7. Let $\Sigma \subseteq \mathbb{Z}$. Define $\varepsilon : \Sigma \to \mathbb{R}$ by: $\forall \sigma \in \Sigma, \varepsilon(\sigma) = \sigma$.

Then: [ε ∞-proper] iff [Σ is bounded below].

DEFINITION 22.8. Let Σ be a set. Let $\varepsilon : \Sigma \to \mathbb{R}$. By ε is \text{\underline{$(-\infty)$-proper}}], we mean: $\forall t \in \mathbb{R}, \# \{ \sigma \in \Sigma \mid \varepsilon(\sigma) \geq t \} < \infty$.

NOTE: (ε is $(-\infty)$-proper) \iff ($-\varepsilon$ is ∞-proper).

THEOREM 22.9. Let Σ be a set. Let $\varepsilon : \Sigma \to \mathbb{R}$. Assume ε is both ∞-proper and $(-\infty)$-proper. Then Σ is finite.
The preceding is basic; we omit the proof.

23. BOLTZMANN DISTRIBUTIONS ON COUNTABLE SETS

In this section, we generalize our earlier work on Boltzmann distributions (§20) to allow for a countably infinite set of states.

DEFINITION 23.1. Let \(\Sigma \) be a countable set, \(\varepsilon : \Sigma \to \mathbb{R} \). Then, \(\forall \beta \in \mathbb{R} \), \(\hat{B}^\varepsilon_\beta \in \mathcal{M}_\Sigma \) is defined by: \(\forall \sigma \in \Sigma \), \(\hat{B}^\varepsilon_\beta \{ \sigma \} = e^{-\beta \cdot (\varepsilon(\sigma))} \).

DEFINITION 23.2. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R} \), \(\beta \in \mathbb{R} \). For all \(\sigma \in \Sigma \), let \(\varepsilon_\sigma := \varepsilon(\sigma) \).
Then: \(\Delta^\varepsilon_\beta := \sum_{\sigma \in \Sigma} [e^{-\beta \cdot \varepsilon_\sigma}] \in [0; \infty] \).
We have: \(\forall \) nonempty set \(\Sigma \), \(\forall \varepsilon : \Sigma \to \mathbb{R} \), \(\forall \beta \in \mathbb{R} \), \(\Delta^\varepsilon_\beta > 0 \).

DEFINITION 23.3. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to \mathbb{R} \). Then the Delta-finite-set of \(\varepsilon \) is: \(\text{DF}_\varepsilon := \{ \beta \in \mathbb{R} \mid \Delta^\varepsilon_\beta < \infty \} \).
We have: \(\forall \) finite set \(\Sigma \), \(\forall \varepsilon : \Sigma \to \mathbb{R} \), \(\forall \beta \in \mathbb{R} \), \(\Delta^\varepsilon_\beta < \infty \).
Then: \(\forall \) finite set \(\Sigma \), \(\forall \varepsilon : \Sigma \to \mathbb{R} \), \(\text{DF}_\varepsilon = \mathbb{R} \).

Let \(\Sigma \) be a countable set, \(\varepsilon : \Sigma \to \mathbb{R} \).
Since \(\forall \beta \in \mathbb{R} \), \(\Delta^\varepsilon_\beta = \Delta^\varepsilon_\beta \), we get: \(\text{DF}_{-\varepsilon} = -\text{DF}_\varepsilon \).

Let \(\Sigma \) be a countable set, \(\varepsilon : \Sigma \to \mathbb{R} \), \(\beta \in \mathbb{R} \).
Since \(\Delta^\varepsilon_\beta = \sum_{\sigma \in \Sigma} [\hat{B}^\varepsilon_\beta \{ \sigma \}] \), we get: \(\Delta^\varepsilon_\beta = \hat{B}^\varepsilon_\beta(\Sigma) \).
For any countable set \(\Sigma \), for any \(\varepsilon : \Sigma \to \mathbb{R} \), for any \(\beta \in \mathbb{R} \),
\((\Sigma \neq \emptyset \text{ and } \beta \in \text{DF}_\varepsilon) \iff (0 < \Delta^\varepsilon_\beta < \infty) \iff (0 < \hat{B}^\varepsilon_\beta(\Sigma) < \infty) \iff (\hat{B}^\varepsilon_\beta \in \mathcal{F}_\mathcal{M}^\varepsilon_\Sigma) \).

DEFINITION 23.4. Let \(\Sigma \) be a countable set, \(\varepsilon : \Sigma \to \mathbb{R} \), \(\beta \in \mathbb{R} \). Assume: \(0 < \Delta^\varepsilon_\beta < \infty \). Then: \(\hat{B}^\varepsilon_\beta := \mathcal{N}(\hat{B}^\varepsilon_\beta) \in \mathcal{P}_\Sigma \).

Let \(\Sigma \) be a countable set, \(\varepsilon : \Sigma \to \mathbb{R} \).
If \(\text{DF}_\varepsilon = \emptyset \), then, for all \(\beta \in \mathbb{R} \), since \(\hat{B}^\varepsilon_\beta(\Sigma) = \Delta^\varepsilon_\beta = \infty \), we see that \(\hat{B}^\varepsilon_\beta \) cannot be normalized, i.e., there is no \(B^\varepsilon_\beta \).
So, if \(\text{DF}_\varepsilon = \emptyset \), we have no Boltzmann distributions to study.
So, going forward, we generally focus on cases where $DF_{\varepsilon} \neq \emptyset$.

Let Σ be a countable set, $\varepsilon : \Sigma \to \mathbb{R}$.
In case $\Sigma = \emptyset$, ε is the empty function, and there is nothing to say.
In case Σ is nonempty and finite,

we already developed a satisfactory Boltzmann theory, in §20.
So, going forward, we generally focus on cases where Σ is infinite.

Recall (§2): the notation ε^*A.

Let Σ be an infinite set, $\varepsilon : \Sigma \to \mathbb{R}$. Then: $\varepsilon^*\mathbb{R} = \Sigma$.
We have: \((-\infty; 0]\cup[0; \infty) = \mathbb{R}.
Since $(\varepsilon^*(-\infty; 0]\cup(\varepsilon^*[0; \infty)) = \varepsilon^*\mathbb{R} = \Sigma$,
we get either $\varepsilon^*(-\infty; 0]$ is infinite or $\varepsilon^*[0; \infty)$ is infinite,
and the Boltzmann theory splits into those two cases.

Also, by Theorem 23.7 below, if $DF_{\varepsilon} \neq \emptyset$,
then only one of the two cases can happen.

THEOREM 23.5. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\varepsilon^*[0; \infty)$ is infinite. Then: $DF_{\varepsilon} \subseteq (0; \infty)$.

Proof. Given $\beta \in DF_{\varepsilon}$, want: $\beta \in (0; \infty)$.
Since $\beta \in DF_{\varepsilon} \subseteq \mathbb{R}$, it suffices to show: $\beta > 0$.
Assume: $\beta \leq 0$. Want: Contradiction.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma} := \varepsilon(\sigma)$.
For all $\sigma \in \varepsilon^*[0; \infty)$, since $\varepsilon_{\sigma} = \varepsilon(\sigma) \in [0; \infty)$, we get: $\varepsilon_{\sigma} \geq 0$.
So, since $\beta \leq 0$, we get: $\forall \sigma \in \varepsilon^*[0; \infty), \quad -\beta \cdot \varepsilon_{\sigma} \geq 0$.
Then: $\forall \sigma \in \varepsilon^*[0; \infty), \quad e^{-\beta \cdot \varepsilon_{\sigma}} \geq 1$.
So, since $\varepsilon^*[0; \infty)$ is infinite, we get: $\sum_{\sigma \in \varepsilon^*[0; \infty)]} [e^{-\beta \cdot \varepsilon_{\sigma}}] = \infty$.
Since $\Delta_{\beta}^\varepsilon = \sum_{\sigma \in \Sigma} [e^{-\beta \cdot \varepsilon_{\sigma}}] \geq \sum_{\sigma \in \varepsilon^*[0; \infty)]} [e^{-\beta \cdot \varepsilon_{\sigma}}] = \infty,$
we get: $\beta \notin DF_{\varepsilon}$. Contradiction. \square

THEOREM 23.6. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\varepsilon^*(-\infty; 0]$ is infinite. Then: $DF_{\varepsilon} \subseteq (-\infty; 0)$.

Proof. Since $(-\varepsilon)^*[0; \infty) = \varepsilon^*(-\infty; 0]$, we get: $(-\varepsilon)^*[0; \infty)$ is infinite.
Then, by Theorem 23.5, we get: $DF_{-\varepsilon} \subseteq (0; \infty)$.
Then $DF_{\varepsilon} = -DF_{-\varepsilon} \subseteq -(0; \infty) = (-\infty; 0)$. \square

THEOREM 23.7. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\varepsilon^*(-\infty; 0]$ and $\varepsilon^*[0; \infty)$ are both infinite. Then: $DF_{\varepsilon} = \emptyset$.

\textbf{Theorem 23.10.} Let Σ be a set. Assume $DF_\varepsilon \neq \emptyset$.

Proof. By Theorem 23.5, we get: $DF_\varepsilon \subseteq (0; \infty)$.

By Theorem 23.6, we get: $DF_\varepsilon \subseteq (-\infty; 0)$.

Since $DF_\varepsilon \subseteq (-\infty; 0) \cap (0; \infty) = \emptyset$, we get: $DF_\varepsilon = \emptyset$. \hfill \square

Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$. Assume $DF_\varepsilon \neq \emptyset$.

Since $(DF_\varepsilon \cap (-\infty; 0)) \cup (DF_\varepsilon \cap [0; \infty)) = DF_\varepsilon \neq \emptyset$,

we get either $DF_\varepsilon \cap (-\infty; 0) \neq \emptyset$ or $DF_\varepsilon \cap [0; \infty) \neq \emptyset$,

and the Boltzmann theory splits into those two cases.

Also, by Theorem 23.11 below, if Σ is infinite,

then only one of the two cases can happen.

Theorem 23.8. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$.

Assume: $DF_\varepsilon \cap [0; \infty) \neq \emptyset$. Then: ε is ∞-proper.

Proof. Given $t \in \mathbb{R}$, let $\Sigma_0 := \{ \sigma \in \Sigma | \varepsilon(\sigma) \leq t \}$, want: $\#\Sigma_0 < \infty$.

Since $DF_\varepsilon \cap [0; \infty) \neq \emptyset$, choose $\beta \in DF_\varepsilon \cap [0; \infty)$.

Then $\beta \in DF_\varepsilon$ and $\beta \in [0; \infty)$.

Since $\beta \in DF_\varepsilon$, we get: $\Delta_\beta^\varepsilon < \infty$. Then: $e^{\beta t} \cdot \Delta_\beta^\varepsilon < \infty$.

For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$. Then: $\Delta_\beta^\varepsilon = \sum_{\sigma \in \Sigma} [e^{-\beta \varepsilon_\sigma}]$.

By definition of Σ_0, we have: $\forall \sigma \in \Sigma_0, \varepsilon(\sigma) \leq t$.

Since $\beta \in [0; \infty)$ and since $\forall \sigma \in \Sigma_0, t \geq \varepsilon(\sigma) = \varepsilon_\sigma$,

we get: $\forall \sigma \in \Sigma_0, -\beta \cdot t \leq -\beta \cdot \varepsilon_\sigma$.

Then: $\forall \sigma \in \Sigma_0, e^{-\beta t} \leq e^{-\beta \varepsilon_\sigma}$.

Then: $\#\Sigma_0 = \sum_{\sigma \in \Sigma_0} [1] = e^{\beta t} \cdot \sum_{\sigma \in \Sigma_0} [e^{-\beta \varepsilon_\sigma}] \leq e^{\beta t} \cdot \sum_{\sigma \in \Sigma_0} [e^{-\beta \varepsilon_\sigma}] = e^{\beta t} \cdot \Delta_\beta^\varepsilon < \infty$. \hfill \square

Theorem 23.9. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$.

Assume: $DF_\varepsilon \cap (-\infty; 0) \neq \emptyset$. Then: ε is $(-\infty)$-proper.

Proof. Since $(-DF_\varepsilon \cap (-\infty; 0)) \cup (DF_\varepsilon \cap [0; \infty)) = DF_\varepsilon \neq \emptyset$,

we get: $DF_{-\varepsilon} \cap [0; \infty) \neq \emptyset$.

Then, by Theorem 23.8, $-\varepsilon$ is ∞-proper, and so ε is $(-\infty)$-proper. \hfill \square

Theorem 23.10. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$.

Assume: $DF_\varepsilon \neq \emptyset$. Then: Σ is countable.

Proof. Since $(DF_\varepsilon \cap (-\infty; 0)) \cup (DF_\varepsilon \cap [0; \infty)) = DF_\varepsilon \neq \emptyset$,

it follows that: either $DF_\varepsilon \cap (-\infty; 0) \neq \emptyset$ or $DF_\varepsilon \cap [0; \infty) \neq \emptyset$.

Then, by Theorem 23.9 and Theorem 23.8,

we get: either ε is $(-\infty)$-proper or ε is ∞-proper.

Then: either $-\varepsilon$ is ∞-proper or ε is ∞-proper.

In either case, by Theorem 22.2, we get: Σ is countable. \hfill \square
THEOREM 23.11. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$.
Assume: $\text{DF} \varepsilon \cap (-\infty; 0] \neq \emptyset \neq \text{DF} \varepsilon \cap [0; \infty)$. Then: Σ is finite.

Proof. By Theorem 23.8, we get: ε is ∞-proper.
By Theorem 23.9, we get: ε is $(-\infty)$-proper.
Then, by Theorem 22.9, we get: Σ is finite. \qed

THEOREM 23.12. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$.
Assume: $\varepsilon^*[0; \infty)$ is infinite and $\text{DF} \varepsilon \neq \emptyset$. Then: ε is ∞-proper.

Proof. By Theorem 23.5, we have: $\text{DF} \varepsilon \subseteq (0; \infty)$.
Since $\text{DF} \varepsilon \subseteq (0; \infty) \subseteq [0; \infty)$, we get: $\text{DF} \varepsilon \cap [0; \infty) = \text{DF} \varepsilon$.
Then, by Theorem 23.8, we get: ε is ∞-proper. \qed

THEOREM 23.13. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$.
Assume: $\varepsilon^*(-\infty; 0]$ is infinite and $\text{DF} \varepsilon \neq \emptyset$. Then: ε is $(-\infty)$-proper.

Proof. Since $(-\varepsilon)^*[0; \infty) = \varepsilon^*(-\infty; 0]$, we get: $(-\varepsilon)^*[0; \infty)$ is infinite.
Since $\text{DF} - \varepsilon = -\text{DF} \varepsilon$, we get: $\text{DF} - \varepsilon \neq \emptyset$.
Then, by Theorem 23.12, $-\varepsilon$ is ∞-proper, so ε is $(-\infty)$-proper. \qed

DEFINITION 23.14. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$, $\beta \in \mathbb{R}$.
For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.
Then, $\forall \text{real } \rho \geq 0$, the ρ-exponent (β, ε)-sum is:
$$X^\rho S^\varepsilon_\beta := \sum_{\sigma \in \Sigma} [|\varepsilon_\sigma|^{\rho \cdot e^{-\beta \cdot \varepsilon_\sigma}] \in [0; \infty].$$

Recall our convention (§2): $0^0 = 1$. Then: $X^0 S^\varepsilon_\beta = \Delta^\varepsilon_\beta$.

THEOREM 23.15. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$, $\beta \in \text{DF} \varepsilon$.
Assume: \mathbb{I}_ε is bounded below.
Let $\rho \geq 0$ be real. Let $\gamma > \beta$ be real. Then: $X^\rho S^\varepsilon_\gamma < \infty$.

We cannot replace “$\gamma > \beta$” with “$\gamma \geq \beta$”, see Theorem 23.29 below.

Proof. Since \mathbb{I}_ε is bounded below, choose $\zeta_0 \in \mathbb{R}$ s.t. $\forall \sigma \in \Sigma, \varepsilon(\sigma) \geq \zeta_0$.
For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.
Then: $\forall \sigma \in \Sigma, \varepsilon_\sigma \geq \zeta_0$.
Let $\delta := \gamma - \beta$. Then $\delta > 0$, so, as $\zeta \rightarrow \infty$, $|\zeta|^\rho \cdot e^{-\delta \cdot \zeta} \rightarrow 0$.
So, since $\zeta \mapsto |\zeta|^\rho \cdot e^{-\delta \cdot \zeta} : [\zeta_0; \infty) \rightarrow \mathbb{R}$ is continuous,
by the Extreme Value Theorem, choose $M \in \mathbb{R}$ s.t., for all $\zeta \geq \zeta_0$,
$|\zeta|^\rho \cdot e^{-\delta \cdot \zeta} \leq M$.
Then: $\forall \sigma \in \Sigma, |\varepsilon_\sigma|^\rho \cdot e^{-\delta \cdot \varepsilon_\sigma} \leq M$.
By definition of $X^\rho S^\varepsilon_\gamma$, we get: $X^\rho S^\varepsilon_\gamma = \sum_{\sigma \in \Sigma} [|\varepsilon_\sigma|^\rho \cdot e^{-\gamma \cdot \varepsilon_\sigma}].$
Proof. Assume: By Theorem 23.15, we have:
\[X^0 S^ε_γ = \sum_{σ ∈ Σ} \left(|σ|^{p - ε_σ} \right) \cdot \left(e^{-β^{ε_σ}} \right) \].

Then, since \(-γ = -δ - β\), we get:
\[X^0 S^ε_γ = \sum_{σ ∈ Σ} \left[|σ|^{p - δ - ε_σ} \right] \cdot \left(e^{-β^{ε_σ}} \right) \].

Since \(β ∈ DF_ε\), we get: \(Δ^ε_β < ∞\). Then:
\[M \cdot Δ^ε_β < ∞. \]

Then:
\[X^0 S^ε_γ = \sum_{σ ∈ Σ} \left[|σ|^{p - δ - ε_σ} \right] \cdot \left(e^{-β^{ε_σ}} \right) \]
\[\leq \sum_{σ ∈ Σ} \left[|σ|^{p} \right] \cdot \left(e^{-β^{ε_σ}} \right) \]
\[= M \cdot \left(\sum_{σ ∈ Σ} \left[e^{-β^{ε_σ}} \right] \right) = M \cdot Δ^ε_β < ∞. \]

\[\square \]

THEOREM 23.16. Let \(Σ\) be a set, \(ε : Σ \to ℝ\), \(β ∈ DF_ε\).
Assume: \(I_ε\) is bounded below. Let \(γ > β\) be real. Then: \(γ ∈ DF_ε\).

Proof. By Theorem 23.15, we have: \(X^0 S^ε_γ < ∞\).
Since \(Δ^ε_γ = X^0 S^ε_γ < ∞\), we get: \(γ ∈ DF_ε\). \[\square \]

THEOREM 23.17. Let \(Σ\) be a set, \(ε : Σ \to ℝ\), \(β, ρ ∈ ℝ\).
Assume: \(ρ ≥ 0\), \(ε\) is \(∞\)-proper, \(X^0 S^ε_β < ∞\). Then: \(β ∈ DF_ε\).

Proof. Want: \(Δ^ε_β < ∞\).
Let \(F := \{ σ ∈ Σ \mid ε(σ) ≤ 1 \}\). Since \(ε\) is \(∞\)-proper, we get: \(F\) is finite.
For all \(σ ∈ Σ\), let \(ε_σ := ε(σ)\). Then: \(F = \{ σ ∈ Σ \mid ε_σ ≤ 1 \}\).
Since \(F\) is finite, we get: \(\sum_{σ ∈ F} \left[e^{-β^{ε_σ}} \right] < ∞\).
So, since \(Δ^ε_β = \left(∑_{σ ∈ F} \left[e^{-β^{ε_σ}} \right] \right) + \left(∑_{σ ∈ Σ \backslash F} \left[e^{-β^{ε_σ}} \right] \right)\),
it suffices to show:
\[\sum_{σ ∈ Σ \backslash F} \left[e^{-β^{ε_σ}} \right] < ∞. \]
Since \(F = \{ σ ∈ Σ \mid ε_σ ≤ 1 \}\), we get: \(∀σ ∈ Σ \backslash F\), \(ε_σ > 1\).
Then: \(∀σ ∈ Σ \backslash F\), since \(ε_σ > 1 > 0\), we get:
\[ε_σ = |ε_σ|. \]
Since \(∀σ ∈ Σ \backslash F\), \(1 < ε_σ = |ε_σ|\), we get:
\[∀σ ∈ Σ \backslash F, \quad 1^ρ ≤ |ε_σ|^ρ. \]
Then: \(∀σ ∈ Σ \backslash F\), \(1^ρ \cdot e^{-β^{ε_σ}} ≤ |ε_σ|^ρ \cdot e^{-β^{ε_σ}}\).
Then: \(\sum_{σ ∈ Σ \backslash F} \left[e^{-β^{ε_σ}} \right] = \sum_{σ ∈ Σ \backslash F} \left[|σ|^{p} \cdot e^{-β^{ε_σ}} \right] ≤ \sum_{σ ∈ Σ \backslash F} \left[|σ|^{p} \cdot e^{-β^{ε_σ}} \right]\]
\[\leq \sum_{σ ∈ Σ} \left[|σ|^{p} \cdot e^{-β^{ε_σ}} \right] = X^0 S^ε_β < ∞. \]

\[\square \]

THEOREM 23.18. Let \(Σ\) be a set, \(ε : Σ \to ℝ\).
Assume: \(ε^*[0; ∞)\) is infinite and \(DF_ε \neq ∅\). Let \(β_0 := \inf DF_ε\).
Then: \(0 ≤ β_0 < ∞\) and \((β_0; ∞) ≤ DF_ε\).

Proof. By Theorem 23.5, \(DF_ε ⊆ (0; ∞)\). Then: \(\inf DF_ε ≥ \inf(0; ∞)\).
Since \(DF_ε \neq ∅\), we get: \(\inf DF_ε < ∞\).
Since \(β_0 = \inf DF_ε ≥ \inf(0; ∞) = 0\) and since \(β_0 = \inf DF_ε < ∞\), we get: \(0 ≤ β_0 < ∞\).
It remains to show: \((β_0; ∞) ⊆ DF_ε\).
Given \(γ ∈ (β_0; ∞)\), want: \(γ ∈ DF_ε\).
Since $\text{DF}_{\varepsilon} \subseteq (0; \infty) \subseteq [0; \infty)$, we get: $\text{DF}_{\varepsilon} \cap [0; \infty) = \text{DF}_{\varepsilon}$.

By Theorem 23.12, ε is ∞-proper.

Then, by Theorem 22.4, we have: \mathbb{I}_{ε} is bounded below.

Since $\gamma > \beta_0 = \inf \text{DF}_{\varepsilon}$, choose $\beta \in \text{DF}_{\varepsilon}$ s.t. $\gamma > \beta$.

Then, by Theorem 23.16, we get: $\gamma \in \text{DF}_{\varepsilon}$.

\section*{THEOREM 23.19. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$. Assume: $\varepsilon^*[0; \infty)$ is infinite and $\text{DF}_{\varepsilon} \neq \emptyset$. Let $\beta_0 := \inf \text{DF}_{\varepsilon}$.

Then one of the following is true:

Either ($\text{DF}_{\varepsilon} = [\beta_0; \infty)$ and $0 < \beta_0 < \infty$)

or ($\text{DF}_{\varepsilon} = (\beta_0; \infty)$ and $0 \leq \beta_0 < \infty$).

Proof. By Theorem 23.18, we get: $0 \leq \beta_0 < \infty$ and $(\beta_0; \infty) \subseteq \text{DF}_{\varepsilon}$.

Since $\beta_0 = \inf \text{DF}_{\varepsilon}$, we get: $\text{DF}_{\varepsilon} \subseteq [\beta_0; \infty)$.

By Theorem 23.5, we get: $\text{DF}_{\varepsilon} \subseteq (0; \infty)$.

\begin{enumerate}

\item \textbf{Case 1:} $\beta_0 \in \text{DF}_{\varepsilon}$.

\textbf{Want:} $\text{DF}_{\varepsilon} = [\beta_0; \infty)$ and $\beta_0 > 0$.

Since $\beta_0 \in \text{DF}_{\varepsilon}$ and $(\beta_0; \infty) \subseteq \text{DF}_{\varepsilon}$, we get: $[\beta_0; \infty) \subseteq \text{DF}_{\varepsilon}$.

So, since $\text{DF}_{\varepsilon} \subseteq [\beta_0; \infty)$, we get: $\text{DF}_{\varepsilon} = [\beta_0; \infty)$.

\textbf{It remains only to show:} $\beta_0 > 0$.

Since $\beta_0 \in [\beta_0; \infty) = \text{DF}_{\varepsilon} \subseteq (0; \infty)$, we get: $\beta_0 > 0$.

\textbf{End of Case 1.}

\item \textbf{Case 2:} $\beta_0 \notin \text{DF}_{\varepsilon}$.

\textbf{Want:} $\text{DF}_{\varepsilon} = (\beta_0; \infty)$ and $\beta_0 \geq 0$.

Since $0 \leq \beta_0 < \infty$, we get: $\beta_0 \geq 0$.

\textbf{It remains only to show:} $\text{DF}_{\varepsilon} = (\beta_0; \infty)$.

Since $\beta_0 \notin \text{DF}_{\varepsilon}$ and $\text{DF}_{\varepsilon} \subseteq [\beta_0; \infty)$, we get: $\text{DF}_{\varepsilon} \subseteq (\beta_0; \infty)$.

So, since $(\beta_0; \infty) \subseteq \text{DF}_{\varepsilon}$, we get: $\text{DF}_{\varepsilon} = (\beta_0; \infty)$.

\textbf{End of Case 2.} \hfill \square

Replacing ε by $-\varepsilon$ in Theorem 23.19 yields:

\section*{THEOREM 23.20. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$. Assume: $\varepsilon^*\{(-\infty; 0]\}$ is infinite and $\text{DF}_{\varepsilon} \neq \emptyset$. Let $\beta_0 := -\sup \text{DF}_{\varepsilon}$.

Then one of the following is true:

Either ($\text{DF}_{\varepsilon} = (-\infty; -\beta_0]$ and $0 < \beta_0 < \infty$)

or ($\text{DF}_{\varepsilon} = (-\infty; -\beta_0])$ and $0 \leq \beta_0 < \infty$).
THEOREM 23.21. Let Σ be a set, $\varepsilon : \Sigma \rightarrow \mathbb{R}$. Assume: $DF_\varepsilon \neq \emptyset$.

Then one of the following is true:

(i) $DF_\varepsilon = \mathbb{R}$.

(ii) $\exists \text{real } \beta_0 > 0 \text{ s.t. } DF_\varepsilon = (\beta_0; \infty)$.

(iii) $\exists \text{real } \beta_0 > 0 \text{ s.t. } DF_\varepsilon = [\beta_0; \infty)$.

(iv) $\exists \text{real } \beta_0 \geq 0 \text{ s.t. } DF_\varepsilon = (-\infty; -\beta_0)$.

(v) $\exists \text{real } \beta_0 > 0 \text{ s.t. } DF_\varepsilon = (-\infty; -\beta_0]$.

Proof. Since $\varepsilon : \Sigma \rightarrow \mathbb{R}$, we get: $\varepsilon^* \mathbb{R} = \Sigma$.

Since $(-\infty; 0] \cup [0; \infty) = \mathbb{R}$, we get: $\varepsilon^* (-\infty; 0] \cup \varepsilon^* [0; \infty) = \varepsilon^* \mathbb{R}$.

In case $\# \Sigma < \infty$, we get: (i) holds. We therefore assume $\# \Sigma = \infty$.

Then, because $\varepsilon^* (-\infty; 0] \cup \varepsilon^* [0; \infty) = \varepsilon^* \mathbb{R} = \Sigma$, we get:

- either $\varepsilon^*(-\infty; 0]$ is infinite or $\varepsilon^*[0; \infty)$ is infinite.

Then, by Theorem 23.19 and Theorem 23.20, we get:

- either (ii) or (iii) holds or (iv) or (v) holds.

Below, in Theorem 23.23, Theorem 23.24, Theorem 23.25, we give recipes for constructing ∞-proper ε such that:

$DF_\varepsilon = \emptyset$, $DF_\varepsilon = (\beta_0; \infty)$, $DF_\varepsilon = [\beta_0; \infty)$, respectively.

Then: $DF_{-\varepsilon} = \emptyset$, $DF_{-\varepsilon} = (-\infty; -\beta_0)$, $DF_{-\varepsilon} = (-\infty; -\beta_0)$, respectively.

THEOREM 23.22. Let Σ be a set, $\varepsilon : \Sigma \rightarrow [0; \infty)$.

For all $k \in \mathbb{N}$, let $n_k := \#(\varepsilon^*[k-1; k))$.

Let $\beta \geq 0$ be real. Then: $(\beta \in DF_\varepsilon) \Leftrightarrow (\sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty)$.

Proof. For all $\sigma \in \Sigma$, let $\varepsilon_\sigma := \varepsilon(\sigma)$.

Proof of \Rightarrow: Assume: $\beta \in DF_\varepsilon$. Want: $\sum_{k=1}^{\infty} [n_k e^{-\beta k}] < \infty$.

Since $\beta \in DF_\varepsilon$, we get: $\Delta_\beta < \infty$.

Because Σ is the disjoint union, over $k = 1$ to ∞, of $\varepsilon^*[k-1; k)$,

we get: $\sum_{\sigma \in \Sigma} [e^{-\beta \varepsilon_\sigma}] = \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta \varepsilon_\sigma}]$.

For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^*[k-1; k)$, since $\varepsilon_\sigma = \varepsilon(\sigma) \in [k - 1; k)$,

we have: $k > \varepsilon_\sigma$.

Since $\beta \geq 0$, we get: $-\beta \leq 0$.

For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^*[k-1; k)$, we have: $-\beta \cdot k \leq -\beta \cdot \varepsilon_\sigma$.

For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^*[k-1; k)$, we have: $e^{-\beta k} \leq e^{-\beta \varepsilon_\sigma}$.

Then: $\forall k \in \mathbb{N}$,

$\sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta k}] \leq \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta \varepsilon_\sigma}]$.

Then: $\forall k \in \mathbb{N}$,

$n_k e^{-\beta k} \leq \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta \varepsilon_\sigma}]$.

Then:

$\sum_{k=1}^{\infty} [n_k e^{-\beta k}] \leq \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^*[k-1; k)} [e^{-\beta \varepsilon_\sigma}]$.
\[
\sum_{\sigma \in \Sigma} [e^{-\beta \cdot \varepsilon_{\sigma}}] = \Delta^\varepsilon_{\beta} < \infty.
\]

End of proof of \(\Rightarrow \).

Proof of \(\Leftarrow \): Assume: \(\sum_{k=1}^{\infty} [n_k e^{-\beta \cdot k}] < \infty \). **Want**: \(\beta \in \text{DF}_\varepsilon \).

Because \(\Sigma \) is the disjoint union, over \(k = 1 \) to \(\infty \), of \(\varepsilon^*[k-1;k] \), we get:

\[
\sum_{\sigma \in \Sigma} [e^{-\beta \cdot (\varepsilon_{\sigma}+1)}] = \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^*[k-1;k]} [e^{-\beta \cdot (\varepsilon_{\sigma}+1)}].
\]

For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1;k] \), since \(\varepsilon_{\sigma} = \varepsilon(\sigma) \in [k-1;k) \), we have: \(\varepsilon_{\sigma} \geq k-1 \).

For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1;k] \), we have: \(\varepsilon_{\sigma} + 1 \geq k \).

Since \(\beta \geq 0 \), we get: \(-\beta \leq 0 \).

For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1;k] \), we have: \(-\beta \cdot (\varepsilon_{\sigma} + 1) \leq -\beta \cdot k \).

For all \(k \in \mathbb{N} \), for all \(\sigma \in \varepsilon^*[k-1;k] \), we have: \(e^{-\beta \cdot (\varepsilon_{\sigma}+1)} \leq e^{-\beta \cdot k} \).

Then: \(\forall k \in \mathbb{N} \), \(\sum_{\sigma \in \varepsilon^*[k-1;k]} [e^{-\beta \cdot (\varepsilon_{\sigma}+1)}] \leq \sum_{\sigma \in \varepsilon^*[k-1;k]} [e^{-\beta \cdot k}] \).

Then: \(\forall k \in \mathbb{N} \), \(\sum_{\sigma \in \varepsilon^*[k-1;k]} [e^{-\beta \cdot (\varepsilon_{\sigma}+1)}] \leq \sum_{k=1}^{\infty} [n_k e^{-\beta \cdot k}] \).

By assumption, \(\sum_{k=1}^{\infty} [n_k e^{-\beta \cdot k}] < \infty \). Then \(e^{\beta} \cdot \sum_{k=1}^{\infty} [n_k e^{-\beta \cdot k}] < \infty \).

Since \(\Delta^\varepsilon_{\beta} = \sum_{\sigma \in \Sigma} [e^{-\beta \cdot \varepsilon_{\sigma}}] = e^{\beta} \cdot \sum_{\sigma \in \Sigma} [e^{-\beta \cdot (\varepsilon_{\sigma}+1)}] = e^{\beta} \cdot \sum_{\sigma \in \Sigma} [e^{-\beta \cdot (\varepsilon_{\sigma}+1)}] = e^{\beta} \cdot \sum_{k=1}^{\infty} [n_k e^{-\beta \cdot k}] < \infty \), we get: \(\beta \in \text{DF}_\varepsilon \).

End of proof of \(\Leftarrow \).

\[
\text{THEOREM 23.23. Let } \Sigma \text{ be a set, } \varepsilon : \Sigma \to [0; \infty).
\]

For all \(k \in \mathbb{N} \), let \(n_k := \#(\varepsilon^*[k-1;k]) \).

Assume: \(\forall k \in \mathbb{N} \), \(n_k \geq e^{k^2} \). Then: \(\text{DF}_\varepsilon = \emptyset \).

Proof. Since \(\forall k \in \mathbb{N} \), \(n_k \geq e^{k^2} > 1 \), we get: \(\sum_{k=1}^{\infty} n_k = \infty \).

Since \(\#(\varepsilon^*[0; \infty)) = \sum_{k=1}^{\infty} [\#(\varepsilon^*[k-1;k])] = \sum_{k=1}^{\infty} n_k = \infty \), it follows, from Theorem 23.5, that: \(\text{DF}_\varepsilon \subseteq (0; \infty) \).

It therefore suffices to show: \(\forall \beta \in (0; \infty), \quad \beta \notin \text{DF}_\varepsilon \).

Given \(\beta \in (0; \infty) \), want: \(\beta \notin \text{DF}_\varepsilon \).

Since \(\beta \in (0; \infty) \), we get: \(\beta > 0 \). Then \(\beta > 0 \).

Since as \(k \to \infty \), \(e^{k^2 \cdot \beta \cdot k} \to \infty \), we get: \(\sum_{k=1}^{\infty} [e^{k^2 \cdot \beta \cdot k}] = \infty \).

Since \(\sum_{k=1}^{\infty} [n_k e^{-\beta \cdot k}] \geq \sum_{k=1}^{\infty} [e^{k^2 \cdot \beta \cdot k}] \), by Theorem 23.22, we get: \(\beta \notin \text{DF}_\varepsilon \).
THEOREM 23.24. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to [0; \infty) \).
For all \(k \in \mathbb{N} \), let \(n_k := \#(\varepsilon^*[k-1; k)) \). Let \(\beta_0 \in [0; \infty) \).
Assume: as \(k \to \infty, n_k e^{-\beta_0 k} \to 1 \). Then: \(\text{DF}_\varepsilon = (\beta_0; \infty) \).

Proof. Since as \(k \to \infty, n_k e^{-\beta_0 k} \to 1 \), we get:
\[
\# \{ k \in \mathbb{N} \mid n_k = 0 \} < \infty.
\]
Since \(\# \{ k \in \mathbb{N} \mid n_k = 0 \} < \infty \), we get: \(\sum_{k=1}^{\infty} n_k = \infty \).
Since \(\#(\varepsilon^*[0; \infty)) = \sum_{k=1}^{\infty} \#(\varepsilon^*[k-1; k]) = \sum_{k=1}^{\infty} n_k = \infty \),
it follows, from Theorem 23.5, that: \(\text{DF}_\varepsilon \subseteq (0; \infty) \).
Since \(\text{DF}_\varepsilon \subseteq (0; \infty) \subseteq [0; \infty) \), we get:
\(\text{DF}_\varepsilon \cap [0; \infty) = \text{DF}_\varepsilon \).

THEOREM 23.25. Let \(\Sigma \) be a set, \(\varepsilon : \Sigma \to [0; \infty) \).
For all \(k \in \mathbb{N} \), let \(n_k := \#(\varepsilon^*[k-1; k)) \). Let \(\beta_0 \in (0; \infty) \).
Assume: as \(k \to \infty, k^2 n_k e^{-\beta_0 k} \to 1 \). Then: \(\text{DF}_\varepsilon = [\beta_0; \infty) \).

Proof. Since as \(k \to \infty, k^2 n_k e^{-\beta_0 k} \to 1 \), we get:
\[
\# \{ k \in \mathbb{N} \mid n_k = 0 \} < \infty.
\]
Since \(\# \{ k \in \mathbb{N} \mid n_k = 0 \} < \infty \), we get: \(\sum_{k=1}^{\infty} n_k = \infty \).
Since \(\#(\varepsilon^*[0; \infty)) = \sum_{k=1}^{\infty} \#(\varepsilon^*[k-1; k]) = \sum_{k=1}^{\infty} n_k = \infty \),
it follows, from Theorem 23.5, that: \(\text{DF}_\varepsilon \subseteq (0; \infty) \).
Since \(\text{DF}_\varepsilon \subseteq (0; \infty) \subseteq [0; \infty) \), we get:
\(\text{DF}_\varepsilon \cap [0; \infty) = \text{DF}_\varepsilon \).

\(\Box \)
∀β ∈ [0; ∞), \quad (β ∈ \text{DF}_ε) ⇔ (β ≥ β_0).

Then \text{DF}_ε \cap [0; ∞) = [β_0; ∞) \cap [0; ∞).

Then \text{DF}_ε = \text{DF}_ε \cap [0; ∞) = [β_0; ∞) \cap [0; ∞) = [β_0; ∞).

□

In many physics applications, the sequence \(n_k \) is subexponential.

By the next theorem, whenever that happens, we get: \(\text{DF}_ε = (0; ∞). \)

THEOREM 23.26. Let \(\Sigma \) be an infinite set, \(ε : \Sigma → [0; ∞). \)

For all \(k ∈ \mathbb{N}, \) let \(n_k := \#(ε^*[k – 1; k]). \)

Assume: \(∀ \text{real } β > 0, \) as \(k → ∞, \) \(n_k e^{-β k} → 0. \)

Then: \(\text{DF}_ε = (0; ∞). \)

Proof. Since \(ε : \Sigma → [0; ∞), \) we get: \(ε^*[0; ∞) = \Sigma. \)

So, since \(\Sigma \) is infinite, we get: \(ε^*[0; ∞) \) is infinite.

It follows, from Theorem 23.5, that: \(\text{DF}_ε ⊆ (0; ∞). \)

Want: \((0; ∞) \subseteq \text{DF}_ε. \)

Given β_0 ∈ (0; ∞), want: \(β_0 ∈ \text{DF}_ε. \)

Since \(β_0 ∈ (0; ∞), \) we get: \(β_0 ∈ \mathbb{R} \) and \(β_0 > 0. \) Then \(β_0 ≥ 0. \)

By Theorem 23.22, **want:** \(∑_{k=1}^∞ [n_k e^{-β_0 k}] < ∞. \)

Let \(β := β_0/2. \) Then: \(β ∈ \mathbb{R} \) and \(β > 0. \)

Then, by hypothesis, we have: \(as \ k → ∞, \) \(n_k e^{-β k} → 0. \)

It follows that: \{ \(n_k e^{-β k} \mid k ∈ \mathbb{N} \} \) is bounded.

**Choose M ∈ \mathbb{R} \ s.t., \ ∀k ∈ \mathbb{N}, \ n_k e^{-β k} ≤ M. \)

Since \(β > 0, \) it follows that \(e^{-β} + e^{-2β} + e^{-3β} + \cdots = \frac{1 − e^{-β}}{1 − e^{-β}}. \)

Then \(∑_{k=1}^∞ [n_k e^{-β_0 k}] = ∑_{k=1}^∞ [n_k e^{-2β k}] = ∑_{k=1}^∞ [(n_k e^{-β k}) e^{-β k}] ≤ ∑_{k=1}^∞ [Me^{-β k}] ≤ M ∑_{k=1}^∞ [e^{-β k}] = M (e^{-β} + e^{-2β} + e^{-3β} + \cdots) = Me^{-β}/(1 − e^{-β}) < ∞. \)

□

DEFINITION 23.27. Let \(\Sigma \) be a set, \(ε : \Sigma → \mathbb{R}, \) \(β ∈ \mathbb{R}. \)

For all \(σ ∈ \Sigma, \) let \(ε_σ := ε(σ). \)

Assume: \(X^1S^ε_β < ∞. \) Then: \(\Gamma^ε_β := ∑_{σ ∈ \Sigma} [ε_σ · e^{-β · ε_σ}]. \)

We have: \(X^1S^ε_β = ∑_{σ ∈ \Sigma} [ε_σ · e^{-β · ε_σ}]. \)

So, by subadditivity of absolute value, if \(X^1S^ε_β < ∞, \) then \(|Γ^ε_β| ≤ X^1S^ε_β. \)

Let \(\Sigma \) be a countable set, \(ε : \Sigma → \mathbb{R}, \) \(β ∈ \mathbb{R}. \) Then \(X^1S^ε_β = |\hat{B}^ε_β|_1. \)

If \(X^1S^ε_β < ∞, \) then \(Γ^ε_β = ∑_{σ ∈ \Sigma} [ε_σ · (\hat{B}^ε_β(σ))]. \)

and it follows that \(Γ^ε_β \) is the integral of \(ε \) wrt \(\hat{B}^ε_β. \)
DEFINITION 23.28. Let Σ be a nonempty set, $\varepsilon : \Sigma \to \mathbb{R}$, $\beta \in \mathbb{R}$. Assume: $X^1S^\varepsilon_\beta < \infty$ and $\beta \in \text{DF}_\varepsilon$. Then: $A^\varepsilon_\beta := \Gamma^\varepsilon_\beta / \Delta^\varepsilon_\beta$.

Note that, by Theorem 23.17, if ε is ∞-proper, then $\left(X^1S^\varepsilon_\beta < \infty \right) \Rightarrow (\beta \in \text{DF}_\varepsilon)$.

Without the assumption of ∞-properness, this implication fails, see Theorem 23.30.

Even with ∞-properness, $(\beta \in \text{DF}_\varepsilon) \not\Rightarrow (X^1S^\varepsilon_\beta < \infty)$, as follows:

THEOREM 23.29. Let $\Sigma := [3, \infty)$.
Define $\varepsilon : \Sigma \to \mathbb{R}$ by: $\forall k \in \Sigma$, $\varepsilon(k) = (\ln k) + 2 \cdot (\ln(\ln k))$.
Let $\beta := 1$. Then: $\beta \in \text{DF}_\varepsilon$ and $X^1S^\varepsilon_\beta = \infty$.

Proof. For all $k \in \Sigma$, let $\varepsilon_k := \varepsilon(k)$. Then: $\forall k \in [3, \infty)$, $\varepsilon_k = (\ln k) + 2 \cdot (\ln(\ln k))$.

Since $\Delta^\varepsilon_\beta = \sum_{k \in \Sigma}[e^{-\beta \varepsilon_k}] = \sum_{k \in \Sigma}[e^{-1 \varepsilon_k}] = \sum_{k \in \Sigma}[e^{-\varepsilon_k}] = \sum_{k=3}^{\infty} \left[\frac{1}{e^{\varepsilon_k}} \right] = \sum_{k=3}^{\infty} \left[\frac{1}{e^{(\ln k) + 2 \cdot (\ln(\ln k))}} \right] < \infty$,
we get: $\beta \in \text{DF}_\varepsilon$. It remains only to show: $X^1S^\varepsilon_\beta = \infty$.

It suffices to show:

We have: $\forall k \in [3, \infty)$, $k > e$, so $\ln k > 1$, so $\ln(\ln k) > 0$.

For all $k \in [3, \infty)$, since $\varepsilon_k = (\ln k) + 2 \cdot (\ln(\ln k)) > 1 + 2 \cdot 0 = 1 > 0$,
we get: $|\varepsilon_k| = \varepsilon_k$.

We have: $X^1S^\varepsilon_\beta = \sum_{k \in \Sigma}[|\varepsilon_k| \cdot e^{-\beta \varepsilon_k}] = \sum_{k \in \Sigma}[\varepsilon_k \cdot e^{-\beta \varepsilon_k}]$
$= \sum_{k=3}^{\infty} \varepsilon_k e^{-\beta \varepsilon_k} = \sum_{k=3}^{\infty} \varepsilon_k e^{-\varepsilon_k} = \sum_{k=3}^{\infty} \left[\frac{\varepsilon_k}{e^{\varepsilon_k}} \right] e^{(\ln k) + 2 \cdot (\ln(\ln k))}$
$= \sum_{k=3}^{\infty} \left[\frac{(\ln k) + 2 \cdot (\ln(\ln k))}{k \cdot (\ln k)^2} \right]$
$\geq \sum_{k=3}^{\infty} \frac{\ln k}{k \cdot (\ln k)^2} = \sum_{k=3}^{\infty} \left[\frac{1}{k \cdot (\ln k)} \right] = \infty$. □

THEOREM 23.30. Let $\Sigma := \mathbb{N}$.
Define $\varepsilon : \Sigma \to \mathbb{R}$ by: $\forall k \in \Sigma$, $\varepsilon(k) = 1/k^2$.
Let $\beta := 1$. Then: $X^1S^\varepsilon_\beta < \infty$ and $\beta \notin \text{DF}_\varepsilon$.

Proof. For all $k \in \Sigma$, let $\varepsilon_k := \varepsilon(k)$. Then: $\forall k \in \Sigma$, $\varepsilon_k = 1/k^2$.

We have: $\forall k \in \Sigma$, both $|\varepsilon_k| = 1/k^2$ and $-1 \cdot \varepsilon_k = -1/k^2$.

Since $X^1S^\varepsilon_\beta = X^1S^\varepsilon_1 = \sum_{k \in \Sigma}[|\varepsilon_k| \cdot e^{-1 \varepsilon_k}]$
\[\sum_{k=1}^{\infty} \left(\frac{1}{k^2} \cdot e^{-1/k^2} \right) \]
\[\leq \sum_{k=1}^{\infty} \left(\frac{1}{k^2} \cdot 1 \right) \]
\[= \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty, \]
it remains only to show: \(\beta \notin DF_\varepsilon \)
Want: \(\Delta_\beta^\varepsilon = \infty. \)
We have: as \(k \to \infty, \) \(e^{-1/k^2} \to 1. \) Then: \(\sum_{k=1}^{\infty} \left[e^{-1/k^2} \right] = \infty. \)
Then:
\[\Delta_\beta^\varepsilon = \Delta_1^\varepsilon = \sum_{k=1}^{\infty} e^{-1/k^2} = \sum_{k=1}^{\infty} e^{-1/k^2} = \infty. \]
\[\Box \]

THEOREM 23.31. Let \(\Sigma \) be a nonempty countable set, \(\varepsilon : \Sigma \to \mathbb{R}. \)
Let \(\beta \in DF_\varepsilon. \) Assume \(X^1S^\varepsilon_\beta < \infty. \) Then \(X^1S^\varepsilon_\beta = |\varepsilon \ast B^\varepsilon_\beta|_1. \)

Proof. CHECK (Copied from Theorem 20.4):
Since \(\beta \in DF_\varepsilon, \) we get: \(DF_\varepsilon \neq \emptyset. \) Then \(\Sigma \) is countable.
Since \(\Sigma \neq \emptyset, \) we get: \(\Delta_\beta^\varepsilon > 0. \)
Since \(\beta \in DF_\varepsilon, \) we get: \(\Delta_\beta^\varepsilon < \infty. \)
For all \(\sigma \in \Sigma, \) let \(\varepsilon_\sigma := \varepsilon(\sigma). \)
Because \(\Sigma \) is the disjoint union, over \(t \in I_\varepsilon, \) of \(\varepsilon^*\{t\}, \)
we get: \(\sum_{t \in I_\varepsilon} \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))] = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))]. \)
Also, \(A^\varepsilon_\beta = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))]. \)
Then:
\[\sum_{t \in I_\varepsilon} \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))] = A^\varepsilon_\beta. \]
So, since
we want: \(\sum_{t \in I_\varepsilon} \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))] = \sum_{t \in I_\varepsilon} \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))]. \)
Want: \(\forall t \in I_\varepsilon, \) \(t \cdot (|\varepsilon_\ast B^\varepsilon_\beta|) = \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))]. \)
Given \(t \in I_\varepsilon, \) want: \(t \cdot (|\varepsilon_\ast B^\varepsilon_\beta|) = \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))]. \)
For all \(\sigma \in \varepsilon^*\{t\}, \) since \(\varepsilon_\sigma = \varepsilon(\sigma) \in \{t\}, \) we get: \(t = \varepsilon_\sigma. \)
Want: \(t \cdot (|\varepsilon_\ast B^\varepsilon_\beta|) = \sum_{\sigma \in \varepsilon^*\{t\}} [t \cdot (B^\varepsilon_\beta(\sigma))]. \)
Because \(\varepsilon^*\{t\} \) is the disjoint union, over \(\sigma \in \varepsilon^*\{t\}, \) of \(\{\sigma\}, \)
we get:
\[B^\varepsilon_\beta(\varepsilon^*\{t\}) = \sum_{\sigma \in \varepsilon^*\{t\}} \left[B^\varepsilon_\beta(\sigma) \right]. \]
Also, \((\varepsilon_\ast B^\varepsilon_\beta)(\{t\}) = B^\varepsilon_\beta(\varepsilon^*\{t\}). \)
Then:
\[t \cdot (|\varepsilon_\ast B^\varepsilon_\beta|) = t \cdot (B^\varepsilon_\beta(\varepsilon^*\{t\})) = \sum_{\sigma \in \varepsilon^*\{t\}} [t \cdot (B^\varepsilon_\beta(\sigma))]. \]
\[\Box \]

THEOREM 23.32. Let \(\Sigma \) be a nonempty countable set, \(\varepsilon : \Sigma \to \mathbb{R}. \)
Let \(\beta \in DF_\varepsilon. \) Assume \(X^1S^\varepsilon_\beta < \infty. \) Then \(|\varepsilon_\ast B^\varepsilon_\beta|_1 < \infty \) and \(A^\varepsilon_\beta = M_{\varepsilon_\ast B^\varepsilon_\beta}. \)

Proof. CHECK (Copied from Theorem 20.4):
Since \(\beta \in DF_\varepsilon, \) we get: \(DF_\varepsilon \neq \emptyset. \) Then \(\Sigma \) is countable.
Since \(\Sigma \neq \emptyset, \) we get: \(\Delta_\beta^\varepsilon > 0. \)
Since \(\beta \in DF_\varepsilon, \) we get: \(\Delta_\beta^\varepsilon < \infty. \)
For all \(\sigma \in \Sigma, \) let \(\varepsilon_\sigma := \varepsilon(\sigma). \)
Because \(\Sigma \) is the disjoint union, over \(t \in I_\varepsilon, \) of \(\varepsilon^*\{t\}, \)
we get:
\[\sum_{t \in I_\varepsilon} \sum_{\sigma \in \varepsilon^*\{t\}} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))] = \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot (B^\varepsilon_\beta(\sigma))]. \]
Then

$$A_\beta^\varepsilon = \sum_{\sigma \in \Sigma} \varepsilon_{\sigma} \cdot (B_\beta^\varepsilon \{\sigma\}).$$

Then:

$$\sum_{t \in \mathcal{I}_\varepsilon} \sum_{\sigma \in \varepsilon^* \{t\}} \left[\varepsilon_{\sigma} \cdot (B_\beta^\varepsilon \{\sigma\}) \right] = A_\beta^\varepsilon.$$

So, since

$$\sum_{t \in \mathcal{I}_\varepsilon} \left[t \cdot ((\varepsilon_{\sigma} B_\beta^\varepsilon \{t\}) \right] = M_{\varepsilon \ast B_\beta^\varepsilon},$$

we want:

$$\sum_{t \in \mathcal{I}_\varepsilon} \left[t \cdot ((\varepsilon_{\sigma} B_\beta^\varepsilon \{t\}) \right] = \sum_{\sigma \in \varepsilon^* \{t\}} \left[\varepsilon_{\sigma} \cdot (B_\beta^\varepsilon \{\sigma\}) \right].$$

Want:

$$\forall t \in \mathcal{I}_\varepsilon, t \cdot ((\varepsilon_{\sigma} B_\beta^\varepsilon \{t\}) = \sum_{\sigma \in \varepsilon^* \{t\}} \left[\varepsilon_{\sigma} \cdot (B_\beta^\varepsilon \{\sigma\}) \right].$$

Given $t \in \mathcal{I}_\varepsilon$, want:

$$t \cdot ((\varepsilon_{\sigma} B_\beta^\varepsilon \{t\}) = \sum_{\sigma \in \varepsilon^* \{t\}} \left[\varepsilon_{\sigma} \cdot (B_\beta^\varepsilon \{\sigma\}) \right].$$

For all $\sigma \in \varepsilon^* \{t\}$, since $\varepsilon_{\sigma} = \varepsilon(\sigma) \in \{t\}$, we get:

$$t = \varepsilon_{\sigma}.$$

Want:

$$t \cdot ((\varepsilon_{\sigma} B_\beta^\varepsilon \{t\}) = \sum_{\sigma \in \varepsilon^* \{t\}} \left[t \cdot (B_\beta^\varepsilon \{\sigma\}) \right].$$

Because $\varepsilon^* \{t\}$ is the disjoint union, over $\sigma \in \varepsilon^* \{t\}$, of $\{\sigma\}$,

we get:

$$B_\beta^\varepsilon(\varepsilon^* \{t\}) = \sum_{\sigma \in \varepsilon^* \{t\}} [B_\beta^\varepsilon \{\sigma\}].$$

Also,

$$(\varepsilon_{\sigma} B_\beta^\varepsilon \{t\}) = B_\beta^\varepsilon(\varepsilon^* \{t\}).$$

Then:

$$t \cdot ((\varepsilon_{\sigma} B_\beta^\varepsilon \{t\}) = t \cdot (B_\beta^\varepsilon(\varepsilon^* \{t\})) = \sum_{\sigma \in \varepsilon^* \{t\}} \left[t \cdot (B_\beta^\varepsilon \{\sigma\}) \right]. \quad \square$$

THEOREM 23.33. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $\varepsilon^* \{0; \infty\}$ is infinite and $DF_\varepsilon \neq \emptyset$. Let $\beta_0 := \inf DF_\varepsilon$.

Then: $\forall \text{real } \gamma > \beta_0$, $\forall \text{real } \rho > 0$, $X^\varepsilon S^\rho_\gamma \subset \subset$.

Proof. Given a real $\gamma > \beta_0$ and a real $\rho > 0$, want: $X^\varepsilon S^\rho_\gamma \subset \subset$.

Since $\gamma > \beta_0 = \inf DF_\varepsilon$, choose $\beta \in DF_\varepsilon$ s.t. $\gamma > \beta$.

By Theorem 23.15, we have: $X^\varepsilon S^\rho_\gamma \subset \subset$. \quad \square

Note that, in both cases of the conclusion of Theorem 23.18, the interior of DF_ε is $(\beta_0; \infty)$.

In the following definition, “IDF” stands for “Interior-Delta-Finite”.

DEFINITION 23.34. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $\varepsilon^* \{0; \infty\}$ is infinite and $DF_\varepsilon \neq \emptyset$. Let $\beta_0 := \inf DF_\varepsilon$.

Then:

$$DF_\varepsilon := (\beta_0; \infty).$$

DEFINITION 23.35. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Then $A_\varepsilon^\beta : DF_\varepsilon \to \mathbb{R}$ is defined by: $\forall \beta \in DF_\varepsilon$, $A_\varepsilon^\beta(\beta) = A_\beta^\varepsilon$.

THEOREM 23.36. Let Σ be a set.

Let $\varepsilon : \Sigma \to \mathbb{R}$. Assume: $\# \mathcal{I}_\varepsilon \geq 2$.

Then: A_ε^β is a strictly-decreasing C^ω-diffeomorphism from \mathbb{R} onto $(\inf \mathbb{I}_{A_\varepsilon^\beta}; \sup \mathbb{I}_{A_\varepsilon^\beta})$.

Proof. (MODIFY!) For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma} := \varepsilon(\sigma)$.

We have: $\forall \beta \in \mathbb{R}$, $A_\varepsilon^\beta(\beta) = \frac{\sum_{\sigma \in \Sigma} \left[\varepsilon_{\sigma} \cdot e^{-\beta \varepsilon_{\sigma}} \right]}{\sum_{\varepsilon \in \Sigma} \left[e^{-\beta \varepsilon_{\sigma}} \right]}$. Then $A_\varepsilon^\beta : \mathbb{R} \to \mathbb{R}$ is C^ω.

So, by Theorem 20.6 and the C^ω-Inverse Function Theorem and the Mean Value Theorem, it suffices to show: $(A_\varepsilon^\beta)' < 0$ on DF_ε.

Given $\beta \in \text{IDF}_\varepsilon$, \textbf{want:} $(A^\varepsilon_\beta)'(\beta) < 0$.

Let $P := \sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \cdot \varepsilon_\sigma}]$, $P' := \sum_{\sigma \in \Sigma} \left[(-\varepsilon^2_\sigma) \cdot e^{-\beta \cdot \varepsilon_\sigma}\right]$.
Let $Q := \sum_{\tau \in \Sigma} \left[e^{-\beta \cdot \varepsilon_\tau}\right]$, $Q' := \sum_{\tau \in \Sigma} \left[(-\varepsilon_\tau) \cdot e^{-\beta \cdot \varepsilon_\tau}\right]$.
Then $Q > 0$. Also, by the Quotient Rule, $(A^\varepsilon_\beta)'(\beta) = [QP' - PQ']/Q^2$.

\textbf{Want:} $QP' - PQ' < 0$.

We have: $QP' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\sigma^2) \cdot e^{-\beta \cdot (\varepsilon_\sigma + \varepsilon_\tau)}\right]$.
We have: $PQ' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\sigma \cdot e^{-\beta \cdot \varepsilon_\tau}) \cdot e^{-\beta \cdot (\varepsilon_\sigma + \varepsilon_\tau)}\right]$.
Then: $QP' - PQ' = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\tau^2 + \varepsilon_\sigma \cdot e^{-\beta \cdot \varepsilon_\tau}) \cdot e^{-\beta \cdot (\varepsilon_\sigma + \varepsilon_\tau)}\right]$.
Interchanging σ and τ, we get:
$$QP' - PQ' = \sum_{\tau \in \Sigma} \sum_{\sigma \in \Sigma} \left[(-\varepsilon_\tau^2 + \varepsilon_\sigma \cdot e^{-\beta \cdot \varepsilon_\tau}) \cdot e^{-\beta \cdot (\varepsilon_\sigma + \varepsilon_\tau)}\right].$$

By commutativity of addition and multiplication, adding the last two equations gives:
$$2 \cdot (QP' - PQ') = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\sigma^2 + 2\varepsilon_\sigma \varepsilon_\tau) \cdot e^{-\beta \cdot (\varepsilon_\sigma + \varepsilon_\tau)}\right].$$
Then: $2 \cdot (QP' - PQ') = \sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma} \left[(-\varepsilon_\sigma - \varepsilon_\tau)^2 \cdot e^{-\beta \cdot (\varepsilon_\sigma + \varepsilon_\tau)}\right].$
Then: $2 \cdot (QP' - PQ') < 0$. Then: $QP' - PQ' < 0$. \(\square\)

Recall (Theorem 22.3):

If ε is ∞-proper, then \mathbb{I}_ε has a minimum element, i.e., min \mathbb{I}_ε exists.

THEOREM 23.37. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$.

Assume: $\varepsilon^*[0; \infty)$ is infinite and $\text{DF}_\varepsilon \neq \emptyset$.

Then: ε is ∞-proper and as $\beta \to \infty$, $A^\varepsilon_\beta \to \min \mathbb{I}_\varepsilon$.

Proof. By Theorem 23.12, ε is ∞-proper.

It remains to show: as $\beta \to \infty$, $A^\varepsilon_\beta \to \min \mathbb{I}_\varepsilon$.
Let $t_0 := \min \mathbb{I}_\varepsilon$. \textbf{Want:} $A^\varepsilon_\beta \to t_0$.

Let $\Sigma' := \Sigma \setminus \{\varepsilon^*[t_0]\}$. Let $n_0 := \#(\varepsilon^*[t_0])$.
Since $\{t_0\} \subseteq (-\infty; t_0]$, we get $\varepsilon^*[t_0] \subseteq \varepsilon^*(-\infty; t_0]$.
Since ε is ∞-proper, we get: $\varepsilon^*(-\infty; t_0]$ is finite.
Then $\varepsilon^*[t_0]$ is finite. That is, $n_0 < \infty$.
Since $t_0 \in \mathbb{I}_\varepsilon$, we get $\varepsilon^*[t_0] \neq \emptyset$, and so $n_0 > 0$. Then $0 < n_0 < \infty$.

For all $\beta \in (\beta_0; \infty)$, we have:
$$A^\varepsilon_\beta = \frac{n_0 \cdot \varepsilon^* \cdot e^{-\beta \cdot \varepsilon^*} \cdot e^{-\beta \cdot \varepsilon^*} + \sum_{\sigma \in \Sigma'} [\varepsilon_\sigma \cdot e^{-\beta \cdot \varepsilon_\sigma}]}{n_0 \cdot e^{-\beta \cdot t_0} + \sum_{\sigma \in \Sigma'} [e^{-\beta \cdot \varepsilon_\sigma}]}.$$
$$= \frac{n_0 \cdot e^{-\beta \cdot t_0} + \sum_{\sigma \in \Sigma'} [e^{-\beta \cdot \varepsilon_\sigma}]}{n_0 \cdot e^{-\beta \cdot t_0} + \sum_{\sigma \in \Sigma'} [e^{-\beta \cdot \varepsilon_\sigma}] \cdot e^{\beta \cdot t_0}}.$$
$$= \frac{n_0 \cdot \varepsilon^* \cdot e^{-\beta \cdot \varepsilon^*} \cdot e^{-\beta \cdot \varepsilon^*} + \sum_{\sigma \in \Sigma'} [\varepsilon_\sigma \cdot e^{-\beta \cdot \varepsilon_\sigma}]}{n_0 + \sum_{\sigma \in \Sigma'} [e^{-\beta \cdot \varepsilon_\sigma}]}.$$

Let $\beta_1 := \beta_0 + 1$.
Then, for all $\beta \in [\beta_1; \infty)$, for all $\sigma \in \Sigma$, we have
\[
|\varepsilon_\sigma \cdot e^{-\beta \cdot (\varepsilon_\sigma - t_0)}| = |\varepsilon_\sigma| \cdot e^{-\beta_1 \cdot (\varepsilon_\sigma - t_0)}
\]

and
\[
|e^{-\beta \cdot (\varepsilon_\sigma - t_0)}| = e^{-\beta_1 \cdot (\varepsilon_\sigma - t_0)}.
\]

We have: \[\sum_{\sigma \in \Sigma} |\varepsilon_\sigma| \cdot e^{-\beta_1 \cdot (\varepsilon_\sigma - t_0)}| = X^1 S^\varepsilon_{\beta_1}.

Also, \[\sum_{\sigma \in \Sigma} e^{-\beta_1 \cdot (\varepsilon_\sigma - t_0)} = X^0 S^\varepsilon_{\beta_1}.

By Theorem 23.33, we have: \(X^1 S^\varepsilon_{\beta_1} < \infty\) and \(X^0 S^\varepsilon_{\beta_1} < \infty\).

So, by the Dominated Convergence Theorem, as \(\beta \to \infty\),
\[
\sum_{\sigma \in \Sigma} [\varepsilon_\sigma \cdot e^{-\beta \cdot (\varepsilon_\sigma - t_0)}] \to 0
\]

and
\[
\sum_{\sigma \in \Sigma} [e^{-\beta \cdot (\varepsilon_\sigma - t_0)}] \to 0.
\]

Then:
\[
as \beta \to \infty, \quad A_\beta^\varepsilon \to \frac{n_0 \cdot t_0 + 0}{n_0 + 0}.
\]

Then:
\[
as \beta \to \infty, \quad A_\beta^\varepsilon \to t_0.
\]

Let \(\Sigma\) be an infinite set and **let** \(\varepsilon : \Sigma \to \mathbb{N}\) be \(\infty\)-proper.

Then \(\sup \mathbb{I}_\varepsilon = \infty\). Assume \(\text{DF}_\varepsilon \neq \emptyset\). **Let** \(\beta_0 := \inf \text{DF}_\varepsilon\).

By Theorem 23.18, \((\beta_0; \infty) \subseteq \text{DF}_\varepsilon\).

Even though \(\sup \mathbb{I}_\varepsilon = \infty\),

it does NOT necessarily follow that: \(as \beta \to (\beta_0)^+, \ A_\beta^\varepsilon \to \infty\).

Here is an example:

For all \(k \in \mathbb{N}\), **let** \(n_k := \left\lceil \frac{e^k}{k^3} \right\rceil\).

Let \(\Sigma := \{(k, j) \in \mathbb{N} \times \mathbb{N} \mid k \in \mathbb{N}, j \in [1..n_k]\}\).

Define \(\varepsilon : \Sigma \to \mathbb{N}\) by: \(\forall k \in \mathbb{N}, \forall j \in [1..n_k], \ \varepsilon(k, j) = k\).

Then \(\text{DF}_\varepsilon = [1; \infty)\), so \(\inf \text{DF}_\varepsilon = 1\).

Also, \(\Gamma_1^\varepsilon < \infty\) and \(0 < \Delta_1^\varepsilon < \infty\), so \(A_1^\varepsilon < \infty\).

Also, by the Dominated Convergence Theorem, we have:

\(as \beta \to 1^+\), both \(\Gamma_\beta^\varepsilon \to \Gamma_1^\varepsilon\) and \(\Delta_\beta^\varepsilon \to \Delta_1^\varepsilon\).

Then, \(as \beta \to 1^+\), \(A_\beta^\varepsilon \to A_1^\varepsilon < \infty\).

This, then, leads to an **Open Problem**, as follows:

For all \(k \in \mathbb{N}\), **let** \(n_k := \left\lceil \frac{e^k}{k^3} \right\rceil\).

Let \(\Sigma := \{(k, j) \in \mathbb{N} \times \mathbb{N} \mid k \in \mathbb{N}, j \in [1..n_k]\}\).

Define \(\varepsilon : \Sigma \to \mathbb{N}\) by: \(\forall k \in \mathbb{N}, \forall j \in [1..n_k], \ \varepsilon(k, j) = k\).

By Theorem 23.36, \(A_\bullet^\varepsilon\) is strictly-decreasing, and so

and since \(as \beta \to 1^+\), \(A_\beta^\varepsilon \to A_1^\varepsilon\), we get:

\(\mathbb{I}_{A_1^\varepsilon}\) is bounded above by \(A_1^\varepsilon\).

Let \(\alpha \in \mathbb{N}\). Assume: \(\alpha > A_1^\varepsilon\). Then: \(\alpha \notin \mathbb{I}_{A_1^\varepsilon}\).

Suppose \(N\) professors, numbered 1 to \(N\), have states in \(\Sigma\).

Suppose each state \(\sigma \in \Sigma\) has wealth \(\varepsilon(\sigma)\).

Suppose the total wealth of all professors is \(N \alpha\).
Give equal probability to every dispensation of states.

For each $\sigma_0 \in \Sigma$, we seek a method to approximate the probability that Professor$^\#N$ is in state σ_0.

More precisely: For all $n \in \mathbb{N}$,

\[
\text{let } \Omega_n := \{ \omega : [1..n] \to \Sigma | \sum_{\ell=1}^{\ell_n} [\varepsilon(\omega(\ell))] = n\alpha \}.
\]

Then Ω_N represents the set of all state-dispensions.

Open Problem: For each $\sigma_0 \in \Sigma$, determine whether the limit, as $n \to \infty$, of $\nu_{\Omega_n} \{ \omega \in \Omega_n | \omega(n) = \sigma_0 \}$ exists, and, if it does, compute it.

This is a well-defined mathematical problem.

However, since $\alpha \notin \mathbb{I}_{A^\ast}$, we cannot solve $A^\ast_\beta = \alpha$ for β, so our earlier techniques do not immediately apply.

THEOREM 23.38. Let $\beta_0 \in \mathbb{R}$, $I := (\beta_0; \infty)$, $g : I \to \mathbb{R}$.

Assume: g is differentiable on I and g' is strictly-decreasing on I.

Assume: as $\beta \to (\beta_0)^+$, $g(\beta) \to -\infty$.

Then: as $\beta \to (\beta_0)^+$, $g'(\beta) \to \infty$.

Proof. Let $M := \sup I_{g'}$. Then $M \in (-\infty; \infty]$.

Since g' is strictly-decreasing, we get: as $\beta \to (\beta_0)^+$, $g'(\beta) \to M$.

Want: $M = \infty$. Assume $M < \infty$. **Want:** Contradiction.

The finite upper bound, M, on g' integrates to a finite lower bound $M + (g(\beta_0 + 1))$ for $g(\beta)$ on $\beta \in (\beta_0; \beta_0 + 1)$.

That contradicts the statement:

as $\beta \to (\beta_0)^+$, $g(\beta) \to -\infty$. \[\square\]

THEOREM 23.39. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$, $\beta_0 \in \mathbb{R}$.

Assume: $DF_\varepsilon = (\beta_0; \infty)$. Then: as $\beta \to (\beta_0)^+$, $\Delta_\beta^\varepsilon \to \infty$.

Proof. Otherwise, since $\beta \to \Delta_\beta^\varepsilon$ is strictly-decreasing, we get $\{\Delta_\beta^\varepsilon | \beta \in DF_\varepsilon\}$ is bounded.

Let M be an upper bound.

Since $\beta_0 \notin (\beta_0; \infty) = DF_\varepsilon$, we get: $\Delta_\beta^\varepsilon = \infty$.

That is: $\sum_{\varepsilon \in \Sigma} [e^{-\beta \varepsilon}] = \infty$.

Choose a finite subsum that is $> M$.

Perturb β_0 to a slightly larger β.

If the perturbation is small enough, then the subsum stays $> M$.

This implies $\Delta_\beta^\varepsilon > M$, contradicting that M is an upper bound. \[\square\]
THEOREM 23.40. Let Σ be a set, $\varepsilon : \Sigma \to \mathbb{R}$, $\beta_0 \in \mathbb{R}$.
Assume: DF$_\varepsilon = (\beta_0; \infty)$. Then: as $\beta \to (\beta_0)^+$, $A_\beta^\varepsilon \to \infty$.

Proof. Let $I := (\beta_0; \infty)$. Define $f : I \to \mathbb{R}$ by: $\forall \beta \in I$, $f(\beta) = \Delta_\beta^\varepsilon$.
We have: $\forall \beta \in I$, $f'(\beta) = \Gamma_\beta^\varepsilon$.
Define $g : I \to \mathbb{R}$ by: $\forall \beta \in I$, $g(\beta) = -(\ln(f(\beta)))$.
Then: g is differentiable on I and $\forall \beta \in I$, $g'(\beta) = A_\beta^\varepsilon$.
Want: as $\beta \to (\beta_0)^+$, $g'(\beta) \to \infty$.
By Theorem 23.36, we get: g is strictly-decreasing on I.
By Theorem 23.39, we get: as $\beta \to (\beta_0)^+$, $\Delta_\beta^\varepsilon \to \infty$.
Then: as $\beta \to (\beta_0)^+$, $f(\beta) \to \infty$.
Then: as $\beta \to (\beta_0)^+$, $\ln(f(\beta)) \to \infty$.
Then: as $\beta \to (\beta_0)^+$, $g(\beta) \to -\infty$.
Then, by Theorem 23.38, we get: as $\beta \to (\beta_0)^+$, $g'(\beta) \to \infty$. □

24. Countably infinite sets of states

MORE LATER
25. **Appendix: Python code**

Thanks once again to C. Prouty, for writing the Python code to do the Boltzmann computations in this paper:

First code: The GFA and 0, 2, 20 dollar awards, with average 3 dollars.

```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def F(beta):
    z = np.zeros(3)
    z[0] = 1
    z[1] = np.exp(-2 * beta)
    z[2] = np.exp(-20 * beta)
    return z

def G(beta):
    z = np.zeros(3)
    z[0] = 0
    z[1] = 2 * np.exp(-2 * beta)
    z[2] = 20 * np.exp(-20 * beta)
    return z

def f(beta):
    return np.sum(F(beta))

def g(beta):
    return np.sum(G(beta))

def bisection(minval, maxval, y, fn):
    mid = (maxval + minval) / 2
    while((fn(mid) - y) ** 2 > 0.0000001):
        if(fn(mid) < y):
            maxval = mid
        else:
            minval = mid
        mid = (maxval + minval) / 2
    return mid

fn = lambda x: g(x) / f(x)
```
target = bisection(-25, 25, 3, fn)
b = 0.07410049 # hard-coded result of bisection
r = F(b) / f(b)
df = pd.DataFrame(r)
df.to_excel("results2.xlsx", index=False)
betas = np.linspace(-25,25,100000)
z = np.zeros(len(betas))
for i in range(len(betas)):
z[i] = fn(betas[i])
plt.plot(betas,z)
plt.show()

Second code: The BUA and red bags and blue bags

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def F(beta):
z = np.zeros(25).reshape(5,5)
for i in range(5):
 for j in range(5):
z[i,j] = np.exp(-(i+j)*beta)
z[4,4] = 0
return z

def G(beta):
z = np.zeros(25).reshape(5,5)
for i in range(5):
 for j in range(5):
z[i,j] = (i+j) * np.exp(-(i+j)*beta)
z[4,4] = 0
return z

def f(beta):
 return np.sum(F(beta))
def g(beta):
 return np.sum(G(beta))
def bisection(minval, maxval, y, fn):
mid = (maxval + minval) / 2
while((fn(mid) - y) ** 2 > 0.0000001):
 if(fn(mid) < y):
 maxval = mid
 else:
 minval = mid
 mid = (maxval + minval) / 2
return mid

fn = lambda x: g(x) / f(x)
target = bisection(-25, 25, 1, fn)
b = 1.06697083 # hard-coded result of bisection
r = F(b) / f(b)
df = pd.DataFrame(r)
df.to_excel("results5.xlsx", index=False)
betas = np.linspace(-25, 25, 100000)
z = np.zeros(len(betas))
for i in range(len(betas)):
z[i] = fn(betas[i])
plt.plot(betas, z)
plt.show()