Professors and Grants

1. Introduction

This note is intended as a compliment and complement to B. Zhang's very enjoyable "Coconuts and Islanders",
which motivates the Boltzmann distribution in the case where every nonnegative integer is a possible energy-level.
Here, our initial focus is, instead, on Boltzmann distributions where
0 and 1 and 10 are the only possible energy-levels.
Taking our cue from "Coconuts and Islanders", we motivate by story.
From $\S 3$ to $\S 12$, we analyze three systems for
dispensing grant money to N professors.
Congress allocates N dollars to award to the N professors.
The grant rules stipulate: each professor receives $\$ 0$ or $\$ 1$ or $\$ 10$.
Each professor is identified by a number, from 1 to N.
By a dispensation, we mean a full complement of awards, with a specific amount ($\$ 0$ or $\$ 1$ or $\$ 10$) to Professor $\# 1$,
a specific amount ($\$ 0$ or $\$ 1$ or $\$ 10$) to Professor $\# 2$,
etc., up to and including Professor\#N,
such that the total of the awards is the $\$ N$ allocated by Congress.
The first system (see §3) for awarding grants is very simple:
There are many possible dispensations, and, among all of them, one is selected randomly, giving equal probability to each possible dispensation.
The main problem is to figure out:
Using this first system, for a given professor, what is the probability of being awarded $\$ 0 ? \$ 1 ? \$ 10$?

Later (see §5), we describe
second and third probabilistic award systems.
Both of them depends on three parameters p, q, r

$$
\text { satisfying } \quad p, q, r>0 \text { and } p+q+r=1=q+10 r \text {. }
$$

The second system uses
an iid system of random-variables, $\quad X_{1}, \ldots, X_{N}$
such that, $\quad \forall \ell, \quad \operatorname{Pr}\left[X_{\ell}=0\right]=p$,

$$
\operatorname{Pr}\left[X_{\ell}=1\right]=q,
$$

$$
\operatorname{Pr}\left[X_{\ell}=10\right]=r .
$$

For all ℓ, the second system awards X_{ℓ} dollars to Professor\# ℓ. The total dollar payout $X_{1}+\cdots+X_{N}$ is then random;
if $X_{1}=\cdots=X_{N}=0, \quad$ it could be as small as 0 dollars, and if $X_{1}=\cdots=X_{N}=10, \quad$ it could be as large as 10 N dollars.
The third system is obtained from the second
by conditioning on the event $\quad X_{1}+\cdots+X_{N}=N$, so that the total payout is exactly the $\$ N$ allocated by Congress.

KEY POINT: With exactly the right choice of p, q, r, the first and third systems are shown to be equivalent.
In $\S 6$ and $\S 7$, we show that this parameter choice is Boltzmann, meaning: $\quad(p, q, r)$ is, for some real number β,
a scalar multiple of $\left(e^{-0 \cdot \beta}, e^{-1 \cdot \beta}, e^{-10 \cdot \beta}\right)$.
That is, $\quad \exists \beta, C \in \mathbb{R}$ s.t. $(p, q, r)=\left(C, C e^{-\beta}, C e^{-10 \beta}\right)$.

The second and third systems are accessible by basic tools of probability theory, while our main problem involves the first system.
However, once we know the first and third systems are equivalent, we can bring these probabilistic tools to bear on the main problem.
Thanks to J. Steif, for pointing out to me that the Discrete Local Limit Theorem, which is described in $\S 9$, is the right tool for the main problem, which is solved in $\S 12$.

Boltzmann distributions are often motivated by entropy, but, from our perspective,
what's special about $\quad(p, q, r)=\left(C, C e^{-\beta}, C e^{-10 \beta}\right) \quad$ is:
For any $i, j, k \geqslant 0, \quad$ we have
$p^{i} q^{j} r^{k}=C^{i+j+k} \cdot e^{-\beta \cdot(j+10 k)}$,
so $p^{i} q^{j} r^{k}$ depends only on: $i+j+k$ and $j+10 k$.
In the third system of grant awards, there exists a normalizing constant $S>0 \quad$ s.t.,
for any dispensation in which
i professors receive $\$ 0$,
j professors receive $\$ 1$,
k professors receive $\$ 10$,
the probability of that dispensation is $p^{i} q^{j} r^{k} / S$,
which is equal to $\quad C^{i+j+k} \cdot e^{-\beta \cdot(j+10 k)} / S$.
That proabability, then, depends only on
$i+j+k, \quad$ which is the number of professors,
and $\quad j+10 k, \quad$ which is the total dollar payout.
So, since the number of professors is $=N$
and \quad the total dollar payout \quad is also $=N$,
we conclude: each award-dispensation has probability $C^{N} \cdot e^{-\beta \cdot N} / S$, so they are all equally likely, which exactly describes the first system. Therefore, under the Boltzmann assumption, the first and third systems are equivalent.

In $\S 14$, we expose the inequitablity of the first system.
In fact, assuming N is sufficiently large, we show that: with probability $>99 \%$, over half of the professors receive $\$ 0$.
Thanks to V. Reiner for suggesting applying Chebyshev's inequality to a sum of indicator variables, to transition from individual statistics to population statistics.
In $\S 15$ and $\S 16$ and $\S 17$, we extend the theory to handle cases where the award-sets are finite sets of rational numbers.
In $\S 18$, we show that irrational award amounts can lead to non-Boltzmann statistics.
In $\S 19$ and $\S 20$ and $\S 21$, we extend our earlier results to include degenerate energy-levels, with a finite set of states.
In $\S 22$ through $\S 28$, we extend these results further to include cases that involve a countably infinite set of states.

Thanks to C. Prouty for help with many calculations.
For some of his Python code, see $\S 29$.

2. Some notation

A box around an expression indicates that it is global, meaning that it is fixed to the end of these notes.
Unboxed variables are freed at the end of each section, if not earlier.
Let $\quad \mathbb{R}^{*}:=\{-\infty\} \bigcup \mathbb{R} \bigcup\{\infty\}, \quad \mathbb{Z}^{*}:=\{-\infty\} \bigcup \mathbb{Z} \bigcup\{\infty\}$.
For any $s, t \in \mathbb{R}^{*}, \quad$ let

$$
(s ; t):=\left\{x \in \mathbb{R}^{*} \mid s<x<t\right\}, \quad[s ; t):=\left\{x \in \mathbb{R}^{*} \mid s \leqslant x<t\right\}
$$

$$
(s ; t]:=\left\{x \in \mathbb{R}^{*} \mid s<x \leqslant t\right\}, \quad[s ; t]:=\left\{x \in \mathbb{R}^{*} \mid s \leqslant x \leqslant t\right\} .
$$

For any $s, t \in \mathbb{R}^{*}$, let $\quad(s . . t):=(s ; t) \bigcap \mathbb{Z}^{*}, \quad[s . . t):=[s ; t) \bigcap \mathbb{Z}^{*}$
$\overline{(s . . t]}:=(s ; t] \bigcap \mathbb{Z}^{*}, \quad[s . . t]:=[s ; t] \bigcap \mathbb{Z}^{*}$.
Let $\mathbb{N}:=[1 . . \infty)$ be the set of positive integers.
For any finite set F, let $\# F$ be the number of elements in F.
For any infinite set F, let $\# F:=\infty$. Then $\# \mathbb{Z}=\infty=\# \mathbb{R}$.
For all $t \in \mathbb{R}$, let $\lfloor t\rfloor:=\max \{n \in \mathbb{N} \mid n \leqslant t\}$ be the floor of t.
For any sets S, T, for any function $f: S \rightarrow T$,
the image of f is: $\quad \mathbb{I}_{f}:=\{f(x) \mid x \in S\} \subseteq T$.
For any sets S, T, for any function $f: S \rightarrow T$,
for any set A, we define: $f^{*} A:=\{x \in S \mid f(x) \in A\}$.
By convention, in these notes, we define $00:=1$.
By "C C^{ω} " we mean: "real-analytic".

3. First system of grant awards

Let $N \in \mathbb{N}$. Think of N as large.
Whenever we need to
formulate and prove precise mathematical statements, we will "pass to the thermodynamic limit", which means:
we replace N by a variable $n \in \mathbb{N}$, and let $n \rightarrow \infty$.
((Alternatively, within nonstandard analysis, the variable N
could be taken as an infinite integer,
and the various approximations involving N,
could be taken as equality-modulo-infinitesimals.))
Suppose there are N professors, numbered 1 to N, who apply, once per year, to the GFA (Grant Funding Agency), seeking funding for the very important work they are doing.
Each year, Congress authorizes $\$ N$ for the GFA to dispense to the N professors.
The GFA has the rule: every award is 0 or 1 or 10 dollars.
The set of grant-dispensations is represented by: $\Omega:=\left\{\omega:[1 . . N] \rightarrow\{0,1,10\} \mid \sum_{\ell=1}^{N}[\omega(\ell)]=N\right\}$.
The GFA has set aside $\# \Omega$ pieces of paper,
and has written down all possible dispensations, one on each piece of paper.
So, for example, there is a piece of paper that says:

Professors 1 to N each get $\$ 1$.
Another piece of paper says:
Professors 1 to $N-10$ each get $\$ 1$ and
Professors $N-9$ to $N-1$ each get $\$ 0$ and Professor N gets $\$ 10$.
Since N is large, it follows that $\# \Omega$ is large, and so there are many, many, many other pieces of paper.
Each year, a GFA bureaucrat
places all the pieces of paper in a big bin, then selects one at random and makes the awards as indicated on that piece of paper.
Under this first system of awarding grants, we have:
$\forall \omega \in \Omega, \quad$ the probability that
the selected grant-dispensation is ω is equal to $1 /(\# \Omega)$.
Suppose I am one of the professors. Here is our main problem:
Calculate my probability of getting $\$ 0$.
Then calculate my probability of getting $\$ 1$.
Then calculate my probability of getting $\$ 10$.
Approximate answers are acceptable.
In $\S 5$ to $\S 12$ of this note,
we reformulate and then solve this problem.
Spoiler: It's a Boltzmann distribution, approximately.

4. Particles and energy

Recall that $N \in \mathbb{N}$. Think of N as large.
Suppose there are N particles, numbered 1 to N, each of which has a certain amount of energy.
Suppose the total energy is N, dispensed among the N particles.
Suppose physicists have somehow determined that, for any particle, its possible energy-levels are: $\quad 0$ or 1 or 10 .
Recall: $\Omega=\left\{\omega:[1 . . N] \rightarrow\{0,1,10\} \mid \sum_{\ell=1}^{N}[\omega(\ell)]=N\right\}$.
Then Ω represents the set of energy-dispensations.
Assume that physicists have somehow determined
that this system of particles has a random energy-dispensation and that all energy-dispensations in Ω are equally probable.
That is, physicists tell us:
$\forall \omega \in \Omega, \quad$ the probability that the energy-dispensation is ω is equal to $1 /(\# \Omega)$.
The equal probability of all energy-dispensations
is a recurring theme in microcanonical-ensemble thermodynamics, and can often be motivated through
rules of random energy transfer between random pairs of particles.
For examples of this, either see $\S 19$ below or
search for "Coconuts and Islanders" by B. Zhang,
and, in particular, see the work leading up to the last paragraph of $\S 3.2$ therein.
In $\S 19$ below,
instead of particles exchanging energy,
there are professors exchanging dollars,
but the principle is exactly the same.
In Zhang's exposition,
instead of particles exchanging energy,
there are islanders exchanging coconuts,
but the principle is exactly the same.

Returing to our N particles, pick any one of them.
Problem: Calculate its probability of having energy-level 0 .
Then calculate its probability of having energy-level 1.
Then calculate its probability of having energy-level 10.
Approximate answers are acceptable.
Spoiler: It's a Boltzmann distribution, approximately.

Except for terminology, this problem is the same as the main problem (end of $\S 3$) about professors and grants.
We will go back to professors and grants.
Mathematically it makes no difference, but it's more fun.
5. SECond and third systems of grant awards

In an effort to go paperless, the GFA changes to a new system:
In this second system, instead of all those pieces of paper, the GFA chooses $p, q, r>0 \quad$ s.t. $\quad p+q+r=1$, and then, for each of the N professors,
awards $\quad \$ 0$ with probability p,
\$ 1 with probability q, $\$ 10$ with probability r.
No professor's award depends in any way on any other professor's; the awards are independent.
The expected payout, for any professor, is $p \cdot 0+q \cdot 1+r \cdot 10$ dollars.
Under this second system, there is no guarantee that the total payout will be $\$ N$, which is a difficulty that we will discuss later.
However, recognizing that the average award is intended to be $\$ 1$, the GFA chooses the numbers p, q, r subject to the constraint that

$$
p \cdot 0+q \cdot 1+r \cdot 10=1, \quad \text { i.e., } \quad q+10 r=1 .
$$

For each function $\omega:[1 . . N] \rightarrow\{0,1,10\}$, let

$$
\begin{aligned}
i_{\omega} & :=\#\{\ell \in[1 . . N] \mid \omega(\ell)=0\}, \\
\hline j_{\omega} & :=\#\{\ell \in[1 . . N] \mid \omega(\ell)=1\}, \\
k_{\omega} & :=\#\{\ell \in[1 . . N] \mid \omega(\ell)=10\} ;
\end{aligned}
$$

that is, $\quad i_{\omega}$ is the number of professors awarded $\$ 0$ and j_{ω} is the number of professors awarded $\$ 1$ and k_{ω} is the number of professors awarded $\$ 10$.
Then, $\quad \forall \omega:[1 . . N] \rightarrow\{0,1,10\}, \quad$ we have:
the total number of awards is $i_{\omega}+j_{\omega}+k_{\omega}$ and the total dollar payout is $i_{\omega} \cdot 0+j_{\omega} \cdot 1+k_{\omega} \cdot 10$,

$$
\text { i.e., } \quad j_{\omega}+10 k_{\omega} \text {. }
$$

Then, $\quad \forall \omega:[1 . . N] \rightarrow\{0,1,10\}, \quad$ we have:
$i_{\omega}+j_{\omega}+k_{\omega}=N \quad$ and $\quad j_{\omega}+10 k_{\omega}=\sum_{\ell=1}^{N}[\omega(\ell)]$.
Recall: $\Omega=\left\{\omega:[1 . . N] \rightarrow\{0,1,10\} \mid \sum_{\ell=1}^{N}[\omega(\ell)]=N\right\}$.
That is, Ω is the set of all payout functions

$$
\omega:[1 . . N] \rightarrow\{0,1,10\}
$$

s.t. the total dollar payout is N.

Then: $\quad \forall \omega:[1 . . N] \rightarrow\{0,1,10\}$, we have:

$$
\omega \in \Omega \quad \text { iff } \quad j_{\omega}+10 k_{\omega}=N
$$

For every $i, j, k \in[0 . . N]$,
if $\quad i+j+k=N \quad$ and $\quad j+10 k=N$,
then $\quad \exists \omega \in \Omega \quad$ s.t. $\quad(i, j, k)=\left(i_{\omega}, j_{\omega}, k_{\omega}\right)$;
indeed, one such $\omega:[1 . . N] \rightarrow\{0,1,10\}$ is described by: $\omega=0$ on [1..i], $\omega=1$ on $(i . . i+j], \quad \omega=10$ on $(i+j . . N]$.
Let $A:=\left\{\left(i_{\omega}, j_{\omega}, k_{\omega}\right) \mid \omega \in \Omega\right\}$.
Then A is the set of all (i, j, k) s.t. $i, j, k \in[0 . . N] \quad$ and

$$
i+j+k=N \quad \text { and } \quad j+10 k=N .
$$

Under the second system,
each $\$ 0$ award happens with probability p and each $\$ 1$ award happens with probability q and each $\$ 10$ award happens with probability r.
So, $\forall \omega:[1 . . N] \rightarrow\{0,1,10\}$, under the second system, the probability that the grant-dispensation is equal to ω is $\quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}$.
Let $\quad S:=\sum_{\omega \in \Omega} p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}$.
Then $\quad S$ is the probability (using the second system) that $\omega \in \Omega$,
i.e., the probability that the total payout is exactly N dollars.

Assuming N is large, it turns out that S is close to zero.
So, under this second system,
the probability of paying out exactly N dollars
is very small.
Congress only allocates $\$ N$ per year for the N professors.
So, using this second system, each year,
with probability $1-S \approx 1, \quad$ the GFA will run a surplus or a deficit.
On the other hand, since $q+10 r=1$, we see that,
each year, the expected payout is $\$ 1$ per professor, so, each year, the expected total payout is $\$ N$.
So these surpluses and deficits should, over time, cancel one another.
Unfortunately, Congress is a paragon of fiscal responsibility, and, as soon as it finds out about the GFA's second system, it insists that the GFA never again underspend or overspend.
So the GFA changes its system one more time, as follows.
Under its third system, each year,
before announcing any of the awards publicly,
the GFA writes out, in an internal memo,
a tentative proposal of awards that, independently, for each of the N professors, awards $\quad \$ 0$ with probability p, $\$ 1$ with probability q, $\$ 10$ with probability r.
If the memo's total award payout is NOT equal to $\$ N$, the GFA deems the memo as unacceptable, deletes it, and starts over, making memo after memo, until an acceptable one (meaning payout exactly $\$ N$) appears.

Each memo has a probability S of being acceptable, so, each year, the GFA will likely need to repeat the memo process many times to get to a memo with total payout exactly equal to $\$ N$.
However, as soon as that happens,
the GFA uses that first acceptable memo, and publicizes its dispensation of awards.
Mathematically, we are conditioning on the event $\omega \in \Omega$.
So, using the third system, the probability that $\omega \notin \Omega$ is 0 .
Also, for this third system, $\forall \omega \in \Omega$, the probability of ω is $p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S$.
The sum of these probabilities is 1 :

$$
\sum_{\omega \in \Omega} \frac{p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}}{S}=\frac{1}{S} \cdot \sum_{\omega \in \Omega} p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}=\frac{1}{S} \cdot S=1
$$

This third system is not necessarily equivalent to the first, because in the first system, all the probabilities were $1 /(\# \Omega)$,
whereas, in the third system, they are $p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S$.
So a new question arises:
Is it possible to choose $p, q, r>0$ in such a way that

$$
\begin{aligned}
& p+q+r=1 \quad \text { and } \quad q+10 r=1 \quad \text { and } \\
& \quad \forall \omega \in \Omega, \quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=1 /(\# \Omega) \quad ?
\end{aligned}
$$

If yes, then, using that (p, q, r),
the first and third systems are equivalent.
We will see that the answer to this new question, in fact, is yes.
In the next two sections, assuming $N \geqslant 10$,
we will show how to compute the only (p, q, r) that works.
Spoiler: It's a Boltzmann distribution, exactly.

6. Computing p, q, r À la Boltzmann

As in the preceding section, let $p, q, r>0, \quad S:=\sum_{\omega \in \Omega} p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}$.
We assume: $\quad p+q+r=1$ and $q+10 r=1$.
We also assume: $\quad \forall \omega \in \Omega, p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=1 /(\# \Omega)$.
We will prove that, if $N \geqslant 10$, then
there is at most one (p, q, r) that satisfies these conditions,

$$
\text { specifically, } \quad(p, q, r)=\frac{\left(1,9^{-1 / 10}, 9^{-1}\right)}{1+9^{-1 / 10}+9^{-1}}
$$

Define the dot product, \odot, on \mathbb{R}^{3}, by:

$$
\forall x, y, z, X, Y, Z \in \mathbb{R}, \quad(x, y, z) \odot(X, Y, Z)=x X+y Y+z Z
$$

For all $u \in \mathbb{R}^{3}, \quad$ let $u^{\perp}:=\left\{v \in \mathbb{R}^{3} \mid u \odot v=0\right\}$;
then u^{\perp} is a vector subspace of \mathbb{R}^{3}.
Also, $\quad \forall u \in \mathbb{R}^{3}, \quad u \in u^{\perp \perp}$.
For all $U \subseteq \mathbb{R}^{3}, \quad$ let $U^{\perp}:=\left\{v \in \mathbb{R}^{3} \mid \forall u \in U, u \odot v=0\right\}$; then U^{\perp} is a vector subspace of \mathbb{R}^{3}.
Also, $\quad \forall T, U \subseteq \mathbb{R}^{3}, \quad(T \subseteq U) \Rightarrow\left(T^{\perp} \supseteq U^{\perp}\right)$.
For all $u, v \in \mathbb{R}^{3}, \quad$ let $\langle u, v\rangle_{\text {span }}$ denote the \mathbb{R}-span of $\{u, v\}$, i.e., let $\langle u, v\rangle_{\text {span }}:=\{s u+t v \mid s, t \in \mathbb{R}\} ;$
then $\langle u, v\rangle_{\text {span }}$ is a vector subspace of \mathbb{R}^{3}.
Recall $(\S 3): \Omega=\left\{\omega:[1 . . N] \rightarrow\{0,1,10\} \mid \sum_{\ell=1}^{N}[\omega(\ell)]=N\right\}$.
Recall (§5): $A=\left\{\left(i_{\omega}, j_{\omega}, k_{\omega}\right) \mid \omega \in \Omega\right\}$.
Recall (§5): A is the set of all (i, j, k) s.t. $i, j, k \in[0 . . N]$ and

$$
i+j+k=N \quad \text { and } \quad j+10 k=N
$$

Then: $\quad A$ is the set of all $(i, j, k) \quad$ s.t. $\quad i, j, k \in[0 . . N]$ and

$$
(1,1,1) \odot(i, j, k)=N \quad \text { and } \quad(0,1,10) \odot(i, j, k)=N
$$

For all $a, b \in A$, we have

$$
(1,1,1) \odot a=N=(1,1,1) \odot b \quad \text { and }
$$

$$
(0,1,10) \odot a=N=(0,1,10) \odot b
$$

so we get

$$
(1,1,1) \odot(a-b)=0 \quad \text { and } \quad(0,1,10) \odot(a-b)=0,
$$

so $\quad a-b \in(1,1,1)^{\perp} \bigcap(0,1,10)^{\perp}$.
Let $V:=(1,1,1)^{\perp} \bigcap(0,1,10)^{\perp}$.
Then: $\forall a, b \in A, \quad a-b \in V$.
Let $\quad D:=\{a-b \mid a, b \in A\}$. Then $D \subseteq V$.
Also, we have: $\quad V \subseteq(1,1,1)^{\perp}$ and $\quad V \subseteq(0,1,10)^{\perp}$.
Then: $\quad V^{\perp} \supseteq(1,1,1)^{\perp \perp} \quad$ and $\quad V^{\perp} \supseteq(0,1,10)^{\perp \perp}$.
Since $(1,1,1) \in(1,1,1)^{\perp \perp} \subseteq V^{\perp}$ and $(0,1,10) \in(0,1,10)^{\perp \perp} \subseteq V^{\perp}$, we get: $\langle(1,1,1),(0,1,10)\rangle_{\text {span }} \subseteq V^{\perp}$.
Let $W:=\langle(1,1,1),(0,1,10)\rangle_{\text {span }}$. Then: $W \subseteq V^{\perp}$.
Assume $N \geqslant 10$. Let $\quad a_{1}:=(0, N, 0), \quad a_{2}:=(9, N-10,1)$.
Then $a_{1}, a_{2} \in A . \quad$ Let $d_{1}:=a_{2}-a_{1}$. Then $d_{1} \in D$.
Since $\quad d_{1} \neq(0,0,0), \quad$ we get: $\quad \operatorname{dim} d_{1}^{\perp}=2$.
Since $W=\langle(1,1,1),(0,1,10)\rangle_{\text {span }}, \quad$ we get: $\quad \operatorname{dim} W=2$.
Since $\quad d_{1} \in D \subseteq V$ and $W \subseteq V^{\perp}$, we get: $\quad d_{1}^{\perp} \supseteq D^{\perp} \supseteq V^{\perp} \supseteq W$.
So, since $\operatorname{dim} d_{1}^{\perp}=2=\operatorname{dim} W$, we get: $\quad d_{1}^{\perp}=D^{\perp}=V^{\perp}=W$.
Then $D^{\perp}=W$ Recall: $\quad \forall \omega \in \Omega, \quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=1 /(\# \Omega)$.
So, since $A=\left\{\left(i_{\omega}, j_{\omega}, k_{\omega}\right) \mid \omega \in \Omega\right\}$, we get:

$$
\forall(i, j, k) \in A, \quad p^{i} q^{j} r^{k} / S=1 /(\# \Omega) .
$$

Equivalently, $\quad \forall(i, j, k) \in A$,

$$
i \cdot(\ln p)+j \cdot(\ln q)+k \cdot(\ln r)-(\ln S)=-(\ln (\# \Omega))
$$

Equivalently, $\quad \forall(i, j, k) \in A$,

$$
(i, j, k) \odot(\ln p, \ln q, \ln r)=(\ln S)-(\ln (\# \Omega))
$$

Then: $\forall a, b \in A$,
$a \odot(\ln p, \ln q, \ln r)=(\ln S)-(\ln (\# \Omega))=b \odot(\ln p, \ln q, \ln r)$,
so we get: $\quad(a-b) \odot(\ln p, \ln q, \ln r)=0$.
Then: $\quad \forall d \in D, \quad d \quad \odot(\ln p, \ln q, \ln r)=0$.
Then: $\quad(\ln p, \ln q, \ln r) \in D^{\perp}$.
Since $\quad(\ln p, \ln q, \ln r) \in D^{\perp}=W=\langle(1,1,1),(0,1,10)\rangle_{\text {span }}$,
choose a real number $C>0$ and $\beta \in \mathbb{R}$ s.t. $(\ln p, \ln q, \ln r)=(\ln C) \cdot(1,1,1)-\beta \cdot(0,1,10)$.
Then $\quad(\ln p, \ln q, \ln r)=(\ln C,(\ln C)-\beta,(\ln C)-10 \beta)$.
Then $\quad(p, q, r)=\left(C, C e^{-\beta}, C e^{-10 \beta}\right)$.
Then $\quad(p, q, r)=C \cdot\left(1, e^{-\beta}, e^{-10 \beta}\right)$.
So, \quad since $p+q+r=1$, we get: $\quad C \cdot\left(1+e^{-\beta}+e^{-10 \beta}\right)=1$.
Then $C=\frac{1}{1+e^{-\beta}+e^{-10 \beta}} . \quad \quad$ Then $(p, q, r)=\frac{\left(1, e^{-\beta}, e^{-10 \beta}\right)}{1+e^{-\beta}+e^{-10 \beta}}$.
So, \quad since $q+10 r=1$, we get: $\quad \frac{e^{-\beta}+10 e^{-10 \beta}}{1+e^{-\beta}+e^{-10 \beta}}=1$.
Then $e^{-\beta}+10 e^{-10 \beta}=1+e^{-\beta}+e^{-10 \beta}$. Then $9 e^{-10 \beta}=1$.
Then $e^{-10 \beta}=9^{-1}$. Then $e^{-\beta}=9^{-1 / 10}$. Then $(p, q, r)=\frac{\left(1,9^{-1 / 10}, 9^{-1}\right)}{1+9^{-1 / 10}+9^{-1}}$.
So this is the only (p, q, r) that can possibly work.
In the next section, we show that it does work.

7. Showing the Boltzmann p, q, r work

In this section, we prove
the converse of the result from the preceding section.
That is, we let $(p, q, r):=\frac{\left(1,9^{-1 / 10}, 9^{-1}\right)}{1+9^{-1 / 10}+9^{-1}}$ and $S:=\sum_{\omega \in \Omega} p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}$,
and we wish to show: $p+q+r=1$ and $q+10 r=1 \quad$ and

$$
\forall \omega \in \Omega, \quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=1 /(\# \Omega) .
$$

Let $\beta:=(\ln 9) / 10$. Then $e^{-\beta}=9^{-1 / 10}$. Then $e^{-10 \beta}=9^{-1}$.
Then $(p, q, r)=\frac{\left(1, e^{-\beta}, e^{-10 \beta}\right)}{1+e^{-\beta}+e^{-10 \beta}} . \quad$ Let $C:=\frac{1}{1+e^{-\beta}+e^{-10 \beta}}$.
Then $(p, q, r)=C \cdot\left(1, e^{-\beta}, e^{-10 \beta}\right)$. Then $(p, q, r)=\left(C, C e^{-\beta}, C e^{-10 \beta}\right)$.

Let $K:=C^{N} \cdot e^{-\beta \cdot N}$.
Recall $(\S 3): \Omega=\left\{\omega:[1 . . N] \rightarrow\{0,1,10\} \mid \sum_{\ell=1}^{N}[\omega(\ell)]=N\right\}$.
Claim: $\quad \forall \omega \in \Omega, \quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}=K$.
Proof of Claim: \quad Given $\omega \in \Omega$, want: $p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}=K$.
Recall (§5): $\quad i_{\omega}+j_{\omega}+k_{\omega}=N$ and $j_{\omega}+10 k_{\omega}=\sum_{\ell=1}^{N}[\omega(\ell)]$.
By definition of Ω, \quad since $\omega \in \Omega, \quad$ we get: $\quad \sum_{\ell=1}^{N}[\omega(\ell)]=N$.
Then: $\quad j_{\omega}+10 k_{\omega}=N . \quad$ Recall: $\quad(p, q, r)=\left(C, C e^{-\beta}, C e^{-10 \beta}\right)$.
Then: $\quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}=C^{i_{\omega}} \cdot\left(C e^{-\beta}\right)^{j_{\omega}} \cdot\left(C e^{-10 \beta}\right)^{k_{\omega}}$

$$
=C^{i_{\omega}+j_{\omega}+k_{\omega}} \cdot e^{-\beta \cdot\left(j_{\omega}+10 k_{\omega}\right)}=C^{N} \cdot e^{-\beta \cdot N}=K .
$$

End of proof of Claim.
By definition of S, we have: $\quad S=\sum_{\omega \in \Omega} p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}$.
So, by the Claim, we get: $S=(\# \Omega) \cdot K$. Then $K / S=1 /(\# \Omega)$.
We have $\quad 10 / 9=1+(1 / 9) \quad$ That is, $\quad 10 \cdot 9^{-1}=1+9^{-1}$.
So, since $\quad e^{-10 \beta}=9^{-1}, \quad$ we get: $\quad 10 e^{-10 \beta}=1+e^{-10 \beta}$.
Then: $\quad e^{-\beta}+10 e^{-10 \beta}=1+e^{-\beta}+e^{-10 \beta}$.
By definition of C, we get: $\quad C \cdot\left(1+e^{-\beta}+e^{-10 \beta}\right)=1$.
Recall: $\quad(p, q, r)=C \cdot\left(1, e^{-\beta}, e^{-10 \beta}\right)$.
Since $\quad p+q+r=C \cdot\left(1+e^{-\beta}+e^{-10 \beta}\right)=1$
and since $q+10 r=C \cdot\left(e^{-\beta}+10 e^{-10 \beta}\right)=C \cdot\left(1+e^{-\beta}+e^{-10 \beta}\right)=1$,
it remains only to show: $\quad \forall \omega \in \Omega, \quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=1 /(\# \Omega)$.
Given $\omega \in \Omega$, want: $\quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=1 /(\# \Omega)$.
By the Claim, we get: $\quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}=K$.

$$
\text { Recall: } \quad K / S=1 /(\# \Omega)
$$

Then: $\quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=K / S=1 /(\# \Omega)$.

8. Countable measure theory

Let S be a set, and let $f: S \rightarrow[0 ; \infty]$. Let $\mathcal{F}:=\{A \subseteq S \mid \# A<\infty\}$.
Then: $\sum_{x \in S}[f(s)]:=\sup _{A \in \mathcal{F}} \sum_{x \in A}[f(s)]$.

Let S be a set, and let $f: S \rightarrow \mathbb{R}$. Assume: $\sum_{x \in S}|f(s)|<\infty$.
Then: $\sum_{x \in S}[f(s)]:=\left(\sum_{x \in S}|f(s)|\right)-\left(\sum_{x \in S}[|f(s)|-(f(s))]\right)$.

By convention, in this note,
any countable set is given its discrete Borel structure.
A measure μ on a countable set Θ is completely determined by

$$
\text { the function } \quad t \mapsto \mu\{t\}: \Theta \rightarrow[0 ; \infty],
$$

because: $\quad \forall \Theta_{0} \subseteq \Theta, \quad$ we have $\mu\left(\Theta_{0}\right)=\sum_{t \in \Theta_{0}}[\mu\{t\}]$.
DEFINITION 8.1. Let Θ be a countable set.
Then

| | \mathcal{M}_{Θ} | denotes | the set of measures on Θ, |
| :--- | ---: | :--- | :--- | :--- |
| and | $\mathcal{F M}_{\Theta}$ | $:=$ | $\left\{\mu \in \mathcal{M}_{\Theta} \mid \mu(\Theta)<\infty\right\}$, |
| and | $\mathcal{F M}_{\Theta}^{\times}$ | $:=$ | $\left\{\mu \in \mathcal{M}_{\Theta} \mid 0<\mu(\Theta)<\infty\right\}$, |
| and | \mathcal{P}_{Θ} | $:=$ | $\left\{\mu \in \mathcal{M}_{\Theta} \mid \mu(\Theta)=1\right\}$. |

Then
\mathcal{M}_{Θ} is the set of measures on Θ
and $\quad \mathcal{F M}_{\Theta}$ is the set of finite measures on Θ
and $\quad \mathcal{F} \mathcal{M}_{\Theta}^{\times}$is the set of nonzero finite measures on Θ
and $\quad \mathcal{P}_{\Theta}$ is the set of probability measures on Θ.
The only measure on \varnothing is the zero measure.
Therefore: $\quad \mathcal{F} \mathcal{M}_{\varnothing}^{\times}=\varnothing=\mathcal{P}_{\varnothing}$.
DEFINITION 8.2. Let Θ be a countable set, $\mu \in \mathcal{F} \mathcal{M}_{\Theta}$.
Let $n \in \mathbb{N}$. Then $\quad \mu^{n} \in \mathcal{F} \mathcal{M}_{\Theta^{n}}$ is defined by: $\forall x \in \Theta^{n}, \quad \mu^{n}\{x\}=\left(\mu\left\{x_{1}\right\}\right) \cdots\left(\mu\left\{x_{n}\right\}\right)$.

The following is a basic fact, whose proof we omit:
Let Θ be a countable set, $\quad \mu \in \mathcal{F} \mathcal{M}_{\Theta}, \quad n \in[2 . . \infty)$.
Let $Z \subseteq \Theta^{n}, \quad X \subseteq \Theta^{n-1}, \quad Y \subseteq \Theta$. Assume that:
under the standard bijection $\Theta^{n} \longleftrightarrow \Theta^{n-1} \times \Theta$, we have: $Z \quad \longleftrightarrow \quad X \quad \times \quad Y$.
Then: $\quad \mu^{n}(Z)=\left(\mu^{n-1}(X)\right) \cdot(\mu(Y))$.
It is common to identify Z with $X \times Y$, in which case we have:

$$
\mu^{n}(X \times Y)=\left(\mu^{n-1}(X)\right) \cdot(\mu(Y))
$$

We also omit proof of:
Let Θ be a countable set, $\quad \mu \in \mathcal{F} \mathcal{M}_{\Theta}, \quad n \in[2 . . \infty)$.
Then:

$$
\mu^{n}\left(\Theta^{n}\right)=(\mu(\Theta))^{n}
$$

In particular, $\quad\left(\mu \in \mathcal{P}_{\Theta}\right) \Rightarrow\left(\mu^{n} \in \mathcal{P}_{\Theta^{n}}\right)$.

The countable sets that are of interest in this note
all carry the discrete topology. We therefore define:

DEFINITION 8.3. Let Θ be a countable set, $\mu \in \mathcal{M}_{\Theta}$.
Then the support of μ is: $\quad S_{\mu}:=\{t \in \Theta \mid \mu\{t\} \neq 0\}$.
DEFINITION 8.4. Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{M}_{\Theta}$.
Let $\rho \geqslant 1$ be real. \quad Then: $\quad|\mu|_{\rho}:=\left(\sum_{t \in \Theta}\left[|t|^{\rho} \cdot(\mu\{t\})\right]\right)^{1 / \rho}$.
Note: \forall countable $\Theta \subseteq \mathbb{R}, \quad \forall \mu \in \mathcal{F} \mathcal{M}_{\Theta}$,

$$
\text { if } \# S_{\mu}<\infty, \quad \text { then: } \quad \forall \text { real } \rho \geqslant 1,|\mu|_{\rho}<\infty .
$$

DEFINITION 8.5. Let $\Theta \subseteq \mathbb{R}$ be countable.
Let $\mu \in \mathcal{P}_{\Theta} . \quad$ Assume: $|\mu|_{1}<\infty$.
Then the
mean of μ is:
$M_{\mu}:=\sum_{t \in \Theta}[t \cdot(\mu\{t\})]$.
Also, the variance of μ is: $\quad V_{\mu}:=\sum_{t \in \Theta}\left[\left(t-M_{\mu}\right)^{2} \cdot(\mu\{t\})\right]$.
Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{P}_{\Theta}$. Assume: $|\mu|_{1}<\infty$.
Then, by subadditivity of absolute value, we get $\left|M_{\mu}\right| \leqslant|\mu|_{1}$.
In particular, $\left|M_{\mu}\right|<\infty$, i.e., $-\infty<M_{\mu}<\infty$.
Also, by expanding the square in the formula for V_{μ},

$$
\text { we get } \quad V_{\mu}=|\mu|_{2}^{2}-M_{\mu}^{2} \text {. }
$$

In particular, $\left(V_{\mu}<\infty\right) \Leftrightarrow\left(|\mu|_{2}<\infty\right)$.
Let $\Theta \subseteq \mathbb{R}$ be countable and let X be a Θ-valued random-variable.
Let μ denote the distribution on Θ of X,
i.e., \quad define $\mu \in \mathcal{P}_{\Theta}$ by: $\quad \forall t \in \Theta, \quad \mu\{t\}=\operatorname{Pr}[X=t]$.

Then, \forall real $\rho \geqslant 1$, we have: $\quad|\mu|_{\rho}$ is the L^{ρ}-norm of X.
Then, \forall real $\rho \geqslant 1$, we have: $\quad\left(|\mu|_{\rho}<\infty\right) \Leftrightarrow\left(X\right.$ is $\left.L^{\rho}\right)$.
In particular, $\quad\left(|\mu|_{1}<\infty\right) \Leftrightarrow\left(X\right.$ is $\left.L^{1}\right)$.
Also, if X is L^{1}, then $M_{\mu}=\mathrm{E}[X]$ and $V_{\mu}=\operatorname{Var}[X]$.
That is, if X is L^{1}, then
M_{μ} is the mean (aka expected value, aka average value) of X and V_{μ} is the variance of X.

THEOREM 8.6. Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{P}_{\Theta}$.
Assume: $\quad|\mu|_{1}<\infty$. Then: $\quad\left(\# S_{\mu} \geqslant 2\right) \Leftrightarrow\left(V_{\mu}>0\right)$.
The preceding result is a measure-theoretic analogue of the statement:
An L^{1} random-variable is non-deterministic iff its variance is positive.
We omit proof.
Because $\quad \forall t \in \mathbb{Z}, \quad|t| \leqslant t^{2}, \quad$ we conclude:
for any \mathbb{Z}-valued random-variable $X, \quad \mathrm{E}[|X|] \leqslant \mathrm{E}\left[X^{2}\right]$.

It follows that for any \mathbb{Z}-valued L^{2} random-variable X, we have:

$$
X \text { is } L^{1}, \quad \text { and so } \mathrm{E}[X] \text { is defined and finite. }
$$

Because $\quad \forall t \in \mathbb{Z}, \quad|t| \leqslant t^{2}, \quad$ we conclude:
$\forall \Theta \subseteq \mathbb{Z}, \forall \mu \in \mathcal{M}_{\Theta}, \quad|\mu|_{1} \leqslant|\mu|_{2}^{2} ;$
it follows that if $|\mu|_{2}<\infty$, then

$$
|\mu|_{1}<\infty, \quad \text { and so } \quad M_{\mu} \text { is defined and finite. }
$$

DEFINITION 8.7. Let Θ be a countable set.
Let $\mu_{1}, \mu_{2}, \ldots \in \mathcal{P}_{\Theta} \quad$ and \quad let $\lambda \in \mathcal{P}_{\Theta}$.
By $\mu_{1}, \mu_{2}, \ldots \rightarrow \lambda$, we mean: $\forall \Theta_{0} \subseteq \Theta, \mu_{1}\left(\Theta_{0}\right), \mu_{2}\left(\Theta_{0}\right), \ldots \rightarrow \lambda\left(\Theta_{0}\right)$.
Recall (§2): \forall function f, \quad the notation: \mathbb{I}_{f}.
Recall (§2): $\quad \forall$ function f, \forall set A, the notation: $\quad f^{*} A$.
For any countable set S, \quad for any set T, for any function $f: S \rightarrow T, \quad$ for any $\mu \in \mathcal{M}_{S}$, we define $f_{*} \mu \in \mathcal{M}_{\mathbb{I}_{f}}$ by: $\quad \forall A \subseteq \mathbb{I}_{f}, \quad\left(f_{*} \mu\right)(A)=\mu\left(f^{*} A\right)$.

Let S be a countable set, T a set, $f: S \rightarrow T$. Let $n \in \mathbb{N}$.
Define $f^{n}: S^{n} \rightarrow T^{n}$ by: $\forall x \in S^{n}, \quad f^{n}(x)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$.
Then: $\left(f^{n}\right)_{*} \mu^{n}=\left(f_{*} \mu\right)^{n}$.

For any nonempty countable set Θ, for any $\mu \in \mathcal{F} \mathcal{M}_{\Theta}^{\times}$,

$$
\text { let } \mathcal{N}(\mu):=\frac{\mu}{\mu(\Theta)} \in \mathcal{P}_{\Theta} ; \quad \text { then } \quad \forall \Theta_{0} \subseteq \Theta, \quad(\mathcal{N}(\mu))\left(\Theta_{0}\right)=\frac{\mu\left(\Theta_{0}\right)}{\mu(\Theta)} \text {, }
$$

and $\quad \mathcal{N}(\mu)$ is called the normalization of μ.
Let $\widehat{\Theta}$ be a countable set. Let $\mu \in \mathcal{M}_{\widehat{\Theta}}$. Let $\Theta \subseteq \widehat{\Theta}$.
Then the restriction of μ to Θ, denoted $\mu \mid \Theta \in \mathcal{M}_{\Theta}$,
is defined by: $\quad \forall \Theta_{0} \subseteq \Theta, \quad(\mu \mid \Theta)\left(\Theta_{0}\right)=\mu\left(\Theta_{0}\right)$.
NOTE: We have $(\mu \mid \Theta)(\Theta)=\mu(\Theta)$. So, if $0<\mu(\Theta)<\infty$, then:

$$
\begin{aligned}
\mu \mid \Theta \in \mathcal{F} \mathcal{M}_{\Theta}^{\times} \quad \text { and } \quad \mathcal{N}(\mu \mid \Theta) & =\frac{\mu \mid \Theta}{\mu(\Theta)} \\
\text { and } \quad \forall \Theta_{0} \subseteq \Theta, \quad(\mathcal{N}(\mu \mid \Theta))\left(\Theta_{0}\right) & =\frac{\mu\left(\Theta_{0}\right)}{\mu(\Theta)} .
\end{aligned}
$$

DEFINITION 8.8. Let F be a nonempty finite set.
Then we define $\nu_{F} \in \mathcal{P}_{F}$ by: $\quad \forall f \in F, \quad \nu_{F}\{f\}=1 /(\# F)$.
Also, we define $\nu_{\varnothing}:\{\varnothing\} \rightarrow\{-1\} \quad$ by: $\quad \nu_{\varnothing}(\varnothing)=-1$.

THEOREM 8.9. Let F be a nonempty finite set. Let $\theta \in \mathcal{P}_{F}$.
Assume: $\forall f, g \in F, \quad \theta\{f\}=\theta\{g\}$. Then: $\theta=\nu_{F}$.
Proof. Since F is nonempty, choose $g_{0} \in F$. Let $b:=\theta\left\{g_{0}\right\}$.
Then: $\forall f \in F, \quad \theta\{f\}=b$. Then: $\sum_{f \in F}(\theta\{f\})=(\# F) \cdot b$.
Since $\theta \in \mathcal{P}_{F}$, we get: $\quad \theta(F)=1$.
Since $(\# F) \cdot b=\sum_{f \in F}(\theta\{f\})=\theta(F)=1, \quad$ we get: $\quad b=1 /(\# F)$.
Since $\forall f \in F, \quad \theta\{f\}=b=1 /(\# F)=\nu_{F}\{f\}$, we get: $\theta=\nu_{F}$.

9. The Discrete Local Limit Theorem

DEFINITION 9.1. Let $E \subseteq \mathbb{Z}$.
By E is residue-constrained, we mean:

$$
\exists m \in[2 . . \infty), \exists n \in \mathbb{Z} \quad \text { s.t. } \quad E \subseteq m \mathbb{Z}+n
$$

By E is residue-unconstrained, we mean: E is not residue-constrained.

Since $\varnothing \subseteq 2 \cdot \mathbb{Z}+1$, we get: \varnothing is residue-constrained.
For all $b \in \mathbb{Z}$, since $\{b\} \subseteq 2 \cdot \mathbb{Z}+b$, we get: $\{b\}$ is residue-constrained.
Then: $\quad \forall$ residue-unconstrained $E \subseteq \mathbb{Z}, \quad \# E \geqslant 2$.
We have: $\quad\{0,3,9\} \subseteq 3 \mathbb{Z}+0 \quad$ and $\quad\{2,5,11\} \subseteq 3 \mathbb{Z}+2$,
so $\{0,3,9\}$ and $\{2,5,11\}$ are both residue-constrained.
Here is a test for residue-unconstrainedness:
Let $E \subseteq \mathbb{Z}$. Assume $\# E \geqslant 2$. Let $\varepsilon_{0} \in E$.
Then: $\quad(E$ is residue-unconstrained $)$ iff $\left(\operatorname{gcd}\left(E-\varepsilon_{0}\right)=1\right)$.
By this test, we see that:
$\{0,1,10\}$ and $\{2,4,8,9\}$ and $\{3,9,13,18\}$ are all residue-unconstrained.
DEFINITION 9.2. For all $\alpha \in \mathbb{R}, \quad$ for all real $v>0$,
define $\Phi_{\alpha}^{v}: \mathbb{R} \rightarrow(0 ; \infty)$ by: $\forall t \in \mathbb{R}, \quad \Phi_{\alpha}^{v}(t)=\frac{\exp \left(-(t-\alpha)^{2} /(2 v)\right)}{\sqrt{2 \pi v}}$.
Note: $\quad \Phi_{\alpha}^{v}$ is a PDF of a normal variable with mean α and variance v.
The next result is a version of the Discrete Local Limit Theorem;
this one is stated in probability-theoretic terms:
THEOREM 9.3. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let X_{1}, X_{2}, \ldots be an iid sequence of \mathbb{Z}-valued L^{2} random-variables.
Assume: $\quad \forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$.
Let $\alpha \in \mathbb{R}, v \in[0 ; \infty]$. Assume: $\forall n \in \mathbb{N}, \mathrm{E}\left[X_{n}\right]=\alpha$ and $\operatorname{Var}\left[X_{n}\right]=v$.

Then: $\quad 0<v<\infty, \quad$ and $, \quad \forall t_{1}, t_{2}, \ldots \in \mathbb{Z}$, as $n \rightarrow \infty, \sqrt{n} \cdot\left[\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=t_{n}\right]\right)-\left(\Phi_{n \alpha}^{n v}\left(t_{n}\right)\right)\right] \rightarrow 0$.

For a good exposition of this theorem and its proof, search on "Terence Tao Local Limit Theorem".
Visit the website, and then expand "read the rest of this entry", and then scroll down to "- 2. Local limit theorems -".

In Theorem 9.3, since $E \subseteq \mathbb{Z}$, we have, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|X_{n}\right| \leqslant X_{n}^{2} \text { a.s., } & \text { so } \mathrm{E}\left[\left|X_{n}\right|\right] \leqslant \mathrm{E}\left[X_{n}^{2}\right], \\
& \text { so, since } X_{n} \text { is } L^{2}, \text { we get } X_{n} \text { is } L^{1},
\end{aligned}
$$

and so $\mathrm{E}\left[X_{n}\right]$ and $\operatorname{Var}\left[X_{n}\right]$ are both defined.
Moreover, $\forall n \in \mathbb{N}$,
since $\mathrm{E}\left[X_{n}\right] \leqslant \mathrm{E}\left[\left|X_{n}\right|\right] \leqslant \mathrm{E}\left[X_{n}^{2}\right]<\infty$, we get: $\mathrm{E}\left[X_{n}\right]$ is finite.
In Theorem 9.3, the proof that $v>0$ is relatively simple:
Since E is residue-unconstrained, we get: $\# E \geqslant 2$.
Then, $\quad \forall n \in \mathbb{N}, \quad \#\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\} \geqslant 2$, which implies that $\operatorname{Var}\left[X_{n}\right]>0$,
and so $\quad v>0$.
In Theorem 9.3, the proof that $v<\infty$ is relatively simple:

$$
\forall n \in \mathbb{N}, \quad \operatorname{Var}\left[X_{n}\right]=\mathrm{E}\left[X_{n}^{2}\right]-\left(\mathrm{E}\left[X_{n}\right]\right)^{2} \leqslant E\left[X_{n}^{2}\right]<\infty
$$ and so $\quad v<\infty$.

Next is another version of the Discrete Local Limit Theorem;
this one is stated in measure-theoretic terms:
THEOREM 9.4. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let $\mu \in \mathcal{P}_{E}$. Assume: $S_{\mu}=E$. Assume: $|\mu|_{2}<\infty$.
Let $\alpha:=M_{\mu}, v:=V_{\mu}$. Then: $0<v<\infty$, and, $\forall t_{1}, t_{2}, \ldots \in \mathbb{Z}$,
as $n \rightarrow \infty, \quad \sqrt{n} \cdot\left[\left(\mu^{n}\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=t_{n}\right\}\right)-\left(\Phi_{n \alpha}^{n v}\left(t_{n}\right)\right)\right] \rightarrow 0$.
In Theorem 9.4, since $E \subseteq \mathbb{Z}$ we get: $|\mu|_{1} \leqslant|\mu|_{2}^{2}$.
Since $|\mu|_{1} \leqslant|\mu|_{2}^{2}<\infty$, we get: M_{μ} and V_{μ} are both defined.
Moreover, since $\left|M_{\mu}\right| \leqslant|\mu|_{1} \leqslant|\mu|_{2}^{2}<\infty$, we get: M_{μ} is finite.
In Theorem 9.4, the proof that $v>0$ is relatively simple:
Since E is residue-unconstrained, we get: $\quad \# E \geqslant 2$.
Since $\# S_{\mu}=\# E \geqslant 2$, by Theorem 8.6, we get: $v>0$.
In Theorem 9.4, the proof that $v<\infty$ is relatively simple:

$$
v=V_{\mu}=|\mu|_{2}^{2}-M_{\mu}^{2} \leqslant|\mu|_{2}^{2}<\infty .
$$

Here is an application of Theorem 9.3:
THEOREM 9.5. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let X_{1}, X_{2}, \ldots be an iid sequence of \mathbb{Z}-valued L^{2} random-variables.
Assume: $\quad \forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$.
Let $\alpha \in \mathbb{R}, v \in[0 ; \infty]$. Assume: $\forall n \in \mathbb{N}, \mathrm{E}\left[X_{n}\right]=\alpha$ and $\operatorname{Var}\left[X_{n}\right]=v$.
Then: $0<v<\infty$. Also, $\forall t_{1}, t_{2}, \ldots \in \mathbb{Z}$,
if $\quad\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded,
then, as $n \rightarrow \infty$, $\sqrt{n} \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=t_{n}\right]\right) \rightarrow 1 / \sqrt{2 \pi v}$.
Proof. By Theorem 9.3, we get $0<v<\infty$.
Given $t_{1}, t_{2}, \ldots \in \mathbb{Z}$, assume $\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded,
want: as $n \rightarrow \infty, \sqrt{n} \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=t_{n}\right]\right) \rightarrow 1 / \sqrt{2 \pi v}$.
By Theorem 9.3, it suffices to show:

$$
\text { as } n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\Phi_{n \alpha}^{n v}\left(t_{n}\right)\right) \rightarrow 1 / \sqrt{2 \pi v} .
$$

We have: $\forall n \in \mathbb{N}, \quad \Phi_{n \alpha}^{n v}\left(t_{n}\right)=\frac{\exp \left(-\left(t_{n}-n \alpha\right)^{2} /(2 n v)\right)}{\sqrt{2 \pi n v}}$.
Since $\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded and since $0<v<\infty$, we get:

$$
\text { as } n \rightarrow \infty, \quad-\left(t_{n}-n \alpha\right)^{2} /(2 n v) \quad \rightarrow 0 .
$$

Then: \quad as $n \rightarrow \infty, \quad \exp \left(-\left(t_{n}-n \alpha\right)^{2} /(2 n v)\right) \rightarrow 1$.
Then: \quad as $n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\Phi_{n \alpha}^{n v}\left(t_{n}\right)\right) \quad \rightarrow 1 / \sqrt{2 \pi v}$.
We record a measure-theoretic version of Theorem 9.5:
THEOREM 9.6. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let $\mu \in \mathcal{P}_{E}$. Assume: $S_{\mu}=E$ and $|\mu|_{2}<\infty$.
Let $\alpha:=M_{\mu}, \quad v:=V_{\mu}$. Then: $0<v<\infty$.
Also, $\forall t_{1}, t_{2}, \ldots \in \mathbb{Z}$,
if $\quad\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded,
then, as $n \rightarrow \infty, \sqrt{n} \cdot\left(\mu^{n}\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=t_{n}\right\}\right) \rightarrow 1 / \sqrt{2 \pi v}$.
We also record the $t_{n}=t_{0}+n \alpha$ special case of the past two theorems:
THEOREM 9.7. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let X_{1}, X_{2}, \ldots be an iid sequence of \mathbb{Z}-valued L^{2} random-variables.
Assume: $\quad \forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$.
Let $t_{0}, \alpha \in \mathbb{Z}, v \in[0 ; \infty]$. Assume: $\forall n \in \mathbb{N}, \mathrm{E}\left[X_{n}\right]=\alpha$ and $\operatorname{Var}\left[X_{n}\right]=v$.
Then: $\quad 0<v<\infty, \quad$ and,

$$
\text { as } n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=t_{0}+n \alpha\right]\right) \rightarrow 1 / \sqrt{2 \pi v} .
$$

THEOREM 9.8. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let $\mu \in \mathcal{P}_{E} . \quad$ Assume: $S_{\mu}=E$. Assume: $|\mu|_{2}<\infty$.
Let $\alpha:=M_{\mu}, \quad v:=V_{\mu} . \quad$ Assume: $\alpha \in \mathbb{Z}$. Let $t_{0} \in \mathbb{Z}$.
Then: $\quad 0<v<\infty, \quad$ and, as $n \rightarrow \infty, \sqrt{n} \cdot\left(\mu^{n}\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=t_{0}+n \alpha\right\}\right) \rightarrow 1 / \sqrt{2 \pi v}$.

We also record the $t_{0}=0$ special case of the past two theorems:
THEOREM 9.9. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let X_{1}, X_{2}, \ldots be an iid sequence of \mathbb{Z}-valued L^{2} random-variables.
Assume: $\quad \forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$.
Let $\alpha \in \mathbb{Z}, v \in[0 ; \infty]$. Assume: $\forall n \in \mathbb{N}, \mathrm{E}\left[X_{n}\right]=\alpha$ and $\operatorname{Var}\left[X_{n}\right]=v$.
Then: $\quad 0<v<\infty, \quad$ and,
as $n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=n \alpha\right]\right) \rightarrow 1 / \sqrt{2 \pi v}$.
THEOREM 9.10. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let $\mu \in \mathcal{P}_{E} . \quad$ Assume: $S_{\mu}=E . \quad$ Assume: $|\mu|_{2}<\infty$.
Let $\alpha:=M_{\mu}, \quad v:=V_{\mu} . \quad$ Assume $: \alpha \in \mathbb{Z}$.
Then: $\quad 0<v<\infty$, and, as $n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\mu^{n}\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=n \alpha\right\}\right) \rightarrow 1 / \sqrt{2 \pi v}$.
10. Average events have low information, particular case

Suppose, in secret, I flip a coin 1000 times,
then reveal to you that
the total number of heads was 1000 , and then ask you to guess the last flip.
The answer is that, since all the coin flips were heads, the last flip must have been a head.
Similarly, if I had told you that the total number of heads was 0 , then you would have known that the last flip was a tail.
By contrast, if I had told you that the total number of heads was 500 , it seems intuitively clear that you'd have had very little information about the last flip.
We wish to generalize and formalize that intuition, and then provide rigorous proof of the resulting formal statement.
Our main theorem is Theorem 11.5, in the next section.
In this section, we go carefully through a special case:

Let $X_{1}, X_{2} \ldots$ be \mathbb{Z}-valued iid random-variables s.t., $\forall n \in \mathbb{N}, \quad \operatorname{Pr}\left[X_{n}=-1\right]=1 / 2$,
$\operatorname{Pr}\left[X_{n}=0\right]=1 / 3$, $\operatorname{Pr}\left[X_{n}=3\right]=1 / 6$.
Then, $\quad \forall n \in \mathbb{N}, \quad X_{n}$ is L^{1} and X_{n} is L^{2}.
Also, $\quad \forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=0$ and $\operatorname{Var}\left[X_{n}\right]=2$.
Also, $\quad \forall n \in \mathbb{N}, \quad-1 \leqslant X_{n} \leqslant 3$ a.s.
For all $n \in \mathbb{N}$, let $\quad T_{n}:=X_{1}+\cdots+X_{n}$.
Then: $\quad \forall n \in \mathbb{N}, \quad-n \leqslant T_{n} \leqslant 3 n$ a.s.
Then: $\quad-1000 \leqslant T_{1000} \leqslant 3000$ a.s.
Also, $\quad\left[T_{1000}=-1000\right] \Rightarrow\left[X_{1}=\cdots=X_{1000}=-1\right]$,
and so $\quad \operatorname{Pr}\left[X_{1000}=-1 \mid T_{1000}=-1000\right]=1$.
Similarly, $\quad \operatorname{Pr}\left[X_{1000}=3 \mid T_{1000}=3000\right]=1$.
By contrast, the event $T_{1000}=0$
would seem to give very little information about X_{1000}.
It therefore seems reasonable to expect that

$$
\begin{array}{lrl}
\operatorname{Pr}\left[X_{1000}=-1 \mid T_{1000}=0\right] \approx 1 / 2 & \text { and } \\
\operatorname{Pr}\left[X_{1000}=0 \mid T_{1000}=0\right] \approx 1 / 3 & \text { and } \\
\operatorname{Pr}\left[X_{1000}=3 \mid T_{1000}=0\right] \approx 1 / 6 . &
\end{array}
$$

To make this precise, we will work "in the thermodynamic limit",
which means: we replace 1000 by a variable $n \in \mathbb{N}$, and let $n \rightarrow \infty$.
That is, more precisely, we expect that, as $n \rightarrow \infty$,

$$
\begin{array}{lll}
\operatorname{Pr}\left[X_{n}=-1 \mid T_{n}=0\right] \rightarrow 1 / 2 & \text { and } \\
\operatorname{Pr}\left[X_{n}=0 \mid T_{n}=0\right] \rightarrow 1 / 3 & \text { and } \\
\operatorname{Pr}\left[X_{n}=3 \mid T_{n}=0\right] \rightarrow 1 / 6 . &
\end{array}
$$

We will focus on proving the third of these limits;
proofs of the other two are similar.
By definition of conditional probability,
we wish to prove: \quad As $n \rightarrow \infty, \frac{\operatorname{Pr}\left[\left(X_{n}=3\right) \&\left(T_{n}=0\right)\right]}{\operatorname{Pr}\left[T_{n}=0\right]} \rightarrow 1 / 6$.
Claim: Let $\quad n \in[2 . . \infty)$.
Then: $\operatorname{Pr}\left[\left(X_{n}=3\right) \&\left(T_{n}=0\right)\right]=(1 / 6) \cdot\left(\operatorname{Pr}\left[T_{n-1}=-3\right]\right)$.
Proof of Claim: We have: $\quad T_{n}=X_{1}+\cdots+X_{n-1}+X_{n}$.
Since $\operatorname{Pr}\left[\left(X_{n}=3\right) \&\left(T_{n}=0\right)\right]$

$$
=\operatorname{Pr}\left[\left(X_{n}=3\right) \&\left(X_{1}+\cdots+X_{n-1}+X_{n}=0\right)\right]
$$

$$
=\operatorname{Pr}\left[\left(X_{n}=3\right) \&\left(X_{1}+\cdots+X_{n-1}+3=0\right)\right]
$$

$$
=\operatorname{Pr}\left[\left(X_{n}=3\right) \&\left(X_{1}+\cdots+X_{n-1}=-3\right)\right]
$$

it follows, from independence of X_{1}, \ldots, X_{n}, that

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(X_{n}=3\right) \&\left(T_{n}=0\right)\right] \\
& \quad=\left(\operatorname{Pr}\left[X_{n}=3\right]\right) \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n-1}=-3\right]\right) .
\end{aligned}
$$

So, since

$$
\operatorname{Pr}\left[X_{n}=3\right]=1 / 6 \text { and } X_{1}+\cdots+X_{n-1}=T_{n-1}
$$

we get: $\operatorname{Pr}\left[\left(X_{n}=3\right) \&\left(T_{n}=0\right)\right]=(1 / 6) \cdot\left(\operatorname{Pr}\left[T_{n-1}=-3\right]\right)$.
End of proof of Claim.
By the claim, we wish to prove:

$$
\text { As } n \rightarrow \infty, \quad \frac{(1 / 6) \cdot\left(\operatorname{Pr}\left[T_{n-1}=-3\right]\right)}{\operatorname{Pr}\left[T_{n}=0\right]} \rightarrow 1 / 6
$$

We wish to prove: As $n \rightarrow \infty, \quad \frac{\operatorname{Pr}\left[T_{n-1}=-3\right]}{\operatorname{Pr}\left[T_{n}=0\right]} \rightarrow 1$.

That is, we wish to prove:

As $n \rightarrow \infty, \quad \operatorname{Pr}\left[T_{n-1}=-3\right] \quad$ is asymptotic to $\quad \operatorname{Pr}\left[T_{n}=0\right]$.
So the question becomes:
How do we get a handle on the asymptotics, as $n \rightarrow \infty$, of both $\operatorname{Pr}\left[T_{n-1}=-3\right]$ and $\operatorname{Pr}\left[T_{n}=0\right]$?
The Discrete Local Limit Theorem turns out to be just what we need.

Recall: $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=0$ and $\operatorname{Var}\left[X_{n}\right]=2$.
Let $\alpha:=0$ and $v:=2$. Then: $(\forall n \in \mathbb{N}, n \alpha=0)$ and $(2 \pi v=4 \pi)$.
Also, $\quad \forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=\alpha$ and $\operatorname{Var}\left[X_{n}\right]=v$.
Let $E:=\{-1,0,3\}$. Then E is residue-unconstrained.
Also, we have: $\forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$.
By Theorem 9.9, as $n \rightarrow \infty$,

$$
\sqrt{n} \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=n \alpha\right]\right) \rightarrow 1 / \sqrt{2 \pi v}
$$

Then: \quad as $n \rightarrow \infty, \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=0\right]\right) \rightarrow 1 / \sqrt{4 \pi}$,
so, \quad as $n \rightarrow \infty, \quad \operatorname{Pr}\left[T_{n}=0\right]$ is asymptotic to $1 / \sqrt{4 \pi n}$.
Want: as $n \rightarrow \infty, \quad \operatorname{Pr}\left[T_{n-1}=-3\right]$ is asymptotic to $1 / \sqrt{4 \pi n}$.
Let $t_{0}:=-3 . \quad$ Then, $\quad \forall n \in \mathbb{N}, \quad t_{0}+n \alpha=-3$.
By Theorem 9.7, as $n \rightarrow \infty$,

$$
\sqrt{n} \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=t_{0}+n \alpha\right]\right) \rightarrow 1 / \sqrt{2 \pi v} .
$$

Recall: $\quad \forall n \in \mathbb{N}, \quad T_{n}=X_{1}+\cdots+X_{n}$.
Then: as $n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=-3\right]\right) \rightarrow 1 / \sqrt{4 \pi}$.
Then, as $n \rightarrow \infty$, $\sqrt{n-1} \cdot\left(\operatorname{Pr}\left[T_{n-1}=-3\right]\right) \rightarrow 1 / \sqrt{4 \pi}$.
Then, as $n \rightarrow \infty, \quad \operatorname{Pr}\left[T_{n-1}=-3\right]$ is asymptotic to $1 / \sqrt{4 \pi(n-1)}$, which is asymptotic to $1 / \sqrt{4 \pi n}$.
11. AvERAGE EVENTS HAVE LOW INFORMATION, GENERAL RESULT

We now seek to generalize our work in §10;
in the example at the end of this section, we show that
Theorem 11.5 reproduces the result of $\S 10$.
THEOREM 11.1. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let X_{1}, X_{2}, \ldots be an iid sequence of \mathbb{Z}-valued L^{2} random-variables.
Assume: $\forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$. Let $\alpha, P \in \mathbb{R}$.
Assume: $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=\alpha$ and $\operatorname{Pr}\left[X_{n}=\varepsilon_{0}\right]=P$. Let $\varepsilon_{0} \in E$.
Let $t_{1}, t_{2}, \ldots \in \mathbb{Z}$. Assume: $\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded.
Then: as $n \rightarrow \infty$, $\operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid X_{1}+\cdots+X_{n}=t_{n}\right] \rightarrow P$.
I don't know whether " L^{2} " can be replaced by " L^{1} ".
Part of the content of Theorem 11.1 is:
\forall sufficiently large $n \in \mathbb{N}, \quad \operatorname{Pr}\left[X_{1}+\cdots+X_{n}=t_{n}\right]>0$.
Proof. Since X_{1}, X_{2}, \ldots are all \mathbb{Z}-valued and L^{2}, we get:

$$
X_{1}, X_{2}, \ldots \text { are } L^{1}
$$

Since X_{1}, X_{2}, \ldots is an identically distributed sequence,

$$
\text { choose } v \in[0 ; \infty] \text { s.t., } \forall n \in \mathbb{N}, \operatorname{Var}\left[X_{n}\right]=v
$$

By Theorem 9.5, we have: $0<v<\infty$ and

$$
\text { as } n \rightarrow \infty, \sqrt{n} \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=t_{n}\right]\right) \rightarrow 1 / \sqrt{2 \pi v} .
$$

For all $n \in \mathbb{N}$, let $T_{n}:=X_{1}+\cdots+X_{n}$.
Then: \quad as $n \rightarrow \infty, \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=t_{n}\right]\right) \rightarrow 1 / \sqrt{2 \pi v}$.
Want: \quad as $n \rightarrow \infty, \operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid T_{n}=t_{n}\right] \rightarrow P$.
Let $D_{1}:=\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$. By hypothesis, D_{1} is bounded.
Let $D_{2}:=\left\{t_{n}-n \alpha \mid n \in[2 . . \infty)\right\}$. Then $D_{2} \subseteq D_{1}$.
Let $D_{3}:=\left\{t_{n+1}-(n+1) \cdot \alpha \mid n \in \mathbb{N}\right\}$. Then $D_{3}=D_{2}$.
For all $n \in \mathbb{N}, \quad$ let $\tilde{t}_{n}:=t_{n+1}-\varepsilon_{0}$.
Let $D_{4}:=\left\{\tilde{t}_{n}-n \alpha \mid n \in \mathbb{N}\right\}$.
Since

$$
\begin{aligned}
D_{4}-\alpha+\varepsilon & =\left\{\tilde{t}_{n}-n \alpha-\alpha+\varepsilon \mid n \in \mathbb{N}\right\} \\
& =\left\{t_{n+1}-\varepsilon_{0}-(n+1) \cdot \alpha+\varepsilon \mid n \in \mathbb{N}\right\} \\
& =\left\{t_{n+1}-(n+1) \cdot \alpha \quad \mid n \in \mathbb{N}\right\} \\
& =D_{3}=D_{2} \subseteq D_{1},
\end{aligned}
$$

and since
D_{1} is bounded,
we get $\quad D_{4}-\alpha+\varepsilon$ is bounded.
Then: $\quad D_{4}-\alpha+\varepsilon+(\alpha-\varepsilon)$ is bounded.
Then: $\quad D_{4}$ is bounded.

Then, by Theorem 9.5, we have:

$$
\text { as } n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=\quad \tilde{t}_{n}\right]\right) \rightarrow 1 / \sqrt{2 \pi v} .
$$

Then, as $n \rightarrow \infty, \quad \sqrt{n-1} \cdot\left(\operatorname{Pr}\left[T_{n-1}=\tilde{t}_{n-1}\right]\right) \rightarrow 1 / \sqrt{2 \pi v}$.
We have: $\forall n \in[2 . . \infty)$, $\quad \tilde{t}_{n-1}=t_{n}-\varepsilon_{0}$.
So, as $n \rightarrow \infty, \quad \sqrt{n-1} \cdot\left(\operatorname{Pr}\left[T_{n-1}=t_{n}-\varepsilon_{0}\right]\right) \rightarrow 1 / \sqrt{2 \pi v}$.
Recall: as $n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=t_{n}\right]\right) \quad \rightarrow 1 / \sqrt{2 \pi v}$.
Dividing the last two limits, we get:

$$
\text { as } n \rightarrow \infty, \quad \frac{\sqrt{n-1} \cdot\left(\operatorname{Pr}\left[T_{n-1}=t_{n}-\varepsilon_{0}\right]\right)}{\sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=t_{n}\right]\right)} \rightarrow 1 .
$$

Also, as $n \rightarrow \infty, \frac{\sqrt{n}}{\sqrt{n-1}} \quad \rightarrow 1$.
Multiplying the last two limits together, we get:

$$
\text { as } n \rightarrow \infty, \quad \frac{\operatorname{Pr}\left[T_{n-1}=t_{n}-\varepsilon_{0}\right]}{\operatorname{Pr}\left[T_{n}=t_{n}\right]} \rightarrow 1 .
$$

Since, $\forall n \in[2 . . \infty)$,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid T_{n}=t_{n}\right] & =\frac{\operatorname{Pr}\left[\left(X_{n}=\varepsilon_{0}\right) \&\left(T_{n}=t_{n}\right)\right]}{\operatorname{Pr}\left[T_{n}=t_{n}\right]} \\
& =\frac{\operatorname{Pr}\left[\left(X_{n}=\varepsilon_{0}\right) \&\left(T_{n-1}+X_{n}=t_{n}\right)\right]}{\operatorname{Pr}\left[T_{n}=t_{n}\right]} \\
& =\frac{\operatorname{Pr}\left[\left(X_{n}=\varepsilon_{0}\right) \&\left(T_{n-1}+\varepsilon_{0}=t_{n}\right)\right]}{\operatorname{Pr}\left[T_{n}=t_{n}\right]} \\
& =\frac{\operatorname{Pr}\left[\left(X_{n}=\varepsilon_{0}\right) \&\left(T_{n-1}=t_{n}-\varepsilon_{0}\right)\right]}{\operatorname{Pr}\left[T_{n}=t_{n}\right]} \\
& =\frac{\left(\operatorname{Pr}\left[X_{n}=\varepsilon_{0}\right]\right) \cdot\left(\operatorname{Pr}\left[T_{n-1}=t_{n}-\varepsilon_{0}\right]\right)}{\operatorname{Pr}\left[T_{n}=t_{n}\right]} \\
& =P \cdot \frac{\operatorname{Pr}\left[T_{n-1}=t_{n}-\varepsilon_{0}\right]}{\operatorname{Pr}\left[T_{n}=t_{n}\right]}, \\
\text { and since, as } n \rightarrow \infty, & \frac{\operatorname{Pr}\left[T_{n-1}=t_{n}-\varepsilon_{0}\right]}{\operatorname{Pr}\left[T_{n}=t_{n}\right]} \rightarrow 1,
\end{aligned}
$$

we get: \quad as $n \rightarrow \infty$,
$\operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid T_{n}=t_{n}\right] \rightarrow P$.
Recall (§8): \forall countable set Θ,
$\mathcal{F} \mathcal{M}_{\Theta}^{\times}$is the set of nonzero finite measures on Θ
and $\quad \mathcal{P}_{\Theta}$ is the set of probability measures on Θ.
Recall (§8): \forall nonempty countable set $\Theta, \quad \forall \mu \in \mathcal{F} \mathcal{M}_{\Theta}^{\times}$,
$\mathcal{N}(\mu)$ is the normalization of μ.

Here is a measure-theoretic version of the preceding theorem:

THEOREM 11.2. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let $\mu \in \mathcal{P}_{E} . \quad$ Assume: $S_{\mu}=E$. Assume: $|\mu|_{2}<\infty$.
Let $\alpha:=M_{\mu}$.
Let $\varepsilon_{0} \in E, \quad P:=\mu\left\{\varepsilon_{0}\right\}$.
Let $t_{1}, t_{2}, \ldots \in \mathbb{Z}$. Assume: $\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded.
For all $n \in \mathbb{N}$, let $\Omega_{n}:=\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=t_{n}\right\}$.
Then: as $n \rightarrow \infty, \quad\left(\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right)\right)\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow P$.
I don't know whether " $|\mu|_{2}<\infty$ " can be replaced by " $|\mu|_{1}<\infty$ ".

Part of the content of Theorem 11.2 is:
\forall sufficiently large $n \in \mathbb{N}, \quad \mu^{n}\left(\Omega_{n}\right)>0$, since, otherwise, $\quad \mu^{n} \mid \Omega_{n} \quad$ would be the zero measure on Ω_{n}, and so
$\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right) \quad$ would not be defined.

We record the $t_{n}=t_{0}+n \alpha$ special case of the past two theorems:
THEOREM 11.3. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let X_{1}, X_{2}, \ldots be an iid sequence of \mathbb{Z}-valued L^{2} random-variables.
Assume: $\forall n \in \mathbb{N}$, $\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$. Let $t_{0}, \alpha \in \mathbb{Z}, P \in \mathbb{R}$.
Let $\varepsilon_{0} \in E$. Assume: $\forall n \in \mathbb{N}, \mathrm{E}\left[X_{n}\right]=\alpha$ and $\operatorname{Pr}\left[X_{n}=\varepsilon_{0}\right]=P$.
Then: as $n \rightarrow \infty$, $\operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid X_{1}+\cdots+X_{n}=t_{0}+n \alpha\right] \rightarrow P$.
THEOREM 11.4. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let $\mu \in \mathcal{P}_{E} . \quad$ Assume: $S_{\mu}=E$. Assume: $|\mu|_{2}<\infty$.
Let $\alpha:=M_{\mu}$. Assume: $t_{0}, \alpha \in \mathbb{Z}$. Let $\varepsilon_{0} \in E, \quad P:=\mu\left\{\varepsilon_{0}\right\}$.
For all $n \in \mathbb{N}$, let $\Omega_{n}:=\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=t_{0}+n \alpha\right\}$.
Then: as $n \rightarrow \infty,\left(\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right)\right)\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow P$.
We record the $t_{0}=0$ special case of the past two theorems:
THEOREM 11.5. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let X_{1}, X_{2}, \ldots be an iid sequence of \mathbb{Z}-valued L^{2} random-variables.
Assume: $\forall n \in \mathbb{N},\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$. Let $\alpha \in \mathbb{Z}, P \in \mathbb{R}$.
Let $\varepsilon_{0} \in E$. Assume: $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=\alpha$ and $\operatorname{Pr}\left[X_{n}=\varepsilon_{0}\right]=P$.
Then: as $n \rightarrow \infty$, $\operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid X_{1}+\cdots+X_{n}=n \alpha\right] \rightarrow P$.
THEOREM 11.6. Let $E \subseteq \mathbb{Z}$ be residue-unconstrained.
Let $\mu \in \mathcal{P}_{E} . \quad$ Assume: $S_{\mu}=E$. Assume: $|\mu|_{2}<\infty$.
Let $\alpha:=M_{\mu} . \quad$ Assume: $\alpha \in \mathbb{Z}$. Let $\varepsilon_{0} \in E, \quad P:=\mu\left\{\varepsilon_{0}\right\}$.
For all $n \in \mathbb{N}$, let $\Omega_{n}:=\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=n \alpha\right\}$.
Then: as $n \rightarrow \infty, \quad\left(\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right)\right)\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow P$.

Example: Let $E:=\{-1,0,3\}$.
Then: $E \subseteq \mathbb{Z}$ and E is residue-unconstrained.
Let $X_{1}, X_{2} \ldots$ be \mathbb{Z}-valued iid random-variables s.t.,

$$
\forall n \in \mathbb{N}, \quad \begin{array}{ll}
\operatorname{Pr}\left[X_{n}=-1\right]=1 / 2 \\
& \operatorname{Pr}\left[X_{n}=0\right]=1 / 3 \\
& \operatorname{Pr}\left[X_{n}=3\right]=1 / 6
\end{array}
$$

Then: $\quad \forall n \in \mathbb{N}, \quad E=\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}$.
Let $\varepsilon_{0}=3, \quad P:=1 / 6$.
Then: $\quad \forall n \in \mathbb{N}, \quad \operatorname{Pr}\left[X_{n}=\varepsilon_{0}\right]=P$.
We have: $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=0 . \quad$ Let $\alpha:=0$.
Then, $\quad \forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=\alpha$.
Then, by Theorem 11.5, we have:

$$
\text { as } n \rightarrow \infty, \operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid X_{1}+\cdots+X_{n}=n \alpha\right] \rightarrow P .
$$

Then: as $n \rightarrow \infty, \operatorname{Pr}\left[X_{n}=3 \mid X_{1}+\cdots+X_{n}=0\right] \rightarrow 1 / 6$.
For all $n \in \mathbb{N}$, let $T_{n}:=X_{1}+\cdots+X_{n}$.
Then: as $n \rightarrow \infty, \operatorname{Pr}\left[X_{n}=3 \mid \quad T_{n}=0\right] \rightarrow 1 / 6$.
Thus Theorem 11.5 reproduces the result of $\S 10$.

12. Solving the main problem

We finally have all we need to solve the main problem (end of $\S 3$).

$$
\text { Let } \quad(p, q, r):=\frac{\left(1,9^{-1 / 10}, 9^{-1}\right)}{1+9^{-1 / 10}+9^{-1}} \text {. }
$$

We compute $(p, q, r) \approx(0.5225,0.4194,0.0581)$,
all accurate to four decimal places.
Again, let's say I am one of the professors applying to the GFA.
We will show: Under the GFA's first system (§3),
my probability of getting $\$ 0$ is p, approximately and my probability of getting $\$ 1$ is q, approximately and my probability of getting $\$ 10$ is r, approximately.

Recall: $\Omega=\left\{\omega:[1 . . N] \rightarrow\{0,1,10\} \mid \sum_{\ell=1}^{N}[\omega(\ell)]=N\right\}$.
Recall (§5): the notations $i_{\omega}, j_{\omega}, k_{\omega}$.
Let $S:=\sum_{\omega \in \Omega} p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}}$.
By the work in $\S 7, \quad p+q+r=1 \quad$ and $\quad q+10 r=1 \quad$ and $\forall \omega \in \Omega, \quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=1 /(\# \Omega)$.
Let X_{1}, X_{2}, \ldots be \mathbb{Z}-valued iid random-variables s.t., $\forall n \in \mathbb{N}$, $\operatorname{Pr}\left[X_{n}=0\right]=p$,

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{n}=1\right]=q, \\
& \operatorname{Pr}\left[X_{n}=10\right]=r .
\end{aligned}
$$

Then X_{1}, X_{2}, \ldots is a sequence of L^{2} random-variables.
Also, $\quad \forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=q+10 r$.
So, since $\quad q+10 r=1$, we get:

$$
\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=1
$$

We model the GFA's second system (§5) by: $\forall \ell \in[1 . . N]$,
Professor\# ℓ receives X_{ℓ} dollars.
For all $n \in \mathbb{N}$, let $T_{n}:=X_{1}+\cdots+X_{n}$.
We model the GFA's third system (§5) by: $\forall \ell \in[1 . . N]$,
Professor $\# \ell$ receives X_{ℓ} dollars, conditioned on $T_{N}=N$.
Since $\quad \forall \omega \in \Omega, \quad p^{i_{\omega}} q^{j_{\omega}} r^{k_{\omega}} / S=1 /(\# \Omega)$,
it follows that: the third system is equivalent to the first.
For definiteness, let's assume that I am Professor $\# N$.
Then, assuming N is large, we wish to show:

$$
\begin{array}{ll}
\operatorname{Pr}\left[X_{N}=0 \mid T_{N}=N\right] \approx p & \text { and } \\
\operatorname{Pr}\left[X_{N}=1 \mid T_{N}=N\right] \approx q & \text { and } \\
\operatorname{Pr}\left[X_{N}=10 \mid T_{N}=N\right] \approx r . &
\end{array}
$$

To be more precise, we wish to show: as $n \rightarrow \infty$,

$$
\begin{array}{lll}
\operatorname{Pr}\left[X_{n}=0 \mid T_{n}=n\right] \rightarrow p & \text { and } \\
\operatorname{Pr}\left[X_{n}=1 \mid T_{n}=n\right] \rightarrow q & \text { and } \\
\operatorname{Pr}\left[X_{n}=10 \mid T_{n}=n\right] \rightarrow r . &
\end{array}
$$

Let $E:=\{0,1,10\}$. Then: E is residue-unconstrained.
Given $\varepsilon_{0} \in E$, let $P:= \begin{cases}p, & \text { if } \varepsilon_{0}=0 \\ q, & \text { if } \varepsilon_{0}=1 \\ r, & \text { if } \varepsilon_{0}=10,\end{cases}$
want: \quad as $n \rightarrow \infty, \quad \operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid T_{n}=n\right] \rightarrow P$.
By definition of X_{1}, X_{2}, \ldots, we get: $\forall n \in \mathbb{N}, \operatorname{Pr}\left[X_{n}=\varepsilon_{0}\right]=P$.
Let $\alpha:=1$. Then: $\alpha \in \mathbb{Z}$ and $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=\alpha$.
Also, $\quad \forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$.
Then, by Theorem 11.5, we have:

$$
\text { as } n \rightarrow \infty, \quad \operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid X_{1}+\cdots+X_{n}=n \alpha\right] \rightarrow P .
$$

Then: \quad as $n \rightarrow \infty, \quad \operatorname{Pr}\left[X_{n}=\varepsilon_{0} \mid \quad T_{n}=n\right] \rightarrow P$.

13. Probability of two professors getting zero

Under the GFA's first system, since N is large, one would expect:
the award amounts of two different professors
are almost independent.
Then, for example, one would expect:
the probability that two professors both receive zero dollars
should be very close to the square of
the probability that one professor receives zero dollars.
We will formalize this statement and prove it, below.
For definiteness, we will assume that
the two professors are Professor $\#(N-1)$ and Professor $\# N$.
Let $\quad(p, q, r):=\frac{\left(1,9^{-1 / 10}, 9^{-1}\right)}{1+9^{-1 / 10}+9^{-1}} . \quad$ Then $(\S 7): \quad p+q+r=1$.
Let X_{1}, X_{2}, \ldots be \mathbb{Z}-valued iid random-variables s.t., $\forall n \in \mathbb{N}$,
$\operatorname{Pr}\left[X_{n}=0\right]=p$,
$\operatorname{Pr}\left[X_{n}=1\right]=q$,
$\operatorname{Pr}\left[X_{n}=10\right]=r$.
Then X_{1}, X_{2}, \ldots is a sequence of L^{2} random-variables.
For all $n \in \mathbb{N}$, let $T_{n}:=X_{1}+\cdots+X_{n}$.
Assuming N is large, our goal is to prove:

$$
\operatorname{Pr}\left[X_{N-1}=0=X_{N} \mid T_{N}=N\right] \approx p^{2} .
$$

To be more precise, we will prove:

$$
\text { as } n \rightarrow \infty, \quad \operatorname{Pr}\left[X_{n-1}=0=X_{n} \mid T_{n}=n\right] \rightarrow p^{2} .
$$

For all $n \in \mathbb{N}, \quad$ define $\quad \psi_{n}: \mathbb{Z} \rightarrow \mathbb{R} \quad$ by:

$$
\forall t \in \mathbb{Z}, \quad \psi_{n}(t)=\operatorname{Pr}\left[T_{n}=t\right] .
$$

For all $n \in \mathbb{N}, \quad$ let $\quad a_{n}:=\psi_{n}(n+2), \quad z_{n}:=\psi_{n}(n)$.
Since, $\forall n \in \mathbb{N}$, we have $\psi_{n}(n)=\operatorname{Pr}\left[T_{n}=n\right]=\operatorname{Pr}\left[X_{1}+\cdots+X_{n}=n\right]$

$$
\geqslant \operatorname{Pr}\left[X_{1}=\cdots=X_{n}=1\right]=q^{n}>0,
$$

we conclude: $\quad \forall n \in \mathbb{N}, \quad z_{n}>0$.
Claim: Let $n \in[3 . . \infty)$. Then $\operatorname{Pr}\left[X_{n-1}=0=X_{n} \mid T_{n}=n\right]=p^{2} \cdot \frac{a_{n-2}}{z_{n}}$.
Proof of Claim: We have $T_{n}=X_{1}+\cdots+X_{n-2}+X_{n-1}+X_{n}$.
Since $\operatorname{Pr}\left[\left(X_{n-1}=0=X_{n}\right) \&\left(T_{n}=n\right)\right]$

$$
=\operatorname{Pr}\left[\left(X_{n-1}=0=X_{n}\right) \&\left(X_{1}+\cdots+X_{n-2}+X_{n-1}+X_{n}=n\right)\right]
$$

$$
=\operatorname{Pr}\left[\left(X_{n-1}=0=X_{n}\right) \&\left(X_{1}+\cdots+X_{n-2}+0+0=n\right)\right]
$$

$$
=\operatorname{Pr}\left[\left(X_{n-1}=0=X_{n}\right) \&\left(X_{1}+\cdots+X_{n-2} \quad=n\right)\right]
$$

it follows, from independence of X_{1}, \ldots, X_{n}, that

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(X_{n-1}=0=X_{n}\right) \&\left(T_{n}=n\right)\right] \\
& \quad=\left(\operatorname{Pr}\left[X_{n-1}=0\right]\right) \cdot\left(\operatorname{Pr}\left[X_{n}=0\right]\right) \cdot\left(\operatorname{Pr}\left[X_{1}+\cdots+X_{n-2}=n\right]\right) .
\end{aligned}
$$

So, since $\operatorname{Pr}\left[X_{n-1}=0\right]=p=\operatorname{Pr}\left[X_{n}=0\right]$

$$
\text { and since } \quad X_{1}+\cdots+X_{n-2}=T_{n-2}
$$

we get: $\operatorname{Pr}\left[\left(X_{n-1}=0=X_{n}\right) \&\left(T_{n}=n\right)\right]=p^{2} \cdot\left(\operatorname{Pr}\left[T_{n-2}=n\right]\right)$.
Then $\operatorname{Pr}\left[X_{n-1}=0=X_{n} \mid T_{n}=n\right]=\frac{\operatorname{Pr}\left[\left(X_{n-1}=0=X_{n}\right) \&\left(T_{n}=n\right)\right]}{\operatorname{Pr}\left[T_{n}=n\right]}$

$$
=\frac{p^{2} \cdot\left(\operatorname{Pr}\left[T_{n-2}=n\right]\right)}{\operatorname{Pr}\left[T_{n}=n\right]}=p^{2} \cdot \frac{\psi_{n-2}(n)}{\psi_{n}(n)}=p^{2} \cdot \frac{a_{n-2}}{z_{n}} .
$$

End of proof of Claim.
Because of the Claim, we want to show: as $n \rightarrow \infty, p^{2} \cdot \frac{a_{n-2}}{z_{n}} \rightarrow p^{2}$.
Want: as $n \rightarrow \infty, \quad \frac{a_{n-2}}{z_{n}} \rightarrow 1$.
We compute: $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=q+10 r$.
Recall (§7): $q+10 r=1$. Then: $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=1$.
We compute: $\quad \forall n \in \mathbb{N}, \operatorname{Var}\left[X_{n}\right]=q+100 r-1$.
Let $v:=q+100 r-1 . \quad$ Then: $\quad \forall n \in \mathbb{N}, \operatorname{Var}\left[X_{n}\right]=v$.
Since $v=(q+10 r-1)+90 r=0+90 r=90 r$, and since $0<r<\infty$, we get: $0<v<\infty$. Let $\tau:=1 / \sqrt{2 \pi v}$. Then: $\tau>0$.
Let $\alpha:=1$. Then, $\alpha \in \mathbb{Z}$ and $\forall n \in \mathbb{N}, \mathrm{E}\left[X_{n}\right]=\alpha$.
Let $E:=\{0,1,10\}$. Then, $\quad \forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$. Also, $\quad E$ is residue-unconstrained.
By Theorem 9.9, as $n \rightarrow \infty, \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=n \alpha\right]\right) \rightarrow 1 / \sqrt{2 \pi v}$.
Then:
as $n \rightarrow \infty, \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=n\right]\right) \rightarrow \tau$.
Then: \quad as $n \rightarrow \infty, \sqrt{n} \cdot\left(\psi_{n}(n)\right) \rightarrow \tau$.
Then: \quad as $n \rightarrow \infty, \sqrt{n} \cdot z_{n} \rightarrow \tau$.
Let $t_{0}:=2$. Then $t_{0} \in \mathbb{Z}$ and $\forall n \in \mathbb{N}, \quad t_{0}+n \alpha=n+2$.
By Theorem 9.7, as $n \rightarrow \infty, \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=t_{0}+n \alpha\right]\right) \rightarrow 1 / \sqrt{2 \pi v}$.
Then:
as $n \rightarrow \infty, \sqrt{n} \cdot\left(\operatorname{Pr}\left[T_{n}=n+2\right]\right) \rightarrow \tau$.
Then: \quad as $n \rightarrow \infty, \sqrt{n} \cdot\left(\psi_{n}(n+2)\right) \rightarrow \tau$.
Then: \quad as $n \rightarrow \infty, \sqrt{n} \cdot a_{n} \rightarrow \tau$.
Then: \quad as $n \rightarrow \infty, \sqrt{n-2} \cdot a_{n-2} \rightarrow \tau$.
Recall: \quad as $n \rightarrow \infty, \quad \sqrt{n} \cdot z_{n} \rightarrow \tau$.
Dividing the last two limits, we get:

Also,

$$
\text { as } n \rightarrow \infty, \quad \frac{\sqrt{n-2} \cdot a_{n-2}}{\sqrt{n} \cdot z_{n}} \rightarrow 1
$$

$$
\text { as } n \rightarrow \infty, \frac{\sqrt{n}}{\sqrt{n-2}} \quad \rightarrow 1
$$

Multiplying these last two limits, we get:

$$
\text { as } n \rightarrow \infty, \quad \frac{a_{n-2}}{z_{n}} \rightarrow 1
$$

14. Fraction of professors getting a zero award

Let $\quad(p, q, r):=\frac{\left(1,9^{-1 / 10}, 9^{-1}\right)}{1+9^{-1 / 10}+9^{-1}}$.
We compute $(p, q, r) \approx(0.5225,0.4194,0.0581)$,
all accurate to four decimal places.
Let X_{1}, X_{2}, \ldots be \mathbb{Z}-valued iid random-variables s.t., $\forall n \in \mathbb{N}$,

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{n}=0\right]=p, \\
& \operatorname{Pr}\left[X_{n}=1\right]=q, \\
& \operatorname{Pr}\left[X_{n}=10\right]=r .
\end{aligned}
$$

For all $n \in \mathbb{N}$, let $T_{n}:=X_{1}+\cdots+X_{n}$.
For all $n \in \mathbb{N}$, let I_{n} be the indicator variable of the event: $X_{n}=0$.
For all $n \in \mathbb{N}$, let $J_{n}:=\left(I_{1}+\cdots+I_{n}\right) / n$.
Using the GFA's first (or third) awards system, the random-variable
$J_{N} \quad$ conditioned on $\quad T_{N}=N$
represents the fraction of professors receiving a $\$ 0$ award.
In this section, we will prove the following:
Claim: $\forall \varepsilon>0$, as $n \rightarrow \infty, \operatorname{Pr}\left[p-\varepsilon<J_{n}<p+\varepsilon \mid T_{n}=n\right] \rightarrow 1$.
Assume, for a moment, that this Claim is true.
Then: \quad as $n \rightarrow \infty$, $\operatorname{Pr}\left[p-0.02<J_{n}<p+0.02 \mid T_{n}=n\right] \rightarrow 1$.
From this, it follows that, if N is sufficiently large, then

$$
\begin{array}{lll}
& \operatorname{Pr}\left[p-0.02<J_{N}<p+0.02\right. & \left.\mid T_{N}=N\right]>0.99 \\
\text { so } & \operatorname{Pr}\left[p-0.02<J_{N}\right. & \left.\mid T_{N}=N\right]>0.99 \\
\text { so } & \operatorname{Pr}\left[J_{N}>p-0.02\right. & \left.\mid T_{N}=N\right]>0.99
\end{array}
$$

Since $\quad p \approx 0.5225$, accurate to four decimal places, we get

$$
\begin{array}{lrlr}
& p-0.02 & > & 0.5, \\
\text { so } & {\left[J_{N}>p-0.02\right]} & \Rightarrow & {\left[J_{n}>0.5\right],} \\
\text { so } & \operatorname{Pr}\left[J_{N}>p-0.02\right. & & \left.\mid T_{N}=N\right] \\
\leqslant \operatorname{Pr}\left[J_{N}>0.5\right. & & \left.\mid T_{N}=N\right] .
\end{array}
$$

Therefore, for N is sufficiently large, since

$$
\left.\begin{array}{rl}
& \operatorname{Pr}\left[J_{N}>0.5\right.
\end{array}\left|\begin{array}{l}
\left.T_{N}=N\right] \\
\geqslant \\
\operatorname{Pr}\left[J_{N}>p-0.02\right.
\end{array}\right| T_{N}=N\right]>0.99,
$$

we conclude: under the GFA's first system, with probability $>99 \%$, over 50% of the professors receive $\$ 0$.

Proof of Claim:
Given $\varepsilon>0$, want: as $n \rightarrow \infty, \operatorname{Pr}\left[p-\varepsilon<J_{n}<p+\varepsilon \mid T_{n}=n\right] \rightarrow 1$.
Let $E:=\{0,1,10\}$. Then E is residue-unconstrained.
Also, $\quad \forall n \in \mathbb{N}, \quad\left\{t \in \mathbb{Z} \mid \operatorname{Pr}\left[X_{n}=t\right]>0\right\}=E$.
Let $\alpha:=1$. Then: $\alpha \in \mathbb{Z}$ and $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[X_{n}\right]=\alpha$.
For all $\quad n \in \mathbb{N}$, let $\kappa_{n}:=\mathrm{E}\left[I_{n} \mid T_{n}=n\right]$.
Then: $\quad \forall n \in \mathbb{N}, \quad \kappa_{n}=\operatorname{Pr}\left[X_{n}=0 \mid T_{n}=n\right]$.
By Theorem 11.5, we get:

$$
\text { as } n \rightarrow \infty, \operatorname{Pr}\left[X_{n}=0 \mid X_{1}+\cdots+X_{n}=n \alpha\right] \rightarrow p
$$

That is, \quad as $n \rightarrow \infty, \operatorname{Pr}\left[X_{n}=0 \mid \quad T_{n}=n\right] \rightarrow p$.
Then: as $n \rightarrow \infty, \quad \kappa_{n} \quad \rightarrow p$.
So, $\exists n_{0} \in \mathbb{N}$ s.t., $\forall n \in\left[n_{0} . . \infty\right)$,

$$
\text { we have } \quad p-(\varepsilon / 2)<\kappa_{n}<p+(\varepsilon / 2)
$$

and so both $p-\varepsilon<\kappa_{n}-(\varepsilon / 2)$ and $\kappa_{n}+(\varepsilon / 2)<p+\varepsilon$, and so $\left[\kappa_{n}-(\varepsilon / 2)<J_{n}<\kappa_{n}+(\varepsilon / 2)\right] \Rightarrow\left[p-\varepsilon<J_{n}<p+\varepsilon\right]$,

$$
\text { and so } \quad \operatorname{Pr}\left[\kappa_{n}-(\varepsilon / 2)<J_{n}<\kappa_{n}+(\varepsilon / 2) \mid T_{n}=n\right]
$$

$$
\leqslant \quad \operatorname{Pr}\left[p-\varepsilon \quad<J_{n}<p+\varepsilon \quad \mid T_{n}=n\right]
$$

It therefore suffices to show:

as $n \rightarrow \infty, \quad \operatorname{Pr}\left[\kappa_{n}-(\varepsilon / 2)<J_{n}<\kappa_{n}+(\varepsilon / 2) \mid T_{n}=n\right] \rightarrow 1$.
We have: $\forall n \in \mathbb{N}, T_{n}$ is invariant under permutation of X_{1}, \ldots, X_{n}, as is the joint-distribution of X_{1}, \ldots, X_{n}.
Then: $\forall n \in \mathbb{N}, \forall i \in[1 . . n], \quad \mathrm{E}\left[I_{i} \mid T_{n}=n\right]=\mathrm{E}\left[I_{n} \mid T_{n}=n\right]$.
Then: $\forall n \in \mathbb{N}, \forall i \in[1 . . n], \quad \mathrm{E}\left[I_{i} \mid T_{n}=n\right]=\kappa_{n}$.
Since, $\forall n \in \mathbb{N}, \quad J_{n}=\left(I_{1}+\cdots+I_{n}\right) / n$, we get:
$\forall n \in \mathbb{N}, \quad \mathrm{E}\left[J_{n} \mid T_{n}=n\right]=\left(\sum_{i=1}^{n} \mathrm{E}\left[I_{i} \mid T_{n}=n\right]\right) / n$.
Then: $\forall n \in \mathbb{N}, \mathrm{E}\left[J_{n} \mid T_{n}=n\right]=\left(\begin{array}{cc}\sum_{i=1}^{n} & \kappa_{n}\end{array}\right) / n$.
Then: $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[J_{n} \mid T_{n}=n\right]=\left(n \kappa_{n}\right) / n$.
Then: $\forall n \in \mathbb{N}, \mathrm{E}\left[J_{n} \mid T_{n}=n\right]=\kappa_{n}$.
For all $n \in \mathbb{N}$, let $v_{n}:=\operatorname{Var}\left[J_{n} \mid T_{n}=n\right]$.
Then, by Chebyshev's inequality, we have: $\forall n \in \mathbb{N}$,

$$
\operatorname{Pr}\left[\kappa_{n}-(\varepsilon / 2)<J_{n}<\kappa_{n}+(\varepsilon / 2) \mid T_{n}=n\right] \geqslant 1-\left(v_{n} /(\varepsilon / 2)^{2}\right) .
$$

It therefore suffices to show: as $n \rightarrow \infty, \quad v_{n} \rightarrow 0$.
For all $n \in \mathbb{N}$, let $v_{n}:=\operatorname{Var}\left[J_{n} \mid T_{n}=n\right]$.
Recall: \quad as $n \rightarrow \infty, \quad \kappa_{n} \rightarrow p$.
Since $\forall n \in \mathbb{N}, \quad v_{n}=\operatorname{Var}\left[J_{n} \mid T_{n}=n\right]$

$$
=\left(\mathrm{E}\left[J_{n}^{2} \mid T_{n}=n\right]\right)-\left(\mathrm{E}\left[J_{n} \mid T_{n}=n\right]\right)^{2}
$$

$$
=\left(\mathrm{E}\left[J_{n}^{2} \mid T_{n}=n\right]\right)-\kappa_{n}^{2} .
$$

and since, \quad as $n \rightarrow \infty, \quad \quad \kappa_{n}^{2} \rightarrow p^{2}$,
we want: as $n \rightarrow \infty, \quad \mathrm{E}\left[J_{n}^{2} \mid T_{n}=n\right] \rightarrow p^{2}$.
For all $n \in[2 . . \infty)$, let $\lambda_{n}:=\mathrm{E}\left[I_{n-1} \cdot I_{n} \mid T_{n}=n\right]$.
Then: $\forall n \in[2 . . \infty), \quad \lambda_{n}=\operatorname{Pr}\left[X_{n-1}=0=X_{n} \mid T_{n}=n\right]$.
So, by the result of $\S 13, \quad$ we get: \quad as $n \rightarrow \infty, \quad \lambda_{n} \rightarrow p^{2}$.
For all $n \in \mathbb{N}$, since I_{n} is an indicator variable, we get: $I_{n} \in\{0,1\}$ a.s.
Then: $\forall n \in \mathbb{N}, \quad I_{n} \quad=\quad I_{n}^{2} \quad$ a.s.
Then: $\quad \forall n \in \mathbb{N}, \quad \mathrm{E}\left[I_{n} \mid T_{n}=n\right]=\mathrm{E}\left[I_{n}^{2} \mid T_{n}=n\right]$.
Recall: $\forall n \in \mathbb{N}, \quad \mathrm{E}\left[I_{n} \mid T_{n}=n\right]=\kappa_{n}$.
Then: $\quad \forall n \in \mathbb{N}, \quad \kappa_{n}=\mathrm{E}\left[I_{n}^{2} \mid T_{n}=n\right]$.
For all $n \in \mathbb{N}$, for all $i, j \in[1 . . n]$, let $c_{i j n}:=\mathrm{E}\left[I_{i} \cdot I_{j} \mid T_{n}=n\right]$.
We have: $\quad \forall n \in \mathbb{N}, T_{n}$ is invariant under permutation of X_{1}, \ldots, X_{n}, as is the joint-distribution of X_{1}, \ldots, X_{n}.
Then $\forall n \in \mathbb{N}, \forall i \in[1 . . n], \quad \mathrm{E}\left[I_{i}^{2} \mid T_{n}=n\right]=\mathrm{E}\left[I_{n}^{2}, \mid T_{n}=n\right]$,
so, $\quad \forall n \in \mathbb{N}, \forall i \in[1 . . n], \quad \mathrm{E}\left[I_{i}^{2} \mid T_{n}=n\right]=\kappa_{n}$,
so, $\forall n \in \mathbb{N}, \forall i \in[1 . . n], \quad c_{i i n} \quad=\kappa_{n}$.
Similarly, $\forall n \in[2 . . \infty), \quad \forall i, j \in[1 . . n], \quad$ if $i \neq j$, then

$$
\mathrm{E}\left[I_{i} \cdot I_{j} \mid T_{n}=n\right]=\mathrm{E}\left[I_{n-1} \cdot I_{n} \mid T_{n}=n\right],
$$

so, $\quad \forall n \in[2 . . \infty), \forall i, j \in[1 . . n], \quad$ if $i \neq j$, then

$$
\mathrm{E}\left[I_{i} \cdot I_{j} \mid T_{n}=n\right]=\lambda_{n}
$$

so, $\quad \forall n \in[2 . . \infty), \forall i, j \in[1 . . n], \quad$ if $i \neq j$, then

$$
c_{i j n}=\lambda_{n}
$$

Then: $\quad \forall n \in \mathbb{N}, \forall i, j \in[1 . . n], \quad c_{i j n}= \begin{cases}\kappa_{n}, & \text { if } i=j \\ \lambda_{n}, & \text { if } i \neq j .\end{cases}$
Then: $\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j n}=n \cdot \kappa_{n}+\left(n^{2}-n\right) \cdot \lambda_{n}$.
Recall: as $n \rightarrow \infty, \quad \kappa_{n} \rightarrow p \quad$ and $\quad \lambda_{n} \rightarrow p^{2}$.
Since $\quad \forall n \in \mathbb{N}, \quad J_{n} \quad=\left(I_{1}+\cdots+I_{n}\right) / n$, we get: $\forall n \in \mathbb{N}, \quad J_{n}^{2} \quad=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left[I_{i} \cdot I_{j}\right]\right) / n^{2}$.
Then: $\quad \forall n \in \mathbb{N}, \quad \mathrm{E}\left[J_{n}^{2} \mid T_{n}=n\right]=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j n}\right) / n^{2}$.
Then: $\quad \forall n \in \mathbb{N}, \quad \mathrm{E}\left[J_{n}^{2} \mid T_{n}=n\right]=(1 / n) \cdot \kappa_{n}+(1-(1 / n)) \cdot \lambda_{n}$.
Then: \quad as $n \rightarrow \infty, \quad \mathrm{E}\left[J_{n}^{2} \mid T_{n}=n\right] \rightarrow 0 \cdot p+1 \quad \cdot p^{2}$. Then: \quad as $n \rightarrow \infty, \quad \mathrm{E}\left[J_{n}^{2} \mid T_{n}=n\right] \rightarrow p^{2}$.
End of proof of Claim.
15. BoltZmann distributions on nonempty finite sets

Recall (§8): \forall countable set Θ,
\mathcal{M}_{Θ} is the set of measures on Θ
and $\mathcal{F} \mathcal{M}_{\Theta}^{\times}$is the set of nonzero finite measures on Θ and \mathcal{P}_{Θ} is the set of probability measures on Θ.
Recall (§8): \forall nonempty countable set $\Theta, \quad \forall \mu \in \mathcal{F} \mathcal{M}_{\Theta}^{\times}$,

$$
\mathcal{N}(\mu) \text { is the normalization of } \mu \text {. }
$$

DEFINITION 15.1. Let $E \subseteq \mathbb{R}$ be nonempty and finite, $\beta \in \mathbb{R}$.
The unnormalized- β-Boltzmann distribution on E is
the measure $\widehat{B}_{\beta}^{E} \in \mathcal{F} \mathcal{M}_{E}^{\times}$defined by:

$$
\forall \varepsilon \in E, \quad \widehat{B}_{\beta}^{E}\{\varepsilon\}=e^{-\beta \cdot \varepsilon} .
$$

Also, the β-Boltzmann distribution on E is

$$
B_{\beta}^{E}:=\mathcal{N}\left(\hat{B}_{\beta}^{E}\right) \in \mathcal{P}_{E} .
$$

Then: $\forall \varepsilon \in E$, we have: $\quad B_{\beta}^{E}\{\varepsilon\}=\left(\widehat{B}_{\beta}^{E}\{\varepsilon\}\right) /\left(\widehat{B}_{\beta}^{E}(E)\right)$.

Example: Let $E:=\{0,1,10\}$ and let $\beta \in \mathbb{R}$.
Then: $\quad \widehat{B}_{\beta}^{E}\{0\}=1, \quad \widehat{B}_{\beta}^{E}\{1\}=e^{-\beta}, \quad \widehat{B}_{\beta}^{E}\{10\}=e^{-10 \beta}$.
Let $C:=1 /\left(1+e^{-\beta}+e^{-10 \beta}\right)$.
Then: $\quad B_{\beta}^{E}\{0\}=C, \quad B_{\beta}^{E}\{1\}=C e^{-\beta}, B_{\beta}^{E}\{10\}=C e^{-10 \beta}$.
Example: Let $E:=\{2,4,8,9\}$ and let $\beta \in \mathbb{R}$.
Then: $\quad \widehat{B}_{\beta}^{E}\{2\}=e^{-2 \beta}, \quad \widehat{B}_{\beta}^{E}\{4\}=e^{-4 \beta}$,

$$
\widehat{B}_{\beta}^{E}\{8\}=e^{-8 \beta}, \quad \widehat{B}_{\beta}^{E}\{9\}=e^{-9 \beta} .
$$

Let $C:=1 /\left(e^{-2 \beta}+e^{-4 \beta}+e^{-8 \beta}+e^{-9 \beta}\right)$.
Then: $\quad B_{\beta}^{E}\{2\}=C e^{-2 \beta}, \quad B_{\beta}^{E}\{4\}=C e^{-4 \beta}$,

$$
B_{\beta}^{E}\{8\}=C e^{-8 \beta}, \quad B_{\beta}^{E}\{9\}=C e^{-9 \beta}
$$

Recall (§8): For any countable set Θ, for any $\mu \in \mathcal{M}_{\Theta}$, $S_{\mu} \quad$ is the support of μ.
Note: \forall nonempty finite $E \subseteq \mathbb{R}, \forall \beta \in \mathbb{R}$, we have: $S_{\hat{B}_{\beta}^{E}}=E=S_{B_{\beta}^{E}}$.
THEOREM 15.2. Let $E \subseteq \mathbb{R}$ be nonempty and finite.
Let $\varepsilon_{0} \in E, \quad \beta, \xi \in \mathbb{R} . \quad$ Then: $\quad B_{\beta}^{E-\xi}\left\{\varepsilon_{0}-\xi\right\}=B_{\beta}^{E}\left\{\varepsilon_{0}\right\}$.
Proof. We have: $B_{\beta}^{E-\xi}\left\{\varepsilon_{0}-\xi\right\}=\frac{e^{-\beta \cdot\left(\varepsilon_{0}-\xi\right)}}{\sum_{\varepsilon \in E}\left[e^{-\beta \cdot(\varepsilon-\xi)}\right]}$

$$
=\frac{e^{-\beta \cdot \varepsilon_{0}} \cdot e^{\beta \cdot \xi}}{\sum_{\varepsilon \in E}\left[e^{-\beta \cdot \varepsilon} \cdot e^{\beta \cdot \xi}\right]}
$$

$$
\begin{aligned}
& =\frac{e^{\beta \cdot \xi} \cdot e^{-\beta \cdot \varepsilon_{0}}}{e^{\beta \cdot \xi} \cdot \sum_{\varepsilon \in E}\left[e^{-\beta \cdot \varepsilon}\right]} \\
& =\frac{e^{-\beta \cdot \varepsilon_{0}}}{\sum_{\varepsilon \in E}\left[e^{-\beta \cdot \varepsilon}\right]}=B_{\beta}^{E}\left\{\varepsilon_{0}\right\} .
\end{aligned}
$$

Recall (§8): Let $\Theta \subseteq \mathbb{R}$ be countable, $\mu \in \mathcal{P}_{\Theta}$. Assume $\# S_{\mu}<\infty$. Then $|\mu|_{1}<\infty$ and M_{μ} is the mean of μ and V_{μ} is the variance of μ.

Let $E \subseteq \mathbb{R}$ be nonempty and finite. Let $\beta \in \mathbb{R}$. We define:

$$
\begin{aligned}
\Gamma_{\beta}^{E} & :=\sum_{\varepsilon \in E}\left[\varepsilon \cdot e^{\beta \cdot \varepsilon}\right], \\
\hline \Delta_{\beta}^{E} & :=\sum_{\varepsilon \in E}\left[e^{\beta \cdot \varepsilon}\right], \\
\hline \hline A_{\beta}^{E} & :=\Gamma_{\beta}^{E} / \Delta_{\beta}^{E} .
\end{aligned}
$$

Then: $\quad \Gamma_{\beta}^{E}=\sum_{\varepsilon \in E}\left[\varepsilon \cdot\left(\widehat{B}_{\beta}^{E}\{\varepsilon\}\right)\right]$.
Also, $\quad \Delta_{\beta}^{E}=\sum_{\varepsilon \in E}\left[\widehat{B}_{\beta}^{E}\{\varepsilon\}\right]$, and so $\Delta_{\beta}^{E}=\widehat{B}_{\beta}^{E}(E)$.

$$
\begin{array}{ll}
\text { ce } & \frac{\Gamma_{\beta}^{E}}{\Delta_{\beta}^{E}}=\frac{\sum_{\varepsilon \in E}\left[\varepsilon \cdot\left(\widehat{B}_{\beta}^{E}\{\varepsilon\}\right)\right]}{\widehat{B}_{\beta}^{E}(E)}=\sum_{\varepsilon \in E}\left[\varepsilon \cdot\left(B_{\beta}^{E}\{\varepsilon\}\right)\right], \\
\text { we conclude: } & A_{\beta}^{E}
\end{array}
$$

Then: $\quad A_{\beta}^{E}$ is the average value of any E-valued random-variable whose distribution in E is B_{β}^{E}.

THEOREM 15.3. Let $E \subseteq \mathbb{R}$ be nonempty and finite. Let $\beta, \xi \in \mathbb{R}$.
Then: $\quad A_{\beta}^{E-\xi}=A_{\beta}^{E}-\xi$.

Proof.
Let $\lambda:=B_{\beta}^{E-\xi}, \quad \mu:=B_{\beta}^{E}$.
We have: $\quad \lambda \in \mathcal{P}_{E-\xi} \quad$ and $\quad \mu \in \mathcal{P}_{E}$.
By Theorem 15.2, we have: $\forall \varepsilon \in E, \quad B_{\beta}^{E-\xi}\{\varepsilon-\xi\}=B_{\beta}^{E}\{\varepsilon\}$.
Then: $\quad \forall \varepsilon \in E, \quad \lambda\{\varepsilon-\xi\}=\mu\{\varepsilon\}$.
Since $\mu \in \mathcal{P}_{E}$, we get: $\mu(E)=1$.
Then: $\quad M_{\lambda}=\sum_{\varepsilon \in E}[(\varepsilon-\xi) \cdot(\lambda\{\varepsilon-\xi\})]$

$$
=\sum_{\varepsilon \in E}[(\varepsilon-\xi) \cdot(\mu\{\varepsilon\})]
$$

$=\sum_{\varepsilon \in E}[\varepsilon \cdot(\mu\{\varepsilon\})-\xi \cdot(\mu\{\varepsilon\})]$
$=\left(\sum_{\varepsilon \in E}[\varepsilon \cdot(\mu\{\varepsilon\})]\right)-\left(\sum_{\varepsilon \in E}[\xi \cdot(\mu\{\varepsilon\})]\right)$
$=\left(\sum_{\varepsilon \in E}[\varepsilon \cdot(\mu\{\varepsilon\})]\right)-\xi \cdot\left(\sum_{\varepsilon \in E}[\mu\{\varepsilon\}]\right)$
$=M_{\mu}-\xi \cdot(\mu(E))=M_{\mu}-\xi \cdot 1=M_{\mu}-\xi$.

THEOREM 15.4. Let $E \subseteq \mathbb{R}$ be nonempty and finite. Then:

$$
\begin{array}{ll}
& \text { as } \beta \rightarrow \infty, \\
\text { and } \quad & A_{\beta}^{E} \rightarrow \min E \\
\text { as } \beta \rightarrow-\infty, & A_{\beta}^{E} \rightarrow \max E .
\end{array}
$$

The proof is a matter of bookkeeping, best explained by example:
Let $E:=\{2,4,8,9\}$. Then $\min E=2$ and $\max E=9$.
Since,

$$
\forall \beta \in \mathbb{R}, \quad A_{\beta}^{E}=\frac{2 e^{-2 \beta}+4 e^{-4 \beta}+8 e^{-8 \beta}+9 e^{-9 \beta}}{e^{-2 \beta}+e^{-4 \beta}+e^{-8 \beta}+e^{-9 \beta}}
$$

we get

$$
\text { as } \beta \rightarrow \infty, \quad A_{\beta}^{E} \rightarrow 2 / 1
$$

and \quad as $\beta \rightarrow-\infty, \quad A_{\beta}^{E} \rightarrow 9 / 1$,
and so

$$
\text { as } \beta \rightarrow \infty, \quad A_{\beta}^{E} \rightarrow \min E
$$

and \quad as $\beta \rightarrow-\infty, \quad A_{\beta}^{E} \rightarrow \max E$.

For all nonempty, finite $E \subseteq \mathbb{R}, \quad$ define | A_{\bullet}^{E} |
| :--- |$: \mathbb{R} \rightarrow \mathbb{R} \quad$ by: $\forall \beta \in \mathbb{R}, \quad A_{\bullet}^{E}(\beta)=A_{\beta}^{E}$.

THEOREM 15.5. Let $E \subseteq \mathbb{R}$. Assume: $2 \leqslant \# E<\infty$.
Then: A_{\bullet}^{E} is a strictly-decreasing C^{ω}-diffeomorphism from \mathbb{R} onto $\quad(\min E ; \max E)$.

Proof. Let $\kappa:=\# E$. Choose $\varepsilon_{1}, \ldots, \varepsilon_{\kappa} \in \mathbb{R}$ s.t. $E=\left\{\varepsilon_{1}, \ldots, \varepsilon_{\kappa}\right\}$.
Then: $\quad 2 \leqslant \kappa<\infty$ and $\varepsilon_{1}, \ldots, \varepsilon_{\kappa}$ are distinct.
Then: $\quad \forall \beta \in \mathbb{R}, A_{\bullet}^{E}(\beta)=\frac{\sum_{i=1}^{\kappa}\left[\varepsilon_{i} \cdot e^{-\beta \cdot \varepsilon_{i}}\right]}{\sum_{j=1}^{\kappa}\left[e^{-\beta \cdot \varepsilon_{j}}\right]}$. Then $A_{\bullet}^{E}: \mathbb{R} \rightarrow \mathbb{R}$ is C^{ω}.
So, by Theorem 15.4 and the C^{ω}-Inverse Function Theorem and the Mean Value Theorem, it suffices to show: $\left(A_{\bullet}^{E}\right)^{\prime}<0$ on \mathbb{R}.

$$
\text { Given } \beta \in \mathbb{R}, \quad \text { want: }\left(A_{\bullet}^{E}\right)^{\prime}(\beta)<0
$$

Let $\quad P:=\sum_{i=1}^{\kappa}\left[\varepsilon_{i} \cdot e^{-\beta \cdot \varepsilon_{i}}\right], \quad P^{\prime}:=\sum_{i=1}^{\kappa}\left[\left(-\varepsilon_{i}^{2}\right) \cdot e^{-\beta \cdot \varepsilon_{i}}\right]$.
Let $\quad Q:=\sum_{j=1}^{\kappa}\left[e^{-\beta \cdot \varepsilon_{j}}\right], \quad Q^{\prime}:=\sum_{j=1}^{\kappa}\left[\left(-\varepsilon_{j}\right) \cdot e^{-\beta \cdot \varepsilon_{j}}\right]$.
Then $Q>0$. Also, by the Quotient Rule, $\left(A_{\bullet}^{E}\right)^{\prime}(\beta)=\left[Q P^{\prime}-P Q^{\prime}\right] / Q^{2}$.
Want: $Q P^{\prime}-P Q^{\prime}<0$.
We have: $Q P^{\prime} \quad=\sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa}\left[\left(-\varepsilon_{i}^{2} \quad\right) \cdot e^{-\beta \cdot\left(\varepsilon_{i}+\varepsilon_{j}\right)}\right]$.
We have: $\quad P Q^{\prime}=\sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa}\left[\left(-\varepsilon_{i} \varepsilon_{j}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{i}+\varepsilon_{j}\right)}\right]$.
Then: $\quad Q P^{\prime}-P Q^{\prime}=\sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa}\left[\left(-\varepsilon_{i}^{2}+\varepsilon_{i} \varepsilon_{j}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{i}+\varepsilon_{j}\right)}\right]$.
Interchanging i and j, we get:

$$
Q P^{\prime}-P Q^{\prime}=\sum_{j=1}^{\kappa} \sum_{i=1}^{\kappa}\left[\left(-\varepsilon_{j}^{2}+\varepsilon_{j} \varepsilon_{i}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{j}+\varepsilon_{i}\right)}\right] .
$$

By commutativity of addition and multiplication, adding the last two equations gives:

$$
2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)=\sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa}\left[\left(-\varepsilon_{i}^{2}-\varepsilon_{j}^{2}+2 \varepsilon_{i} \varepsilon_{j}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{i}+\varepsilon_{j}\right)}\right] .
$$

Then: $2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)=\sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa}\left[\quad-\left(\varepsilon_{i}-\varepsilon_{j}\right)^{2} \cdot e^{-\beta \cdot\left(\varepsilon_{i}+\varepsilon_{j}\right)}\right]$.
Then: $2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)<0$.
Then: $Q P^{\prime}-P Q^{\prime}<0$.

DEFINITION 15.6. Let $E \subseteq \mathbb{R}$.

Assume: $2 \leqslant \# E<\infty$. Let $\alpha \in(\min E ; \max E)$.
The α-Boltzmann-parameter on E is: $\quad \mathrm{BP}_{\alpha}^{E}:=\left(A_{\bullet}^{E}\right)^{-1}(\alpha)$.
So the α-Boltzmann-parameter on E is the unique $\beta \in \mathbb{R}$ s.t. $A_{\beta}^{E}=\alpha$.
Example: Computations at the end of $\S 6$ show:

$$
\forall \beta \in \mathbb{R}, \quad \text { if } \frac{e^{-\beta}+10 e^{-10 \beta}}{1+e^{-\beta}+10 e^{-10 \beta}}=1, \text { then } e^{-\beta}=9^{-1 / 10}
$$

Then, $\forall \beta \in \mathbb{R}, \quad$ if $\quad A_{\bullet}^{\{0,1,10\}}(\beta)=1$, then $\beta=(\ln 9) / 10$.
Then: $\quad\left(A_{\bullet}^{\{0,1,10\}}\right)^{-1}(1)=(\ln 9) / 10$.
Then: $\quad \mathrm{BP}_{1}^{\{0,1,10\}}=(\ln 9) / 10$.
Example: Let $E:=\{2,4,8,9\}, \alpha:=5, \quad \beta:=\mathrm{BP}_{\alpha}^{E}$.
To compute β, we need to solve $A_{\beta}^{E}=5$ for β.
Since A_{\bullet}^{E} is strictly-decreasing, there are iterative methods of solution, and we get: $\quad \beta \approx 0.0918, \quad$ accurate to four decimal places.
(Thanks to C. Prouty for these calculations. See §29.)
THEOREM 15.7. Let $E \subseteq \mathbb{R}$. Assume: $2 \leqslant \# E<\infty$.
Let $\alpha \in(\min E ; \max E)$. Let $\xi \in \mathbb{R}$. Then: $\quad \mathrm{BP}_{\alpha-\xi}^{E-\xi}=\mathrm{BP}_{\alpha}^{E}$.
Proof. Let $\beta:=\operatorname{BP}_{\alpha}^{E}$. Want: $\quad \operatorname{BP}_{\alpha-\xi}^{E-\xi}=\beta$.
Since $\beta=\operatorname{BP}_{\alpha}^{E}=\left(A_{\bullet}^{E}\right)^{-1}(\alpha)$, we get: $\left(A_{\bullet}^{E}\right)(\beta) \quad=\alpha$.
By Theorem 15.3, $\quad A_{\beta}^{E-\xi}=A_{\beta}^{E}-\xi$.
Since

$$
\left(A_{\bullet}^{E-\xi}\right)(\beta)=A_{\beta}^{E-\xi}=A_{\beta}^{E}-\xi=\left(\left(A_{\bullet}^{E}\right)(\beta)\right)-\xi=\alpha-\xi,
$$

we get: $\quad \beta=\left(A_{\bullet}^{E-\xi}\right)^{-1}(\alpha-\xi)$.
So, since $\quad \operatorname{BP}_{\alpha-\xi}^{E-\xi}=\left(A_{\bullet}^{E-\xi}\right)^{-1}(\alpha-\xi), \quad$ we get: $\quad \operatorname{BP}_{\alpha-\xi}^{E-\xi}=\beta$.

16. Residue-unconstrained Finite sets

In the next three theorems, we generalize our work in $\S 12$
from $\{0,1,10\}$ to arbitrary finite residue-unconstrained sets.
In the example at the end of this section,
we show that Theorem 16.3 below reproduces the result of $\S 12$.

Recall (§8): \forall countable set Θ,
$\mathcal{F} \mathcal{M}_{\Theta}$ is the set of finite measures on Θ
and $\quad \mathcal{F} \mathcal{M}_{\Theta}^{\times}$is the set of nonzero finite measures on Θ and $\quad \mathcal{P}_{\Theta}$ is the set of probability measures on Θ.
Recall (§8): \forall nonempty finite set $F, \quad \forall f \in F, \quad \nu_{F}\{f\}=1 /(\# F)$.
Recall (Definition 8.2): \forall countable set $\Theta, \forall \mu \in \mathcal{F} \mathcal{M}_{\Theta}$,

$$
\forall x \in \Theta^{n}, \quad \mu^{n}\{x\}=\left(\mu\left\{x_{1}\right\}\right) \cdots\left(\mu\left\{x_{n}\right\}\right) .
$$

THEOREM 16.1. Let $E \subseteq \mathbb{Z}$ be finite and residue-unconstrained.
Let $\alpha \in(\min E ; \max E) . \quad$ Let $\beta:=\mathrm{BP}_{\alpha}^{E}$.
Let $t_{1}, t_{2}, \ldots \in \mathbb{Z}$. Assume: $\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded.
For all $n \in \mathbb{N}$, let $\Omega_{n}:=\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=t_{n}\right\}$.
Let $\varepsilon_{0} \in E$. Then: as $n \rightarrow \infty, \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow B_{\beta}^{E}\left\{\varepsilon_{0}\right\}$.
Recall (§8): $\quad \nu_{\varnothing}(\varnothing)=-1$.
So, since $B_{\beta}^{E}\left\{\varepsilon_{0}\right\}>0, \quad$ part of the content of this theorem is:
\forall sufficiently large $n \in \mathbb{N}, \quad \Omega_{n} \neq \varnothing$.
See Claim 2 in the proof below.
Proof. Let $\mu:=B_{\beta}^{E}$. Then: $\mu \in \mathcal{P}_{E}$ and $S_{\mu}=E$.
By hypothesis, E is finite. Then S_{μ} is finite.
So, since $\mu \in \mathcal{P}_{E} \subseteq \mathcal{F} \mathcal{M}_{E}$, we get: $|\mu|_{1}<\infty$ and $|\mu|_{2}<\infty$.
Since $\beta=\mathrm{BP}_{\alpha}^{E}=\left(A_{\bullet}^{E}\right)^{-1}(\alpha)$, we get: $\left(A_{\bullet}^{E}\right)(\beta)=\alpha$.
So, since $\left(A_{\bullet}^{E}\right)(\beta)=A_{\beta}^{E}=M_{B_{\beta}^{E}}=M_{\mu}$, we get: $\quad M_{\mu}=\alpha$.
For all $n \in \mathbb{N}, \quad$ define $\psi_{n}: \mathbb{Z} \rightarrow \mathbb{R}$ by:

$$
\forall t \in \mathbb{Z}, \quad \psi_{n}(t)=\mu^{n}\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=t\right\}
$$

Then: $\quad \forall n \in \mathbb{N}, \quad \psi_{n}\left(t_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$.
Since E is finite and residue-unconstrained, we get: $2 \leqslant \# E<\infty$.
Since $\# S_{\mu}=\# E \geqslant 2$, by Theorem 8.6, we get: $V_{\mu}>0$.
So, since $V_{\mu}=|\mu|_{2}^{2}-M_{\mu}^{2} \leqslant|\mu|_{2}^{2}<\infty$, we conclude:

$$
0<V_{\mu}<\infty
$$

Let $v:=V_{\mu}$. Then $0<v<\infty$. Then $1 / \sqrt{2 \pi v}>0$.

$$
\text { Let } \tau:=1 / \sqrt{2 \pi v} . \quad \text { Then } \quad \tau>0 \text {. }
$$

Claim 1: \quad As $n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\psi_{n}\left(t_{n}\right)\right) \rightarrow \tau$.
Proof of Claim 1: By Theorem 9.6, we get: as $n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\mu^{n}\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=t_{n}\right\}\right) \rightarrow 1 / \sqrt{2 \pi v}$.
Then: as $n \rightarrow \infty, \sqrt{n} \cdot\left(\quad \psi_{n}\left(t_{n}\right) \quad \rightarrow \quad \tau\right.$.
End of proof of Claim 1 .

Since $\tau>0, \quad$ by Claim 1, \quad choose $n_{0} \in \mathbb{N} \quad$ s.t.

$$
\forall n \in\left[n_{0} . . \infty\right), \quad \sqrt{n} \cdot\left(\psi_{n}\left(t_{n}\right)\right)>0 .
$$

Claim 2: Let $n \in\left[n_{0} . . \infty\right)$. Then: $\mu^{n}\left(\Omega_{n}\right)>0$.
Proof of Claim 2: Recall: $\psi_{n}\left(t_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$. Want: $\psi_{n}\left(t_{n}\right)>0$.
By the choice of n_{0}, we get: $\sqrt{n} \cdot\left(\psi_{n}\left(t_{n}\right)\right)>0$. Then: $\psi_{n}\left(t_{n}\right)>0$.
End of proof of Claim 2.

Recall:

$$
\mu \in \mathcal{P}_{E}
$$

Then: $\quad \forall n \in \mathbb{N}, \mu^{n} \in \mathcal{P}_{E^{n}}$, so $\quad \mu^{n}\left(\Omega_{n}\right) \leqslant 1$.
So, by Claim 2, $\forall n \in\left[n_{0} . . \infty\right)$, $\quad 0<\mu^{n}\left(\Omega_{n}\right) \leqslant 1$.
Also, we have: $\forall n \in \mathbb{N}, \quad\left(\mu^{n} \mid \Omega_{n}\right)\left(\Omega_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$.
Then: $\quad \forall n \in\left[n_{0} . . \infty\right), \quad 0<\left(\mu^{n} \mid \Omega_{n}\right)\left(\Omega_{n}\right) \leqslant 1$.
Then: $\quad \forall n \in\left[n_{0} . . \infty\right), \quad \mu^{n} \mid \Omega_{n} \in \mathcal{F} \mathcal{M}_{\Omega_{n}}^{\times}$.
Then: $\quad \forall n \in\left[n_{0} . . \infty\right), \quad \mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right) \in \quad \mathcal{P}_{\Omega_{n}}$.
Claim 3: Let $n \in\left[n_{0} . . \infty\right)$. Then: $\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right)=\nu_{\Omega_{n}}$.
Proof of Claim 3: Let $\theta:=\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right), \quad F:=\Omega_{n}$. Then $\theta \in \mathcal{P}_{F}$.
Want: $\theta=\nu_{F}$. By Theorem 8.9, given $f, g \in F$, want: $\theta\{f\}=\theta\{g\}$.
By Claim 2, we have: $\quad \mu^{n}\left(\Omega_{n}\right)>0$.
Since $\left(\mu^{n} \mid \Omega_{n}\right)\left(\Omega_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$ and $\theta=\mathcal{N}\left(\mu^{n} \mid \Omega\right)$, we get: $\quad \theta=\frac{\mu^{n} \mid \Omega_{n}}{\mu^{n}\left(\Omega_{n}\right)}$.
Want: $\quad \frac{\left(\mu^{n} \mid \Omega_{n}\right)\{f\}}{\mu^{n}\left(\Omega_{n}\right)}=\frac{\left(\mu^{n} \mid \Omega_{n}\right)\{g\}}{\mu^{n}\left(\Omega_{n}\right)}$.
Want: $\quad\left(\mu^{n} \mid \Omega_{n}\right)\{f\}=\left(\mu^{n} \mid \Omega_{n}\right)\{g\}$.
Since $f, g \in F=\Omega_{n}, \quad$ we get:

$$
\left(\mu^{n} \mid \Omega_{n}\right)\{f\}=\mu^{n}\{f\} \quad \text { and } \quad\left(\mu^{n} \mid \Omega_{n}\right)\{g\}=\mu^{n}\{g\} .
$$

Want: $\quad \mu^{n}\{f\}=\mu^{n}\{g\}$.
Since $\# E \geqslant 2$, we get: $E \neq \varnothing$. Then $\widehat{B}_{\beta}^{E}(E)>0$.
Let $C:=1 /\left(\widehat{B}_{\beta}^{E}(E)\right)$. Then $\mathcal{N}\left(\widehat{B}_{\beta}^{E}\right)=C \cdot \widehat{B}_{\beta}^{E}$
By definition of \widehat{B}_{β}^{E}, we have: $\quad \forall \varepsilon \in E, \quad \widehat{B}_{\beta}^{E}\{\varepsilon\}=e^{-\beta \cdot \varepsilon}$.
So, since $\quad \mu=B_{\beta}^{E}=\mathcal{N}\left(\widehat{B}_{\beta}^{E}\right)=C \cdot \widehat{B}_{\beta}^{E}$,

$$
\text { we get: } \quad \forall \varepsilon \in E, \quad \mu\{\varepsilon\}=C e^{-\beta \cdot \varepsilon} \text {. }
$$

Since $f \in F=\Omega_{n}, \quad$ by definition of Ω_{n}, \quad we get: $\quad f_{1}+\cdots+f_{n}=t_{n}$.
Since $g \in F=\Omega_{n}, \quad$ by definition of Ω_{n}, \quad we get: $\quad g_{1}+\cdots+g_{n}=t_{n}$.
Since

$$
f_{1}+\cdots+f_{n}=t_{n}=g_{1}+\cdots+g_{n},
$$

we get: $\quad C^{n} e^{-\beta \cdot\left(f_{1}+\cdots+f_{n}\right)}=C^{n} e^{-\beta \cdot\left(g_{1}+\cdots+g_{n}\right)}$.
Then: $\left(C e^{-\beta \cdot f_{1}}\right) \cdots\left(C e^{-\beta \cdot f_{n}}\right)=\left(C e^{-\beta \cdot g_{1}}\right) \cdots\left(C e^{-\beta \cdot g_{n}}\right)$.
Then: $\left(\mu\left\{f_{1}\right\}\right) \cdots\left(\mu\left\{f_{n}\right\}\right)=\left(\mu\left\{g_{1}\right\}\right) \cdots\left(\mu\left\{g_{n}\right\}\right)$.

Then: $\mu^{n}\{f\} \quad=\quad \mu^{n}\{g\}$.
End of proof of Claim 3.

By hypothesis, E is residue-unconstrained and $\quad \varepsilon_{0} \in E$ and $t_{1}, t_{2}, \ldots \in \mathbb{Z} \quad$ and $\quad\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded.
Recall: $\mu \in \mathcal{P}_{E}$ and $S_{\mu}=E$ and $|\mu|_{2}<\infty$ and $M_{\mu}=\alpha$.
Let $P:=\mu\left\{\varepsilon_{0}\right\}$. Then, since $\mu=B_{\beta}^{E}$, we get: $P=B_{\beta}^{E}\left\{\varepsilon_{0}\right\}$.
We want: as $n \rightarrow \infty, \quad \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow P$.
By Theorem 11.2, as $n \rightarrow \infty,\left(\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right)\right)\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow P$.
So, by Claim 3, as $n \rightarrow \infty, \quad \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow P$.
Recall (§2): $\forall t \in \mathbb{R}, \quad\lfloor t\rfloor$ is the floor of t.
We record the $t_{n}=\lfloor n \alpha\rfloor$ version of the preceding theorem:
THEOREM 16.2. Let $E \subseteq \mathbb{Z}$ be finite and residue-unconstrained.
Let $\alpha \in(\min E ; \max E) . \quad$ Let $\beta:=\mathrm{BP}_{\alpha}^{E}$.
For all $n \in \mathbb{N}$, let $\Omega_{n}:=\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=\lfloor n \alpha\rfloor\right\}$.
Let $\varepsilon_{0} \in E$. Then: as $n \rightarrow \infty, \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow B_{\beta}^{E}\left\{\varepsilon_{0}\right\}$.
We record the $\alpha \in \mathbb{Z}$ special case of the preceding theorem:
THEOREM 16.3. Let $E \subseteq \mathbb{Z}$ be finite and residue-unconstrained.
Let $\alpha \in(\min E ; \max E) . \quad$ Let $\beta:=\mathrm{BP}_{\alpha}^{E} . \quad$ Assume $\alpha \in \mathbb{Z}$.
For all $n \in \mathbb{N}$, let $\Omega_{n}:=\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=n \alpha\right\}$.
Let $\varepsilon_{0} \in E$. Then: as $n \rightarrow \infty, \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow B_{\beta}^{E}\left\{\varepsilon_{0}\right\}$.
Example: \quad Suppose $E=\{0,1,10\}$ and $\alpha=1$.
Then $\Omega_{N} \quad=\quad\left\{f \in E^{N} \mid f_{1}+\cdots+f_{N}=N\right\}$,
so $\quad \Omega_{N}$ represents the set of all GFA dispensations,
as described in $\S 3$.
The measure $\nu_{\Omega_{N}}$ gives equal probability to each dispensation,
so $\quad \nu_{\Omega_{N}}$ represents the GFA's first system for awarding grants, also described in $\S 3$.
Since $\beta=\operatorname{BP}_{\alpha}^{E}=\operatorname{BP}_{1}^{\{0,1,10\}}$, we calculate: $\quad \beta=(\ln 9) / 10$.
More calculation gives: $\left(B_{\beta}^{E}\{0\}, B_{\beta}^{E}\{1\}, B_{\beta}^{E}\{10\}\right)=\frac{\left(1,9^{-1 / 10}, 9^{-1}\right)}{1+9^{-1 / 10}+9^{-1}}$.
Since N is large, by Theorem 16.3, we get:

$$
\nu_{\Omega_{N}}\left\{f \in \Omega_{N} \mid f_{N}=\varepsilon_{0}\right\} \approx B_{\beta}^{E}\left\{\varepsilon_{0}\right\} .
$$

So, if I am the N th professor, then, under the first system, my probability of receiving ε_{0} dollars

$$
\text { is approximately equal to } \quad B_{\beta}^{E}\left\{\varepsilon_{0}\right\} \text {. }
$$

Thus Theorem 16.3 reproduces the result of $\S 12$.
17. Rational award sets

In this section, we investigate what happens if the set of awards is an arbitrary set of rational numbers.
Recall that, on our Earth, which is Earth-1218,
grants are $\$ 0, \$ 1, \$ 10$, with average grant $\$ 1$.

Example: Let N_{0} be a positive integer.
In a parallel universe, on Earth-googol-plex, there are N_{0} professors, and grants are $\$ 10, \$ 14.45, \$ 54$, with average grant $\$ 13.37$,
Earth-googol-plex has its own GFA.
This GFA there is using the "first system" for awarding grants, in which every dispensation is equally likely.
Question: Under this system, for any professor, what is the approximate probability of receiving $\$ 10$? $\$ 14.45 ? \$ 54$?
To simplify this problem, we can imagine that the GFA makes two rounds of awards.
In the first round, it simply dispenses $\$ 10$ to each professor.
In the second round, using the first system, it dispenses additional grants of $\$ 0, \$ 4.45, \$ 44$, with average grant $\$ 3.37$.
We seek the approximate probability of the additional grant being each of the numbers $\$ 0, \$ 4.45, \$ 44$.
To simplify this problem still more, we can change monetary units so that the grant amounts are all integers:
Additional grants, in pennies, are $0,445,4400$, with average grant 337, and we seek the approximate probability of receiving $0,445,4400$.
Unfortunately, $\{0,445,4400\} \subseteq 5 \mathbb{Z}+0$, so $\{0,445,4400\}$ is not residue-unconstrained, making it difficult to apply the Discrete Local Limit Theorem.
Since $\operatorname{gcd}\{0,445,4400\}=5$, we can change monetary units again:
Additional grants, in nickels, are $0,89,880$, with average grant $337 / 5$, and we seek the approximate probability of receiving $0,89,880$.
Let $E:=\{0,89,880\}$ and let $\alpha:=337 / 5$.
Since $0 \in E$ and $\operatorname{gcd}(E)=1$, we get: E is residue-unconstrained.
The amount of money (in nickels) allocated by Congress is $N_{0} \alpha$, to be dispensed among the N_{0} professors.
Unfortunately, a census reveals that: N_{0} is not divisible by 5 .

Recall: $\quad \alpha=337 / 5 . \quad$ Then $\quad N_{0} \alpha \notin \mathbb{Z}$, while $0,89,880 \in \mathbb{Z}$.
It is therefore impossible to dispense the grant money.
The bureaucracy seizes up, there is pandemonium in the streets, and the military steps in to impose order.
The superheros of Earth-googol-plex are committed to democracy, and so they reverse time and select a different time-line.
On this new time-line, E and α are unchanged, but
the number, N_{1}, of professors
is now blissfully divisible by 5 , so $N_{1} \alpha \in \mathbb{Z}$.
Let $\varepsilon_{0} \in E$ be given.
We want: the approximate probability of receiving ε_{0} nickels.
Recall $(\S 2): \quad \forall t \in \mathbb{R}, \quad\lfloor t\rfloor$ is the floor of t.
For all $n \in \mathbb{N}$, let $\quad \Omega_{n}:=\left\{f \in E^{n} \mid f_{1}+\cdots+f_{n}=\lfloor n \alpha\rfloor\right\}$.
Since $N_{1} \alpha \in \mathbb{Z}$, we get: $\quad \Omega_{N_{1}}=\left\{f \in E^{N_{1}} \mid f_{1}+\cdots+f_{N_{1}}=N_{1} \alpha\right\}$.
We want: an approximation to $\nu_{\Omega_{N_{1}}}\left\{f \in \Omega_{N_{1}} \mid f_{N_{1}}=\varepsilon_{0}\right\}$.
Since $0 \in E$ and $\operatorname{gcd}(E)=1$, we get: E is residue-unconstrained.
Let $\beta:=\operatorname{BP}_{\alpha}^{E} . \quad$ By Theorem 16.2, we have:
as $n \rightarrow \infty, \quad \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\varepsilon_{0}\right\} \rightarrow B_{\beta}^{E}\left\{\varepsilon_{0}\right\}$.
So, assuming N_{1} is large, we get

$$
\nu_{\Omega_{N_{1}}}\left\{f \in \Omega_{N_{1}} \mid f_{N_{1}}=\varepsilon_{0}\right\} \approx B_{\beta}^{E}\left\{\varepsilon_{0}\right\}
$$

For each $\varepsilon_{0} \in\{0,89,880\}$, we want to compute $B_{\beta}^{E}\left\{\varepsilon_{0}\right\}$.
We therefore want to compute ($\left.B_{\beta}^{E}\{0\}, B_{\beta}^{E}\{89\}, B_{\beta}^{E}\{880\}\right)$.
Since $\beta=\operatorname{BP}_{\alpha}^{E}=\operatorname{BP}_{337 / 5}^{\{0,89,880\}}$, we see that:
to evaluate β, we must solve $A_{0}^{\{0,89,880\}}(\beta)=337 / 5$ for β.
Since, by Theorem 15.5, $A_{\bullet}^{\{0,89,880\}}$ is strictly-decreasing,
there are simple iterative methods to do this.
We calculate $\beta=0.003144$, accurate to six decimals.
We also calculate $\left(B_{\beta}^{E}\{0\}, B_{\beta}^{E}\{89\}, B_{\beta}^{E}\{880\}\right)=(0.5498,0.4156,0.0345)$, all accurate to four decimals.
(Thanks to C. Prouty for this calculation. See §29.)

Recall (§3): $\quad N$ is a large positive integer.
More generally: Imagine a parallel universe with N professors.
Let E_{0} denote the set of grant-awards.
Assume $\quad E_{0} \subseteq \mathbb{Q}$ and $2 \leqslant \# E_{0}<\infty$.
Let α_{0} denote the average award.
Since $\# E_{0} \geqslant 2$, we get: $E_{0} \neq \varnothing . \quad$ Choose $\varepsilon_{0} \in E_{0}$. Then $\varepsilon_{0} \in \mathbb{Q}$.

Let $\quad E_{1}:=E_{0}-\varepsilon_{0}, \quad \alpha_{1}:=\alpha_{0}-\varepsilon_{0}$. Then $0 \in E_{1}$.
So, by giving out awards in two rounds (first ε_{0}, then the remainder), we are reduced to a case where 0 is a possible grant-award.
Since $E_{1}=E_{0}-\varepsilon_{0} \subseteq \mathbb{Q}$, choose $m \in \mathbb{N}$ s.t. $m E_{1} \subseteq \mathbb{Z}$.
Let $E_{2}:=m E_{1}, \quad \alpha_{2}:=m \alpha_{1}$. Then: $0 \in E_{2} \subseteq \mathbb{Z}$.
So, by change of monetary unit, we are reduced to a case where every grant-award is an integer and where 0 is a possible grant-award.
Let $g:=\operatorname{gcd}\left(E_{2}\right), \quad E:=E_{2} / g, \quad \alpha:=\alpha_{2} / g$.
Then $0 \in E$ and $\operatorname{gcd}(E)=1$, so $\quad E$ is residue-unconstrained.
So, by change of monetary unit, we are reduced to a case where
the set of grant-awards is a residue-unconstrained set of integers.
Since every grant-award is an integer,
if $N \alpha \notin \mathbb{Z}$, then no dispensation is possible, leading to
your typical military dictatorship and superhero intervention.
On the other hand, \quad since N is large, if $N \alpha \in \mathbb{Z}$, then, using Theorem 16.2,
we can compute the approximate probability of each award.

18. Irrational aWards

In this section, we briefly discuss the case where
NOT every grant award is a rational number.
Here, we only present an example to show that the award probabilities may NOT follow a Boltzmann distribution.

Example: On Earth-aleph-1, the GFA gives
grants of $0, \sqrt{2}, \sqrt{3}, 10-\sqrt{2}-\sqrt{3}$ dollars,
with an average grant of 1 dollar,
giving equal probability to every possible dispensation.
Assume: N is the number of professors and N is divisible by 10 .
Let $M:=N / 10$. Then $M \in \mathbb{N}$ and there are $10 M$ professors.
Moreover, since the average grant is 1 dollar, we get: there are $10 M$ dollars to dispense among the $10 M$ professors.

Claim: On Earth-aleph-1, every dispensation of awards has

$7 M$	grants of	0	dollars,
M	grants of	$\sqrt{2}$	dollars,
M	grants of	$\sqrt{3}$	dollars,

M grants of $10-\sqrt{2}-\sqrt{3}$ dollars.
Proof of Claim: Given a dispensation,
let w be the number of dollar grants and
let x be the number of $\sqrt{2}$ dollar grants and let y be the number of $\sqrt{3}$ dollar grants and let z be the number of $10-\sqrt{2}-\sqrt{3}$ dollar grants, want: $w=7 M$ and $x=y=z=M$.
Because the total money dispensed is $10 M$ dollars, we get:

$$
w \cdot 0+x \cdot \sqrt{2}+y \cdot \sqrt{3}+z \cdot(10-\sqrt{2}-\sqrt{3})=10 M
$$

Then: $\quad(10 z-10 M) \cdot 1+(x-z) \cdot \sqrt{2}+(y-z) \cdot \sqrt{3}=0$.
So, since $1, \sqrt{2}, \sqrt{3}$ are linearly indpendent over \mathbb{Q}, we get:

$$
10 z-10 M=0 \quad \text { and } \quad x-z=0 \quad \text { and } \quad y-z=0 .
$$

Then $z=M$ and $x=z$ and $y=z . \quad$ Then $x=y=z=M$.
It remains only to show: $w=7 M$.
Because there are $10 M$ professors, we get: $w+x+y+z=10 M$.
Then: $w+M+M+M=10 M$. Then: $w=7 M$.
End of proof of Claim.

Of the four grant amounts, the largest is $10-\sqrt{2}-\sqrt{3}$.
So, if I am one of the 10 M professors, then I would hope to be among
the lucky $\quad M$ who receive $10-\sqrt{2}-\sqrt{3}$ dollars.
My probability of being so lucky is: $\quad M /(10 M)$, i.e., 10%.
That is, we obtain a probabity of:

$$
10 \% \text { for } \quad 10-\sqrt{2}-\sqrt{3} \quad \text { dollars. }
$$

Extending this reasoning, we obtain probabities of:

70%	for	0	dollars,
10%	for	$\sqrt{2}$	dollars,
10%	for	$\sqrt{3}$	dollars,
10%	for	$10-\sqrt{2}-\sqrt{3}$	dollars.

In a Boltzmann distribution, depending on whether $\beta=0$ or $\beta \neq 0$, either the probabilities are all equal
or the probabilities are all distinct from one another.
The numbers $70,10,10,10$ are neither all equal nor all distinct. Thus, the 70-10-10-10 distribution above is NOT Boltzmann.
19. Earth-minimum-Mahlo-Cardinal and the BUA

Next, we wish to handle thermodynamic systems in which many states may have a single energy-level.

One says that such an energy-level is "degenerate".
In this section, we develop a whimsical example.
In $\S 20$ and $\S 21$, we will develop a general theory.
Recall that $N \in \mathbb{N}$ is large.
In a parallel universe, on Earth-minimum-Mahlo-cardinal, the BUA (Best University Anywhere) employs N professors.
Each professor has a number, from 1 to N.
Each professor wanders the campus, carrying two bags: one red, one blue.
Each bag is closed from view, but has money in it or is empty.
The "state" of a professor is the pair $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ such that σ_{1} is the number of dollars in the professor's red bag, σ_{2} is the number of dollars in the professor's blue bag;
the professor's "wealth" is $\sigma_{1}+\sigma_{2}$ dollars.
So, if I am one of the professors, and if my state is $(3,2)$, then I have: $\$ 3$ in my red bag and $\$ 2$ in my blue bag, and my wealth is $\$ 5$.
By BUA rules, the amount of money in any bag is always $\$ 0$ or $\$ 1$ or $\$ 2$ or $\$ 3$ or $\$ 4$,
and each professor's wealth is always $\leqslant \$ 7$.
Therefore, the set of allowable states is
$([0 . .4] \times[0 . .4]) \backslash\{(4,4)\}$.
Let $\Sigma:=([0 . .4] \times[0 . .4]) \backslash\{(4,4)\}$.
Since $\quad \#([0 . .4] \times[0 . .4])=5 \cdot 5=25$, we get: $\# \Sigma=24$.
Define $\varepsilon: \Sigma \rightarrow[0 . .7]$ by: $\quad \forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma_{1}+\sigma_{2}$.
For convenience of notation, $\forall \sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
If I am one of the professors, and if my state is $\sigma=\left(\sigma_{1}, \sigma_{2}\right) \in \Sigma$, then I have: $\$ \sigma_{1}$ in my red bag and $\$ \sigma_{2}$ in my blue bag, and my wealth is $\$ \varepsilon_{\sigma}$.
Since $\varepsilon_{(3,2)}=5=\varepsilon_{(1,4)}$, we see that ε is not one-to-one, and we have a so-called "degeneracy" at 5 .
This function ε has many other degeneracies, as well.
Recall: The professors are numbered, from 1 to N.
At random moments, random pairs of wandering professors cross paths, and interact.

Each interaction involves three steps:
a game
and then
a verbal offer
and then
a rejection or a money transfer.
The first step, the game, is played as follows:
one of the two professors flips a fair coin and
if heads, then the lower-numbered professor wins and
if tails, then the higher-numbered professor wins.
Next, without touching any money,
the losing professor verbally offers $\$ 1$ to the winning professor.
The losing professor then flips a fair coin,
and
if heads, then the loser's red bag is opened and
if tails, then the loser's blue bag is opened.
If the loser's open bag is empty, then
then the winner gallantly rejects the $\$ 1$ offer and
the opened bag is closed, the interaction is over, and the professors continue their wanderings.
On the other hand, if the loser's open bag is NOT empty, then,
both of the winner's bags are opened.
Recall that, by BUA rules, every professor's wealth must be $\leqslant \$ 7$. If the winner's wealth is $\$ 7$,
then the winner rejects the $\$ 1$ offer and
the opened bags are closed, the interaction is over, and the professors continue their wanderings.
On the other hand, if the winner's wealth is $\leqslant \$ 6$,
then the winner flips a fair coin, and
if heads, then the winner's red bag is closed and if tails, then the winner's blue bag is closed.
At this point, the winner has one open bag, as does the loser.
Moreover, the loser's open bag is NOT empty.
Recall that no bag may have more than $\$ 4$.
If the winner's open bag has $\$ 4$,
then the winner rejects the $\$ 1$ offer and
the opened bags are closed, the interaction is over, and the professors continue their wanderings.
On the other hand, if the winner's open bag has $\leqslant \$ 3$,
then $\$ 1$ is transferred
from the losing professor's open bag
to the winning professor's open bag;
then the opened bags are closed, the interaction is over, and the professors continue their wanderings.

Because of these interactions, the wealth of an individual professor may change over time, but the sum of the wealths of all of them is constant; there is "conservation of (total) wealth".
An audit reveals that, at the BUA, that total wealth is always N.

A "state-dispensation" is a function $\quad[1 . . N] \rightarrow \Sigma$, representing the states of all N professors.
So, if, at some point in time, the state-dispensation is $\omega:[1 . . N] \rightarrow \Sigma$, then, for every $\ell \in[1 . . N]$, the state of Professor $\# \ell$ is $\omega(\ell)$, and the wealth of Professor $\# \ell$ is $\varepsilon_{\omega(\ell)}$;
therefore, the total wealth of all the professors is $\quad \sum_{\ell=1}^{N} \varepsilon_{\omega(\ell)}$.
As we mentioned, at the BUA, that total wealth is N.
Let $\quad \Omega^{*}:=\left\{\omega:[1 . . N] \rightarrow \Sigma \mid \sum_{\ell=1}^{N} \varepsilon_{\omega(\ell)}=N\right\}$.
Then Ω^{*} represents the set of all state-dispensations at the BUA.
The random interactions, described above,
induce a discrete Markov-chain on Ω^{*}.
This, in turn, induces a map $\Pi: \mathcal{P}_{\Omega^{*}} \rightarrow \mathcal{P}_{\Omega^{*}}$.
Let $T:=\# \Omega^{*}$. Fix an ordering of Ω^{*}, i.e., a bijection $[1 . . T] \hookrightarrow>\Omega^{*}$.
The Markov-chain then has a $T \times T$ transition-matrix Φ, with entries in $[0 ; 1]$, whose column-sums are all $=1$.
For every $\phi, \psi \in \Omega^{*}, \quad$ the probability of transitioning from ϕ to ψ is equal to
the probability of transitioning from ψ to ϕ.
That is, the transition-matrix Φ is symmetric.
So, since the column-sums of Φ are all 1 ,
we get: \quad the row-sums of Φ are all 1 .
Let v be a $T \times 1$ column vector whose entries are all 1 . Then $\Phi v=v$.
Let $w:=v / T . \quad$ Then: all the entries of w are $1 / T$ and $\Phi w=w$.
Recall that the probability-distribution $\nu_{\Omega^{*}} \in \mathcal{P}_{\Omega^{*}}$ assigns equal probability to each state-dispensation in Ω^{*}.

That is, $\quad \forall \omega \in \Omega^{*}, \quad \nu_{\Omega^{*}}\{\omega\}=1 / T$.
Since the entries of w are equal to these $\nu_{\Omega^{*}}$-probabilities, and \quad since $\Phi w=w, \quad$ we get: $\quad \Pi\left(\nu_{\Omega^{*}}\right)=\nu_{\Omega^{*}}$.

We will say that two state-dispensations $\phi, \psi \in \Omega^{*}$ are "adjacent",
if there is an interaction that carries ϕ to ψ.
For any $\phi, \psi \in \Omega^{*}$,
\exists a finite sequence of interactions that carries ϕ to ψ.
That is: $\quad \forall \phi, \psi \in \Omega^{*}, \exists m \in \mathbb{N}, \exists \omega_{0}, \ldots, \omega_{m} \in \Omega^{*}$
s.t. $\quad \phi=\omega_{0} \quad$ and $\quad \omega_{m}=\psi$
and s.t. $\forall i \in[1 . . m], \omega_{i-1}$ is adjacent to ω_{i}.
That is, any two state-dispensations are connected by an adjacency-path.
That is, the Markov-chain is irreducible.
Recall that some interactions result in a rejection; such interactions do not change the state-dispensation.
So,
a state-dispensation is sometimes adjacent to itself.
That is, there are adjacency-cycles of length 1.
It follows that the Markov-chain is aperiodic.
So, since the Markov-chain is irreducible and since $\Pi\left(\nu_{\Omega^{*}}\right)=\nu_{\Omega^{*}}$, by the Perron-Frobenius Theorem, we get:

$$
\forall \mu \in \mathcal{P}_{\Omega^{*}}, \quad \mu, \Pi(\mu), \Pi(\Pi(\mu)), \Pi(\Pi(\Pi(\mu))), \ldots \rightarrow \nu_{\Omega^{*}} .
$$

That is, for any starting probability-distribution on Ω^{*},
after enough random interactions,
the resulting probability-distribution on Ω^{*}
will be approximately equal to $\nu_{\Omega^{*}}$,
to any desired level of accuracy.

Problem: Suppose I am Professor $\# N$ at the BUA.
Suppose that the probability-distribution μ of state-dispensations is approximately equal to $\nu_{\Omega^{*}}$.
For each $\quad \sigma \in \Sigma$, compute my probability of being in state σ.
That is, $\forall \sigma \in \Sigma$, compute $\mu\left\{\omega \in \Omega^{*} \mid \omega(N)=\sigma\right\}$.
Since $\# \Sigma=24$, there will be 24 answers.
Approximate answers are acceptable.

To make a precise mathematical problem,
we, in fact, assume that μ is exactly equal to $\nu_{\Omega^{*}}$,
and we seek the exact "thermodynamic limit", meaning we replace N with a variable $n \in \mathbb{N}$, and let $n \rightarrow \infty$.

In the next two sections, we will develop a theory
to solve problems like this one.
We need only adapt our earlier methods to allow for degeneracies.

Our main theorems are
Theorem 21.1 and Theorem 21.2 and Theorem 21.3, and the solution to the above "precise mathematical problem"
appears in the example at the end of $\S 21$.

20. Boltzmann distributions on finite sets with DEGENERACY

We begin by adapting our work on Boltzmann distributions to allow for degeneracies.

DEFINITION 20.1. Let Σ be a nonempty finite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$. Let $\beta \in \mathbb{R}$.
Then $\widehat{B}_{\beta}^{\varepsilon} \in \mathcal{F} \mathcal{M}_{\Sigma}^{\times} \quad$ is defined by: $\quad \forall \sigma \in \Sigma, \quad \widehat{B}_{\beta}^{\varepsilon}\{\sigma\}=e^{-\beta \cdot(\varepsilon(\sigma))}$.
Also, we define: $\quad B_{\beta}^{\varepsilon}:=\mathcal{N}\left(\widehat{B}_{\beta}^{\varepsilon}\right) \in \mathcal{P}_{\Sigma}$.
Then: $\quad \forall$ nonempty finite set $\Sigma, \forall \varepsilon: \Sigma \rightarrow \mathbb{R}, \forall \beta \in \mathbb{R}$,

$$
\begin{array}{ccc}
\widehat{B}_{\beta}^{\varepsilon}(\Sigma)>0 & \text { and } & \forall \sigma \in \Sigma, \quad B_{\beta}^{\varepsilon}\{\sigma\}=\left(\widehat{B}_{\beta}^{\varepsilon}\{\sigma\}\right) /\left(\widehat{B}_{\beta}^{\varepsilon}(\Sigma)\right) \\
& \text { and } & S_{\widehat{B}_{\beta}^{\varepsilon}}=\Sigma=S_{B_{\beta}^{\varepsilon}} .
\end{array}
$$

Example: Let $\Sigma:=\{0,1,10\}$ and let $\beta \in \mathbb{R}$.
Define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by: $\quad \forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma$. Then: $\quad \widehat{B}_{\beta}^{\varepsilon}\{0\}=1, \quad \widehat{B}_{\beta}^{\varepsilon}\{1\}=e^{-\beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{10\}=e^{-10 \beta}$. Let $C:=1 /\left(1+e^{-\beta}+e^{-10 \beta}\right)$. Then: $\quad B_{\beta}^{\varepsilon}\{0\}=C, \quad B_{\beta}^{\varepsilon}\{1\}=C e^{-\beta}, \quad B_{\beta}^{\varepsilon}\{10\}=C e^{-10 \beta}$.

Example: Let $\Sigma:=\{2,4,8,9\}$ and let $\beta \in \mathbb{R}$.
Define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by: $\forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma$.
Then: $\quad \widehat{B}_{\beta}^{\varepsilon}\{2\}=e^{-2 \beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{4\}=e^{-4 \beta}$,

$$
\widehat{B}_{\beta}^{\varepsilon}\{8\}=e^{-8 \beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{9\}=e^{-9 \beta} .
$$

Let $C:=1 /\left(e^{-2 \beta}+e^{-4 \beta}+e^{-8 \beta}+e^{-9 \beta}\right)$.
Then: $\quad B_{\beta}^{\varepsilon}\{2\}=C e^{-2 \beta}, \quad B_{\beta}^{\varepsilon}\{4\}=C e^{-4 \beta}$,

$$
B_{\beta}^{\varepsilon}\{8\}=C e^{-8 \beta}, \quad B_{\beta}^{\varepsilon}\{9\}=C e^{-9 \beta}
$$

Example: Let $\Sigma:=\{1,2,3,4\}$ and let $\beta \in \mathbb{R}$.
Define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by:

$$
\varepsilon(1)=2, \quad \varepsilon(2)=4, \quad \varepsilon(3)=8, \quad \varepsilon(4)=9 .
$$

Then: $\quad \widehat{B}_{\beta}^{\varepsilon}\{1\}=e^{-2 \beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{2\}=e^{-4 \beta}$,

$$
\widehat{B}_{\beta}^{\varepsilon}\{3\}=e^{-8 \beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{4\}=e^{-9 \beta} .
$$

Let $C:=1 /\left(e^{-2 \beta}+e^{-4 \beta}+e^{-8 \beta}+e^{-9 \beta}\right)$.
Then: $\quad B_{\beta}^{\varepsilon}\{1\}=C e^{-2 \beta}, \quad B_{\beta}^{\varepsilon}\{2\}=C e^{-4 \beta}$, $B_{\beta}^{\varepsilon}\{3\}=C e^{-8 \beta}, \quad B_{\beta}^{\varepsilon}\{4\}=C e^{-9 \beta}$.

In the preceding three examples, ε is one-to-one.
That is, ε has no degeneracies.
In the next, ε has one degeneracy, at energy-level 9 .

Example: Let $\Sigma:=\{1,2,3,4\}$ and define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by:

$$
\varepsilon(1)=2, \quad \varepsilon(2)=4, \quad \varepsilon(3)=9, \quad \varepsilon(4)=9
$$

Then: $\quad \widehat{B}_{\beta}^{\varepsilon}\{1\}=e^{-2 \beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{2\}=e^{-4 \beta}$,

$$
\widehat{B}_{\beta}^{\varepsilon}\{3\}=e^{-9 \beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{4\}=e^{-9 \beta} .
$$

Let $C:=1 /\left(e^{-2 \beta}+e^{-4 \beta}+2 \cdot e^{-9 \beta}\right)$.
Then: $\quad B_{\beta}^{\varepsilon}\{1\}=C e^{-2 \beta}, \quad B_{\beta}^{\varepsilon}\{2\}=C e^{-4 \beta}$,

$$
B_{\beta}^{\varepsilon}\{3\}=C e^{-9 \beta}, \quad B_{\beta}^{\varepsilon}\{4\}=C e^{-9 \beta} .
$$

In the next example, ε has many degeneracies.

Example: Let $\Sigma:=([0 . .4] \times[0 . .4]) \backslash\{(4,4)\}$.
Let $\beta \in \mathbb{R}$ and define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by: $\forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma_{1}+\sigma_{2}$.
Then: $\quad \widehat{B}_{\beta}^{\varepsilon}\{(3,2)\}=e^{-5 \beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{(1,4)\}=e^{-5 \beta}, \quad \widehat{B}_{\beta}^{\varepsilon}\{(0,0)\}=1$.
Generally, $\quad \forall \sigma \in \Sigma, \quad \widehat{B}_{\beta}^{\varepsilon}\{\sigma\}=e^{-\left(\sigma_{1}+\sigma_{2}\right) \cdot \beta}$.
Let $C:=1 /\left(\sum_{\sigma \in \Sigma}\left[e^{-\left(\sigma_{1}+\sigma_{2}\right) \cdot \beta}\right]\right)$.
Then: $\quad B_{\beta}^{\varepsilon}\{(3,2)\}=C e^{-5 \beta}, \quad B_{\beta}^{\varepsilon}\{(1,4)\}=C e^{-5 \beta}, \quad B_{\beta}^{\varepsilon}\{(0,0)\}=C$.
Generally, $\quad \forall \sigma \in \Sigma, \quad B_{\beta}^{\varepsilon}\{\sigma\}=C e^{-\left(\sigma_{1}+\sigma_{2}\right) \cdot \beta}$.
THEOREM 20.2. Let Σ be a nonempty finite set.

$$
\text { Let } \varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \xi, \beta \in \mathbb{R} . \quad \text { Then: } \quad B_{\beta}^{\varepsilon}=B_{\beta}^{\varepsilon-\xi}
$$

Proof. For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Since, $\forall \sigma \in \Sigma, \quad \widehat{B}_{\beta}^{\varepsilon}\{\sigma\}=e^{-\beta \cdot \varepsilon_{\sigma}}=e^{-\beta \cdot \xi} \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}-\xi\right)}=e^{-\beta \cdot \xi} \cdot\left(\widehat{B}_{\beta}^{\varepsilon-\xi}\{\sigma\}\right)$,
we get: $\quad \widehat{B}_{\beta}^{\varepsilon}=\quad e^{-\beta \cdot \xi} \cdot \widehat{B}_{\beta}^{\varepsilon-\xi}$.
Since $e^{-\beta \xi}>0$, we get: $\mathcal{N}\left(e^{-\beta \cdot \xi} \cdot \widehat{B}_{\beta}^{\varepsilon-\xi}\right)=\mathcal{N}\left(\widehat{B}_{\beta}^{\varepsilon-\xi}\right)$.
Then: $B_{\beta}^{\varepsilon}=\mathcal{N}\left(\widehat{B}_{\beta}^{\varepsilon}\right)=\mathcal{N}\left(e^{-\beta \cdot \xi} \cdot \widehat{B}_{\beta}^{\varepsilon-\xi}\right)=\mathcal{N}\left(\widehat{B}_{\beta}^{\varepsilon-\xi}\right)=B_{\beta}^{\varepsilon-\xi}$.
DEFINITION 20.3. Let Σ be a nonempty finite set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
For all $\sigma \in \Sigma$, let $\quad \varepsilon_{\sigma}:=\varepsilon(\sigma)$.
For all $\beta \in \mathbb{R}$, let $\quad \Gamma_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]$,
$\Delta_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]$,
$\overline{A_{\beta}^{\varepsilon}}:=\Gamma_{\beta}^{\varepsilon} / \Delta_{\beta}^{\varepsilon}$.
Let Σ be a nonempty finite set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Then:

$$
\Gamma_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(\widehat{B}_{\beta}^{\varepsilon}\{\sigma\}\right)\right] .
$$

Then: $\quad \Gamma_{\beta}^{\varepsilon}$ is the integral of ε wrt $\hat{B}_{\beta}^{\varepsilon}$.
Since $\quad \Delta_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\widehat{B}_{\beta}^{\varepsilon}\{\sigma\}\right]$,
we get: $\quad \Delta_{\beta}^{\varepsilon}=\widehat{B}_{\beta}^{\varepsilon}(\Sigma)$.
Since

$$
\frac{\Gamma_{\beta}^{\varepsilon}}{\Delta_{\beta}^{\varepsilon}}=\frac{\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(\widehat{B}_{\beta}^{\varepsilon}\{\sigma\}\right)\right]}{\widehat{B}_{\beta}^{\varepsilon}(\Sigma)},
$$

we get: $\quad A_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Then:
A_{β}^{ε} is the average value of ε wrt B_{β}^{ε}.
Recall (§2) the notations $\mathbb{I}_{f}, f^{*} A$. Recall (§8) the notation $\varepsilon_{*} \mu$. Recall (Definition 8.5) the notation M_{μ}.

THEOREM 20.4. Let Σ be a nonempty finite set.

$$
\text { Let } \varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \beta \in \mathbb{R} . \quad \text { Then: } \quad M_{\varepsilon_{*} B_{\beta}^{\varepsilon}}=A_{\beta}^{\varepsilon} \text {. }
$$

Proof. For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Because Σ is the disjoint union, over $t \in \mathbb{I}_{\varepsilon}$, of $\varepsilon^{*}\{t\}$,
we get: $\quad \sum_{t \in \mathbb{I}_{\varepsilon}} \sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Also,

$$
A_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]
$$

Then:
So, since

$$
\sum_{t \in \mathbb{I}_{\varepsilon}} \sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]=A_{\beta}^{\varepsilon} .
$$

we want: $\quad \sum_{t \in \mathbb{I}_{\varepsilon}}\left[t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)\right]=\sum_{t \in \mathbb{I}_{\varepsilon}} \sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Want: $\forall t \in \mathbb{I}_{\varepsilon}, \quad t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=\quad \sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Given $t \in \mathbb{I}_{\varepsilon}$, want: $t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=\sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
For all $\sigma \in \varepsilon^{*}\{t\}$, since $\varepsilon_{\sigma}=\varepsilon(\sigma) \in\{t\}$, we get: $t=\varepsilon_{\sigma}$.
Want: $t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=\sum_{\sigma \in \varepsilon^{*}\{t\}}\left[t \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Because $\varepsilon^{*}\{t\}$ is the disjoint union, over $\sigma \in \varepsilon^{*}\{t\}$, of $\{\sigma\}$,
we get:

$$
B_{\beta}^{\varepsilon}\left(\varepsilon^{*}\{t\}\right)=\sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\quad B_{\beta}^{\varepsilon}\{\sigma\}\right] .
$$

Also, $\quad\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}=B_{\beta}^{\varepsilon}\left(\varepsilon^{*}\{t\}\right)$.
Then: $t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=t \cdot\left(B_{\beta}^{\varepsilon}\left(\varepsilon^{*}\{t\}\right)\right)=\sum_{\sigma \in \varepsilon^{*}\{t\}}\left[t \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
THEOREM 20.5. Let Σ be a nonempty finite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \beta, \xi \in \mathbb{R} . \quad$ Then: $\quad A_{\beta}^{\varepsilon-\xi}=A_{\beta}^{\varepsilon}-\xi$.
Proof. We have:
Since $B_{\beta}^{\varepsilon} \in \mathcal{P}_{\Sigma}$, we get:

$$
B_{\beta}^{\varepsilon}(\Sigma)=\sum_{\sigma \in \Sigma}\left[B_{\beta}^{\varepsilon}\{\sigma\}\right] .
$$

By Theorem 20.2, we have:
$B_{\beta}^{\varepsilon}(\Sigma)=1$.
$B_{\beta}^{\varepsilon}=B_{\beta}^{\varepsilon-\xi}$.
For all $\sigma \in \Sigma, \quad$ let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Then: $\quad A_{\beta}^{\varepsilon-\xi}=\sum_{\sigma \in \Sigma}\left[\left(\varepsilon_{\sigma}-\xi\right) \cdot\left(B_{\beta}^{\varepsilon-\xi}\{\sigma\}\right)\right]$
$=\sum_{\sigma \in \Sigma}\left[\left(\varepsilon_{\sigma}-\xi\right) \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$
$=\left(\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]\right)-\left(\sum_{\sigma \in \Sigma}\left[\xi \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]\right)$
$=\left(\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]\right)-\xi \cdot\left(\sum_{\sigma \in \Sigma}\left[B_{\beta}^{\varepsilon}\{\sigma\}\right]\right)$
$=A_{\beta}^{\varepsilon}-\xi \cdot\left(B_{\beta}^{\varepsilon}(\Sigma)\right)=A_{\beta}^{\varepsilon}-\xi \cdot 1=A_{\beta}^{\varepsilon}-\xi$.
THEOREM 20.6. Let Σ be a nonempty finite set, $\quad \varepsilon: \Sigma \rightarrow \mathbb{R}$. Then: as $\beta \rightarrow \infty, \quad A_{\beta}^{\varepsilon} \rightarrow \min \mathbb{I}_{\varepsilon}$ as $\beta \rightarrow-\infty, \quad A_{\beta}^{\varepsilon} \rightarrow \max \mathbb{I}_{\varepsilon}$.

The proof is a matter of bookkeeping, best explained by example:
Let $\Sigma:=\{1,2,3,4\}$ and define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by:

$$
\varepsilon(1)=2, \quad \varepsilon(2)=4, \quad \varepsilon(3)=9, \quad \varepsilon(4)=9
$$

Then $\mathbb{I}_{\varepsilon}=\{2,4,9\}, \quad$ so $\quad \min \mathbb{I}_{\varepsilon}=2 \quad$ and $\quad \max \mathbb{I}_{\varepsilon}=9$.
Since $\quad \forall \beta \in \mathbb{R}, \quad A_{\beta}^{\varepsilon}=\frac{2 e^{-2 \beta}+4 e^{-4 \beta}+9 e^{-9 \beta}+9 e^{-9 \beta}}{e^{-2 \beta}+e^{-4 \beta}+e^{-9 \beta}+e^{-9 \beta}}$,

$$
=\frac{2 e^{-2 \beta}+4 e^{-4 \beta}+18 e^{-9 \beta}}{e^{-2 \beta}+e^{-4 \beta}+2 e^{-9 \beta}}
$$

we get \quad as $\beta \rightarrow \infty, \quad A_{\beta}^{\varepsilon} \rightarrow 2 / 1$ and \quad as $\beta \rightarrow-\infty, \quad A_{\beta}^{\varepsilon} \rightarrow 18 / 2$,
and so as $\beta \rightarrow \infty, \quad A_{\beta}^{\varepsilon} \rightarrow \min \mathbb{I}_{\varepsilon}$ and \quad as $\beta \rightarrow-\infty, \quad A_{\beta}^{\varepsilon} \rightarrow \max \mathbb{I}_{\varepsilon}$.

For any nonempty finite set Σ, \quad for any $\varepsilon: \Sigma \rightarrow \mathbb{R}$, define $A_{\bullet}^{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$ by: $\forall \beta \in \mathbb{R}, A_{\bullet}^{\varepsilon}(\beta)=A_{\beta}^{\varepsilon}$.

Recall (§2): "C $C^{\omega "}$ means "real-analytic".
THEOREM 20.7. Let Σ be a finite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$. Assume: $\# \mathbb{I}_{\varepsilon} \geqslant 2$.

Then: $\quad A_{\bullet}^{\varepsilon}$ is a strictly-decreasing C^{ω}-diffeomorphism from \mathbb{R} onto $\left(\min \mathbb{I}_{\varepsilon} ; \max \mathbb{I}_{\varepsilon}\right)$.

Proof. For all $\sigma \in \Sigma, \quad$ let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
We have: $\forall \beta \in \mathbb{R}, A_{\bullet}^{\varepsilon}(\beta)=\frac{\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]}{\sum_{\tau \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\tau}}\right]}$. Then $A_{\bullet}^{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$ is C^{ω}.
So, by Theorem 20.6 and the C^{ω}-Inverse Function Theorem and the Mean Value Theorem, it suffices to show: $\left(A_{\bullet}^{\varepsilon}\right)^{\prime}<0$ on \mathbb{R}.

Given $\beta \in \mathbb{R}, \quad$ want: $\left(A_{\bullet}^{\varepsilon}\right)^{\prime}(\beta)<0$.

Let $\quad P:=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right], \quad P^{\prime}:=\sum_{\sigma \in \Sigma}\left[\left(-\varepsilon_{\sigma}^{2}\right) \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]$.
Let $\quad Q:=\sum_{\tau \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\tau}}\right], \quad Q^{\prime}:=\sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\tau}\right) \cdot e^{-\beta \cdot \varepsilon_{\tau}}\right]$.
Then $Q>0$. Also, by the Quotient Rule, $\left(A_{\bullet}^{\varepsilon}\right)^{\prime}(\beta)=\left[Q P^{\prime}-P Q^{\prime}\right] / Q^{2}$.
Want: $Q P^{\prime}-P Q^{\prime}<0$.
We have: $Q P^{\prime} \quad=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\sigma}^{2}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right]$.
We have: $\quad P Q^{\prime}=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\sigma} \varepsilon_{\tau}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right]$.
Then: $\quad Q P^{\prime}-P Q^{\prime}=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\sigma}^{2}+\varepsilon_{\sigma} \varepsilon_{\tau}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right]$.
Interchanging σ and τ, we get:

$$
Q P^{\prime}-P Q^{\prime}=\sum_{\tau \in \Sigma} \sum_{\sigma \in \Sigma}\left[\left(-\varepsilon_{\tau}^{2}+\varepsilon_{\tau} \varepsilon_{\sigma}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\tau}+\varepsilon_{\sigma}\right)}\right] .
$$

By commutativity of addition and multiplication, adding the last two equations gives:

$$
2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\sigma}^{2}-\varepsilon_{\tau}^{2}+2 \varepsilon_{\sigma} \varepsilon_{\tau}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right] .
$$

Then: $2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\quad-\left(\varepsilon_{\sigma}-\varepsilon_{\tau}\right)^{2} \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right]$.
Then: $2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)<0$. Then: $Q P^{\prime}-P Q^{\prime}<0$.
DEFINITION 20.8. Let Σ be a finite set. Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\quad \# \mathbb{I}_{\varepsilon} \geqslant 2$. Let $\alpha \in\left(\min \mathbb{I}_{\varepsilon} ; \max \mathbb{I}_{\varepsilon}\right)$.
The α-Boltzmann-parameter on ε is: $\quad \mathrm{BP}_{\alpha}^{\varepsilon}:=\left(A_{\bullet}^{\varepsilon}\right)^{-1}(\alpha)$.
So the α-Boltzmann-parameter on ε is the unique $\beta \in \mathbb{R}$ s.t. $A_{\beta}^{\varepsilon}=\alpha$.

Example: Let $\Sigma:=\{0,1,10\}$, and define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by:

$$
\forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma
$$

Computation shows: $\quad A_{(\ln 9) / 10}^{\varepsilon}=1 . \quad$ Then: $\quad \mathrm{BP}_{1}^{\varepsilon}=(\ln 9) / 10$.
Example: Let $\Sigma:=\{2,4,8,9\}$, and define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by:

$$
\forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma
$$

To evaluate $\mathrm{BP}_{5}^{\varepsilon}$, we must solve $A_{\bullet}^{\varepsilon}(\beta)=5$ for β, and, since, by Theorem 20.7, $A_{\bullet}^{\varepsilon}$ is strictly-decreasing, there are simple iterative methods to do this.
We compute: $\quad \mathrm{BP}_{5}^{\varepsilon} \approx 0.0918$, accurate to four decimal places.
(Thanks to C. Prouty for this calculation. See §29.)
Next, let $\bar{\Sigma}:=\{1,2,3,4\}$, and define $\bar{\varepsilon}: \bar{\Sigma} \rightarrow \mathbb{R}$ by:

$$
\bar{\varepsilon}(1)=2, \quad \bar{\varepsilon}(2)=4, \quad \bar{\varepsilon}(3)=8, \quad \bar{\varepsilon}(4)=9 .
$$

Then $\quad A_{\bullet}^{\bar{\varepsilon}}=A_{\bullet}^{\varepsilon}, \quad$ so $\quad \mathrm{BP}_{5}^{\bar{\varepsilon}}=\mathrm{BP}_{5}^{\varepsilon}$.
Then $\mathrm{BP}_{5}^{\bar{\varepsilon}} \approx 0.0918$, accurate to four decimal places.
Example: Let $\Sigma:=\{1,2,3,4\}$ and define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by:

$$
\varepsilon(1)=2, \quad \varepsilon(2)=4, \quad \varepsilon(3)=9, \quad \varepsilon(4)=9 .
$$

To evaluate $\mathrm{BP}_{5}^{\varepsilon}$, we must solve $A_{\bullet}^{\varepsilon}(\beta)=5$ for β, and, since, by Theorem 20.7, $A_{\bullet}^{\varepsilon}$ is strictly-decreasing, there are simple iterative methods to do this.
We compute: $\quad \mathrm{BP}_{5}^{\varepsilon} \approx 0.1060$, accurate to four decimal places. (Thanks to C. Prouty for this calculation. See §29.)

Example: Let $\Sigma:=([0 . .4] \times[0 . .4]) \backslash\{(4,4)\}$.
Define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by: $\quad \forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma_{1}+\sigma_{2}$.
To evaluate $\mathrm{BP}_{1}^{\varepsilon}$, we must solve $A_{\bullet}^{\varepsilon}(\beta)=1$ for β, and, since, by Theorem 20.7, A_{0}^{ε} is strictly-decreasing, there are simple iterative methods to do this.
We compute: $\quad \mathrm{BP}_{1}^{\varepsilon} \approx 1.0670$, accurate to four decimal places. (Thanks to C. Prouty for this calculation. See §29.)

THEOREM 20.9. Let Σ be a finite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$. Assume: $\quad \# \mathbb{I}_{\varepsilon} \geqslant 2$.
Let $\alpha \in\left(\min \mathbb{I}_{\varepsilon} ; \max \mathbb{I}_{\varepsilon}\right)$. Let $\xi \in \mathbb{R}$. Then: $\quad \mathrm{BP}_{\alpha-\xi}^{\varepsilon-\xi}=\mathrm{BP}_{\alpha}^{\varepsilon}$.
Proof. Let $\beta:=\mathrm{BP}_{\alpha}^{\varepsilon}$. Want: $\mathrm{BP}_{\alpha-\xi}^{\varepsilon-\xi}=\beta$.
Since $\beta=\operatorname{BP}_{\alpha}^{\varepsilon}=\left(A_{\bullet}^{\varepsilon}\right)^{-1}(\alpha), \quad$ we get: $\left(A_{\bullet}^{\varepsilon}\right)(\beta) \quad=\alpha$.
By Theorem 20.5, $\quad A_{\beta}^{\varepsilon-\xi}=A_{\beta}^{\varepsilon}-\xi$.
Since $\quad\left(A_{\bullet}^{\varepsilon-\xi}\right)(\beta)=A_{\beta}^{\varepsilon-\xi}=A_{\beta}^{\varepsilon}-\xi=\left(\left(A_{\bullet}^{\varepsilon}\right)(\beta)\right)-\xi=\alpha-\xi$,
we get: $\quad \beta=\left(A_{\bullet}^{\varepsilon-\xi}\right)^{-1}(\alpha-\xi)$.
So, since $\quad \operatorname{BP}_{\alpha-\xi}^{\varepsilon-\xi}=\left(A_{\bullet}^{\varepsilon-\xi}\right)^{-1}(\alpha-\xi)$, we get: $\quad \mathrm{BP}_{\alpha-\xi}^{\varepsilon-\xi}=\beta$.

21. Degenerate energy levels

Recall (§2): the notations \mathbb{I}_{f} and $f^{*} A$.
Recall (§8): the notation ν_{F}.
THEOREM 21.1. Let Σ be a finite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{Z}$. Assume \mathbb{I}_{ε} is residue-unconstrained.

Let $\alpha \in\left(\min \mathbb{I}_{\varepsilon} ; \max \mathbb{I}_{\varepsilon}\right) . \quad$ Let $\beta:=\mathrm{BP}_{\alpha}^{\varepsilon}$.
Let $t_{1}, t_{2}, \ldots \in \mathbb{Z}$. Assume: $\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded.
For all $n \in \mathbb{N}$, let $\Omega_{n}:=\left\{f \in \Sigma^{n} \mid\left(\varepsilon\left(f_{1}\right)\right)+\cdots+\left(\varepsilon\left(f_{n}\right)\right)=t_{n}\right\}$.
Let $\sigma_{0} \in \Sigma$. Then: as $n \rightarrow \infty, \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\} \rightarrow B_{\beta}^{\varepsilon}\left\{\sigma_{0}\right\}$.
Recall $(\S 8): \quad \nu_{\varnothing}(\varnothing)=-1$.
So, since $B_{\beta}^{\varepsilon}\left\{\sigma_{0}\right\}>0, \quad$ part of the content of Theorem 21.1 is:
\forall sufficiently large $n \in \mathbb{N}, \quad \Omega_{n} \neq \varnothing$.
See Claim 2 in the proof below.
Proof. Since \mathbb{I}_{ε} is residue-unconstrained, we get: $\mathbb{I}_{\varepsilon} \neq \varnothing$.
So, since $\varepsilon: \Sigma \rightarrow \mathbb{Z}$, we conclude: $\quad \Sigma \neq \varnothing$.
By hypothesis, Σ is finite. Then: Σ is a nonempty finite set.
Since $\beta=\operatorname{BP}_{\alpha}^{\varepsilon}=\left(A_{\bullet}^{\varepsilon}\right)^{-1}(\alpha), \quad$ we get: $\quad A_{\bullet}^{\varepsilon}(\beta)=\alpha$.
By Theorem 20.4, we have: $\quad M_{\varepsilon_{*} B_{\beta}^{\varepsilon}}=A_{\beta}^{\varepsilon}$.
So, since $A_{\beta}^{\varepsilon}=A_{\bullet}^{\varepsilon}(\beta)=\alpha$, we get: $\quad M_{\varepsilon_{*} B_{\beta}^{\varepsilon}}=\alpha$.
Let $\mu:=B_{\beta}^{\varepsilon}$. Then: $\mu \in \mathcal{P}_{\Sigma} \quad$ and $\quad M_{\varepsilon_{*} \mu}=\alpha$.
Let $E:=\mathbb{I}_{\varepsilon}, \widetilde{\mu}:=\varepsilon_{*} \mu$. Then: $\widetilde{\mu} \in \mathcal{P}_{E}$ and $M_{\widetilde{\mu}}=\alpha$.
By hypothesis, $\quad E$ is residue-unconstrained.
Since $\varepsilon: \Sigma \rightarrow \mathbb{Z}$,
Since Σ is finite, we get: E is finite.
So, since $\widetilde{\mu} \in \mathcal{P}_{E} \subseteq \mathcal{F} \mathcal{M}_{E}$, we get: $\quad|\widetilde{\mu}|_{1}<\infty$ and $|\widetilde{\mu}|_{2}<\infty$.
For all $\sigma \in \Sigma, \quad$ let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Then: $\forall n \in \mathbb{N}, \quad \Omega_{n}=\left\{f \in \Sigma^{n} \mid \varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n}}=t_{n}\right\}$.
For all $n \in \mathbb{N}$, define $\varepsilon^{n}: \Sigma^{n} \rightarrow E^{n}$ by:

$$
\forall f_{1}, \ldots, f_{n} \in \Sigma, \quad \varepsilon^{n}\left(f_{1}, \ldots, f_{n}\right)=\left(\varepsilon_{f_{1}}, \ldots, \varepsilon_{f_{n}}\right) .
$$

Then, since $\varepsilon_{*} \mu=\widetilde{\mu}$, we get: $\forall n \in \mathbb{N},\left(\varepsilon^{n}\right) *\left(\mu^{n}\right)=\widetilde{\mu}^{n}$.
For all $n \in \mathbb{N}$, let $\quad \widetilde{\Omega}_{n}:=\left\{\tilde{f} \in E^{n} \mid \widetilde{f}_{1}+\cdots+\widetilde{f}_{n}=t_{n}\right\}$; then $\quad\left(\varepsilon^{n}\right) * \widetilde{\Omega}_{n}=\Omega_{n}$.
Then: $\quad \forall n \in \mathbb{N}, \quad \mu^{n}\left(\left(\varepsilon^{n}\right)^{*} \widetilde{\Omega}_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$.
Then: $\forall n \in \mathbb{N}, \quad\left(\left(\varepsilon^{n}\right)_{*} \mu^{n}\right)\left(\widetilde{\Omega}_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$.
Then: $\forall n \in \mathbb{N}, \quad \quad \widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$.
For all $n \in \mathbb{N}, \quad$ define $\psi_{n}: \mathbb{Z} \rightarrow \mathbb{R}$ by:

$$
\forall t \in \mathbb{Z}, \quad \psi_{n}(t)=\widetilde{\mu}^{n}\left\{\tilde{f} \in E^{n} \mid \widetilde{f}_{1}+\cdots+\widetilde{f}_{n}=t\right\} .
$$

Then: $\forall n \in \mathbb{N}, \quad \psi_{n}\left(t_{n}\right)=\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)$.
Since E is finite and residue-unconstrained, we get: $2 \leqslant \# E<\infty$.

Since $\varepsilon: \Sigma \rightarrow \mathbb{Z}$,
So, since $\mu=B_{\beta}^{\varepsilon}$,
So, since $\varepsilon: \Sigma \rightarrow \mathbb{Z}$,
we get: $\quad S_{B_{\beta}^{\varepsilon}}=\Sigma$.
we get: $\quad S_{\mu}=\Sigma$.
we get: $\quad S_{\varepsilon_{* \mu}}=\mathbb{I}_{\varepsilon}$.

So, since $\varepsilon_{*} \mu=\widetilde{\mu}$ and $\mathbb{I}_{\varepsilon}=E$, we get: $\quad S_{\widetilde{\mu}}=E$.
Since E is finite, we get: E is countable.
So, since $\widetilde{\mu} \in \mathcal{P}_{E}$ and $|\widetilde{\mu}|_{1}<\infty$ and $\# S_{\widetilde{\mu}}=\# E \geqslant 2$,
by Theorem 8.6, we get: $\quad V_{\widetilde{\mu}}>0$.
So, since $\quad V_{\widetilde{\mu}}=|\widetilde{\mu}|_{2}^{2}-M_{\widetilde{\mu}}^{2} \leqslant|\widetilde{\mu}|_{2}^{2}<\infty$, we conclude:

$$
0<V_{\widetilde{\mu}}<\infty .
$$

Let $v:=V_{\tilde{\mu}}$. Then $0<v<\infty . \quad$ Then $1 / \sqrt{2 \pi v}>0$.

$$
\text { Let } \tau:=1 / \sqrt{2 \pi v} . \quad \text { Then } \quad \tau \quad>0 \text {. }
$$

Claim 1: \quad As $n \rightarrow \infty, \quad \sqrt{n} \cdot\left(\psi_{n}\left(t_{n}\right)\right) \rightarrow \tau$.
Proof of Claim 1: Recall: $E \subseteq \mathbb{Z}, \quad E$ is residue-unconstrained,

$$
\widetilde{\mu} \in \mathcal{P}_{E}, \quad S_{\widetilde{\mu}}=E, \quad|\widetilde{\mu}|_{2}<\infty, \quad \alpha=M_{\widetilde{\mu}}, \quad v=V_{\widetilde{\mu}} .
$$

By hypothesis, $\quad t_{1}, t_{2}, \ldots \in \mathbb{Z}$ and $\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded.
Then, by Theorem 9.6, we get:

$$
\text { as } n \rightarrow \infty, \sqrt{n} \cdot\left(\widetilde{\mu}^{n}\left\{\widetilde{f} \in E^{n} \mid \tilde{f}_{1}+\cdots+\widetilde{f}_{n}=t_{n}\right\}\right) \rightarrow 1 / \sqrt{2 \pi v} .
$$

Then, as $n \rightarrow \infty, \sqrt{n} \cdot\left(\quad \psi_{n}\left(t_{n}\right) \quad \rightarrow \quad \tau\right.$.
End of proof of Claim 1.

Since $\tau>0, \quad$ by Claim $1, \quad$ choose $n_{0} \in[2 . . \infty) \quad$ s.t.

$$
\forall n \in\left[n_{0} . . \infty\right), \quad \sqrt{n} \cdot\left(\psi_{n}\left(t_{n}\right)\right)>0
$$

Claim 2: \quad Let $n \in\left[n_{0} . . \infty\right)$.
Then: $\quad \mu^{n}\left(\Omega_{n}\right)>0$.
Proof of Claim 2: Recall: $\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$ and $\psi_{n}\left(t_{n}\right)=\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)$.
By the choice of n_{0}, we get: $\sqrt{n} \cdot\left(\psi_{n}\left(t_{n}\right)\right)>0$. Then: $\psi_{n}\left(t_{n}\right)>0$.
Then: $\quad \mu^{n}\left(\Omega_{n}\right)=\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)=\psi_{n}\left(t_{n}\right)>0$.
End of proof of Claim 2.
Recall: $\Sigma \neq \varnothing$ and $\varepsilon: \Sigma \rightarrow \mathbb{Z}$. Then $\widehat{B}_{\beta}^{\varepsilon}(\Sigma)>0$.
Let $C:=1 /\left(\widehat{B}_{\beta}^{\varepsilon}(\Sigma)\right)$.
Then $\mathcal{N}\left(\widehat{B}_{\beta}^{\varepsilon}\right)=C \cdot \widehat{B}_{\beta}^{\varepsilon}$
By definition of $\widehat{B}_{\beta}^{\varepsilon}$, we have: $\quad \forall \sigma \in \Sigma, \quad \widehat{B}_{\beta}^{\varepsilon}\{\sigma\}=e^{-\beta \cdot \varepsilon_{\sigma}}$.
So, \quad since $\quad \mu=B_{\beta}^{\varepsilon}=\mathcal{N}\left(\widehat{B}_{\beta}^{\varepsilon}\right)=C \cdot \widehat{B}_{\beta}^{\varepsilon}$,

$$
\text { we get: } \quad \forall \sigma \in \Sigma, \quad \mu\{\sigma\}=C e^{-\beta \cdot \varepsilon_{\sigma}} .
$$

Since $\mu \in \mathcal{P}_{\Sigma}$, we get: $\forall n \in \mathbb{N}, \mu^{n} \in \mathcal{P}_{\Sigma^{n}}$, so $\quad \mu^{n}\left(\Omega_{n}\right) \leqslant 1$.
So, by Claim 2, $\forall n \in\left[n_{0} . . \infty\right)$, $\quad 0<\mu^{n}\left(\Omega_{n}\right) \leqslant 1$.
Also, we have: $\forall n \in \mathbb{N}, \quad\left(\mu^{n} \mid \Omega_{n}\right)\left(\Omega_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$.
Then: $\quad \forall n \in\left[n_{0} . . \infty\right), \quad 0<\left(\mu^{n} \mid \Omega_{n}\right)\left(\Omega_{n}\right) \leqslant 1$.
Then: $\quad \forall n \in\left[n_{0} . . \infty\right), \quad \mu^{n} \mid \Omega_{n} \in \mathcal{F} \mathcal{M}_{\Omega_{n}}^{\times}$.

Then: $\quad \forall n \in\left[n_{0} . . \infty\right), \quad \mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right) \in \quad \mathcal{P}_{\Omega_{n}}$.
Also, $\quad \forall n \in \mathbb{N}, \forall S \subseteq \Omega_{n}, \quad\left(\mu^{n} \mid \Omega_{n}\right)(S)=\mu^{n}(S)$.
Then: $\forall n \in \mathbb{N}, \quad\left(\mu^{n} \mid \Omega_{n}\right)\left(\Omega_{n}\right)=\mu^{n}\left(\Omega_{n}\right)$.
For all $n \in \mathbb{N}$, let $\quad z_{n}:=\mu^{n}\left(\Omega_{n}\right)$.
Then: $\forall n \in\left[n_{0} . . \infty\right)$,
For all $n \in\left[n_{0} . . \infty\right)$, let
Then: $\forall n \in\left[n_{0} . . \infty\right)$,
$\left(\mu^{n} \mid \Omega_{n}\right)\left(\Omega_{n}\right)=z_{n}$ and $0<z_{n} \leqslant 1$.
$\lambda_{n}:=\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right)$.
$\lambda_{n}=\left(\mu^{n} \mid \Omega_{n}\right) / z_{n}$.
Then: $\forall n \in\left[n_{0} . . \infty\right), \quad \forall S \subseteq \Omega_{n}$,

$$
\lambda_{n}(S)=\left(\mu^{n}(S)\right) / z_{n}
$$

Claim 3: Let $n \in\left[n_{0} . . \infty\right)$.
Then: $\quad \lambda_{n}=\nu_{\Omega_{n}}$.
Proof of Claim 3: Let $F:=\Omega_{n}$. Want: $\quad \lambda_{n}=\nu_{F}$.
Since $\quad \lambda_{n}=\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right)=\mathcal{N}\left(\mu^{n} \mid F\right)$, we get: $\quad \lambda_{n} \in \mathcal{P}_{F}$.
By Theorem 8.9, \quad given $f, g \in F, \quad$ want: $\lambda_{n}\{f\}=\lambda_{n}\{g\}$.
Want: $\left(\mu^{n}\{f\}\right) / z_{n}=\left(\mu^{n}\{g\}\right) / z_{n}$. Want: $\mu^{n}\{f\}=\mu^{n}\{g\}$.
For all $i \in[1 . . n]$, let $\tilde{f}_{i}:=\varepsilon_{f_{i}}$ and $\widetilde{g}_{i}:=\varepsilon_{g_{i}}$.
Recall: $\quad \forall \sigma \in \Sigma, \quad \mu\{\sigma\}=C e^{-\beta \cdot \varepsilon_{\sigma}}$.
Then: $\quad \forall i \in[1 . . n], \quad \mu\left\{f_{i}\right\}=C e^{-\beta \cdot \tilde{f}_{i}}$ and $\mu\left\{g_{i}\right\}=C e^{-\beta \cdot \tilde{g}_{i}}$.
Since $f \in F=\Omega_{n}$, we get: $\quad \varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n}}=t_{n}$.
Since $g \in F=\Omega_{n}$, we get: $\quad \varepsilon_{g_{1}}+\cdots+\varepsilon_{g_{n}}=t_{n}$.
Since $\tilde{f}_{1}+\cdots+\widetilde{f}_{n}=\varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n}}=t_{n}$

$$
=\varepsilon_{g_{1}}+\cdots+\varepsilon_{g_{n}}=\widetilde{g}_{1}+\cdots+\widetilde{g}_{n},
$$

we get: $\quad C^{n} e^{-\beta \cdot\left(\tilde{f}_{1}+\cdots+\tilde{f}_{n}\right)}=C^{n} e^{-\beta \cdot\left(\tilde{g}_{1}+\cdots+\tilde{g}_{n}\right)}$.
Then: $\quad\left(C e^{-\beta \cdot \tilde{f}_{1}}\right) \cdots\left(C e^{-\beta \cdot \tilde{f}_{n}}\right)=\left(C e^{-\beta \cdot \tilde{g}_{1}}\right) \cdots\left(C e^{-\beta \cdot \tilde{g}_{n}}\right)$.
Then: $\left(\mu\left\{f_{1}\right\}\right) \cdots\left(\mu\left\{f_{n}\right\}\right)=\left(\mu\left\{g_{1}\right\}\right) \cdots\left(\mu\left\{g_{n}\right\}\right)$.
Then: $\mu^{n}\{f\} \quad=\quad \mu^{n}\{g\}$.
End of proof of Claim 3.
Claim 4: Let $\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}$. Then: $\mu\{\sigma\}=\mu\left\{\sigma_{0}\right\}$.
Proof of Claim 4: Since $\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}$, we get: $\varepsilon(\sigma) \in\left\{\varepsilon_{\sigma_{0}}\right\}$.
Since $\varepsilon_{\sigma}=\varepsilon(\sigma) \in\left\{\varepsilon_{\sigma_{0}}\right\}$, we get: $\varepsilon_{\sigma}=\varepsilon_{\sigma_{0}}$.
Then: $\quad \mu\{\sigma\}=C e^{-\beta \cdot \varepsilon_{\sigma}}=C e^{-\beta \cdot \varepsilon_{\sigma_{0}}}=\mu\left\{\sigma_{0}\right\}$.
End of proof of Claim 4.
Since $\varepsilon\left(\sigma_{0}\right)=\varepsilon_{\sigma_{0}} \in\left\{\varepsilon_{\sigma_{0}}\right\}$, we get: $\sigma_{0} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}$.
Then $\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\} \neq \varnothing$, so $\quad \#\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right) \geqslant 1$.
Let $k:=\#\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)$. Then: $k \geqslant 1$.

Claim 5: $\mu\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)=k \cdot\left(\mu\left\{\sigma_{0}\right\}\right)$.

Proof of Claim 5: Since $\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}$ is equal to the disjoint union, over $\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}, \quad$ of $\{\sigma\}$, we get: $\quad \mu\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)=\sum_{\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}}[\mu\{\sigma\}]$,
So, by Claim 4, we get: $\mu\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)=\sum_{\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}}\left[\mu\left\{\sigma_{0}\right\}\right]$.
So, since $k=\#\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)$, we get: $\mu\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)=k \cdot\left(\mu\left\{\sigma_{0}\right\}\right)$.
End of proof of Claim 5.

Claim 6: Let $n \in[2 . . \infty)$. Let $\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}$.

$$
\text { Then: } \quad \mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma\right\}=\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\} .
$$

Proof of Claim 6:
Let $\quad X:=\left\{f \in \Sigma^{n-1} \mid \varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}=t_{n}-\varepsilon_{\sigma}\right\}$.
Recall: $\Omega_{n}=\left\{f \in \Sigma^{n} \quad \mid \varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}+\varepsilon_{f_{n}}=t_{n}\right\}$.
Since
it follows that, under the standard bijection $\Sigma^{n} \leftrightarrow \Sigma^{n-1} \times \Sigma$, we have:

$$
\left\{f \in \Omega_{n} \mid f_{n}=\sigma\right\} \quad \subseteq \quad \Sigma^{n}
$$

$$
\text { corresponds to } X \times\{\sigma\} \subseteq \Sigma^{n-1} \times \Sigma
$$

Then: $\quad \mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma\right\}=\left(\mu^{n-1}(X)\right) \cdot(\mu\{\sigma\})$.
Want: $\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}=\left(\mu^{n-1}(X)\right) \cdot(\mu\{\sigma\})$.
By Claim 4, we have: $\quad \mu\{\sigma\}=\mu\left\{\sigma_{0}\right\}$.
Want: $\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}=\left(\mu^{n-1}(X)\right) \cdot\left(\mu\left\{\sigma_{0}\right\}\right)$.
Since $\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}$, we get: $\quad \varepsilon(\sigma) \in\left\{\varepsilon_{\sigma_{0}}\right\}$.
Since $\quad \varepsilon_{\sigma}=\varepsilon(\sigma) \in\left\{\varepsilon_{\sigma_{0}}\right\}$, we get: $\varepsilon_{\sigma}=\varepsilon_{\sigma_{0}}$.
Then $\quad X=\left\{f \in \Sigma^{n-1} \mid \varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}=t_{n}-\varepsilon_{\sigma_{0}}\right\}$.
Since $\quad\left\{f \in \Omega_{n} \mid \quad f_{n}=\sigma_{0}\right\}$
$=\left\{f \in \Sigma^{n} \mid\left[\varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}+\varepsilon_{f_{n}}=t_{n}\right] \&\left[f_{n}=\sigma_{0}\right]\right\}$
$=\left\{f \in \Sigma^{n} \mid\left[\varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}+\varepsilon_{\sigma_{0}}=t_{n}\right] \&\left[f_{n}=\sigma_{0}\right]\right\}$
$=\left\{f \in \Sigma^{n} \mid\left[\varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}=t_{n}-\varepsilon_{\sigma_{0}}\right] \&\left[f_{n}=\sigma_{0}\right]\right\}$,
it follows that, under the standard bijection $\Sigma^{n} \leftrightarrow \Sigma^{n-1} \times \Sigma$, we have:

$$
\begin{array}{rrl}
& \left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\} & \subseteq \Sigma^{n} \\
\text { corresponds to } & X \times\left\{\sigma_{0}\right\} & \subseteq \Sigma^{n-1} \times \Sigma .
\end{array}
$$

Then: $\quad \mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}=\left(\mu^{n-1}(X)\right) \cdot\left(\mu\left\{\sigma_{0}\right\}\right)$.
End of proof of Claim 6 .
Claim 7: Let $n \in[2 . . \infty)$.
Then:

$$
\widetilde{\mu}^{n}\left\{\widetilde{f} \in \widetilde{\Omega}_{n} \mid \tilde{f}_{n}=\varepsilon_{\sigma_{0}}\right\}=k \cdot\left(\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}\right)
$$

$$
\begin{aligned}
& \left\{f \in \Omega_{n} \quad \mid \quad f_{n}=\sigma\right\} \\
& =\left\{f \in \Sigma^{n} \quad \mid\left[\varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}+\varepsilon_{f_{n}}=t_{n}\right] \&\left[f_{n}=\sigma\right]\right\} \\
& =\left\{f \in \Sigma^{n} \quad \mid\left[\varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}+\varepsilon_{\sigma}=t_{n}\right] \&\left[f_{n}=\sigma\right]\right\} \\
& =\left\{f \in \Sigma^{n} \quad \mid\left[\varepsilon_{f_{1}}+\cdots+\varepsilon_{f_{n-1}}=t_{n}-\varepsilon_{\sigma}\right] \&\left[f_{n}=\sigma\right]\right\},
\end{aligned}
$$

Proof of Claim 7: Recall: $\quad \widetilde{\mu}^{n}=\left(\varepsilon^{n}\right)_{*}\left(\mu^{n}\right)$. Recall: $\quad\left(\varepsilon^{n}\right)^{*} \widetilde{\Omega}_{n}=\Omega_{n}$.
Then

$$
\left(\varepsilon^{n}\right)^{*}\left\{\underset{\sim}{f} \in \widetilde{\Omega}_{\sim} \mid{\underset{\sim}{\tilde{f}}}_{n}=\varepsilon_{\sigma_{0}}\right\}=\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\},
$$

and so $\mu^{n}\left(\left(\varepsilon^{n}\right)^{*}\left\{\widetilde{f} \in \widetilde{\Omega}_{n} \mid \widetilde{f}_{n}=\varepsilon_{\sigma_{0}}\right\}\right)=\mu^{n}\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\}$.
Then: $\quad\left(\left(\varepsilon^{n}\right)_{*}\left(\mu^{n}\right)\right)\left\{\tilde{f} \in \widetilde{\Omega}_{n} \mid \widetilde{f}_{n}=\varepsilon_{\sigma_{0}}\right\}=\mu^{n}\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\}$.
Then: $\quad \tilde{\mu}^{n}\left\{\tilde{f} \in \widetilde{\Omega}_{n} \mid \tilde{f}_{n}=\varepsilon_{\sigma_{0}}\right\}=\mu^{n}\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\}$.
Want: $\mu^{n}\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\}=k \cdot\left(\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}\right)$.
Since $\quad\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\}$
is the disjoint union, over $\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}$, of

$$
\left\{f \in \Omega_{n} \mid f_{n}=\sigma\right\}
$$

we get: $\mu^{n}\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\}=\sum_{\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}}\left[\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma\right\}\right]$.
Then, by Claim 6, we conclude:

$$
\mu^{n}\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\}=\sum_{\sigma \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}}\left[\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}\right] .
$$

So, since $k=\#\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)$, we get:

$$
\mu^{n}\left\{f \in \Omega_{n} \mid f_{n} \in \varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right\}=k \cdot\left(\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}\right)
$$

End of proof of Claim 7.
Recall: $\forall n \in \mathbb{N}$,

$$
\mu^{n}\left(\Omega_{n}\right)=\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)
$$

Recall: $\forall n \in\left[n_{0} . . \infty\right)$,
$0<\mu^{n}\left(\Omega_{n}\right) \leqslant 1$.
Then: $\forall n \in\left[n_{0} . . \infty\right)$,
$0<\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right) \leqslant 1$.
Also, $\quad \forall n \in \mathbb{N}, \forall S \subseteq \widetilde{\Omega}_{n}$,

$$
\left(\widetilde{\mu}^{n} \mid \widetilde{\Omega}_{n}\right)(S)=\widetilde{\mu}^{n}(S)
$$

Then: $\forall n \in \mathbb{N}$,

$$
\left(\widetilde{\mu}^{n} \mid \widetilde{\Omega}_{n}\right)\left(\widetilde{\Omega}_{n}\right)=\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)
$$

By dividing the last two equations, we get:

$$
\forall n \in\left[n_{0} . . \infty\right), \forall S \subseteq \widetilde{\Omega}_{n}, \quad\left(\mathcal{N}\left(\widetilde{\mu}^{n} \mid \widetilde{\Omega}_{n}\right)\right)(S)=\left(\widetilde{\mu}^{n}(S)\right) /\left(\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)\right) .
$$

For all $\quad n \in\left[n_{0} . . \infty\right)$, let $\widetilde{\lambda}_{n}:=\mathcal{N}\left(\widetilde{\mu}^{n} \mid \widetilde{\Omega}_{n}\right)$.
Then: $\quad \forall n \in\left[n_{0} . . \infty\right), \forall S \subseteq \widetilde{\Omega}_{n}, \quad \widetilde{\lambda}_{n}(S)=\left(\widetilde{\mu}^{n}(S)\right) /\left(\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right)\right)$.
So, since $\forall n \in \mathbb{N}, \quad z_{n}=\mu^{n}\left(\Omega_{n}\right)=\widetilde{\mu}^{n}\left(\widetilde{\Omega}_{n}\right), \quad$ we get:

$$
\forall n \in\left[n_{0} . . \infty\right), \forall S \subseteq \widetilde{\Omega}_{n}, \quad \quad \widetilde{\lambda}_{n}(S)=\left(\widetilde{\mu}^{n}(S)\right) / z_{n}
$$

Recall: $\forall n \in\left[n_{0} . . \infty\right), \quad \lambda_{n}=\mathcal{N}\left(\mu^{n} \mid \Omega_{n}\right)$.
Recall: $\forall n \in\left[n_{0} . . \infty\right), \forall S \subseteq \Omega_{n}, \quad \lambda_{n}(S)=\left(\mu^{n}(S)\right) / z_{n}$.
Claim 8: Let $\quad n \in\left[n_{0} . . \infty\right)$.
Then: $\quad \widetilde{\lambda}_{n}\left\{\widetilde{f} \in \widetilde{\Omega}_{n} \mid \tilde{f}_{n}=\varepsilon_{\sigma_{0}}\right\}=k \cdot\left(\lambda_{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}\right)$.
Proof of Claim 8: By choice of n_{0}, we have: $n_{0} \in[2 \ldots \infty)$.
Then $\left[n_{0} . . \infty\right) \subseteq[2 . . \infty)$, so, since $n \in\left[n_{0} . . \infty\right)$, we get: $n \in[2 . . \infty)$.
Then, by Claim 7, $\quad \tilde{\mu}^{n}\left\{\tilde{f} \in \widetilde{\Omega}_{n} \mid \widetilde{f}_{n}=\varepsilon_{\sigma_{0}}\right\}=k \cdot\left(\mu^{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}\right)$.
Dividing this last equation by z_{n} yields

$$
\widetilde{\lambda}_{n}\left\{\tilde{f} \in \widetilde{\Omega}_{n} \mid \widetilde{f}_{n}=\varepsilon_{\sigma_{0}}\right\}=k \cdot\left(\lambda_{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}\right)
$$

End of proof of Claim 8.
Let $P:=\mu\left\{\sigma_{0}\right\}$ and $\widetilde{P}:=\widetilde{\mu}\left\{\varepsilon_{\sigma_{0}}\right\} . \quad$ Recall: $k \geqslant 1$.
By Claim 5, we have: $\quad \mu\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)=k \cdot\left(\mu\left\{\sigma_{0}\right\}\right)$.
Recall: $\tilde{\mu}=\varepsilon_{*} \mu$.
Since $\widetilde{P}=\widetilde{\mu}\left\{\varepsilon_{\sigma_{0}}\right\}=\left(\varepsilon_{*} \mu\right)\left\{\varepsilon_{\sigma_{0}}\right\}=\mu\left(\varepsilon^{*}\left\{\varepsilon_{\sigma_{0}}\right\}\right)=k \cdot\left(\mu\left\{\sigma_{0}\right\}\right)=k \cdot P$,

$$
\text { we get: } \quad \widetilde{P} / k=P .
$$

Recall: $\quad M_{\widetilde{\mu}}=\alpha \quad$ and $\quad \tilde{\mu} \in \mathcal{P}_{E} \quad$ and $\quad S_{\tilde{\mu}}=E$.
Recall: E is residue-unconstrained and $|\widetilde{\mu}|_{2}<\infty$.
Since $\varepsilon_{\sigma_{0}}=\varepsilon\left(\sigma_{0}\right) \in \mathbb{I}_{\varepsilon}=E$, we get: $\quad \varepsilon_{\sigma_{0}} \in E$.
Let $\widetilde{\varepsilon}_{0}:=\varepsilon_{\sigma_{0}}$. Then: $\widetilde{\varepsilon}_{0} \in E$ and $\widetilde{P}=\widetilde{\mu}\left\{\widetilde{\varepsilon}_{0}\right\}$.
Recall: $\forall n \in \mathbb{N}, \quad \widetilde{\Omega}_{n}:=\left\{\tilde{f} \in E^{n} \mid \widetilde{f}_{1}+\cdots+\widetilde{f}_{n}=t_{n}\right\}$.
By hypothesis, $\quad t_{1}, t_{2}, \ldots \in \mathbb{Z}$ and $\left\{t_{n}-n \alpha \mid n \in \mathbb{N}\right\}$ is bounded.
By Theorem 11.2, as $n \rightarrow \infty, \mathcal{N}\left(\widetilde{\mu}^{n} \mid \widetilde{\Omega}_{n}\right)\left\{\tilde{f} \in \widetilde{\Omega}_{n} \mid \widetilde{f}_{n}=\widetilde{\varepsilon}_{0}\right\} \rightarrow \widetilde{P}$.
Recall: $\forall n \in\left[n_{0} . . \infty\right), \quad \widetilde{\lambda}_{n}=\mathcal{N}\left(\tilde{\mu}^{n} \mid \widetilde{\Omega}_{n}\right)$.
Then: \quad as $n \rightarrow \infty, \quad \widetilde{\lambda}_{n}\left\{\tilde{f} \in \widetilde{\Omega}_{n} \mid \tilde{f}_{n}=\widetilde{\varepsilon}_{0}\right\} \rightarrow \widetilde{P}$.
Then: \quad as $n \rightarrow \infty, \quad \widetilde{\lambda}_{n}\left\{\tilde{f} \in \widetilde{\Omega}_{n} \mid \widetilde{f}_{n}=\varepsilon_{\sigma_{0}}\right\} \quad \rightarrow \widetilde{P}$.
So, by Claim 8 , as $n \rightarrow \infty, k \cdot\left(\lambda_{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\}\right) \rightarrow \widetilde{P}$.
Then:
as $n \rightarrow \infty, \quad \lambda_{n}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\} \quad \rightarrow \widetilde{P} / k$.
So, by Claim 3, as $n \rightarrow \infty, \quad \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\} \quad \rightarrow \widetilde{P} / k$.
Recall: $\quad \mu=B_{\beta}^{\varepsilon}$.
Then, since $\widetilde{P} / k=P=\mu\left\{\sigma_{0}\right\}=B_{\beta}^{\varepsilon}\left\{\sigma_{0}\right\}$, we get:

$$
\text { as } n \rightarrow \infty, \quad \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\} \rightarrow B_{\beta}^{\varepsilon}\left\{\sigma_{0}\right\}
$$

The possibility of degeneracy at $\widetilde{\varepsilon}_{0} \quad$ (i.e., the possibility that $k \neq 1$) causes a number of complications in the preceding proof.
Here is another approach to proving Theorem 21.1:
By density of the set of injective functions $\Sigma \rightarrow \mathbb{R}$ in the topological space of all functions $\Sigma \rightarrow \mathbb{R}$,
we reduce to the case where ε is injective.
Then the proof can follow the proof of Theorem 16.1, avoiding the degeneracy complications in the preceding proof.

Recall (§2): $\quad \forall t \in \mathbb{R}, \quad\lfloor t\rfloor$ is the floor of t.
Next, we record the $t_{n}=\lfloor n \alpha\rfloor$ version of the preceding theorem:
THEOREM 21.2. Let Σ be a finite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{Z}$. Assume \mathbb{I}_{ε} is residue-unconstrained.
Let $\alpha \in\left(\min \mathbb{I}_{\varepsilon} ; \max \mathbb{I}_{\varepsilon}\right) . \quad$ Let $\beta:=\mathrm{BP}_{\alpha}^{\varepsilon}$.

For all $n \in \mathbb{N}, \quad$ let $\Omega_{n}:=\left\{f \in \Sigma^{n} \mid\left(\varepsilon\left(f_{1}\right)\right)+\cdots+\left(\varepsilon\left(f_{n}\right)\right)=\lfloor n \alpha\rfloor\right\}$.
Let $\sigma_{0} \in \Sigma$. Then: as $n \rightarrow \infty, \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\} \rightarrow B_{\beta}^{\varepsilon}\left\{\sigma_{0}\right\}$.
We record the $\alpha \in \mathbb{Z}$ special case of the preceding theorem:
THEOREM 21.3. Let Σ be a finite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{Z}$. Assume \mathbb{I}_{ε} is residue-unconstrained.
Let $\alpha \in\left(\min \mathbb{I}_{\varepsilon} ; \max \mathbb{I}_{\varepsilon}\right)$. Assume $\alpha \in \mathbb{Z}$. Let $\beta:=\mathrm{BP}_{\alpha}^{\varepsilon}$.
For all $n \in \mathbb{N}$, let $\Omega_{n}:=\left\{f \in \Sigma^{n} \mid\left(\varepsilon\left(f_{1}\right)\right)+\cdots+\left(\varepsilon\left(f_{n}\right)\right)=n \alpha\right\}$.
Let $\sigma_{0} \in \Sigma$. Then: as $n \rightarrow \infty, \nu_{\Omega_{n}}\left\{f \in \Omega_{n} \mid f_{n}=\sigma_{0}\right\} \rightarrow B_{\beta}^{\varepsilon}\left\{\sigma_{0}\right\}$.
Example: Suppose $\Sigma=\{0,1,10\}$ and $\alpha=1$.
Suppose, also, $\forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma$.
Then Ω_{N} represents
the set of all GFA dispensations to the N professors.
Since $\nu_{\Omega_{N}}$ gives equal probability to each dispensation,
$\nu_{\Omega_{N}}$ represents the GFA's first system for awarding grants.
Since $\beta=\mathrm{BP}_{\alpha}^{\varepsilon}=\mathrm{BP}_{1}^{\varepsilon}, \quad$ we calculate: $\quad \beta=(\ln 9) / 10$.
More calculation gives: $\quad\left(B_{\beta}^{\varepsilon}\{0\}, B_{\beta}^{\varepsilon}\{1\}, B_{\beta}^{\varepsilon}\{10\}\right)=\frac{\left(1,9^{-1 / 10}, 9^{-1}\right)}{1+9^{-1 / 10}+9^{-1}}$.
Since N is large, by Theorem 21.3, we get:

$$
\nu_{\Omega_{N}}\left\{f \in \Omega_{N} \mid f_{N}=\sigma_{0}\right\} \approx B_{\beta}^{\varepsilon}\left\{\sigma_{0}\right\}
$$

So, if I am the N th professor, then, under the first system, my probability of receiving σ_{0} dollars is approximately equal to $\quad B_{\beta}^{\varepsilon}\left\{\sigma_{0}\right\}$.
Thus Theorem 21.3 reproduces the result of $\S 12$.
Example: Suppose $\Sigma=([0 . .4] \times[0 . .4]) \backslash\{(4,4)\}$.
Suppose, also, $\alpha=1$ and $\forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma_{1}+\sigma_{2}$.
Then Ω_{N} represents
the set of all state-distributions at the BUA. (See §19.)
Since $\beta=\mathrm{BP}_{\alpha}^{\varepsilon}=\mathrm{BP}_{1}^{\varepsilon}$, we calculate:
$\beta \approx 1.0670, \quad$ accurate to four decimal places.
Let $M \in \mathbb{R}^{5 \times 5}$ be the matrix defined by: $\quad M_{55}=0$ and
$\forall(i, j) \in([1 . .5] \times[1 . .5]) \backslash\{(5,5)\}, \quad M_{i j}=B_{\beta}^{\varepsilon}\{(i-1, j-1)\}$.
Then $\quad M \approx\left[\begin{array}{ccccc}0.4345 & 0.1495 & 0.0514 & 0.0177 & 0.0061 \\ 0.1495 & 0.0514 & 0.0177 & 0.0061 & 0.0021 \\ 0.0514 & 0.0177 & 0.0061 & 0.0021 & 0.0007 \\ 0.0177 & 0.0061 & 0.0021 & 0.0007 & 0.0002 \\ 0.0061 & 0.0021 & 0.0007 & 0.0002 & 0\end{array}\right]$
all accurate to four decimal places.
(Thanks to C. Prouty for these calculations. See §29.)
According to Theorem 21.3, this answers
the problem formulated near the end of $\S 19$.
Since $B_{\beta}^{\varepsilon}\{(0,0)\}=M_{11}=0.4345$, it is possible (cf. $\S 14$) to prove:
If N is sufficiently large, then, more than 99% of the time, over 43% of the BUA professors have $\$ 0$ wealth.
22. ∞-PROPERNESS AND ($-\infty$)-PROPERNESS

Recall (§2): the notations \mathbb{I}_{f} and $f^{*} A$.
DEFINITION 22.1. Let Σ be a set. Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
$B y \varepsilon$ is ∞-proper, we mean: $\forall t \in \mathbb{R}, \quad \#\{\sigma \in \Sigma \mid \varepsilon(\sigma) \leqslant t\}<\infty$.
That is, $\quad \forall t \in \mathbb{R}, \#\left(\sigma^{*}(-\infty ; t]\right)<\infty$.
Note that, for any finite set Σ, \quad for any $\varepsilon: \Sigma \rightarrow \mathbb{R}$,
we have: $\quad \varepsilon$ is ∞-proper.
THEOREM 22.2. Let Σ be a nonempty set.
If $\exists \varepsilon: \Sigma \rightarrow \mathbb{R}$ s.t. ε is ∞-proper, then Σ is countable.
The next result asserts that, for a nonempty set Σ,
if $\quad \varepsilon: \Sigma \rightarrow \mathbb{R}$ is ∞-proper,
then its image \mathbb{I}_{ε} has a minimal element, i.e., $\min \mathbb{I}_{\varepsilon}$ exists.
THEOREM 22.3. Let Σ be a set. Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper. Assume: $\quad \Sigma \neq \varnothing$. Then: $\exists t_{0} \in \mathbb{I}_{\varepsilon}$ s.t., $\forall t \in \mathbb{I}_{\varepsilon}, \quad t \geqslant t_{0}$.

THEOREM 22.4. Let Σ be a set. Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper.
Then: $\quad \mathbb{I}_{\varepsilon}$ is bounded below and $\quad \forall t \in \mathbb{I}_{\varepsilon}, \quad \varepsilon^{*}\{t\}$ is finite.
The preceding three theorems are basic; we omit the proofs.
When ε is \mathbb{Z}-valued, the converse of Theorem 22.4 is also true:
THEOREM 22.5. Let Σ be a set. Let $\varepsilon: \Sigma \rightarrow \mathbb{Z}$.
Then: $\quad[\varepsilon$ is ∞-proper $]$

$$
\Leftrightarrow \quad\left[\left(\mathbb{I}_{\varepsilon} \text { is bounded below }\right) \&\left(\forall t \in \mathbb{I}_{\varepsilon}, \quad \varepsilon^{*}\{t\} \text { is finite }\right)\right] .
$$

The preceding is basic; we omit the proof.
The following two results are corollaries of Theorem 22.5:
THEOREM 22.6. Let Σ be a set. Let $\varepsilon: \Sigma \rightarrow \mathbb{Z}$ be injective.
Then: $\quad[\varepsilon \infty$-proper $] \Leftrightarrow\left[\mathbb{I}_{\varepsilon}\right.$ is bounded below $]$.

THEOREM 22.7. Let $\Sigma \subseteq \mathbb{Z}$.
Define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by: $\forall \sigma \in \Sigma, \quad \varepsilon(\sigma)=\sigma$.
Then: $\quad[\varepsilon \infty$-proper $] \Leftrightarrow[\Sigma$ is bounded below $]$.
DEFINITION 22.8. Let Σ be a set. Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
By ε is $(-\infty)$-proper, we mean: $\quad \forall t \in \mathbb{R}, \quad \#\{\sigma \in \Sigma \mid \varepsilon(\sigma) \geqslant t\}<\infty$.

THEOREM 22.9. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Then: $\quad(\varepsilon$ is $(-\infty)$-proper $) \Leftrightarrow(-\varepsilon$ is ∞-proper $)$.
THEOREM 22.10. Let Σ be a finite set.
Then: $\quad \forall \varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \varepsilon$ is both ∞-proper and $(-\infty)$-proper.
THEOREM 22.11. Let Σ be a set.
Assume: $\quad \exists \varepsilon: \Sigma \rightarrow \mathbb{R}$ s.t. ε is both ∞-proper and $(-\infty)$-proper.
Then: $\quad \Sigma$ is finite.
The preceding three theorems are basic; we omit the proofs.

23. Boltzmann distributions on countable sets

In the next few sections,
we generalize our earlier work on Boltzmann distributions (§20)
to allow for a countably infinite set of states.

Recall (§8) the notations: $\quad \mathcal{M}_{\Theta}, \quad \mathcal{F} \mathcal{M}_{\Theta}^{\times}, \quad \mathcal{P}_{\Theta}, \quad \mathcal{N}(\mu)$.
DEFINITION 23.1. Let Σ be a countable set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \beta \in \mathbb{R}$.
Then $\widehat{B}_{\beta}^{\varepsilon} \in \mathcal{M}_{\Sigma}$ is defined by: $\forall \sigma \in \Sigma, \quad \widehat{B}_{\beta}^{\varepsilon}\{\sigma\}=e^{-\beta \cdot(\varepsilon(\sigma))}$.
DEFINITION 23.2. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \beta \in \mathbb{R}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Then:

$$
\Delta_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right] \in[0 ; \infty] .
$$

We have: $\quad \forall$ nonempty set $\Sigma, \quad \forall \varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \forall \beta \in \mathbb{R}, \quad \Delta_{\beta}^{\varepsilon}>0$.
Let Σ be a countable set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \beta \in \mathbb{R}$. Since $\Delta_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\widehat{B}_{\beta}^{\varepsilon}\{\sigma\}\right]$, we get: $\quad \Delta_{\beta}^{\varepsilon}=\widehat{B}_{\beta}^{\varepsilon}(\Sigma)$.

DEFINITION 23.3. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Then the Delta-finite-set of ε is: $\quad \mathrm{DF}_{\varepsilon}:=\left\{\beta \in \mathbb{R} \mid \Delta_{\beta}^{\varepsilon}<\infty\right\}$.

We have: $\quad \forall$ finite set $\Sigma, \forall \varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \forall \beta \in \mathbb{R}, \quad \Delta_{\beta}^{\varepsilon}<\infty$.
Then: $\quad \forall$ finite set $\Sigma, \forall \varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \mathrm{DF}_{\varepsilon}=\mathbb{R}$.

Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Since $\forall \beta \in \mathbb{R}, \quad \Delta_{-\beta}^{-\varepsilon}=\Delta_{\beta}^{\varepsilon}$, we get: $\mathrm{DF}_{-\varepsilon}=-\mathrm{DF}_{\varepsilon}$.
Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \xi \in \mathbb{R}$.
Since $\forall \beta \in \mathbb{R}, \quad \Delta_{\beta}^{\varepsilon+\xi}=e^{-\beta \cdot \xi} \cdot \Delta_{\beta}^{\varepsilon}, \quad$ we get: $\quad \mathrm{DF}_{\varepsilon+\xi}=\mathrm{DF}_{\varepsilon}$.
For any countable set Σ, for any $\varepsilon: \Sigma \rightarrow \mathbb{R}$, for any $\beta \in \mathbb{R}$,

$$
\begin{gathered}
\left(\Sigma \neq \varnothing \text { and } \beta \in \mathrm{DF}_{\varepsilon}\right) \Leftrightarrow \\
\left(0<\Delta_{\beta}^{\varepsilon}<\infty\right) \Leftrightarrow\left(0<\widehat{B}_{\beta}^{\varepsilon}(\Sigma)<\infty\right) \Leftrightarrow\left(\widehat{B}_{\beta}^{\varepsilon} \in \mathcal{F} \mathcal{M}_{\Sigma}^{\times}\right) .
\end{gathered}
$$

DEFINITION 23.4. Let Σ be a countable set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \beta \in \mathbb{R}$. Assume: $0<\Delta_{\beta}^{\varepsilon}<\infty$. Then: $\quad B_{\beta}^{\varepsilon}:=\mathcal{N}\left(\widehat{B}_{\beta}^{\varepsilon}\right) \in \mathcal{P}_{\Sigma}$.
Let Σ be a countable set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
If $\mathrm{DF}_{\varepsilon}=\varnothing$, then, for all $\beta \in \mathbb{R}$, since $\widehat{B}_{\beta}^{\varepsilon}(\Sigma)=\Delta_{\beta}^{\varepsilon}=\infty$, we see that $\widehat{B}_{\beta}^{\varepsilon}$ cannot be normalized, i.e., there is no B_{β}^{ε}.
So, if $\mathrm{DF}_{\varepsilon}=\varnothing$, then we have no Boltzmann distributions to study.
So, going forward, we generally focus on cases where $\mathrm{DF}_{\varepsilon} \neq \varnothing$.

Let Σ be a countable set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
In case $\Sigma=\varnothing, \quad \varepsilon$ is the empty function, and there is nothing to say.
In case Σ is nonempty and finite,
we already developed a satisfactory Boltzmann theory, in $\S 20$.
So, going forward, we generally focus on cases where Σ is infinite.

Recall (§2): the notations \mathbb{I}_{f} and $f^{*} A$.

Let Σ be an infinite set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$. Then: $\varepsilon^{*} \mathbb{R}=\Sigma$,
We have: $(-\infty ; 0] \cup[0 ; \infty)=\mathbb{R}$.
Since $\quad\left(\varepsilon^{*}(-\infty ; 0]\right) \bigcup\left(\varepsilon^{*}[0 ; \infty)\right)=\varepsilon^{*} \mathbb{R}=\Sigma$, we get either $\varepsilon^{*}(-\infty ; 0]$ is infinite or $\varepsilon^{*}[0 ; \infty)$ is infinite, and the Boltzmann theory splits into those two cases.
Also, by Theorem 23.7 below, if $\mathrm{DF}_{\varepsilon} \neq \varnothing$, then only one of the two cases can happen.
THEOREM 23.5. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\quad \varepsilon^{*}[0 ; \infty)$ is infinite. Then: $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.

Proof. Given $\beta \in \mathrm{DF}_{\varepsilon}$,
want: $\beta \in(0 ; \infty)$.
Since
$\mathrm{DF}_{\varepsilon} \subseteq \mathbb{R}$,
Want: $\beta>0$. Assume: $\beta \leqslant 0$.
we get: $\beta \in \mathbb{R}$.
Want: Contradiction.
For all $\sigma \in \Sigma, \quad$ let $\quad \varepsilon_{\sigma}:=\varepsilon(\sigma)$.
For all $\sigma \in \varepsilon^{*}[0 ; \infty)$, since $\varepsilon_{\sigma}=\varepsilon(\sigma) \in[0 ; \infty)$, we get: $\varepsilon_{\sigma} \geqslant 0$.
So, since $\beta \leqslant 0$, we get: $\quad \forall \sigma \in \varepsilon^{*}[0 ; \infty), \quad-\beta \cdot \varepsilon_{\sigma} \geqslant 0$.
Then: $\forall \sigma \in \varepsilon^{*}[0 ; \infty), \quad e^{-\beta \cdot \varepsilon_{\sigma}} \geqslant 1$.
So, since $\varepsilon^{*}[0 ; \infty)$ is infinite, we get: $\quad \sum_{\left.\sigma \in \varepsilon^{*}[0 ; \infty)\right]}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]=\infty$.
Since

$$
\begin{aligned}
\Delta_{\beta}^{\varepsilon}= & \sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right] \geqslant \sum_{\left.\sigma \in \varepsilon^{*}[0 ; \infty)\right]}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]=\infty \\
& \text { we get: } \quad \beta \notin \mathrm{DF}_{\varepsilon} . \quad \text { Contradiction. }
\end{aligned}
$$

THEOREM 23.6. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\quad \varepsilon^{*}(-\infty ; 0]$ is infinite. Then: $\mathrm{DF}_{\varepsilon} \subseteq(-\infty ; 0)$.
Proof. Since $(-\varepsilon)^{*}[0 ; \infty)=\varepsilon^{*}(-\infty ; 0]$, we get: $(-\varepsilon)^{*}[0 ; \infty)$ is infinite.
Then, by Theorem 23.5, we get: $\mathrm{DF}_{-\varepsilon} \subseteq(0 ; \infty)$.
Then $\mathrm{DF}_{\varepsilon}=-\mathrm{DF}_{-\varepsilon} \subseteq-(0 ; \infty)=(-\infty ; 0)$.
THEOREM 23.7. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\varepsilon^{*}(-\infty ; 0]$ and $\varepsilon^{*}[0 ; \infty)$ are both infinite. Then: $\mathrm{DF}_{\varepsilon}=\varnothing$.
Proof. By Theorem 23.5, we get: $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.
By Theorem 23.6, we get: $\mathrm{DF}_{\varepsilon} \subseteq(-\infty ; 0)$.
Since $\mathrm{DF}_{\varepsilon} \subseteq(-\infty ; 0) \bigcap(0 ; \infty)=\varnothing$, we get: $\mathrm{DF}_{\varepsilon}=\varnothing$.
THEOREM 23.8. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty) \neq \varnothing$. Then: ε is ∞-proper.
Proof. Given $t \in \mathbb{R}$, let $\Sigma_{0}:=\{\sigma \in \Sigma \mid \varepsilon(\sigma) \leqslant t\}$, want: $\# \Sigma_{0}<\infty$.
Since $\quad \mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty) \neq \varnothing, \quad$ choose $\beta \in \mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)$.
Then $\beta \in \mathrm{DF}_{\varepsilon}$ and $\beta \in[0 ; \infty)$.
Since $\beta \in \mathrm{DF}_{\varepsilon}$, we get: $\Delta_{\beta}^{\varepsilon}<\infty$. Then: $e^{\beta \cdot t} \cdot \Delta_{\beta}^{\varepsilon}<\infty$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$. Then: $\Delta_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]$.
By definition of Σ_{0}, we have: $\forall \sigma \in \Sigma_{0}, \quad \varepsilon(\sigma) \leqslant t$.
Since $\beta \in[0 ; \infty)$ and since $\forall \sigma \in \Sigma_{0}, \quad t \geqslant \varepsilon(\sigma)=\varepsilon_{\sigma}$, we get: $\quad \forall \sigma \in \Sigma_{0},-\beta \cdot t \leqslant \quad-\beta \cdot \varepsilon_{\sigma}$. Then: $\quad \forall \sigma \in \Sigma_{0}, \quad e^{-\beta \cdot t} \leqslant \quad e^{-\beta \cdot \varepsilon_{\sigma}}$.
Then: $\quad \# \Sigma_{0}=\sum_{\sigma \in \Sigma_{0}}[1]=e^{\beta \cdot t} \cdot \sum_{\sigma \in \Sigma_{0}}\left[e^{-\beta \cdot t}\right] \leqslant e^{\beta \cdot t} \cdot \sum_{\sigma \in \Sigma_{0}}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]$ $\leqslant e^{\beta \cdot t} \cdot \sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]=e^{\beta \cdot t} \cdot \Delta_{\beta}^{\varepsilon}<\infty$.
THEOREM 23.9. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\mathrm{DF}_{\varepsilon} \bigcap(-\infty ; 0] \neq \varnothing$. Then: ε is $(-\infty)$-proper.

Proof. Since

$$
-\left(\mathrm{DF}_{\varepsilon} \bigcap(-\infty ; 0]\right) \neq \varnothing,
$$

$$
\text { we get: } \quad \mathrm{DF}_{-\varepsilon} \cap[0 ; \infty) \neq \varnothing
$$

Then, by Theorem 23.8, $-\varepsilon$ is ∞-proper, and so ε is $(-\infty)$-proper.
THEOREM 23.10. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Then: Σ is countable.
Proof. Since $\left.\left(\mathrm{DF}_{\varepsilon} \bigcap(-\infty ; 0]\right)\right) \bigcup\left(\mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)\right)=\mathrm{DF}_{\varepsilon} \neq \varnothing$, it follows that: either $\mathrm{DF}_{\varepsilon} \bigcap(-\infty ; 0] \neq \varnothing$ or $\mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty) \neq \varnothing$.
Then, by Theorem 23.9 or Theorem 23.8,
we get: either ε is $(-\infty)$-proper or ε is ∞-proper.
Then: either $-\varepsilon$ is ∞-proper or ε is ∞-proper.
In either case, by Theorem 22.2, we get: Σ is countable.
THEOREM 23.11. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\mathrm{DF}_{\varepsilon} \bigcap(-\infty ; 0] \neq \varnothing \neq \mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)$. Then: Σ is finite.
Proof. By Theorem 23.8, we get: ε is ∞-proper.
By Theorem 23.9, we get: ε is $(-\infty)$-proper.
Then, by Theorem 22.11, we get: Σ is finite.
THEOREM 23.12. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\varepsilon^{*}[0 ; \infty)$ is infinite and $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Then: ε is ∞-proper.
Proof. By Theorem 23.5, we have: $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.
Since $\quad \mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty) \subseteq[0 ; \infty)$, we get: $\mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)=\mathrm{DF}_{\varepsilon}$.
Since $\mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)=\mathrm{DF}_{\varepsilon} \neq \varnothing$, by Theorem 23.8, we get: $\quad \varepsilon$ is ∞-proper.

THEOREM 23.13. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\varepsilon^{*}(-\infty ; 0]$ is infinite and $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Then: ε is $(-\infty)$-proper.
Proof. Since $(-\varepsilon)^{*}[0 ; \infty)=\varepsilon^{*}(-\infty ; 0]$, we get: $(-\varepsilon)^{*}[0 ; \infty)$ is infinite.
Since $\mathrm{DF}_{-\varepsilon}=-\mathrm{DF}_{\varepsilon}$, we get: $\mathrm{DF}_{-\varepsilon} \neq \varnothing$.
Then, by Theorem 23.12, $-\varepsilon$ is ∞-proper, so ε is $(-\infty)$-proper.
DEFINITION 23.14. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \beta \in \mathbb{R}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Then, \forall real $\rho \geqslant 0$, the ρ-exponent (β, ε)-absolute-sum is:

$$
\begin{aligned}
\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon} & :=\sum_{\sigma \in \Sigma}\left[\left|\varepsilon_{\sigma}\right|^{\rho} \cdot\left|e^{-\beta \cdot \varepsilon_{\sigma}}\right|\right] \in[0 ; \infty] . \\
\text { Also, } \forall \rho \in[0 . . \infty), \quad \text { if } & \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}<\infty,
\end{aligned}
$$

$$
\begin{aligned}
& \text { then the } \rho \text {-exponent }(\beta, \varepsilon) \text {-sum } \text { is: } \\
& \mathrm{X}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right] \in[0 ; \infty] .
\end{aligned}
$$

Recall our convention (§2): $0^{0}=1$. Then: $\quad \overline{\mathrm{X}}^{0} \mathrm{~S}_{\beta}^{\varepsilon}=\mathrm{X}^{0} \mathrm{~S}_{\beta}^{\varepsilon}=\Delta_{\beta}^{\varepsilon}$. Also, if $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}<\infty$, then, by subadditivity of absolute value,

$$
\text { we get: } \quad\left|\mathrm{X}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}\right| \leqslant \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon} .
$$

Also, if $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty$, then $\mathrm{X}^{1} \mathrm{~S}_{\beta}^{\varepsilon}=\Gamma_{\beta}^{\varepsilon}$.
THEOREM 23.15. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\quad \mathrm{DF}_{\varepsilon} \neq \varnothing$ and \mathbb{I}_{ε} is bounded below. Let $\rho \geqslant 0$ be real.
Let $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$ and let $\gamma>\beta_{0}$ be real. Then: $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\gamma}^{\varepsilon}<\infty$.
We cannot replace " $\gamma>\beta$ " with " $\gamma \geqslant \beta$ ", see Theorem 23.18 below.
Proof. Since $\gamma>\beta_{0}=\inf \mathrm{DF}_{\varepsilon}$, choose $\beta \in \mathrm{DF}_{\varepsilon}$ s.t. $\gamma>\beta$.
Since \mathbb{I}_{ε} is bounded below, choose $t_{0} \in \mathbb{R}$ s.t. $\forall \sigma \in \Sigma, \varepsilon(\sigma) \geqslant t_{0}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$. Then: $\forall \sigma \in \Sigma, \varepsilon_{\sigma} \geqslant t_{0}$.
Let $\delta:=\gamma-\beta$. Then $\delta>0$, so, as $t \rightarrow \infty,|t|^{\rho} \cdot e^{-\delta \cdot t} \rightarrow 0$.
So, since $\quad t \mapsto|t|^{\rho} \cdot e^{-\delta \cdot t}:\left[t_{0} ; \infty\right) \rightarrow \mathbb{R}$ is continuous, by the Extreme Value Theorem, choose $M \in \mathbb{R}$ s.t.,

$$
\forall \text { real } t \geqslant t_{0}, \quad|t|^{\rho} \cdot e^{-\delta \cdot t} \leqslant M
$$

Then: $\quad \forall \sigma \in \Sigma, \quad\left|\varepsilon_{\sigma}\right|^{\rho} \cdot e^{-\delta \cdot \varepsilon_{\sigma}} \leqslant M$.
By definition of $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\gamma}^{\varepsilon}$, we get: $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\gamma}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\left|\varepsilon_{\sigma}\right|^{\rho} \cdot e^{-\gamma \cdot \varepsilon_{\sigma}}\right]$.
So, since $-\gamma=-\delta-\beta$, we get: $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\gamma}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\left(\left|\varepsilon_{\sigma}\right|^{\rho} \cdot e^{-\delta \cdot \varepsilon_{\sigma}}\right) \cdot\left(e^{-\beta \cdot \varepsilon_{\sigma}}\right)\right]$.
Since $\beta \in \mathrm{DF}_{\varepsilon}$, we get: $\Delta_{\beta}^{\varepsilon}<\infty$. Then: $M \cdot \Delta_{\beta}^{\varepsilon}<\infty$.
Then: $\quad \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\gamma}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\left(\left|\varepsilon_{\sigma}\right|^{\rho} \cdot e^{-\delta \cdot \varepsilon_{\sigma}}\right) \cdot\left(e^{-\beta \cdot \varepsilon_{\sigma}}\right)\right]$

$$
\leqslant \sum_{\sigma \in \Sigma}\left[\begin{array}{lll}
& M & \left.\cdot\left(e^{-\beta \cdot \varepsilon_{\sigma}}\right)\right]
\end{array}\right.
$$

$$
=\bar{M} \cdot\left(\sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]\right)=M \cdot \Delta_{\beta}^{\varepsilon}<\infty
$$

THEOREM 23.16. Let Σ be a set, $\quad \varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: \mathbb{I}_{ε} is bounded below and $\mathrm{DF}_{\varepsilon} \neq \varnothing$.
Let $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$ and let $\gamma>\beta$ be real. Then: $\gamma \in \mathrm{DF}_{\varepsilon}$.
Proof. By Theorem 23.15, we have: $\overline{\mathrm{X}}^{0} \mathrm{~S}_{\gamma}^{\varepsilon}<\infty$.

$$
\text { Since } \quad \Delta_{\gamma}^{\varepsilon}=\overline{\mathrm{X}}^{0} \mathrm{~S}_{\gamma}^{\varepsilon}<\infty, \text { we get: } \gamma \in \mathrm{DF}_{\varepsilon}
$$

THEOREM 23.17. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \beta, \rho \in \mathbb{R}$. Assume: $\rho \geqslant 0, \quad \varepsilon$ is ∞-proper, $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}<\infty$. Then: $\beta \in \mathrm{DF}_{\varepsilon}$.

The assumption of ∞-properness is needed, see Theorem 23.19 below.

Proof. Want: $\Delta_{\beta}^{\varepsilon}<\infty$.
Let $F:=\{\sigma \in \Sigma \mid \varepsilon(\sigma) \leqslant 1\}$. Since ε is ∞-proper, we get: F is finite.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$. Then: $F=\left\{\sigma \in \Sigma \mid \varepsilon_{\sigma} \leqslant 1\right\}$.
Since F is finite, we get: $\quad \sum_{\sigma \in F}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]<\infty$.
So, since $\quad \Delta_{\beta}^{\varepsilon}=\left(\sum_{\sigma \in F}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]\right)+\left(\sum_{\sigma \in \Sigma \backslash F}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]\right)$,

$$
\text { it suffices to show: } \quad \sum_{\sigma \in \Sigma \backslash F}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]<\infty \text {. }
$$

Since

$$
F=\left\{\sigma \in \Sigma \mid \varepsilon_{\sigma} \leqslant 1\right\}
$$

we get: $\forall \sigma \in \Sigma \backslash F$,

$$
\varepsilon_{\sigma}>1
$$

Then: $\forall \sigma \in \Sigma \backslash F$,

$$
\text { since } \varepsilon_{\sigma}>1>0,
$$

we get: $\quad \varepsilon_{\sigma}=\left|\varepsilon_{\sigma}\right|$.
Since $\forall \sigma \in \Sigma \backslash F, \quad 1<\varepsilon_{\sigma}=\left|\varepsilon_{\sigma}\right|$,
we get: $\forall \sigma \in \Sigma \backslash F, \quad 1^{\rho} \quad \leqslant \quad\left|\varepsilon_{\sigma}\right|^{\rho}$.
Then: $\forall \sigma \in \Sigma \backslash F, \quad \quad 1^{\rho} \cdot e^{-\beta \cdot \varepsilon_{\sigma}} \leqslant \quad\left|\varepsilon_{\sigma}\right|^{\rho} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}$.
Then: $\quad \sum_{\sigma \in \Sigma \backslash F}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]=\sum_{\sigma \in \Sigma \backslash F}\left[1^{\rho} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right] \leqslant \sum_{\sigma \in \Sigma \backslash F}\left[\left|\varepsilon_{\sigma}\right|^{\rho} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]$

$$
\leqslant \sum_{\sigma \in \Sigma}\left[\left|\varepsilon_{\sigma}\right|^{\rho} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]=\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}<\infty .
$$

THEOREM 23.18. Let $\Sigma:=[3 . . \infty)$.
Define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by: $\quad \forall k \in \Sigma, \quad \varepsilon(k)=(\ln k)+2 \cdot(\ln (\ln k))$.
Let $\beta:=1, \quad \rho:=1$. Then: $\beta \in \mathrm{DF}_{\varepsilon}$ and $\quad \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}=\infty$.
Proof. For all $k \in \Sigma, \quad$ let $\varepsilon_{k}:=\quad \varepsilon(k)$.
Then: $\quad \forall k \in[3 . . \infty), \quad \varepsilon_{k}=(\ln k)+2 \cdot(\ln (\ln k))$.
Since $\Delta_{\beta}^{\varepsilon}=\sum_{k \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{k}}\right]=\sum_{k \in \Sigma}\left[e^{-\varepsilon_{k}}\right]=\sum_{k=3}^{\infty}\left[e^{-\varepsilon_{k}}\right]$

$$
=\sum_{k=3}^{\infty}\left[\frac{1}{e^{\varepsilon_{k}}}\right]=\sum_{k=3}^{\infty}\left[\frac{1}{e^{(\ln k)+2(\ln (\ln k))}}\right]=\sum_{k=3}^{\infty}\left[\frac{1}{k \cdot(\ln k)^{2}}\right]<\infty,
$$

we get: $\beta \in \mathrm{DF}_{\varepsilon}$. It remains only to show: $\quad \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}=\infty$.
We have: $\quad \forall k \in[3 . . \infty), \quad k>e, \quad$ so $\ln k>1, \quad$ so $\ln (\ln k)>0$.
For all $k \in[3 . . \infty)$, since $\varepsilon_{k}=(\ln k)+2 \cdot(\ln (\ln k))>1+2 \cdot 0=1>0$,
Since $\quad \bar{X}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}=\overline{\mathrm{X}}^{1} \mathrm{~S}_{1}^{\varepsilon}=\sum_{k \in \Sigma}\left[\left|\varepsilon_{k}\right| \cdot e^{-\varepsilon_{k}}\right]$
$=\sum_{k=3}^{\infty}\left[\left|\varepsilon_{k}\right| \cdot e^{-\varepsilon_{k}}\right]$
$=\sum_{\infty=3}^{\infty}\left[\varepsilon_{k} \cdot e^{-\varepsilon_{k}}\right]$
$=\sum_{k=3}^{\infty}\left[\frac{\varepsilon_{k}}{e^{\varepsilon_{k}}}\right]=\sum_{k=3}^{\infty}\left[\frac{(\ln k)+2 \cdot(\ln (\ln k))}{e^{(\ln k)+2(\ln (\ln k))}}\right]$
$=\sum_{k=3}^{\infty}\left[\frac{(\ln k)+2 \cdot(\ln (\ln k))}{k \cdot(\ln k)^{2}}\right]$
$\geqslant \sum_{k=3}^{\infty}\left[\frac{\ln k}{k \cdot(\ln k)^{2}}\right]$

$$
=\sum_{k=3}^{\infty}\left[\frac{1}{k \cdot(\ln k)}\right]=\infty
$$

we get: $\quad \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}=\infty$.
THEOREM 23.19. Let $\Sigma:=\mathbb{N}$.
Define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by: $\quad \forall k \in \Sigma, \quad \varepsilon(k)=1 / k^{2}$.
Let $\beta:=1, \quad \rho:=1$. Then: $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}<\infty$ and $\beta \notin \mathrm{DF}_{\varepsilon}$.
Proof. For all $k \in \Sigma$, let $\varepsilon_{k}:=\varepsilon(k)$. Then: $\forall k \in \Sigma, \varepsilon_{k}=1 / k^{2}$.
We have: $\quad \forall k \in \Sigma$, both $\left|\varepsilon_{k}\right|=1 / k^{2} \quad$ and $\quad-\varepsilon_{k}=-1 / k^{2}$.
Since $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}=\overline{\mathrm{X}}^{1} \mathrm{~S}_{1}^{\varepsilon}=\sum_{k \in \Sigma}\left[\left|\varepsilon_{k}\right| \cdot e^{-\varepsilon_{k}}\right]$

$$
\begin{aligned}
& =\sum_{k=1}^{\infty}\left[\left(1 / k^{2}\right) \cdot e^{-1 / k^{2}}\right] \\
& \leqslant \sum_{k=1}^{\infty}\left[\left(1 / k^{2}\right) \cdot 1\right] \\
& =\sum_{k=1}^{\infty}\left[1 / k^{2}\right]<\infty,
\end{aligned}
$$

it remains only to show: $\beta \notin \mathrm{DF}_{\varepsilon} \quad$ Want: $\Delta_{\beta}^{\varepsilon}=\infty$.
We have: as $k \rightarrow \infty, \quad e^{-1 / k^{2}} \rightarrow 1$. Then: $\quad \sum_{k=1}^{\infty}\left[e^{-1 / k^{2}}\right]=\infty$.
Then: $\Delta_{\beta}^{\varepsilon}=\Delta_{1}^{\varepsilon}=\sum_{k \in \Sigma}\left[e^{-\varepsilon_{k}}\right]=\sum_{k=1}^{\infty}\left[e^{-\varepsilon_{k}}\right]=\sum_{k=1}^{\infty}\left[e^{-1 / k^{2}}\right]=\infty$.
THEOREM 23.20. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\quad \varepsilon^{*}[0 ; \infty)$ is infinite and $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Let $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$.
Then: $0 \leqslant \beta_{0}<\infty$ and $\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$.
Proof. By Theorem 23.5, $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$. Then: $\inf \mathrm{DF}_{\varepsilon} \geqslant \inf (0 ; \infty)$.

$$
\text { Since } \mathrm{DF}_{\varepsilon} \neq \varnothing, \quad \text { we get: } \inf \mathrm{DF}_{\varepsilon}<\infty
$$

Since $\beta_{0}=\inf \mathrm{DF}_{\varepsilon} \geqslant \inf (0 ; \infty)=0$ and since $\beta_{0}=\inf \mathrm{DF}_{\varepsilon}<\infty$,
we get: $0 \leqslant \beta_{0}<\infty$.
It remains to show: $\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$.
Given $\gamma \in\left(\beta_{0} ; \infty\right)$, want: $\gamma \in \mathrm{DF}_{\varepsilon}$.
By Theorem 23.12, ε is ∞-proper.
Then, by Theorem 22.4, we have: \mathbb{I}_{ε} is bounded below.
Since $\gamma>\beta_{0}=\inf \mathrm{DF}_{\varepsilon}, \quad$ choose $\beta \in \mathrm{DF}_{\varepsilon}$ s.t. $\gamma>\beta$.
Then, by Theorem 23.16, we get: $\gamma \in \mathrm{DF}_{\varepsilon}$.
THEOREM 23.21. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\quad \varepsilon^{*}[0 ; \infty)$ is infinite and $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Let $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$.
Then either $\left(\mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right)\right.$ and $\left.0<\beta_{0}<\infty\right)$

$$
\text { or } \quad\left(\mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right) \text { and } 0 \leqslant \beta_{0}<\infty\right) \text {. }
$$

Proof. By Theorem 23.20, we get: $0 \leqslant \beta_{0}<\infty$ and $\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$.
Since $\beta_{0}=\inf \mathrm{DF}_{\varepsilon}, \quad$ we get: $\quad \mathrm{DF}_{\varepsilon} \subseteq\left[\beta_{0} ; \infty\right)$.
By Theorem 23.5,
we get: $\quad \mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.

Case 1: $\beta_{0} \in \mathrm{DF}_{\varepsilon}$. Want: $\mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right)$ and $0<\beta_{0}<\infty$.
Recall: $\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$ and $\mathrm{DF}_{\varepsilon} \subseteq\left[\beta_{0} ; \infty\right)$ and $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.
Since $\beta_{0} \in \mathrm{DF}_{\varepsilon} \quad$ and $\quad\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$,
we get: $\quad\left\{\beta_{0}\right\} \bigcup\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$.
Since $\quad\left[\beta_{0} ; \infty\right)=\left\{\beta_{0}\right\} \bigcup\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$ and since $\mathrm{DF}_{\varepsilon} \subseteq\left[\beta_{0} ; \infty\right)$, we get: $\mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right)$.
It remains only to show: $\quad 0<\beta_{0}<\infty$.
Recall: $0 \leqslant \beta_{0}<\infty$. Then: $\beta_{0}<\infty$.
It remains only to show: $0<\beta_{0}$.
Since $\beta_{0} \in\left[\beta_{0} ; \infty\right)=\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$, we get: $0<\beta_{0}$.
End of Case 1.
Case 2: $\quad \beta_{0} \notin \mathrm{DF}_{\varepsilon}$. Want: $\mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$ and $0 \leqslant \beta_{0}<\infty$. Recall: $\quad 0 \leqslant \beta_{0}<\infty$.
It remains only to show: $\quad \mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$.
Recall: $\quad \mathrm{DF}_{\varepsilon} \subseteq\left[\beta_{0} ; \infty\right)$,
Since $\quad \beta_{0} \notin \mathrm{DF}_{\varepsilon}$ and $\mathrm{DF}_{\varepsilon} \subseteq\left[\beta_{0} ; \infty\right)$,
we get: $\quad \mathrm{DF}_{\varepsilon} \subseteq\left[\beta_{0} ; \infty\right) \backslash\left\{\beta_{0}\right\} . \quad$ Recall: $\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$.
Since $\quad \mathrm{DF}_{\varepsilon} \subseteq\left[\beta_{0} ; \infty\right) \backslash\left\{\beta_{0}\right\}=\left(\beta_{0} ; \infty\right)$ and $\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$, we get: $\quad \mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$.
End of Case 2.

Replacing ε by $-\varepsilon$ in Theorem 23.21 yields:

THEOREM 23.22. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\varepsilon^{*}(-\infty ; 0]$ is infinite and $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Let $\beta_{0}:=-\sup \mathrm{DF}_{\varepsilon}$.
Then one of the following holds:

$$
\begin{array}{llll}
\text { Either } & \left(\mathrm{DF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right]\right. & \text { and } & \left.0<\beta_{0}<\infty\right) \\
\text { or } & \left(\mathrm{DF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right)\right. & \text { and } \left.\quad 0 \leqslant \beta_{0}<\infty\right) .
\end{array}
$$

THEOREM 23.23. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$. Assume: $\mathrm{DF}_{\varepsilon} \neq \varnothing$.
Then one of the following is true:
(i) $\mathrm{DF}_{\varepsilon}=\mathbb{R}$.
(ii) \exists real $\beta_{0} \geqslant 0$ s.t. $\mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$.
(iii) \exists real $\beta_{0}>0$ s.t. $\mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right)$.
(iv) \exists real $\beta_{0} \geqslant 0$ s.t. $\mathrm{DF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right)$.
(v) \exists real $\beta_{0}>0$ s.t. $\mathrm{DF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right]$.

Proof. Since $\varepsilon: \Sigma \rightarrow \mathbb{R}$, we get: $\quad \varepsilon^{*} \mathbb{R}=\Sigma$.
Since $(-\infty ; 0] \bigcup[0 ; \infty)=\mathbb{R}$, we get: $\varepsilon^{*}(-\infty ; 0] \bigcup \varepsilon^{*}[0 ; \infty)=\varepsilon^{*} \mathbb{R}$.
In case $\# \Sigma<\infty$, we get: (i) holds. We therefore assume $\# \Sigma=\infty$.
Want: (ii) or (iii) or (iv) or (v) holds.
Because $\quad \varepsilon^{*}(-\infty ; 0] \bigcup \varepsilon^{*}[0 ; \infty)=\varepsilon^{*} \mathbb{R}=\Sigma$, and because Σ is infinite, we get:
either $\varepsilon^{*}(-\infty ; 0]$ is infinite or $\varepsilon^{*}[0 ; \infty)$ is infinite.
Then, by Theorem 23.22 or Theorem 23.21, we get:
either (iv) or (v) holds or (ii) or (iii) holds.
THEOREM 23.24. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Then all of the following are true:
(i) $\left(\mathrm{DF}_{\varepsilon}=\mathbb{R}\right) \Rightarrow(\Sigma$ is finite $)$
$\Rightarrow(\varepsilon$ is both ∞-proper and $(-\infty)$-proper $)$.
(ii) $\left(\exists\right.$ real $\beta_{0} \geqslant 0$ s.t. $\mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right) \quad \Rightarrow(\varepsilon$ is ∞-proper $)$.
(iii) $\left(\exists\right.$ real $\beta_{0}>0$ s.t. $\left.\mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right) \quad\right) \Rightarrow(\varepsilon$ is ∞-proper $)$.
(iv) $\left(\exists\right.$ real $\beta_{0} \geqslant 0$ s.t. $\left.\mathrm{DF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right)\right) \Rightarrow(\varepsilon$ is $(-\infty)$-proper $)$.
(v) $\left(\exists\right.$ real $\beta_{0}>0$ s.t. $\left.\mathrm{DF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right]\right) \Rightarrow(\varepsilon$ is $(-\infty)$-proper $)$.

Proof. Proof of (i): By Theorem 23.11, ($\left.\mathrm{DF}_{\varepsilon}=\mathbb{R}\right) \Rightarrow(\Sigma$ is finite $)$.
It remains to show:
$(\Sigma$ is finite $) \Rightarrow(\varepsilon$ is both ∞-proper and $(-\infty)$-proper $)$.
By Theorem 22.10,
$(\Sigma$ is finite $) \Rightarrow(\varepsilon$ is both ∞-proper and $(-\infty)$-proper $)$.
End of proof of (i).
Proof of (ii) and (iii):
By Theorem 23.8, we have:

$$
\left(\exists \text { real } \beta_{0} \geqslant 0 \text { s.t. } \mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)\right) \Rightarrow(\varepsilon \text { is } \infty \text {-proper })
$$

and $\left(\exists\right.$ real $\beta_{0}>0$ s.t. $\left.\mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right)\right) \Rightarrow(\varepsilon$ is ∞-proper $)$.
End of proof of (ii) and iii).
Proof of (iv) and (v):
By Theorem 23.9, we have:
$\left(\exists\right.$ real $\beta_{0} \geqslant 0$ s.t. $\left.\mathrm{DF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right)\right) \Rightarrow(\varepsilon$ is $(-\infty)$-proper $)$
and $\left(\exists\right.$ real $\beta_{0}>0$ s.t. $\left.\mathrm{DF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right]\right) \Rightarrow(\varepsilon$ is $(-\infty)$-proper $)$.
End of proof of (iv) and (v).
Below, after each of
Theorem 23.27, Theorem 23.28, Theorem 23.29,
we give examples of $\quad \infty$-proper $\varepsilon: \Sigma \rightarrow \mathbb{Z}$ such that:

$$
\mathrm{DF}_{\varepsilon}=\varnothing, \quad \mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right), \quad \mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right), \quad \text { respectively. }
$$

It follows that: $\quad-\varepsilon$ is $(-\infty)$-proper and $\mathrm{DF}_{-\varepsilon}=\varnothing, \mathrm{DF}_{-\varepsilon}=\left(-\infty ;-\beta_{0}\right), \mathrm{DF}_{-\varepsilon}=\left(-\infty ;-\beta_{0}\right]$, respectively.

THEOREM 23.25. Let $n_{1}, n_{2}, \ldots \in[0 . . \infty)$.
Let $\Sigma:=\left\{(k, j) \in \mathbb{N} \times \mathbb{N} \mid j \leqslant n_{k}\right\}$.
Define $\varepsilon: \Sigma \rightarrow[0 . . \infty)$ by: $\quad \forall(k, j) \in \Sigma, \quad \varepsilon(k, j)=k-1$.
Then: $\quad \forall k \in \mathbb{N}, \quad \#\left(\varepsilon^{*}[k-1 ; k)\right)=n_{k}$.
Proof. Given $k \in \mathbb{N}$, want: $\#\left(\varepsilon^{*}[k-1 ; k)\right)=n_{k}$.
Since $\varepsilon^{*}[k-1 ; k)=\{(\ell, j) \in \Sigma \mid \varepsilon(\ell, j) \in[k-1 ; k)\}$
$=\{(\ell, j) \in \Sigma \mid \ell-1 \in[k-1 ; k)\}$
$=\{(\ell, j) \in \Sigma \mid \ell-1=k-1\}$
$=\{(\ell, j) \in \Sigma \mid \quad \ell=k\}$
$=\left\{(\ell, j) \in \mathbb{N} \times \mathbb{N} \mid \ell=k, j \leqslant n_{\ell}\right\}$
$=\left\{(\ell, j) \in \mathbb{N} \times \mathbb{N} \mid \ell=k, j \leqslant n_{k}\right\}$
$=\left\{(k, 1), \ldots,\left(k, n_{k}\right)\right\}$,
we get: $\#\left(\varepsilon^{*}[k-1 ; k)\right)=n_{k}$.
THEOREM 23.26. Let Σ be a set, $\varepsilon: \Sigma \rightarrow[0 ; \infty)$.
For all $k \in \mathbb{N}$, let $n_{k}:=\#\left(\varepsilon^{*}[k-1 ; k)\right)$.
Let $\beta \in[0 ; \infty)$. Then: $\left(\beta \in \mathrm{DF}_{\varepsilon}\right) \Leftrightarrow\left(\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty\right)$.
Proof. For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Proof of \Rightarrow : Assume: $\beta \in \mathrm{DF}_{\varepsilon}$. Want: $\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty$.
Since $\beta \in \mathrm{DF}_{\varepsilon}$, we get: $\Delta_{\beta}^{\varepsilon}<\infty$.
Because Σ is the disjoint union, over $k=1$ to ∞, of $\varepsilon^{*}[k-1 ; k)$,
we get: $\quad \sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]=\sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]$.
For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^{*}[k-1 ; k)$, since $\varepsilon_{\sigma}=\varepsilon(\sigma) \in[k-1 ; k)$, we have: $\quad k>\quad \varepsilon_{\sigma}$.
Since $\beta \in[0 ; \infty)$, we get: $-\beta \leqslant 0$.
For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^{*}[k-1 ; k)$, we have: $-\beta \cdot k \leqslant-\beta \cdot \varepsilon_{\sigma}$.
For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^{*}[k-1 ; k)$, we have: $e^{-\beta \cdot k} \leqslant e^{-\beta \cdot \varepsilon_{\sigma}}$.
Then: $\forall k \in \mathbb{N}, \quad \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot k}\right] \leqslant \quad \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]$.
Also, $\quad \forall k \in \mathbb{N}, \quad \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot k}\right]=n_{k} e^{-\beta \cdot k}$.
Then: $\forall k \in \mathbb{N}, \quad \quad n_{k} e^{-\beta \cdot k} \leqslant \quad \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]$.
Then:

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right] & \leqslant \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right] \\
& =\sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]=\Delta_{\beta}^{\varepsilon}<\infty .
\end{aligned}
$$

End of proof of \Rightarrow.
Proof of $\Leftarrow: \quad$ Assume: $\quad \sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty$. Want: $\beta \in \mathrm{DF}_{\varepsilon}$. Because Σ is the disjoint union, over $k=1$ to ∞, of $\varepsilon^{*}[k-1 ; k)$, we get: $\quad \sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)}\right]=\sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)}\right]$.
For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^{*}[k-1 ; k)$, since $\varepsilon_{\sigma}=\varepsilon(\sigma) \in[k-1 ; k)$, we have: $\quad \varepsilon_{\sigma} \geqslant k-1$.
For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^{*}[k-1 ; k)$, we have: $\quad \varepsilon_{\sigma}+1 \geqslant k$.
Since $\beta \in[0 ; \infty)$, we get: $-\beta \leqslant 0$.
For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^{*}[k-1 ; k)$, we have: $-\beta \cdot\left(\varepsilon_{\sigma}+1\right) \leqslant-\beta \cdot k$.
For all $k \in \mathbb{N}$, for all $\sigma \in \varepsilon^{*}[k-1 ; k)$, we have: $\quad e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)} \leqslant e^{-\beta \cdot k}$.
Then: $\forall k \in \mathbb{N}, \quad \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)}\right] \leqslant \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot k}\right]$.
Also, $\forall k \in \mathbb{N}$,

$$
n_{k} e^{-\beta \cdot k}=\sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot k}\right] .
$$

Then: $\forall k \in \mathbb{N}, \quad \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)}\right] \leqslant \quad n_{k} e^{-\beta \cdot k}$.
Then: $\quad \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)}\right] \leqslant \quad \sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]$.
By assumption, $\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty$. Then $e^{\beta} \cdot \sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty$.
Since $\Delta_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\quad e^{-\beta \cdot \varepsilon_{\sigma}}\right]$
$=\sum_{\sigma \in \Sigma}\left[\quad e^{\beta} \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)}\right]$
$=e^{\beta} \cdot \sum_{\sigma \in \Sigma}\left[\quad e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)}\right]$
$=e^{\beta} \cdot \sum_{k=1}^{\infty} \sum_{\sigma \in \varepsilon^{*}[k-1 ; k)}\left[e^{-\beta \cdot\left(\varepsilon_{\sigma}+1\right)}\right]$
$\leqslant e^{\beta} \cdot \sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty, \quad$ we get: $\beta \in \mathrm{DF}_{\varepsilon}$.
End of proof of \Leftarrow.
THEOREM 23.27. Let Σ be a set, $\varepsilon: \Sigma \rightarrow[0 ; \infty)$.
For all $k \in \mathbb{N}$, let $n_{k}:=\#\left(\varepsilon^{*}[k-1 ; k)\right)$.
Assume: $\quad \forall k \in \mathbb{N}, \quad n_{k} \geqslant e^{k^{2}}$. Then: $\quad \mathrm{DF}_{\varepsilon}=\varnothing$.
Proof. Since $\forall k \in \mathbb{N}, n_{k} \geqslant e^{k^{2}}>1$, we get: $\sum_{k=1}^{\infty} n_{k}=\infty$.
Since $\#\left(\varepsilon^{*}[0 ; \infty)\right)=\sum_{k=1}^{\infty}\left[\#\left(\varepsilon^{*}[k-1 ; k)\right)\right]=\sum_{k=1}^{\infty} n_{k}=\infty$, it follows, from Theorem 23.5, that: $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.
It therefore suffices to show: $\forall \beta \in(0 ; \infty), \quad \beta \notin \mathrm{DF}_{\varepsilon}$.
Given $\beta \in(0 ; \infty), \quad$ want: $\beta \notin \mathrm{DF}_{\varepsilon}$.
Since, as $k \rightarrow \infty, e^{k^{2}-\beta \cdot k} \rightarrow \infty$, we get: $\quad \sum_{k=1}^{\infty}\left[e^{k^{2}-\beta \cdot k}\right]=\infty$.
Since $\quad \sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right] \geqslant \sum_{k=1}^{\infty}\left[e^{k^{2}} e^{-\beta \cdot k}\right]=\sum_{k=1}^{\infty}\left[e^{k^{2}-\beta \cdot k}\right]=\infty$, and since $\beta \in(0 ; \infty) \subseteq[0 ; \infty)$, by Theorem 23.26, we get: $\beta \notin \mathrm{DF}_{\varepsilon}$.

Recall $(\S 2): \quad \forall t \in \mathbb{R}, \quad\lfloor t\rfloor$ denotes the floor of t.

Example: For all $k \in \mathbb{N}$, let $n_{k}:=\left\lfloor e^{k^{2}}+1\right\rfloor$.
Then: $\forall k \in \mathbb{N}, n_{k} \geqslant e^{k^{2}}$. Let $\Sigma:=\left\{(k, j) \in \mathbb{N} \times \mathbb{N} \mid j \leqslant n_{k}\right\}$.
Define $\varepsilon: \Sigma \rightarrow[0 . . \infty)$ by: $\forall(k, j) \in \Sigma, \quad \varepsilon(k, j)=k-1$.
Then, by Theorem 23.25 and Theorem 23.27, we get: $\mathrm{DF}_{\varepsilon}=\varnothing$.
THEOREM 23.28. Let Σ be a set, $\varepsilon: \Sigma \rightarrow[0 ; \infty)$.
For all $k \in \mathbb{N}$, let $n_{k}:=\#\left(\varepsilon^{*}[k-1 ; k)\right)$. Let $\beta_{0} \in[0 ; \infty)$.
Assume: \quad as $k \rightarrow \infty, \quad n_{k} e^{-\beta_{0} \cdot k} \rightarrow 1$. Then: $\quad \mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$.
Proof. Since as $k \rightarrow \infty, n_{k} e^{-\beta_{0} \cdot k} \rightarrow 1$, we get:

$$
\#\left\{k \in \mathbb{N} \mid n_{k} e^{-\beta_{0} \cdot k}=0\right\}<\infty .
$$

Then: $\quad \#\left\{k \in \mathbb{N} \mid n_{k}=0\right\}<\infty$.
Then $\quad \#\left\{k \in \mathbb{N} \mid n_{k} \geqslant 1\right\}=\infty, \quad$ and so $\quad \sum_{k=1}^{\infty} n_{k}=\infty$.
Since $\quad \#\left(\varepsilon^{*}[0 ; \infty)\right)=\sum_{k=1}^{\infty}\left[\#\left(\varepsilon^{*}[k-1 ; k)\right)\right]=\sum_{k=1}^{\infty} n_{k}=\infty$, it follows, from Theorem 23.5, that: $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.
Since $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty) \subseteq[0 ; \infty)$, we get: $\quad \mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)=\mathrm{DF}_{\varepsilon}$.
Since $\beta_{0} \in[0 ; \infty)$, we get: $\left(\beta_{0} ; \infty\right) \subseteq(0 ; \infty)$.
Since $\left(\beta_{0} ; \infty\right) \subseteq(0 ; \infty) \subseteq[0 ; \infty)$, we get: $\left(\beta_{0} ; \infty\right) \bigcap[0 ; \infty)=\left(\beta_{0} ; \infty\right)$.
We have: $\forall \beta \in \mathbb{R}, \forall k \in \mathbb{N}, \quad\left[n_{k} e^{-\beta \cdot k}\right] /\left[e^{-\left(\beta-\beta_{0}\right) \cdot k}\right]=n_{k} e^{-\beta_{0} \cdot k}$.
By hypothesis, as $k \rightarrow \infty$, $\quad n_{k} e^{-\beta_{0} \cdot k} \rightarrow 1$.
Then: $\forall \beta \in \mathbb{R}, \quad$ as $k \rightarrow \infty, \quad\left[n_{k} e^{-\beta \cdot k}\right] /\left[e^{-\left(\beta-\beta_{0}\right) \cdot k}\right] \rightarrow 1$.
Then: $\forall \beta \in \mathbb{R}, \quad\left(\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty\right) \Leftrightarrow\left(\sum_{k=1}^{\infty}\left[e^{-\left(\beta-\beta_{0}\right) \cdot k}\right]<\infty\right)$.
Also, $\quad \forall \beta \in \mathbb{R}, \quad\left(\beta>\beta_{0}\right) \Leftrightarrow\left(\sum_{k=1}^{\infty}\left[e^{-\left(\beta-\beta_{0}\right) \cdot k}\right]<\infty\right)$.
Then: $\forall \beta \in \mathbb{R}, \quad\left(\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty\right) \Leftrightarrow\left(\beta>\beta_{0}\right)$.
Then, by Theorem 23.26,

$$
\forall \beta \in[0 ; \infty), \quad\left(\beta \in \mathrm{DF}_{\varepsilon}\right) \Leftrightarrow\left(\beta>\beta_{0}\right)
$$

Then $\quad \mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)=\left(\beta_{0} ; \infty\right) \bigcap[0 ; \infty)$.
Then $\mathrm{DF}_{\varepsilon}=\mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)=\left(\beta_{0} ; \infty\right) \bigcap[0 ; \infty)=\left(\beta_{0} ; \infty\right)$.
Example: Let $\beta_{0} \in[0 ; \infty)$. For all $k \in \mathbb{N}$, let $n_{k}:=\left\lfloor e^{\beta_{0} \cdot k}\right\rfloor$.
Then: as $k \rightarrow \infty, \quad n_{k} e^{-\beta_{0} \cdot k} \rightarrow 1$. Let $\Sigma:=\left\{(k, j) \in \mathbb{N} \times \mathbb{N} \mid j \leqslant n_{k}\right\}$.
Define $\varepsilon: \Sigma \rightarrow[0 . . \infty)$ by: $\forall(k, j) \in \Sigma, \quad \varepsilon(k, j)=k-1$.
Then, by Theorem 23.25 and Theorem 23.28, we get: $\operatorname{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$.
THEOREM 23.29. Let Σ be a set, $\varepsilon: \Sigma \rightarrow[0 ; \infty), \quad p \in(1 ; \infty)$.
For all $k \in \mathbb{N}$, let $n_{k}:=\#\left(\varepsilon^{*}[k-1 ; k)\right)$. Let $\beta_{0} \in(0 ; \infty)$.
Assume: as $k \rightarrow \infty, \quad k^{p} n_{k} e^{-\beta_{0} \cdot k} \rightarrow 1$. Then: $\mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right)$.
Proof. Since as $k \rightarrow \infty, k^{p} n_{k} e^{-\beta_{0} \cdot k} \rightarrow 1$, we get:

$$
\#\left\{k \in \mathbb{N} \mid k^{p} n_{k} e^{-\beta_{0} \cdot k}=0\right\}<\infty .
$$

Then

$$
\#\left\{k \in \mathbb{N} \mid \quad n_{k} \quad=0\right\}<\infty .
$$

Then

$$
\#\left\{k \in \mathbb{N} \mid n_{k} \geqslant 1\right\}=\infty, \quad \text { and so } \quad \sum_{k=1}^{\infty} n_{k}=\infty .
$$

Since

$$
\#\left(\varepsilon^{*}[0 ; \infty)\right)=\sum_{k=1}^{\infty}\left[\#\left(\varepsilon^{*}[k-1 ; k)\right)\right]=\sum_{k=1}^{\infty} n_{k}=\infty,
$$

it follows, from Theorem 23.5, that: $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.
Since $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty) \subseteq[0 ; \infty)$, we get: $\mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)=\mathrm{DF}_{\varepsilon}$.
Since $\beta_{0} \in(0 ; \infty)$, we get: $\left[\beta_{0} ; \infty\right) \subseteq(0 ; \infty)$.
Since $\left[\beta_{0} ; \infty\right) \subseteq(0 ; \infty) \subseteq[0 ; \infty)$, we get: $\left[\beta_{0} ; \infty\right) \bigcap[0 ; \infty)=\left[\beta_{0} ; \infty\right)$.
We have: $\forall \beta \in \mathbb{R}, \forall k \in \mathbb{N},\left[n_{k} e^{-\beta \cdot k}\right] /\left[k^{-p} e^{-\left(\beta-\beta_{0}\right) \cdot k}\right]=k^{p} n_{k} e^{-\beta_{0} \cdot k}$.
By hypothesis, as $k \rightarrow \infty, \quad k^{p} n_{k} e^{-\beta_{0} \cdot k} \rightarrow 1$.
Then: $\forall \beta \in \mathbb{R}$, as $k \rightarrow \infty,\left[n_{k} e^{-\beta \cdot k}\right] /\left[k^{-p} e^{-\left(\beta-\beta_{0}\right) \cdot k}\right] \rightarrow 1$.
Then: $\forall \beta \in \mathbb{R}, \quad\left(\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty\right) \Leftrightarrow\left(\sum_{k=1}^{\infty}\left[k^{-p} e^{-\left(\beta-\beta_{0}\right) \cdot k}\right]<\infty\right)$.
Also, since $p \in(1 ; \infty)$, we get:

$$
\forall \beta \in \mathbb{R}, \quad\left(\beta \geqslant \beta_{0}\right) \Leftrightarrow\left(\sum_{k=1}^{\infty}\left[k^{-p} e^{-\left(\beta-\beta_{0}\right) \cdot k}\right]<\infty\right)
$$

Then: $\forall \beta \in \mathbb{R}, \quad\left(\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty\right) \Leftrightarrow\left(\beta \geqslant \beta_{0}\right)$.
Then, by Theorem 23.26,

$$
\forall \beta \in[0 ; \infty), \quad\left(\beta \in \mathrm{DF}_{\varepsilon}\right) \Leftrightarrow\left(\beta \geqslant \beta_{0}\right)
$$

Then $\quad \mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)=\left[\beta_{0} ; \infty\right) \bigcap[0 ; \infty)$.
Then $\mathrm{DF}_{\varepsilon}=\mathrm{DF}_{\varepsilon} \bigcap[0 ; \infty)=\left[\beta_{0} ; \infty\right) \bigcap[0 ; \infty)=\left[\beta_{0} ; \infty\right)$.
Example: Let $\beta_{0} \in(0 ; \infty)$. For all $k \in \mathbb{N}$, let $n_{k}:=\left\lfloor k^{-2} e^{\beta_{0} \cdot k}\right\rfloor$.
Then: as $k \rightarrow \infty, k^{2} n_{k} e^{-\beta_{0} \cdot k} \rightarrow 1$. Let $\Sigma:=\left\{(k, j) \in \mathbb{N} \times \mathbb{N} \mid j \leqslant n_{k}\right\}$.
Define $\varepsilon: \Sigma \rightarrow[0 . . \infty)$ by: $\forall(k, j) \in \Sigma, \quad \varepsilon(k, j)=k-1$.
Then, by Theorem 23.25 and Theorem 23.29, we get: $\mathrm{DF}_{\varepsilon}=\left[\beta_{0} ; \infty\right)$.
Let Σ be an infinite set, $\varepsilon: \Sigma \rightarrow[0 ; \infty)$.
For all $k \in \mathbb{N}$, let $n_{k}:=\#\left(\varepsilon^{*}[k-1 ; k)\right)$.
In many applications, the sequence n_{1}, n_{2}, \ldots is subexponential.
By the next theorem, whenever that happens, we get: $\mathrm{DF}_{\varepsilon}=(0 ; \infty)$.
THEOREM 23.30. Let Σ be an infinite set, $\varepsilon: \Sigma \rightarrow[0 ; \infty)$.
For all $k \in \mathbb{N}$, let $n_{k}:=\#\left(\varepsilon^{*}[k-1 ; k)\right)$.
Assume: $\quad \forall \beta \in(0 ; \infty), \quad$ as $k \rightarrow \infty, \quad n_{k} e^{-\beta \cdot k} \rightarrow 0$.
Then: $\quad \mathrm{DF}_{\varepsilon}=(0 ; \infty)$.
Proof. Since $\varepsilon: \Sigma \rightarrow[0 ; \infty)$, we get: $\quad \varepsilon^{*}[0 ; \infty)=\Sigma$.
So, since Σ is infinite, we get: $\varepsilon^{*}[0 ; \infty)$ is infinite.
It follows, from Theorem 23.5, that: $\mathrm{DF}_{\varepsilon} \subseteq(0 ; \infty)$.
Want: $(0 ; \infty) \subseteq \mathrm{DF}_{\varepsilon}$.
Given $\beta \in(0 ; \infty)$, want: $\beta \in \mathrm{DF}_{\varepsilon}$.
Since $\beta \in(0 ; \infty) \subseteq[0 ; \infty)$, by Theorem 23.26,
it suffices to show: $\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]<\infty$.

Let $\beta^{\prime}:=\beta / 2 . \quad$ Since $\beta \in(0 ; \infty)$, we get: $\beta^{\prime} \in(0 ; \infty)$.
Then, by hypothesis, we have: \quad as $k \rightarrow \infty, n_{k} e^{-\beta^{\prime} \cdot k} \rightarrow 0$.
It follows that: $\quad\left\{n_{k} e^{-\beta^{\prime} \cdot k} \mid k \in \mathbb{N}\right\}$ is bounded.
Choose $M \in \mathbb{R} \quad$ s.t., $\quad \forall k \in \mathbb{N}, \quad n_{k} e^{-\beta^{\prime} \cdot k} \leqslant M$.
Since $\beta^{\prime} \in(0 ; \infty)$, it follows that $\quad 1-e^{-\beta^{\prime}}>0$
and that $e^{-\beta^{\prime}}+e^{-2 \beta^{\prime}}+e^{-3 \beta^{\prime}}+\cdots=e^{-\beta^{\prime}} /\left(1-e^{-\beta^{\prime}}\right)$.
Then: $\quad e^{-\beta^{\prime}}+e^{-2 \beta^{\prime}}+e^{-3 \beta^{\prime}}+\cdots<\infty$.
Then: $\quad M \cdot\left(e^{-\beta^{\prime}}+e^{-2 \beta^{\prime}}+e^{-3 \beta^{\prime}}+\cdots\right)<\infty$.
Then $\sum_{k=1}^{\infty}\left[n_{k} e^{-\beta \cdot k}\right]=\sum_{k=1}^{\infty}\left[n_{k} e^{-2 \beta^{\prime} \cdot k}\right]$
$=\sum_{k=1}^{\infty}\left[\left(n_{k} e^{-\beta^{\prime} \cdot k}\right) \cdot e^{-\beta^{\prime} \cdot k}\right] \leqslant \sum_{k=1}^{\infty}\left[M e^{-\beta^{\prime} \cdot k}\right]=M \cdot \sum_{k=1}^{\infty}\left[e^{-\beta^{\prime} \cdot k}\right]$
$=M \cdot\left(e^{-\beta^{\prime}}+e^{-2 \beta^{\prime}}+e^{-3 \beta^{\prime}}+\cdots\right)<\infty$.
Example: Let $\Sigma:=[0 . . \infty)$. Define $\varepsilon: \Sigma \rightarrow \mathbb{R}$ by: $\forall \sigma \in \Sigma, \varepsilon(\sigma)=\sigma$.
Then, $\quad \forall k \in \mathbb{N}, \quad \varepsilon^{*}[k-1 ; k)=\{k-1\}$, and so $\#\left(\varepsilon^{*}[k-1 ; k)\right)=1$.
Then, by Theorem 23.30, we get: $\mathrm{DF}_{\varepsilon}=(0 ; \infty)$.
DEFINITION 23.31. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Let $\mathrm{IDF}_{\varepsilon}$ denote the interior in \mathbb{R} of $\mathrm{DF}_{\varepsilon}$.

THEOREM 23.32. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$. Assume: $\operatorname{IDF}_{\varepsilon} \neq \varnothing$.
Then one of the following is true:
(i) $\mathrm{IDF}_{\varepsilon}=\mathbb{R}$.
(ii) \exists real $\beta_{0} \geqslant 0$ s.t. $\operatorname{IDF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$.
(iii) \exists real $\beta_{0} \geqslant 0$ s.t. $\operatorname{IDF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right)$.

Proof. MORE LATER
THEOREM 23.33. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Then all of the following are true:
(i) $\left(\operatorname{IDF}_{\varepsilon}=\mathbb{R}\right) \Rightarrow(\Sigma$ is finite $)$
$\Rightarrow(\varepsilon$ is both ∞-proper and $(-\infty)$-proper $)$.
(ii) $\left(\exists\right.$ real $\beta_{0} \geqslant 0$ s.t. $\left.\operatorname{IDF}_{\varepsilon}=\left(\beta_{0} ; \infty\right) \quad\right) \Rightarrow(\varepsilon$ is ∞-proper $)$.
(iii) $\left(\exists\right.$ real $\beta_{0} \geqslant 0$ s.t. $\left.\operatorname{IDF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right)\right) \Rightarrow(\varepsilon$ is $(-\infty)$-proper $)$.

Proof. MORE LATER

24. Boltzmann averages on countable sets

DEFINITION 24.1. Let Σ be a set, $\quad \varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \beta \in \mathbb{C}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Then, \forall real $\rho \geqslant 0$, the ρ-exponent (β, ε)-absolute-sum is:
$\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[\left|\varepsilon_{\sigma}\right|^{\rho} \cdot\left|e^{-\beta \cdot \varepsilon_{\sigma}}\right|\right] \in[0 ; \infty]$.
Also, $\forall \rho \in[0 . . \infty)$, if $\quad \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}<\infty$,

$$
\begin{aligned}
& \text { then the } \rho \text {-exponent }(\beta, \varepsilon) \text {-sum } \\
& \mathrm{X}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right] \in[0 ; \infty] .
\end{aligned}
$$

DEFINITION 24.2. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \beta \in \mathbb{R}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Assume: $\quad \overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty$. Then: $\quad \Gamma_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]$.
We have:

$$
\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\left|\varepsilon_{\sigma}\right| \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right],
$$

So, by subadditivity of absolute value, if $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty$, then $\left|\Gamma_{\beta}^{\varepsilon}\right| \leqslant \overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}$.
Let Σ be a countable set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \beta \in \mathbb{R}$.
If $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty$, then $\Gamma_{\beta}^{\varepsilon}=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(\widehat{B}_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$, and so $\Gamma_{\beta}^{\varepsilon}$ is the integral of ε wrt $\widehat{B}_{\beta}^{\varepsilon}$.

In the next definition, in order that $\Gamma_{\beta}^{\varepsilon} / \Delta_{\beta}^{\varepsilon}$ is defined,
we need: both $\Gamma_{\beta}^{\varepsilon}$ is defined and $0<\Delta_{\beta}^{\varepsilon}<\infty$.
We therefore assume $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty$, to ensure that $\Gamma_{\beta}^{\varepsilon}$ is defined.
We also assume Σ is nonempty, to ensure that $\Delta_{\beta}^{\varepsilon}>0$.
Finally, we assume $\beta \in \mathrm{DF}_{\varepsilon}$, to ensure that $\Delta_{\beta}^{\varepsilon}<\infty$.
DEFINITION 24.3. Let Σ be a nonempty set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \beta \in \mathbb{R}$. Assume: $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty$ and $\beta \in \mathrm{DF}_{\varepsilon}$. Then: $\quad A_{\beta}^{\varepsilon}:=\Gamma_{\beta}^{\varepsilon} / \Delta_{\beta}^{\varepsilon}$.

Note that, by Theorem 23.17, if ε is ∞-proper, then

$$
\left(\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty\right) \Rightarrow\left(\beta \in \mathrm{DF}_{\varepsilon}\right)
$$

Without ∞-properness, this fails, see Theorem 23.19.
By Theorem 23.18, even with ∞-properness,

$$
\left(\beta \in \mathrm{DF}_{\varepsilon}\right) \nRightarrow\left(\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty\right) .
$$

25. Uniform convergence and differentiation results

Recall (§2): the notations \mathbb{I}_{f} and $f^{*} A$.
Fix an element of $\left\{z \in \mathbb{C} \mid z^{2}=-1\right\}$ and denote it by $\sqrt{-1}$.
Define $\Re: \mathbb{C} \rightarrow \mathbb{R}$ and $\Im: \mathbb{C} \rightarrow \mathbb{R}$ by:

$$
\forall x, y \in \mathbb{R}, \quad \Re(x+y \sqrt{-1})=x \quad \text { and } \quad \Im(x+y \sqrt{-1})=y .
$$

Then: $\forall z \in \mathbb{C}, \quad\left|e^{z}\right|=e^{\Re(z)}$.
Also, $\quad \forall S \subseteq \mathbb{R}, \quad \Re^{*} S=\{x+y \sqrt{-1} \mid x \in S\}$.
Let S be a set, and let $f: S \rightarrow \mathbb{C}$. Assume: $\sum_{x \in S}|f(s)|<\infty$.
Then: $\sum_{x \in S}[f(s)]:=\left(\sum_{x \in S}[\Re(f(s))]\right)-\left(\sum_{x \in S}[\Im(f(s))]\right) \cdot \sqrt{-1}$.
THEOREM 25.1. Let S be a countably infinite set.
Let $S_{1}, S_{2}, \ldots \subseteq \Sigma$. Assume: $S_{1} \subseteq S_{2} \subseteq \cdots$ and $S_{1} \bigcup S_{2} \cup \cdots=S$.
Let $f: S \rightarrow[0 ; \infty]$.
Then: as $n \rightarrow \infty, \sum_{x \in S_{n}}[f(x)] \rightarrow \sum_{x \in S}[f(x)]$.
Proof. For all $n \in \mathbb{N}$, let $T_{n}:=\sum_{x \in S_{n}}[f(x)]$. Let $T:=\sum_{x \in S}[f(x)]$.
Want: as $n \rightarrow \infty, T_{n} \rightarrow T$. Let $X:=\sup \left\{T_{n} \mid n \in \mathbb{N}\right\}$.
Since $T_{1} \leqslant T_{2} \leqslant \cdots$, we get: as $n \rightarrow \infty, T_{n} \rightarrow X$. Want: $X=T$.
Since, $\forall n \in \mathbb{N}, \quad T_{n}=\sum_{x \in S_{n}}[f(x)] \leqslant \sum_{x \in S}[f(x)]=T$, we get:

$$
\sup \left\{T_{n} \mid n \in \mathbb{N}\right\} \leqslant T . \quad \text { Then: } X \leqslant T
$$

Want: $X \geqslant T$. Assume: $X<T$. Want: Contradiction.
Let $\mathcal{F}:=\{A \subseteq S \mid \# A<\infty\}$.
Since $X=\sup \left\{T_{n} \mid n \in \mathbb{N}\right\}<T=\sum_{x \in S}[f(x)]=\sup _{A \in \mathcal{F}} \sum_{x \in A}[f(x)]$,
choose $\quad A \in \mathcal{F}$ s.t. $\quad X<\sum_{x \in A}[f(x)]$.
Since A is finite, choose $n_{0} \in \mathbb{N}$ s.t. $S_{n_{0}} \supseteq A$.
Since $S_{n_{0}} \supseteq A$, we get $\sum_{x \in S_{n_{0}}}[f(x)] \geqslant \sum_{x \in A}[f(x)]$.
However, $\sum_{x \in S_{n_{0}}}[f(x)]=T_{n_{0}} \leqslant \sup \left\{T_{n} \mid n \in \mathbb{N}\right\}=X<\sum_{x \in A}[f(x)]$.
Contradiction.
THEOREM 25.2. Let S be a countably infinite set.
Let $S_{1}, S_{2}, \ldots \subseteq \Sigma$. Assume: $S_{1} \subseteq S_{2} \subseteq \cdots$ and $S_{1} \bigcup S_{2} \cup \cdots=S$.
Let $f: S \rightarrow \mathbb{R}$. Assume: $\sum_{x \in S}|f(x)|<\infty$.
Then: as $n \rightarrow \infty, \sum_{x \in S_{n}}[f(x)] \rightarrow \sum_{x \in S}[f(x)]$.
Proof. By Theorem 25.1, as $n \rightarrow \infty$, we have both: and $\quad \begin{array}{ll}\sum_{x \in S_{n}}|f(x)| & \rightarrow \sum_{x \in S}|f(x)| \\ \sum_{x \in S_{n}}[|f(x)|-(f(x))] & \rightarrow \sum_{x \in S}[|f(x)|-(f(x))] .\end{array}$
Subtracting the preceding limit from the one before it, we see that, as $n \rightarrow \infty$, we have:

$$
\sum_{x \in S_{n}}[f(x)] \quad \rightarrow \quad \sum_{x \in S}[f(x)] .
$$

THEOREM 25.3. Let U be an open subset of $\mathbb{C}, g, h: U \rightarrow \mathbb{C}$.
Let $f_{1}, f_{2}, \ldots: U \rightarrow \mathbb{C}$ all be complex differentiable on U.

Assume, as $n \rightarrow \infty$, we have:
both $f_{n} \rightarrow g$ pointwise on U and $f_{n}^{\prime} \rightarrow h$ uniformly on U.
Then $g^{\prime}=h$ on U.
Theorem 25.3 is a basic result on commutation of limits and derivatives. We omit the proof.
DEFINITION 25.4. Let Σ be a set. Let $\rho \in[0 ; \infty)$.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper, $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Then $\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}: \quad\left(\beta_{0} ; \infty\right) \rightarrow \mathbb{R}$ is defined by:
$\forall \beta \in \quad\left(\beta_{0} ; \infty\right), \quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}\right)(\beta)=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]$.
Also, $\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}: \Re^{*}\left(\beta_{0} ; \infty\right) \rightarrow \mathbb{C}$ is defined by:
$\forall z \in \Re^{*}\left(\beta_{0} ; \infty\right), \quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}\right)(z)=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-z \cdot \varepsilon_{\sigma}}\right]$.
THEOREM 25.5. Let Σ be an infinite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper, $\quad \beta_{0}:=\inf \mathrm{DF}_{\varepsilon}, \quad \beta_{1} \in\left(\beta_{0} ; \infty\right)$.
For all $n \in \mathbb{N}$, let $\Sigma_{n}:=\varepsilon^{*}(-\infty ; n]$ and let $\varepsilon_{n}:=\varepsilon \mid \Sigma_{n}$.
Then: $\quad\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta_{1}}^{\varepsilon}<\infty\right)$ and (as $\left.n \rightarrow \infty, \mathrm{X}^{\rho} \mathrm{S}_{\beta_{1}}^{\varepsilon_{n}} \rightarrow \mathrm{X}^{\rho} \mathrm{S}_{\beta_{1}}^{\varepsilon}\right)$.
Proof. Since $\beta_{1} \in\left(\beta_{0} ; \infty\right)$, by Theorem 23.15,
we get: $\quad \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta_{1}}^{\varepsilon}<\infty$.
It remains to show: as $n \rightarrow \infty, \mathrm{X}^{\rho} \mathrm{S}_{\beta_{1}}^{\varepsilon_{n}} \rightarrow \mathrm{X}^{\rho} \mathrm{S}_{\beta_{1}}^{\varepsilon}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Define $f: \Sigma \rightarrow \mathbb{R}$ by: $\forall \sigma \in \Sigma, \quad f(\sigma)=\varepsilon_{\sigma}^{\rho} \cdot e^{-\beta_{1} \cdot \varepsilon_{\sigma}}$.
By Theorem 25.2, as $n \rightarrow \infty, \sum_{\sigma \in \Sigma_{n}}[f(\sigma)] \rightarrow \sum_{\sigma \in \Sigma}[f(\sigma)]$.
So, since $\forall n \in \mathbb{N}, \sum_{\sigma \in \Sigma_{n}}[f(\sigma)]=\mathrm{X}^{\rho} \sum_{\beta_{1}}^{\varepsilon_{\mathrm{n}}}$
and since $\sum_{\sigma \in \Sigma}[f(\sigma)]=\mathrm{X}^{\rho} \Sigma_{\beta_{1}}^{\varepsilon}$,
we get: as $n \rightarrow \infty, \mathrm{X}^{\rho} \mathrm{S}_{\beta_{1}}^{\varepsilon_{n}} \rightarrow \mathrm{X}^{\rho} \mathrm{S}_{\beta_{1}}^{\varepsilon}$.
THEOREM 25.6. Let Σ be an infinite set. Let $\rho \in[0 ; \infty)$.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper, $\quad \beta_{0}:=\inf \mathrm{DF}_{\varepsilon}, \quad \beta_{1} \in\left(\beta_{0} ; \infty\right)$.
For all $n \in \mathbb{N}$, let $\Sigma_{n}:=\varepsilon^{*}(-\infty ; n]$ and let $\varepsilon_{n}:=\varepsilon \mid \Sigma_{n}$.
Then: as $n \rightarrow \infty, \mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon_{n}} \rightarrow \mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon} \mathbb{C}$ uniformly on $\Re^{*}\left(\beta_{1} ; \infty\right)$.
Proof. MORE LATER
THEOREM 25.7. Let Σ be a finite set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \rho \in[0 ; \infty), z \in \mathbb{C}$.
Then
$\mathrm{X}^{\rho} \mathrm{S}_{\cdot \bullet \mathrm{C}}^{\varepsilon}$ is complex-differentiable at z
$\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet \bullet}^{\varepsilon}\right)^{\prime}(z)=-\left(\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet \bullet}^{\varepsilon}\right)(z)$.
Proof. For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
We have: $\forall \zeta \in \mathbb{C}, \quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon} \mathbb{C}^{\varepsilon}\right)(\zeta)=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-\zeta \cdot \varepsilon_{\sigma}}\right]$

Since Σ is finite, by differentiating this, we get:
$\forall \zeta \in \mathbb{C}, \quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}(\zeta)=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-\zeta \cdot \varepsilon_{\sigma}} \cdot\left(-\varepsilon_{\sigma}\right)\right]$
Thus $\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}$ is complex-differentiable at z and $\quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}(z)=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-z \cdot \varepsilon_{\sigma}} \cdot\left(-\varepsilon_{\sigma}\right)\right]$.
It remains to show: $\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-z \cdot \varepsilon_{\sigma}} \cdot\left(-\varepsilon_{\sigma}\right)\right]=-\left(\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet}^{\varepsilon} \mathbb{C}\right)(z)$. We have $\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho} \cdot e^{-z \cdot \varepsilon_{\sigma}} \cdot\left(-\varepsilon_{\sigma}\right)\right]=-\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma}^{\rho+1} \cdot e^{-z \cdot \varepsilon_{\sigma}}\right]$

$$
=-\left(\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet}^{\varepsilon} \mathbb{C}\right)(z) .
$$

THEOREM 25.8. Let Σ be an infinite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper, $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$.
Let $\rho \in[0 ; \infty)$. Then: $\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon} \mathbb{C}$ is complex-differentiable on $\Re^{*}\left(\beta_{0} ; \infty\right)$

$$
\text { and } \quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}=-\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon} \text { on } \Re^{*}\left(\beta_{0} ; \infty\right) .
$$

Proof. For all $n \in \mathbb{N}$, let $\Sigma_{n}:=\varepsilon^{*}(-\infty ; n]$ and let $\varepsilon_{n}:=\varepsilon \mid \Sigma_{n}$.
Given $z \in \Re^{*}\left(\beta_{0} ; \infty\right)$, want: $\mathrm{X}^{\rho} \mathrm{S}_{\bullet \bullet}^{\varepsilon}$ is complex-differentiable at z and $\quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}(z)=-\left(\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet}^{\varepsilon} \mathbb{C}\right)(z)$.
Let $\beta:=\Re(z)$. Let $\beta_{1}:=\left(\beta_{0}+\beta\right) / 2$. Then $\beta_{0}<\beta_{1}<\beta$.
It suffices to show: $\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon} \mathbb{C}$ is complex-differentiable on $\Re^{*}\left(\beta_{1} ; \infty\right)$

$$
\text { and } \quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}=-\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet \bullet}^{\varepsilon} \text { on } \Re^{*}\left(\beta_{1} ; \infty\right)
$$

By Theorem 25.6, as $n \rightarrow \infty$, we have both
$\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon_{n}} \rightarrow \mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon} \mathbb{C}$ uniformly on $\Re^{*}\left(\beta_{1} ; \infty\right)$
and $\quad \mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon_{n}} \rightarrow \mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}$ uniformly on $\Re^{*}\left(\beta_{1} ; \infty\right)$.
For all $n \in \mathbb{N}$, since Σ_{n} is finite, by Theorem 25.7, we see that
$\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon_{n}}$ is complex-differentiable at z
and $\quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon_{n}}\right)^{\prime}=-\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet \bullet}^{\varepsilon_{n}}$ on $\Re^{*}\left(\beta_{0} ; \infty\right)$.
Then, as $n \rightarrow \infty$, we have both
$\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon_{n}} \rightarrow \mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon} \mathbb{C} \quad$ pointwise on $\Re^{*}\left(\beta_{1} ; \infty\right)$
and $\quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon_{n}}\right)^{\prime} \rightarrow-\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet}^{\varepsilon} \mathbb{C}$ uniformly on $\Re^{*}\left(\beta_{1} ; \infty\right)$.
Then, by Theorem 25.3, we get:
$\mathrm{X}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}$ is complex-differentiable on $\Re^{*}\left(\beta_{1} ; \infty\right)$
and $\quad\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon} \mathbb{C}^{\varepsilon}\right)^{\prime}=-\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet}^{\varepsilon} \mathbb{C}$ on $\Re^{*}\left(\beta_{1} ; \infty\right)$.

THEOREM 25.9. Let Σ be an infinite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper, $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$.
Let $\rho \in[0 ; \infty)$. Then: $\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}$ is C^{ω} on $\left(\beta_{0} ; \infty\right)$ and $\left(\mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}\right)^{\prime}=-\mathrm{X}^{\rho+1} \mathrm{~S}_{.}^{\varepsilon}$ on $\left(\beta_{0} ; \infty\right)$.

Proof. MORE LATER

26. UNNAMED SECTION

DEFINITION 26.1. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
For all $\beta \in \mathrm{DF}_{\varepsilon}^{\mathbb{C}}, \quad$ let $\Delta_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right] \in \mathbb{C}$.
For all $\beta \in \operatorname{IDF}_{\varepsilon}^{\mathbb{C}}$, let $\Gamma_{\beta}^{\varepsilon}:=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right] \in \mathbb{C}$.
DEFINITION 26.2. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
For all real $\rho \geqslant 0$,
define $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}: \mathrm{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ by: $\forall \beta \in \operatorname{IDF}_{\varepsilon}, \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}(\beta)=\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}$.
Define $\Delta_{\bullet}^{\varepsilon}: \operatorname{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ by: $\forall \beta \in \operatorname{IDF}_{\varepsilon}, \Delta_{\bullet}^{\varepsilon}(\beta)=\Delta_{\beta}^{\varepsilon}$.
Define $\Gamma_{\bullet}^{\varepsilon}: \mathrm{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ by: $\forall \beta \in \mathrm{IDF}_{\varepsilon}, \Gamma_{\bullet}^{\varepsilon}(\beta)=\Gamma_{\beta}^{\varepsilon}$.
Proof. MORE LATER

27. UNNAMED SECTION

DEFINITION 27.1. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
For all real $\rho \geqslant 0$,
define $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ by: $\forall \beta \in \operatorname{IDF}_{\varepsilon}^{\mathbb{C}}, \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}(\beta)=\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}$.
Define $\Delta_{\cdot \mathbb{C}}^{\varepsilon}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ by: $\forall \beta \in \operatorname{IDF}_{\varepsilon}^{\mathbb{C}}, \Delta_{\cdot \mathbb{C}}^{\varepsilon}(\beta)=\Delta_{\beta}^{\varepsilon}$.
Define $\Gamma_{\bullet \mathbb{C}}^{\varepsilon}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ by: $\forall \beta \in \operatorname{IDF}_{\varepsilon}^{\mathbb{C}}, \Gamma_{\bullet}^{\varepsilon}\left(\mathbb{C}(\beta)=\Gamma_{\beta}^{\varepsilon}\right.$.
DEFINITION 27.2. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Let $\mathrm{DF}_{\varepsilon}^{\mathbb{C}}:=\Re^{*}\left(\mathrm{DF}_{\varepsilon}\right)$ and let $\operatorname{IDF}_{\varepsilon}^{\mathbb{C}}:=\Re^{*}\left(\mathrm{IDF}_{\varepsilon}\right)$.
THEOREM 27.3. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \beta \in \mathrm{DF}_{\varepsilon}^{\mathbb{C}}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$. Then: $\quad \sum_{\sigma \in \Sigma}\left|e^{-\beta \cdot \varepsilon_{\sigma}}\right|<\infty$.
Proof. MORE LATER
THEOREM 27.4. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \beta \in \operatorname{IDF}_{\varepsilon}^{\mathbb{C}}$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Then: $\quad \forall \rho \geqslant 0, \quad \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\beta}^{\varepsilon}<\infty$.
Proof. MORE LATER
By "unif-on-cpta on" we mean: "uniformly on compact subsets of".
THEOREM 27.5. Let Σ be an infinite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper.
For all $t \in \mathbb{R}$, let $\Sigma^{t}:=\varepsilon^{*}(-\infty ; t]$ and $\varepsilon^{t}:=\varepsilon \mid \Sigma^{t}$.
Assume $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Let $\rho \geqslant 0$ be real.
Then: as $t \rightarrow \infty, \quad \mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon^{t}}{ }^{\mathbb{C}} \rightarrow \mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon} \mathbb{C}$ unif-on-cpta on $\mathrm{IDF}_{\varepsilon}^{\mathbb{C}}$.

Proof. MORE LATER
THEOREM 27.6. Let Σ be an infinite set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper.
Let $\rho \geqslant 0$ be real.
Then $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\cdot \bullet \mathbb{C}}^{\varepsilon}: \mathrm{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-differentiable and $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}{ }^{\varepsilon}\right)^{\prime}=-\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}$.
Proof. For all $t \in \mathbb{R}$, let $\Sigma^{t}:=\varepsilon^{*}(-\infty ; t]$ and $\varepsilon^{t}:=\varepsilon \mid \Sigma^{t}$.
Then: $\forall t \in \mathbb{R}, \mathrm{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon^{t}}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-differentiable and $\left(\mathrm{X}^{\rho} \mathrm{S}_{\cdot}^{\varepsilon^{t} \mathbb{C}}\right)^{\prime}=-\mathrm{X}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon^{t}}$.
By Theorem 27.5, as $t \rightarrow \infty$, we have both $\quad \mathrm{X}^{\rho} \mathrm{S}_{\bullet \bullet}^{\varepsilon} \mathbb{C}^{\varepsilon} \rightarrow \mathrm{X}^{\rho} \mathrm{S}_{\bullet \bullet}^{\varepsilon}$ unif-on-cpta on $\operatorname{IDF}_{\varepsilon}^{\mathbb{C}}$ and $\quad X^{\rho+1} S_{\bullet \mathbb{C}}^{\varepsilon} t \rightarrow X^{\rho+1} S_{\bullet \mathbb{C}}^{\varepsilon}$ unif-on-cpta on IDF $_{\varepsilon}^{\mathbb{C}}$.
Then $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-differentiable and $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}=-\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}$.
THEOREM 27.7. Let Σ be an infinite set. Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ($-\infty$)-
proper.
Let $\rho \geqslant 0$ be real.
Then $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\cdot}^{\varepsilon} \mathbb{C}_{\mathbb{C}}: \mathrm{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-differentiable and $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \bullet}^{\varepsilon}\right)^{\prime}=-\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}$.
Proof. By Theorem 27.6, $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{-\varepsilon}: \operatorname{IDF}_{-\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-differentiable and $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{-\varepsilon}\right)^{\prime}=-\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{-\varepsilon}$.
Then $-\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-differentiable and $\left(-\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}=-\left(-\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}\right)$.
Then $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\cdot \mathbb{C}}^{\varepsilon}: \mathrm{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-differentiable and $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}=-\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}$.

THEOREM 27.8. Let Σ be an infinite set. Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Let $\rho \geqslant 0$ be real.
Then $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\cdot \mathbb{C}}^{\varepsilon}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-differentiable and $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \bullet}^{\varepsilon}\right)^{\prime}=-\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}$.

Proof. By Theorem 23.32, there are four cases to consider:
$\operatorname{IDF}_{\varepsilon}=\varnothing, \operatorname{IDF}_{\varepsilon}=\mathbb{R}, \operatorname{IDF}_{\varepsilon}=\left(\beta_{0} ; \infty\right), \operatorname{IDF}_{\varepsilon}=\left(-\infty ;-\beta_{0}\right)$.
MORE LATER
THEOREM 27.9. Let Σ be a set. Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$ be ∞-proper.
Let $\rho \geqslant 0$ be real. Then $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}: \mathrm{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ is C^{ω}

$$
\text { and }\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}\right)^{\prime}=\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet}^{\varepsilon} .
$$

Proof. Since complex-differentiable implies complex-analytic, by Theorem 27.6, we see that $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$ is complex-analytic.
So, since $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{0}^{\varepsilon}: \mathrm{IDF}_{\varepsilon} \rightarrow \mathbb{R} \quad$ is the restriction to $\operatorname{IDF}_{\varepsilon}$ of $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\cdot \mathbb{C}}^{\varepsilon}: \mathrm{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$,
it follows that $\bar{X}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}: \operatorname{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ is C^{ω}.
Want: $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{0}^{\varepsilon}\right)^{\prime}=\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{.}^{\varepsilon}$.
Given $\beta \in \operatorname{IDF}_{\varepsilon}$, want: $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}\right)^{\prime}(\beta)=\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{0}^{\varepsilon}(\beta)$.
By Theorem 27.6, we see that $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \bullet}^{\varepsilon}\right)^{\prime}(\beta)=\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \bullet}^{\varepsilon}(\beta)$.
Since $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}: \mathrm{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ is the restriction to $\mathrm{IDF}_{\varepsilon}$ of $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\cdot}^{\varepsilon}{ }_{\mathbb{C}}: \operatorname{IDF}_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}$,
we get: $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}\right)^{\prime}(\beta)=\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}{ }^{\varepsilon}\right)^{\prime}(\beta)$.
Since $\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\varepsilon}^{\varepsilon}: \mathrm{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ is the restriction to $\operatorname{IDF}_{\varepsilon}$ of we get: $\left(\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet}^{\varepsilon}\right)(\beta)=\left(\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}\right)(\beta)$.
Then: $\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet}^{\varepsilon}\right)^{\prime}(\beta)=\left(\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\bullet \mathbb{C}}^{\varepsilon}\right)^{\prime}(\beta)=\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet \mathbb{C}}^{\varepsilon}(\beta)=\overline{\mathrm{X}}^{\rho+1} \mathrm{~S}_{\bullet}^{\varepsilon}(\beta)$.

THEOREM 27.10. Let Σ be a nonempty countable set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$. Let $\beta \in \mathrm{DF}_{\varepsilon}$. Assume $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty$. Then $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}=\left|\varepsilon_{*} B_{\beta}^{\varepsilon}\right|_{1}$.

Proof. CHECK (Copied from Theorem 20.4):
Since $\beta \in \mathrm{DF}_{\varepsilon}$, we get: $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Then Σ is countable.
Since $\Sigma \neq \varnothing$, we get: $\Delta_{\beta}^{\varepsilon}>0$.
Since $\beta \in \mathrm{DF}_{\varepsilon}$, we get: $\Delta_{\beta}^{\varepsilon}<\infty$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma), \quad \bar{\varepsilon}_{\sigma}:=|\varepsilon(\sigma)|$.
Because $\quad \Sigma$ is the disjoint union, over $t \in \mathbb{I}_{\bar{\varepsilon}}$, of $\bar{\varepsilon}^{*}\{t\}$, we get: $\quad \sum_{t \in \mathbb{I}_{\bar{\varepsilon}}} \sum_{\sigma \in \bar{\varepsilon}^{*}\{t\}}\left[\bar{\varepsilon}_{\sigma} \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right]=\sum_{\sigma \in \Sigma}\left[\bar{\varepsilon}_{\sigma} \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right]$.
Also,

$$
A_{\beta}^{\bar{\varepsilon}}=\sum_{\sigma \in \Sigma}\left[\bar{\varepsilon}_{\sigma} \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right] .
$$

Then: $\quad \sum_{t \in \mathbb{I}_{\bar{\varepsilon}}} \sum_{\sigma \in \bar{\varepsilon}^{*}\{t\}}\left[\bar{\varepsilon}_{\sigma} \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right]=A_{\beta}^{\bar{\varepsilon}}$.
So, since $\quad \sum_{t \in \Pi_{\bar{\varepsilon}}}\left[t \cdot\left(\left(\bar{\varepsilon}_{*} B_{\beta}^{\bar{\varepsilon}}\right)\{t\}\right)\right]=M_{\bar{\varepsilon}_{*} B_{\overline{\bar{\beta}}}^{\overline{\bar{E}}}}$,
we want: $\quad \sum_{t \in \mathbb{I}_{\bar{\varepsilon}}}\left[t \cdot\left(\left(\bar{\varepsilon}_{*} B_{\beta}^{\bar{\varepsilon}}\right)\{t\}\right)\right]=\sum_{t \in \mathbb{I}_{\bar{\varepsilon}}} \sum_{\sigma \in \bar{\varepsilon}^{*}\{t\}}\left[\bar{\varepsilon}_{\sigma} \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right]$.
Want: $\forall t \in \mathbb{I}_{\bar{\varepsilon}}, \quad t \cdot\left(\left(\bar{\varepsilon}_{*} B_{\beta}^{\bar{\varepsilon}}\right)\{t\}\right)=\quad \sum_{\sigma \in \bar{\varepsilon}^{*}\{t\}}\left[\bar{\varepsilon}_{\sigma} \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right]$.
Given $t \in \mathbb{1}_{\bar{\varepsilon}}$, want: $t \cdot\left(\left(\bar{\varepsilon}_{*} B_{\beta}^{\bar{\varepsilon}}\right)\{t\}\right)=\sum_{\sigma \in \bar{\varepsilon}^{*}\{t\}}\left[\bar{\varepsilon}_{\sigma} \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right]$.
For all $\sigma \in \bar{\varepsilon}^{*}\{t\}$, since $\bar{\varepsilon}_{\sigma}=\bar{\varepsilon}(\sigma) \in\{t\}$, we get: $t=\bar{\varepsilon}_{\sigma}$.
Want: $t \cdot\left(\left(\bar{\varepsilon}_{*} B_{\beta}^{\bar{\varepsilon}}\right)\{t\}\right)=\sum_{\sigma \in \bar{\varepsilon}^{*}\{t\}}\left[t \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right]$.
Because $\bar{\varepsilon}^{*}\{t\}$ is the disjoint union, over $\sigma \in \bar{\varepsilon}^{*}\{t\}$, of $\{\sigma\}$,
we get: $\quad B_{\beta}^{\bar{\varepsilon}}\left(\bar{\varepsilon}^{*}\{t\}\right)=\sum_{\sigma \in \bar{\varepsilon}^{*}\{t\}}\left[\quad B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right]$.
Also, $\left.\quad\left(\bar{\varepsilon}_{*} B_{\beta}^{\bar{\varepsilon}}\right)\{t\}\right)=B_{\beta}^{\bar{\varepsilon}}\left(\bar{\varepsilon}^{*}\{t\}\right)$.
Then: $t \cdot\left(\left(\bar{\varepsilon}_{*} B_{\beta}^{\bar{\varepsilon}}\right)\{t\}\right)=t \cdot\left(B_{\beta}^{\bar{\varepsilon}}\left(\bar{\varepsilon}^{*}\{t\}\right)\right)=\sum_{\sigma \in \bar{\varepsilon}^{*}\{t\}}\left[t \cdot\left(B_{\beta}^{\bar{\varepsilon}}\{\sigma\}\right)\right]$.

THEOREM 27.11. Let Σ be a nonempty countable set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Let $\beta \in \mathrm{DF}_{\varepsilon}$. Assume $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta}^{\varepsilon}<\infty$. Then $\left|\varepsilon_{*} B_{\beta}^{\varepsilon}\right|_{1}<\infty$ and $A_{\beta}^{\varepsilon}=M_{\varepsilon_{*} B_{\beta}^{\varepsilon}}$.
Proof. CHECK (Copied from Theorem 20.4):
Since $\beta \in \mathrm{DF}_{\varepsilon}$, we get: $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Then Σ is countable.
Since $\Sigma \neq \varnothing$, we get: $\Delta_{\beta}^{\varepsilon}>0$.
Since $\beta \in \mathrm{DF}_{\varepsilon}$, we get: $\Delta_{\beta}^{\varepsilon}<\infty$.
For all $\sigma \in \Sigma$, let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
Because $\quad \Sigma$ is the disjoint union, over $t \in \mathbb{I}_{\varepsilon}$, of $\varepsilon^{*}\{t\}$,
we get: $\quad \sum_{t \in \mathbb{I}_{\varepsilon}} \sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Also,

$$
A_{\beta}^{\varepsilon}=\bar{\sum}_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right] .
$$

Then:
So, since

$$
\sum_{t \in \mathbb{I}_{\varepsilon}} \sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]=\bar{A}_{\beta}^{\varepsilon} .
$$

we want: $\quad \sum_{t \in \mathbb{I}_{\varepsilon}}\left[t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)\right]=\sum_{t \in \mathbb{I}_{\varepsilon}} \sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Want: $\forall t \in \mathbb{I}_{\varepsilon}, \quad t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=\quad \sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Given $t \in \mathbb{I}_{\varepsilon}$, want: $t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=\sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\varepsilon_{\sigma} \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
For all $\sigma \in \varepsilon^{*}\{t\}$, since $\varepsilon_{\sigma}=\varepsilon(\sigma) \in\{t\}$, we get: $t=\varepsilon_{\sigma}$.
Want: $t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=\sum_{\sigma \in \varepsilon^{*}\{t\}}\left[t \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
Because $\varepsilon^{*}\{t\}$ is the disjoint union, over $\sigma \in \varepsilon^{*}\{t\}$, of $\{\sigma\}$,
we get:

$$
B_{\beta}^{\varepsilon}\left(\varepsilon^{*}\{t\}\right)=\sum_{\sigma \in \varepsilon^{*}\{t\}}\left[\quad B_{\beta}^{\varepsilon}\{\sigma\}\right] .
$$

Also, $\left.\quad\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=B_{\beta}^{\varepsilon}\left(\varepsilon^{*}\{t\}\right)$.
Then: $t \cdot\left(\left(\varepsilon_{*} B_{\beta}^{\varepsilon}\right)\{t\}\right)=t \cdot\left(B_{\beta}^{\varepsilon}\left(\varepsilon^{*}\{t\}\right)\right)=\sum_{\sigma \in \varepsilon^{*}\{t\}}\left[t \cdot\left(B_{\beta}^{\varepsilon}\{\sigma\}\right)\right]$.
THEOREM 27.12. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\quad \varepsilon^{*}[0 ; \infty)$ is infinite and $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Let $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$.
Then: $\quad \forall$ real $\gamma>\beta_{0}$, \forall real $\rho>0, \quad \overline{\mathrm{X}}^{\rho} \mathrm{S}_{\gamma}^{\varepsilon}<\infty$.
Proof. Given a real $\gamma>\beta_{0}$ and a real $\rho>0$, want: $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\gamma}^{\varepsilon}<\infty$.
Since $\gamma>\beta_{0}=\inf \mathrm{DF}_{\varepsilon}$, choose $\beta \in \mathrm{DF}_{\varepsilon}$ s.t. $\gamma>\beta$.
By Theorem 23.15, we have: $\overline{\mathrm{X}}^{\rho} \mathrm{S}_{\gamma}^{\varepsilon}<\infty$.
DEFINITION 27.13. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Then $A_{\bullet}^{\varepsilon}: \operatorname{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ is defined by: $\quad \forall \beta \in \operatorname{IDF}_{\varepsilon}, \quad A_{\bullet}^{\varepsilon}(\beta)=A_{\beta}^{\varepsilon}$.
THEOREM 27.14. Let Σ be a set.
Let $\varepsilon: \Sigma \rightarrow \mathbb{R}$. Assume: $\# \mathbb{I}_{\varepsilon} \geqslant 2$.
Then: $\quad A_{\bullet}^{\varepsilon}$ is a strictly-decreasing C^{ω}-diffeomorphism

$$
\text { from } \operatorname{IDF}_{\varepsilon} \quad \text { onto } \quad\left(\inf \mathbb{I}_{A_{\varepsilon}} ; \sup \mathbb{I}_{A \varepsilon}\right) \text {. }
$$

Proof. (MODIFY!) For all $\sigma \in \Sigma, \quad$ let $\varepsilon_{\sigma}:=\varepsilon(\sigma)$.
We have: $\forall \beta \in$
$I D F_{\varepsilon}, A_{\bullet}^{\varepsilon}(\beta)=\frac{\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]}{\sum_{\tau \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\tau}}\right]}$.
Then $A_{\bullet}^{\varepsilon}: \mathrm{IDF}_{\varepsilon} \rightarrow \mathbb{R}$ is C^{ω}.
We have: $\forall \beta \in$
$I D F_{\varepsilon}, A_{\bullet}^{\varepsilon}(\beta)=\frac{\sum_{\sigma \in \Sigma}\left[\Gamma_{\bullet}^{\varepsilon}(\beta)\right]}{\sum_{\tau \in \Sigma}\left[\Delta_{\bullet}^{\varepsilon}(\beta)\right]}$.
We have: $\forall \beta \in$
$I D F_{\varepsilon}, A_{\bullet}^{\varepsilon}(\beta)=\frac{\sum_{\sigma \in \Sigma}\left[\mathrm{X}^{1} \mathrm{~S}_{\bullet}^{\varepsilon}(\beta)\right]}{\sum_{\tau \in \Sigma}\left[\mathrm{X}^{0} \mathrm{~S}_{\bullet}^{\varepsilon}(\beta)\right]}$.
So, by Theorem 20.6 and the C^{ω}-Inverse Function Theorem and the Mean Value Theorem, it suffices to show: $\left(A_{\bullet}^{\varepsilon}\right)^{\prime}<0$ on $\operatorname{IDF}_{\varepsilon}$.

$$
\text { Given } \beta \in \operatorname{IDF}_{\varepsilon}, \quad \text { want: }\left(A_{\bullet}^{\varepsilon}\right)^{\prime}(\beta)<0 .
$$

Let $\quad P:=\sum_{\sigma \in \Sigma}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right], \quad P^{\prime}:=\sum_{\sigma \in \Sigma}\left[\left(-\varepsilon_{\sigma}^{2}\right) \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]$.
Let $\quad Q:=\sum_{\tau \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\tau}}\right], \quad Q^{\prime}:=\sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\tau}\right) \cdot e^{-\beta \cdot \varepsilon_{\tau}}\right]$.
Then $Q>0$. Also, by the Quotient Rule, $\left(A_{\bullet}^{\varepsilon}\right)^{\prime}(\beta)=\left[Q P^{\prime}-P Q^{\prime}\right] / Q^{2}$.
Want: $Q P^{\prime}-P Q^{\prime}<0$.
We have: $Q P^{\prime} \quad=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\sigma}^{2}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right]$.
We have: $P Q^{\prime} \quad=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\sigma} \varepsilon_{\tau}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right]$.
Then: $\quad Q P^{\prime}-P Q^{\prime}=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\sigma}^{2}+\varepsilon_{\sigma} \varepsilon_{\tau}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right]$.
Interchanging σ and τ, we get:

$$
Q P^{\prime}-P Q^{\prime}=\sum_{\tau \in \Sigma} \sum_{\sigma \in \Sigma}\left[\left(-\varepsilon_{\tau}^{2}+\varepsilon_{\tau} \varepsilon_{\sigma}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\tau}+\varepsilon_{\sigma}\right)}\right] .
$$

By commutativity of addition and multiplication, adding the last two equations gives:

$$
2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[\left(-\varepsilon_{\sigma}^{2}-\varepsilon_{\tau}^{2}+2 \varepsilon_{\sigma} \varepsilon_{\tau}\right) \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right] .
$$

Then: $2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)=\sum_{\sigma \in \Sigma} \sum_{\tau \in \Sigma}\left[-\left(\varepsilon_{\sigma}-\varepsilon_{\tau}\right)^{2} \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}+\varepsilon_{\tau}\right)}\right]$.
Then: $2 \cdot\left(Q P^{\prime}-P Q^{\prime}\right)<0$. Then: $Q P^{\prime}-P Q^{\prime}<0$.
Recall (Theorem 22.3):
If ε is ∞-proper, then \mathbb{I}_{ε} has a minimum element, i.e., min \mathbb{I}_{ε} exists.
THEOREM 27.15. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}$.
Assume: $\quad \varepsilon^{*}[0 ; \infty)$ is infinite and $\mathrm{DF}_{\varepsilon} \neq \varnothing$.
Then: $\quad \varepsilon$ is ∞-proper and as $\beta \rightarrow \infty, \quad A_{\beta}^{\varepsilon} \rightarrow \min \mathbb{I}_{\varepsilon}$.
Proof. By Theorem 23.12, ε is ∞-proper.
It remains to show: as $\beta \rightarrow \infty, A_{\beta}^{\varepsilon} \rightarrow \min \mathbb{I}_{\varepsilon}$.
Let $t_{0}:=\min \mathbb{I}_{\varepsilon} . \quad$ Want: $\quad A_{\beta}^{\varepsilon} \rightarrow t_{0}$.
Let $\Sigma^{\prime}:=\Sigma \backslash\left(\varepsilon^{*}\left\{t_{0}\right\}\right)$. Let $n_{0}:=\#\left(\varepsilon^{*}\left\{t_{0}\right\}\right)$.
Since $\left\{t_{0}\right\} \subseteq\left(-\infty ; t_{0}\right]$, we get $\varepsilon^{*}\left\{t_{0}\right\} \subseteq \varepsilon^{*}\left(-\infty ; t_{0}\right]$.
Since ε is ∞-proper, we get: $\varepsilon^{*}\left(-\infty ; t_{0}\right]$ is finite.

Then $\varepsilon^{*}\left\{t_{0}\right\}$ is finite. That is, $n_{0}<\infty$.
Since $t_{0} \in \mathbb{I}_{\varepsilon}$, we get $\varepsilon^{*}\left\{t_{0}\right\} \neq \varnothing$, and so $n_{0}>0$. Then $0<n_{0}<\infty$.
For all $\beta \in\left(\beta_{0} ; \infty\right)$, we have:

$$
\begin{aligned}
A_{\beta}^{\varepsilon} & =\frac{n_{0} \cdot t_{0} \cdot e^{-\beta \cdot t_{0}}+\sum_{\sigma \in \Sigma^{\prime}}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]}{n_{0} \cdot e^{-\beta \cdot t_{0}}+\sum_{\sigma \in \Sigma^{\prime}}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]} \\
& =\frac{n_{0} \cdot t_{0} \cdot e^{-\beta \cdot t_{0}}+\sum_{\sigma \in \Sigma^{\prime}}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot \varepsilon_{\sigma}}\right]}{n_{0} \cdot e^{-\beta \cdot t_{0}}+\sum_{\sigma \in \Sigma^{\prime}}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]} \cdot \frac{e^{\beta \cdot t_{0}}}{e^{\beta \cdot t_{0}}} \\
& =\frac{n_{0} \cdot t_{0}+\sum_{\sigma \in \Sigma^{\prime}}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}-t_{0}\right)}\right]}{n_{0}+\sum_{\sigma \in \Sigma^{\prime}}\left[e^{-\beta \cdot\left(\varepsilon_{\sigma}-t_{0}\right)}\right]} .
\end{aligned}
$$

Let $\beta_{1}:=\beta_{0}+1$.
Then, for all $\beta \in\left[\beta_{1} ; \infty\right)$, for all $\sigma \in \Sigma$, we have

$$
\text { and } \quad \begin{aligned}
& \left|\varepsilon_{\sigma} \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}-t_{0}\right)}\right| & =\left|\varepsilon_{\sigma}\right| \cdot e^{-\beta_{1} \cdot\left(\varepsilon_{\sigma}-t_{0}\right)} \\
\text { an } & \left|e^{-\beta \cdot\left(\varepsilon_{\sigma}-t_{0}\right)}\right| & =e^{-1} \quad e^{-\beta_{1} \cdot\left(\varepsilon_{\sigma}-t_{0}\right)} .
\end{aligned}
$$

We have: $\quad \sum_{\sigma \in \Sigma}\left[\left|\varepsilon_{\sigma}\right| \cdot e^{-\beta_{1} \cdot\left(\varepsilon_{\sigma}-t_{0}\right)}\right]=\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta_{1}}^{\varepsilon}$.
Also, $\quad \sum_{\sigma \in \Sigma}\left[e^{-\beta_{1} \cdot\left(\varepsilon_{\sigma}-t_{0}\right)}\right]=\overline{\mathrm{X}}^{0} \mathrm{~S}_{\beta_{1}}^{\varepsilon}$.
By Theorem 27.12, we have: $\overline{\mathrm{X}}^{1} \mathrm{~S}_{\beta_{1}}^{\varepsilon}<\infty$ and $\overline{\mathrm{X}}^{0} \mathrm{~S}_{\beta_{1}}^{\varepsilon}<\infty$.
So, by the Dominated Convergence Theorem, as $\beta \rightarrow \infty$,

$$
\begin{aligned}
& \sum_{\sigma \in \Sigma^{\prime}}\left[\varepsilon_{\sigma} \cdot e^{-\beta \cdot\left(\varepsilon_{\sigma}-t_{0}\right)}\right]
\end{aligned} \rightarrow 0 .
$$

Then:
Then:

$$
\text { as } \beta \rightarrow \infty, \quad A_{\beta}^{\varepsilon} \rightarrow \frac{n_{0} \cdot t_{0}+0}{n_{0}+0}
$$

$$
\text { as } \beta \rightarrow \infty, \quad A_{\beta}^{\varepsilon} \rightarrow t_{0}
$$

Let Σ be an infinite set and let $\varepsilon: \Sigma \rightarrow \mathbb{N}$ be ∞-proper.
Then $\sup \mathbb{I}_{\varepsilon}=\infty$. Assume $\mathrm{DF}_{\varepsilon} \neq \varnothing$. Let $\beta_{0}:=\inf \mathrm{DF}_{\varepsilon}$.
By Theorem 23.20, $\left(\beta_{0} ; \infty\right) \subseteq \mathrm{DF}_{\varepsilon}$.
Even though $\sup \mathbb{I}_{\varepsilon}=\infty$,
it does NOT necessarily follow that: \quad as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \quad A_{\beta}^{\varepsilon} \rightarrow \infty$.
Here is an example:
For all $k \in \mathbb{N}$, let $n_{k}:=\left\lfloor e^{k} / k^{3}\right\rfloor$.
Let $\Sigma:=\left\{(k, j) \in \mathbb{N} \times \mathbb{N} \mid k \in \mathbb{N}, j \in\left[1 . . n_{k}\right]\right\}$.
Define $\varepsilon: \Sigma \rightarrow[0 . . \infty)$ by: $\forall k \in \mathbb{N}, \forall j \in\left[1 . . n_{k}\right], \quad \varepsilon(k, j)=k-1$.
Then $\mathrm{DF}_{\varepsilon}=[1 ; \infty)$, so $\inf \mathrm{DF}_{\varepsilon}=1$.
Also, $\quad \Gamma_{1}^{\varepsilon}<\infty$ and $0<\Delta_{1}^{\varepsilon}<\infty$, so $A_{1}^{\varepsilon}<\infty$.
Also, by the Dominated Convergence Theorem, we have:

$$
\text { as } \beta \rightarrow 1^{+}, \quad \text { both } \Gamma_{\beta}^{\varepsilon} \rightarrow \Gamma_{1}^{\varepsilon} \text { and } \Delta_{\beta}^{\varepsilon} \rightarrow \Delta_{1}^{\infty}
$$

Then, \quad as $\beta \rightarrow 1^{+}, \quad A_{\beta}^{\varepsilon} \rightarrow A_{1}^{\varepsilon}<\infty$.

This, then, leads to an Open Problem, as follows:
For all $k \in \mathbb{N}$, let $n_{k}:=\left\lfloor e^{k} / k^{3}\right\rfloor$.
Let $\Sigma:=\left\{(k, j) \in \mathbb{N} \times \mathbb{N} \mid k \in \mathbb{N}, j \in\left[1 . . n_{k}\right]\right\}$.
Define $\varepsilon: \Sigma \rightarrow \mathbb{N}$ by: $\forall k \in \mathbb{N}, \forall j \in\left[1 . . n_{k}\right], \quad \varepsilon(k, j)=k$.
By Theorem 27.14, $A_{\bullet}^{\varepsilon}$ is strictly-decreasing, and so and since as $\beta \rightarrow 1^{+}, \quad A_{\beta}^{\varepsilon} \rightarrow A_{1}^{\varepsilon}$, we get:
$\mathbb{I}_{A \varepsilon}$ is bounded above by A_{1}^{ε}.
Let $\alpha \in \mathbb{N}$. Assume: $\alpha>A_{1}^{\varepsilon}$. Then: $\alpha \notin \mathbb{I}_{A \xi}$.
Suppose N professors, numbered 1 to N, have states in Σ.
Suppose each state $\sigma \in \Sigma$ has wealth $\varepsilon(\sigma)$.
Suppose the total wealth of all professors is $N \alpha$.
Give equal probability to every dispensation of states.
For each $\sigma_{0} \in \Sigma$, we seek a method to approximate
the probability that Professor $\# N$ is in state σ_{0}.
More precisely: For all $n \in \mathbb{N}$,
let $\Omega_{n}:=\left\{\omega:[1 . . n] \rightarrow \Sigma \mid \sum_{\ell=1}^{n}[\varepsilon(\omega(\ell))]=n \alpha\right\}$.
Then Ω_{N} represents the set of all state-dispensations.
Open Problem: For each $\sigma_{0} \in \Sigma$,
determine whether
the limit, as $n \rightarrow \infty$, of $\nu_{\Omega_{n}}\left\{\omega \in \Omega_{n} \mid \omega(n)=\sigma_{0}\right\} \quad$ exists,
and, if it does, compute it.
This is a well-defined mathematical problem.
However, since $\alpha \notin \mathbb{I}_{A \varepsilon}$, we cannot solve $A_{\beta}^{\varepsilon}=\alpha$ for β, so our earlier techniques do not immediately apply.

THEOREM 27.16. Let $\beta_{0} \in \mathbb{R}, \quad I:=\left(\beta_{0} ; \infty\right), \quad g: I \rightarrow \mathbb{R}$.
Assume: g is differentiable on I and g^{\prime} is semi-decreasing on I.
Assume: as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \quad g(\beta) \rightarrow-\infty$.
Then: \quad as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \quad g^{\prime}(\beta) \rightarrow \infty$.
Proof. Let $M:=\sup \mathbb{I}_{g^{\prime}} \in(-\infty ; \infty]$.
Since g^{\prime} is strictly-decreasing, we get: as $\beta \rightarrow\left(\beta_{0}\right)^{+}, g^{\prime}(\beta) \rightarrow M$.
Want: $M=\infty$. Assume $M<\infty$. Want: Contradiction.
Let $\beta_{1}:=\beta_{0}+1$.
Since as $\beta \rightarrow\left(\beta_{0}\right)^{+}, g(\beta) \rightarrow-\infty$,
choose $\beta \in\left(\beta_{0} ; \beta_{1}\right)$ s.t. $g(\beta)<\left(g\left(\beta_{1}\right)\right)-M$.
By the Mean Value Theorem, choose $\xi \in\left(\beta ; \beta_{0}+1\right)$ s.t.

$$
\frac{\left(g\left(\beta_{1}\right)-(g(\beta))\right.}{\beta_{1}-\beta}=g^{\prime}(\xi) .
$$

Since $M=\sup \mathbb{I}_{g^{\prime}}$, we get: $g^{\prime}(\xi) \leqslant M$.
Since $\beta \in\left(\beta_{0} ; \beta_{1}\right)$, we get: $\beta_{1}-\beta>0$.
Then

$$
\left(g^{\prime}(\xi)\right) \cdot\left(\beta_{1}-\beta\right) \leqslant M \cdot\left(\beta_{1}-\beta\right)
$$

Since $\left(g\left(\beta_{1}\right)-(g(\beta))=\left(g^{\prime}(\xi)\right) \cdot\left(\beta_{1}-\beta\right) \leqslant M \cdot\left(\beta_{1}-\beta\right)\right.$,
we get: $\quad g(\beta) \geqslant\left(g\left(\beta_{1}\right)\right)-M \cdot\left(\beta_{1}-\beta\right)$.
By the choice of β, we get: $\left(g\left(\beta_{1}\right)\right)-M>g(\beta)$.
Since $\left(g\left(\beta_{1}\right)\right)-M>g(\beta) \geqslant\left(g\left(\beta_{1}\right)\right)-M \cdot\left(\beta_{1}-\beta\right)$,
we get: $\quad M<M \cdot\left(\beta_{1}-\beta\right)$.
Then $M \cdot\left(\beta+1-\beta_{1}\right)<0$.
So, since $\beta_{1}=\beta_{0}+1$, we get $M \cdot\left(\beta-\beta_{0}\right)<0$.
So, since $\beta \in\left(\beta_{0} ; \beta_{1}\right)$, we get $M<0$.
So, since $M=\sup \mathbb{I}_{g^{\prime}}$, we get: $\quad g^{\prime}<0$ on $\left(\beta_{0} ; \infty\right)$.
Then, by the Mean Value Theorem, we get:
g is strictly-decreasing on $\left(\beta_{0} ; \infty\right)$.
We conclude: $\quad \forall \beta \in\left(\beta_{0} ; \beta_{1}\right), \quad g(\beta)>g\left(\beta_{1}\right)$.
This contradicts the hypothesis that as $\beta \rightarrow\left(\beta_{0}\right)^{+}, g(\beta) \rightarrow-\infty$.
THEOREM 27.17. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \beta_{0} \in \mathbb{R}$.
Assume: $\mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$. Then: as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \quad \Delta_{\beta}^{\varepsilon} \rightarrow \infty$.
Proof. Otherwise, since $\beta \mapsto \Delta_{\beta}^{\varepsilon}$ is strictly-decreasing,
we get $\left\{\Delta_{\beta}^{\varepsilon} \mid \beta \in \mathrm{DF}_{\varepsilon}\right\}$ is bounded.
Let M be an upper bound.
Since $\beta_{0} \notin\left(\beta_{0} ; \infty\right)=\mathrm{DF}_{\varepsilon}$, we get: $\Delta_{\beta}^{\varepsilon}=\infty$.
That is, $\sum_{\sigma \in \Sigma}\left[e^{-\beta \cdot \varepsilon_{\sigma}}\right]=\infty$.
Choose a finite subsum that is $>M$.
Perturb β_{0} to a slightly larger β.
If the perturbation is small enough, then the subsum stays $>M$.
This implies $\Delta_{\beta}^{\varepsilon}>M$, contradicting that M is an upper bound.
THEOREM 27.18. Let Σ be a set, $\varepsilon: \Sigma \rightarrow \mathbb{R}, \quad \beta_{0} \in \mathbb{R}$.
Assume: $\mathrm{DF}_{\varepsilon}=\left(\beta_{0} ; \infty\right)$. Then: as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \quad A_{\beta}^{\varepsilon} \rightarrow \infty$.
Proof. Let $I:=\left(\beta_{0} ; \infty\right)$. Define $f: I \rightarrow \mathbb{R}$ by: $\forall \beta \in I, f(\beta)=\Delta_{\beta}^{\varepsilon}$.
We have: $\quad \forall \beta \in I, \quad f^{\prime}(\beta)=\Gamma_{\beta}^{\varepsilon}$.
Define $g: I \rightarrow \mathbb{R}$ by: $\forall \beta \in I, g(\beta)=-(\ln (f(\beta)))$.
Then: g is differentiable on I and $\forall \beta \in I, \quad g^{\prime}(\beta)=A_{\beta}^{\varepsilon}$.
Want: \quad as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \quad g^{\prime}(\beta) \rightarrow \infty$.
By Theorem 27.14, we get: g is strictly-decreasing on I.
By Theorem 27.17, we get: as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \quad \Delta_{\beta}^{\varepsilon} \rightarrow \infty$.

Then: \quad as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \quad f(\beta) \rightarrow \infty$.
Then: as $\beta \rightarrow\left(\beta_{0}\right)^{+}, \ln (f(\beta)) \rightarrow \infty$.
Then: as $\beta \rightarrow\left(\beta_{0}\right)^{+}, g(\beta) \rightarrow-\infty$.
Then, by Theorem 27.16, we get: as $\beta \rightarrow\left(\beta_{0}\right)^{+}, g^{\prime}(\beta) \rightarrow \infty$.
28. Countably infinite sets of states

MORE LATER

29. Appendix: Python code

Thanks once again to C. Prouty, for writing the Python code to do the Boltzmann computations in this paper:

First code: The GFA and $0,2,20$ dollar awards, with average 3 dollars.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def F(beta):
z = np.zeros(3)
z[0] = 1
z[1] = np.exp(-2 * beta)
z[2] = np.exp(-20* beta)
return z
def G(beta):
z = np.zeros(3)
z[0] = 0
z[1] =2 * np.exp(-2 * beta)
z[2] = 20* np.exp(-20* beta)
return z
def f(beta):
return np.sum(F(beta))
def g(beta):
return np.sum(G(beta))
def bisection(minval, maxval, y, fn):
mid = (maxval + minval) / 2
while((fn(mid) - y) ** 2>0.0000001):
if(fn(mid)< y):
maxval = mid
else:
minval = mid
mid = (maxval + minval })/
return mid
fn = lambda x: g(x) / f(x)
```

```
target = bisection(-25, 25,3, fn)
b}=0.07410049# hard-coded result of bisection
r = F (b) / f(b)
df = pd.DataFrame(r)
df.to_excel("results2.xlsx", index=False)
betas = np.linspace(-25,25,100000)
z = np.zeros(len(betas))
for i in range(len(betas)):
z[i] = fn(betas[i])
plt.plot(betas,z)
plt.show()
```

Second code: The BUA and red bags and blue bags
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def F(beta):
$\mathrm{z}=\mathrm{np} \cdot z \operatorname{ceros}(25) \cdot$ reshape $(5,5)$
for i in range(5):
for j in range(5):
$z[i, j]=n p \cdot \exp (-(i+j)$ *beta $)$
$\mathrm{z}[4,4]=0$
return z
def G(beta):
$\mathrm{z}=\mathrm{np} \cdot \mathrm{zeros}(25) \cdot$ reshape $(5,5)$
for i in range(5):
for j in range(5):
$\mathrm{z}[\mathrm{i}, \mathrm{j}]=(\mathrm{i}+\mathrm{j}) *$ np. $\exp (-(\mathrm{i}+\mathrm{j}) *$ beta $)$
$\mathrm{z}[4,4]=0$
return z
def f(beta):
return np.sum(F(beta))
def g (beta):
return np.sum(G(beta))
def bisection(minval, maxval, y, fn):
$\operatorname{mid}=($ maxval + minval $) / 2$
while((fn(mid) -y$\left.)^{* *} 2>0.0000001\right)$:
$\operatorname{if}(\mathrm{fn}(\mathrm{mid})<\mathrm{y})$:
maxval $=$ mid
else:
minval $=$ mid
$\operatorname{mid}=($ maxval + minval $) / 2$
return mid
$\mathrm{fn}=$ lambda $\mathrm{x}: \mathrm{g}(\mathrm{x}) / \mathrm{f}(\mathrm{x})$
target $=\operatorname{bisection}(-25,25,1, \mathrm{fn})$
$\mathrm{b}=1.06697083$ \# hard-coded result of bisection
$\mathrm{r}=\mathrm{F}(\mathrm{b}) / \mathrm{f}(\mathrm{b})$
$\mathrm{df}=\mathrm{pd}$. DataFrame (r)
df.to_excel(" results5.xlsx", index=False)
betas $=$ np.linspace $(-25,25,100000)$
$\mathrm{z}=\mathrm{np} \cdot z \operatorname{zeros}(\operatorname{len}($ betas $))$
for i in range(len(betas)):
$\mathrm{z}[\mathrm{i}]=\mathrm{fn}(\operatorname{betas}[\mathrm{i}])$
plt.plot(betas, z)
plt.show()

