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, t(X) := type(X),

If X is a complex surface, then c2
1(X) and χh(X) are the self-intersection of

the first Chern class c1(X) and the holomorphic Euler characteristic. If X
admits a symplectic structure, then χh(X) ∈ Z. These invariants completely

classify smooth simply connected 4-manifolds up to homeomorphism.
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11
8

Conjecture (b2(X) ≥ 11
8
|σ(X)| if X is spin).

If X is a minimal complex surface of general type, c2
1(X) ≤ 9χh(X)

(Bogomolov-Miyaoka-Yau inequality) (1977-78).

If X is a minimal complex surface of general type, 2χh − 6 ≤ c2
1(X)

(Noether inequality), 0 < χh(X), and c2
1(X) > 0.
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1 , χh, t).

Botany problem is not so well understood.

No known examples that admit only finitely many smooth structures.

Open for the simple 4-manifolds S4, CP2.

Many lattice points can be realized by inf. many smooth structures.

We’ll usually put restriction on X

X will be oriented irreducible with SWX 6= 0 (X is irreducible if

X = X1#X2, then either X1 or X2 is homemorphic to S4) or a minimal

symplectic 4-manifold (i.e. doesn’t contain symplectic −1 sphere).

M. Hamilton and D. Kotschick: minimal symplectic 4-manifolds with

residually finite fundamental groups are irreducible.
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Conjecture

An irreducible 4-manifold (with non-trivial Seiberg-Witten invariants) always

diffemorphic to a symplectic 4-manifold.

disproved by Z. Szabo, 1996

{Complex Geography} ⊂ {Symplectic Geography} ⊂ {(Irreducible) Smooth
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homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics
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2#kCP2 (0 ≤ k ≤ 9), S2 × S

2 (χh = 1). 3CP2#lCP2 (0 ≤ l ≤ 19),
#3(S

2 × S2), E(2) (χh = 2).

4-Manifolds with Signature Zero

#2n−1(S
2 × S

2), (2n − 1)CP2#(2n − 1)CP2 (χh = n).

Spin (Symplectic) 4-Manifolds with Positive Signature and Near BMY
Line

Construct 4-manifolds homeo. but not diff. to the examples as above. Such a
new smooth structure will be called an exotic smooth structure.
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J. Wolfson)

Luttinger Surgery (1995) (K. Luttinger, D. Auroux- S. Donaldson- L.

Katzarkov)

Knot Surgery (1998) (R. Fintushel- R. Stern)

Branched Covers (F. Hirzebruch)
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Construction Techniques Symplectic Connected Sum

Symplectic Connected Sum

Definition

Let X1 and X2 are symplectic 4-manifolds, and Fi ⊂ Xi are 2-dimensional,

smooth, closed, connected symplectic submanifolds in them. Suppose that
[F1]

2 + [F2]
2 = 0 and the genera of F1 and F2 are equal. Take an

orientation-preserving diffemorphism ψ : F1 −→ F2 and lift it to an

orientation-reversing diffemorphism Ψ : ∂νF1 −→ ∂νF2 between the
boundaries of the tubular neighborhoods of νFi . Using Ψ, we glue X1 \ νF1

and X2 \ νF2 along the boundary. The 4-manifold X1#ΨX2 is called the

(symplectic) connected sum of X1 and X2 along F1 and F2, determined by Ψ.
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Symplectic Connected Sum

Definition

Let X1 and X2 are symplectic 4-manifolds, and Fi ⊂ Xi are 2-dimensional,

smooth, closed, connected symplectic submanifolds in them. Suppose that
[F1]

2 + [F2]
2 = 0 and the genera of F1 and F2 are equal. Take an

orientation-preserving diffemorphism ψ : F1 −→ F2 and lift it to an

orientation-reversing diffemorphism Ψ : ∂νF1 −→ ∂νF2 between the
boundaries of the tubular neighborhoods of νFi . Using Ψ, we glue X1 \ νF1

and X2 \ νF2 along the boundary. The 4-manifold X1#ΨX2 is called the

(symplectic) connected sum of X1 and X2 along F1 and F2, determined by Ψ.

c2
1(X1#ΨX2) = c2

1(X1) + c2
1(X2) + 8(g − 1),
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smooth, closed, connected symplectic submanifolds in them. Suppose that
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2 = 0 and the genera of F1 and F2 are equal. Take an

orientation-preserving diffemorphism ψ : F1 −→ F2 and lift it to an

orientation-reversing diffemorphism Ψ : ∂νF1 −→ ∂νF2 between the
boundaries of the tubular neighborhoods of νFi . Using Ψ, we glue X1 \ νF1

and X2 \ νF2 along the boundary. The 4-manifold X1#ΨX2 is called the

(symplectic) connected sum of X1 and X2 along F1 and F2, determined by Ψ.

c2
1(X1#ΨX2) = c2

1(X1) + c2
1(X2) + 8(g − 1),

χh(X1#ΨX2) = χh(X1) + χh(X2) + (g − 1),
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Minimality of Sympletic Sums

Theorem (M. Usher, 2006)

Let Z = X1#F1=F2
X2 be sympletic fiber sum of manifolds X1 and X2. Then:
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Construction Techniques Symplectic Connected Sum

Minimality of Sympletic Sums

Theorem (M. Usher, 2006)

Let Z = X1#F1=F2
X2 be sympletic fiber sum of manifolds X1 and X2. Then:

(i) If either X1\F1 or X2\F2 contains an embedded sympletic sphere of square

−1, then Z is not minimal.
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Minimality of Sympletic Sums

Theorem (M. Usher, 2006)

Let Z = X1#F1=F2
X2 be sympletic fiber sum of manifolds X1 and X2. Then:

(i) If either X1\F1 or X2\F2 contains an embedded sympletic sphere of square

−1, then Z is not minimal.
(ii) If one of the summands Xi (say X1) admits the structure of an S2-bundle

over a surface of genus g such that Fi is a section of this fiber bundle, then Z

is minimal if and only if X2 is minimal.
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Minimality of Sympletic Sums

Theorem (M. Usher, 2006)

Let Z = X1#F1=F2
X2 be sympletic fiber sum of manifolds X1 and X2. Then:

(i) If either X1\F1 or X2\F2 contains an embedded sympletic sphere of square

−1, then Z is not minimal.
(ii) If one of the summands Xi (say X1) admits the structure of an S2-bundle

over a surface of genus g such that Fi is a section of this fiber bundle, then Z

is minimal if and only if X2 is minimal.
(iii) In all other cases, Z is minimal.
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Branched Cover Construction of Hirzebruch

Definition

If D1 and D2 are smooth disjoint curves in an algebraic surface S, and the

homology class of the divisor D = D1 − D2 is divisible by n, then there exist an
algebraic surface X which is a Z/nZ cyclic cover of S and ramified over D.
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Branched Cover Construction of Hirzebruch

Definition

If D1 and D2 are smooth disjoint curves in an algebraic surface S, and the

homology class of the divisor D = D1 − D2 is divisible by n, then there exist an
algebraic surface X which is a Z/nZ cyclic cover of S and ramified over D.

Denote this covering map as π : X → S.

e(X) = e(S)− (n − 1)e(D),
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homology class of the divisor D = D1 − D2 is divisible by n, then there exist an
algebraic surface X which is a Z/nZ cyclic cover of S and ramified over D.

Denote this covering map as π : X → S.

e(X) = e(S)− (n − 1)e(D),

σ(X) = nσ(S) −
n2 − 1

3n
D2,
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Construction Techniques Branched Cover

Branched Cover Construction of Hirzebruch

Definition

If D1 and D2 are smooth disjoint curves in an algebraic surface S, and the

homology class of the divisor D = D1 − D2 is divisible by n, then there exist an
algebraic surface X which is a Z/nZ cyclic cover of S and ramified over D.

Denote this covering map as π : X → S.

e(X) = e(S)− (n − 1)e(D),

σ(X) = nσ(S) −
n2 − 1

3n
D2,

KX = π∗(KS + (n − 1)[D])
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Construction Techniques Knot Surgery

Knot Surgery of R. Fintushel and R. Stern
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Construction Techniques Knot Surgery

Knot Surgery of R. Fintushel and R. Stern

Definition

Let X be a 4-manifold (with b2
+(X) ≥ 1) which contains a homologically

nontrivial torus T of self-intersection 0. Let N(K ) be a tubular neighborhood of
K in S3, and let T × D2 be a tubular neighborhood of T in X .
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nontrivial torus T of self-intersection 0. Let N(K ) be a tubular neighborhood of
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Knot Surgery of R. Fintushel and R. Stern

Definition

Let X be a 4-manifold (with b2
+(X) ≥ 1) which contains a homologically

nontrivial torus T of self-intersection 0. Let N(K ) be a tubular neighborhood of
K in S3, and let T × D2 be a tubular neighborhood of T in X . Then the knot

surgery manifold XK is defined as

XK = (X \ (T × D2)) ∪ (S1 × (S3 \ N(K ))

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 16 / 57



Construction Techniques Knot Surgery

Knot Surgery of R. Fintushel and R. Stern

Definition

Let X be a 4-manifold (with b2
+(X) ≥ 1) which contains a homologically

nontrivial torus T of self-intersection 0. Let N(K ) be a tubular neighborhood of
K in S3, and let T × D2 be a tubular neighborhood of T in X . Then the knot

surgery manifold XK is defined as

XK = (X \ (T × D2)) ∪ (S1 × (S3 \ N(K ))

e(XK ) = e(X)
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Knot Surgery of R. Fintushel and R. Stern

Definition

Let X be a 4-manifold (with b2
+(X) ≥ 1) which contains a homologically

nontrivial torus T of self-intersection 0. Let N(K ) be a tubular neighborhood of
K in S3, and let T × D2 be a tubular neighborhood of T in X . Then the knot

surgery manifold XK is defined as

XK = (X \ (T × D2)) ∪ (S1 × (S3 \ N(K ))

e(XK ) = e(X)

σ(XK ) = σ(X)
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Knot Surgery Continued
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Knot Surgery Continued

If K is fibered knot and X and T both symplectic, then XK is symplectic.
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Knot Surgery Continued

If K is fibered knot and X and T both symplectic, then XK is symplectic.

If the Alexander polynomial ∆K (t) of knot K is not monic then XK admits
no symplectic structure.

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 17 / 57



Construction Techniques Knot Surgery

Knot Surgery Continued

If K is fibered knot and X and T both symplectic, then XK is symplectic.

If the Alexander polynomial ∆K (t) of knot K is not monic then XK admits
no symplectic structure.

If X and X \ T are simply connected and T lies in a cusp neighborhood in

X , and SWX 6= 0, then there is an infinite family of distinct manifolds all
homeomorphic, but not diffemorphic to X .
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X , and SWX 6= 0, then there is an infinite family of distinct manifolds all
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Construction Techniques Knot Surgery

Knot Surgery Continued

If K is fibered knot and X and T both symplectic, then XK is symplectic.

If the Alexander polynomial ∆K (t) of knot K is not monic then XK admits
no symplectic structure.

If X and X \ T are simply connected and T lies in a cusp neighborhood in

X , and SWX 6= 0, then there is an infinite family of distinct manifolds all
homeomorphic, but not diffemorphic to X .

The Seiberg-Witten invariants of XK is given by

SWXK
= SWX �∆K (t

2)
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Luttinger surgery
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Construction Techniques Luttinger Surgery

Luttinger surgery

Definition

Let X be a symplectic 4-manifold with a symplectic form ω, and the torus Λ be

a Lagrangian submanifold of X with self-intersection 0. Given a simple loop λ
on Λ, let λ′ be a simple loop on ∂(νΛ) that is parallel to λ under the

Lagrangian framing. For any integer m, the (Λ, λ, 1/m) Luttinger surgery on X
will be XΛ,λ(1/m) = (X − ν(Λ)) ∪φ (S1 × S1 × D2), the 1/m surgery on Λ with

respect to λ under the Lagrangian framing. Here

φ : S1 × S1 × ∂D2 → ∂(X − ν(Λ)) denotes a gluing map satisfying
φ([∂D2]) = m[λ′] + [µΛ] in H1(∂(X − ν(Λ)), where µΛ is a meridian of Λ.
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on Λ, let λ′ be a simple loop on ∂(νΛ) that is parallel to λ under the

Lagrangian framing. For any integer m, the (Λ, λ, 1/m) Luttinger surgery on X
will be XΛ,λ(1/m) = (X − ν(Λ)) ∪φ (S1 × S1 × D2), the 1/m surgery on Λ with

respect to λ under the Lagrangian framing. Here

φ : S1 × S1 × ∂D2 → ∂(X − ν(Λ)) denotes a gluing map satisfying
φ([∂D2]) = m[λ′] + [µΛ] in H1(∂(X − ν(Λ)), where µΛ is a meridian of Λ.

XΛ,λ(1/m) possesses a symplectic form that restricts to the original

symplectic form ω on X \ νΛ.
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Construction Techniques Luttinger Surgery

Luttinger surgery

Definition

Let X be a symplectic 4-manifold with a symplectic form ω, and the torus Λ be

a Lagrangian submanifold of X with self-intersection 0. Given a simple loop λ
on Λ, let λ′ be a simple loop on ∂(νΛ) that is parallel to λ under the

Lagrangian framing. For any integer m, the (Λ, λ, 1/m) Luttinger surgery on X
will be XΛ,λ(1/m) = (X − ν(Λ)) ∪φ (S1 × S1 × D2), the 1/m surgery on Λ with

respect to λ under the Lagrangian framing. Here

φ : S1 × S1 × ∂D2 → ∂(X − ν(Λ)) denotes a gluing map satisfying
φ([∂D2]) = m[λ′] + [µΛ] in H1(∂(X − ν(Λ)), where µΛ is a meridian of Λ.

XΛ,λ(1/m) possesses a symplectic form that restricts to the original

symplectic form ω on X \ νΛ.

Luttinger surgery has been very effective tool recently for constructing exotic

smooth structures.
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Construction Techniques Luttinger Surgery

Luttinger Surgery and Sympletic Kodaira Dimension

Definition

For a minimal symplectic 4-manifold (M4, ω) with symplectic canonical class

Kω, the Kodaira dimension of (M4, ω) is defined in the following way:

κs(M4, ω) =



















−∞ if Kω · [ω] < 0 or Kω · Kω < 0,

0 if Kω · [ω] = 0 and Kω · Kω = 0,

1 if Kω · [ω] > 0 and Kω · Kω = 0,

2 if Kω · [ω] > 0 and Kω · Kω > 0.

If (M4, ω) is not minimal, its Kodaira dimension is defined to be that of any of
its minimal models.

T. J. Li proved that the symplectic Kodaira dimension is a diffeomorphism

invariant.
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Luttinger Surgery and Sympletic Kodaira Dimension

Definition

For a minimal symplectic 4-manifold (M4, ω) with symplectic canonical class

Kω, the Kodaira dimension of (M4, ω) is defined in the following way:

κs(M4, ω) =



















−∞ if Kω · [ω] < 0 or Kω · Kω < 0,

0 if Kω · [ω] = 0 and Kω · Kω = 0,

1 if Kω · [ω] > 0 and Kω · Kω = 0,

2 if Kω · [ω] > 0 and Kω · Kω > 0.

If (M4, ω) is not minimal, its Kodaira dimension is defined to be that of any of
its minimal models.

T. J. Li proved that the symplectic Kodaira dimension is a diffeomorphism

invariant.

Theorem (C.-I. Ho and T.J. Li, 2008)

The symplectic Kodaira dimension is unchanged under Luttinger surgery.
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Construction of fake symplectic S
2
× S

2

Construction of fake symplectic S2 × S2
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Construction of fake symplectic S2 × S2

Theorem (A.A, 2006)

Let K be a genus one fibered knot in S3. Then there exist a minimal

symplectic 4-manifold XK cohomology equivalent to S
2 × S

2.
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Construction of fake symplectic S
2
× S

2

Construction of fake symplectic S2 × S2

Theorem (A.A, 2006)

Let K be a genus one fibered knot in S3. Then there exist a minimal

symplectic 4-manifold XK cohomology equivalent to S
2 × S

2.

Theorem (A.A, 2006)

Let K be a genus one and K ′ be any genus 2 ≤ g fibered knot in S3. Then

there exist an infinite family of minimal symplectic 4-manifolds VKK ′

cohomology equivalent to #2g−1(S
2 × S2).
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold MK × S1

Let K be a genus one fibered knot (i.e., the trefoil or the figure eight knot) in S3

and m a meridional circle to K .
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold MK × S1

Let K be a genus one fibered knot (i.e., the trefoil or the figure eight knot) in S3

and m a meridional circle to K .

π1(S
3 \ K ) = < a, b | aba = bab >
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Construction of fake symplectic S
2
× S

2

MK be 3-manifold obtained by 0-framed Dehn surgery on K .
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Construction of fake symplectic S
2
× S

2

MK be 3-manifold obtained by 0-framed Dehn surgery on K . MK has the
same integral homology as S2 × S1, where m generates H1(MK ,Z).
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Construction of fake symplectic S
2
× S

2

MK be 3-manifold obtained by 0-framed Dehn surgery on K . MK has the
same integral homology as S2 × S1, where m generates H1(MK ,Z). Since K

has genus one and fibered, MK × S1 is a torus bundle over a torus, admits a

symplectic structure, minimal, and homology equivalent to T2 × S2.
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Construction of fake symplectic S
2
× S

2

MK be 3-manifold obtained by 0-framed Dehn surgery on K . MK has the
same integral homology as S2 × S1, where m generates H1(MK ,Z). Since K

has genus one and fibered, MK × S1 is a torus bundle over a torus, admits a

symplectic structure, minimal, and homology equivalent to T2 × S2.
Tm = m × S1 = m × x is a section of this fibration.
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symplectic structure, minimal, and homology equivalent to T2 × S2.
Tm = m × S1 = m × x is a section of this fibration. The generators γ1 = a−1b,
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in 1st homology.
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has genus one and fibered, MK × S1 is a torus bundle over a torus, admits a

symplectic structure, minimal, and homology equivalent to T2 × S2.
Tm = m × S1 = m × x is a section of this fibration. The generators γ1 = a−1b,

γ2 = b−1aba−1 of the fiber torus Ft , coming from the Seifert surface, are trivial

in 1st homology.

π1(MK × S
1) = < a, b, x | aba = bab, ab2ab−4 = 1, [a, x ] = [b, x ] = 1 >

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 23 / 57



Construction of fake symplectic S
2
× S

2

MK be 3-manifold obtained by 0-framed Dehn surgery on K . MK has the
same integral homology as S2 × S1, where m generates H1(MK ,Z). Since K

has genus one and fibered, MK × S1 is a torus bundle over a torus, admits a

symplectic structure, minimal, and homology equivalent to T2 × S2.
Tm = m × S1 = m × x is a section of this fibration. The generators γ1 = a−1b,

γ2 = b−1aba−1 of the fiber torus Ft , coming from the Seifert surface, are trivial

in 1st homology.

π1(MK × S
1) = < a, b, x | aba = bab, ab2ab−4 = 1, [a, x ] = [b, x ] = 1 >

H1(MK × S
1,Z) = Z⊕ Z

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 23 / 57



Construction of fake symplectic S
2
× S

2

MK be 3-manifold obtained by 0-framed Dehn surgery on K . MK has the
same integral homology as S2 × S1, where m generates H1(MK ,Z). Since K

has genus one and fibered, MK × S1 is a torus bundle over a torus, admits a

symplectic structure, minimal, and homology equivalent to T2 × S2.
Tm = m × S1 = m × x is a section of this fibration. The generators γ1 = a−1b,

γ2 = b−1aba−1 of the fiber torus Ft , coming from the Seifert surface, are trivial

in 1st homology.

π1(MK × S
1) = < a, b, x | aba = bab, ab2ab−4 = 1, [a, x ] = [b, x ] = 1 >

H1(MK × S
1,Z) = Z⊕ Z

H2(MK × S
1,Z) = Z⊕ Z.
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold YK

Take two copies of MK × S1.
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold YK

Take two copies of MK × S1. Let YK denote the twisted fiber sum
YK = MK × S1#Ft=Tm′

MK × S1.
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Symplectic 4-manifold YK

Take two copies of MK × S1. Let YK denote the twisted fiber sum
YK = MK × S1#Ft=Tm′

MK × S1. YK = (MK × S1)K .
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2
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Symplectic 4-manifold YK

Take two copies of MK × S1. Let YK denote the twisted fiber sum
YK = MK × S1#Ft=Tm′

MK × S1. YK = (MK × S1)K .

We could also use a different genus one fibered knot in this step.
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Symplectic 4-manifold YK
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold YK

ψ

m′

x′

γ1

γ2

m

x

γ′
1

γ′
2
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold YK

H1(YK ,Z) = Z⊕ Z = < x ,m >
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Construction of fake symplectic S
2
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Symplectic 4-manifold YK

H1(YK ,Z) = Z⊕ Z = < x ,m >

H2(YK ,Z) = Z⊕ Z = < S,T >
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold YK

H1(YK ,Z) = Z⊕ Z = < x ,m >

H2(YK ,Z) = Z⊕ Z = < S,T >

c2
1(YK ) = 2c2

1(MK × S
1) = 0

χh(YK ) = 2χh(MK × S
1) = 0
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Construction of fake symplectic S
2
× S

2

Symplectic genus two surface in YK
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Construction of fake symplectic S
2
× S

2

Symplectic genus two surface in YK

ψ

m′

x′

γ1

γ2

m

x

γ′
1

γ′
2
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold XK , fake symplectic S2 × S2

Next, take two copies of YK .
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Construction of fake symplectic S
2
× S
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Symplectic 4-manifold XK , fake symplectic S2 × S2

Next, take two copies of YK . Let XK denote the symplectic fiber sum

XK = YK#φYK along the symplectic surface Σ2 = Tm#Ft′ .
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold XK , fake symplectic S2 × S2

Next, take two copies of YK . Let XK denote the symplectic fiber sum

XK = YK#φYK along the symplectic surface Σ2 = Tm#Ft′ . We choose φ to be

an elliptic involution of Σ2 with two fixed points.
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Construction of fake symplectic S
2
× S

2

Symplectic 4-manifold XK , fake symplectic S2 × S2

Next, take two copies of YK . Let XK denote the symplectic fiber sum

XK = YK#φYK along the symplectic surface Σ2 = Tm#Ft′ . We choose φ to be

an elliptic involution of Σ2 with two fixed points.

φ

γ1

γ2

m

x

γ′′

1

γ′′

2

m′′

x′′
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Construction of fake symplectic S
2
× S

2

c2
1(XK ) = 2c2

1(YK ) + 8(2 − 1) = 8

χh(XK ) = 2χh(YK ) + (2 − 1) = 1
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c2
1(XK ) = 2c2

1(YK ) + 8(2 − 1) = 8

χh(XK ) = 2χh(YK ) + (2 − 1) = 1

H1(XK ,Z) = 0

H2(XK ,Z) = Z⊕ Z.
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Construction of fake symplectic S
2
× S

2

c2
1(XK ) = 2c2

1(YK ) + 8(2 − 1) = 8

χh(XK ) = 2χh(YK ) + (2 − 1) = 1

H1(XK ,Z) = 0

H2(XK ,Z) = Z⊕ Z.

Remark: Using non-fibered genus one n-twist knots leads to non-symplectic

fake S2 × S2.
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Construction of fake symplectic S
2
× S

2

Symplectic cohomology #(2g−1)(S
2 × S2) for g ≥ 2

Construction of VK ′K is similar.
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Construction of fake symplectic S
2
× S

2

Symplectic cohomology #(2g−1)(S
2 × S2) for g ≥ 2

Construction of VK ′K is similar. Use MK ′ × S
1, where g(K ′) = g, to get a

genus g + 1 symplectic surface inside of YK ′K = (MK ′ × S1)K .
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Construction of VK ′K is similar. Use MK ′ × S
1, where g(K ′) = g, to get a

genus g + 1 symplectic surface inside of YK ′K = (MK ′ × S1)K . Next, we apply

the symplectic fiber sum.
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Construction of fake symplectic S
2
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Symplectic cohomology #(2g−1)(S
2 × S2) for g ≥ 2

Construction of VK ′K is similar. Use MK ′ × S
1, where g(K ′) = g, to get a

genus g + 1 symplectic surface inside of YK ′K = (MK ′ × S1)K . Next, we apply

the symplectic fiber sum.

c2
1(VK ′K ) = 2c2

1(YK ′K ) + 8((g + 1)− 1) = 8g,

χh(VK ′K ) = 2χh(YK ′K ) + ((g + 1)− 1) = g,
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Construction of fake symplectic S
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Symplectic cohomology #(2g−1)(S
2 × S2) for g ≥ 2

Construction of VK ′K is similar. Use MK ′ × S
1, where g(K ′) = g, to get a

genus g + 1 symplectic surface inside of YK ′K = (MK ′ × S1)K . Next, we apply

the symplectic fiber sum.

c2
1(VK ′K ) = 2c2

1(YK ′K ) + 8((g + 1)− 1) = 8g,

χh(VK ′K ) = 2χh(YK ′K ) + ((g + 1)− 1) = g,

H1(VK ′K ,Z) = 0, H2(VK ′K ,Z) = Z⊕ Z⊕ · · · ⊕ Z, there are 2(2g − 1) copies of

Z
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Construction of fake symplectic S
2
× S

2

Symplectic cohomology #(2g−1)(S
2 × S2) for g ≥ 2

Construction of VK ′K is similar. Use MK ′ × S
1, where g(K ′) = g, to get a

genus g + 1 symplectic surface inside of YK ′K = (MK ′ × S1)K . Next, we apply

the symplectic fiber sum.

c2
1(VK ′K ) = 2c2

1(YK ′K ) + 8((g + 1)− 1) = 8g,

χh(VK ′K ) = 2χh(YK ′K ) + ((g + 1)− 1) = g,

H1(VK ′K ,Z) = 0, H2(VK ′K ,Z) = Z⊕ Z⊕ · · · ⊕ Z, there are 2(2g − 1) copies of

Z

Remark: YK , XK , YK ′K , VK ′K serve as an important building blocks in the

construction of (small or big) exotic 4-manifolds
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Past History of Small Exotic 4-Manifolds (1986 - 2005)
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Past History of Small Exotic 4-Manifolds (1986 - 2005)

Exotic CP2#nCP2

n = 9 S. Donaldson showed that the Dolgachev’s surface E(1)2,3 is
homemorphic but not diffemorphic to E(1) = CP2#9CP2 (1986).

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 31 / 57



Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Past History of Small Exotic 4-Manifolds (1986 - 2005)

Exotic CP2#nCP2

n = 9 S. Donaldson showed that the Dolgachev’s surface E(1)2,3 is
homemorphic but not diffemorphic to E(1) = CP2#9CP2 (1986).

n = 9 C. Okonek - A. Van de Ven (1986), R. Friedman - J. Morgan (1988)

inf. many smooth structures.
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n = 9 S. Donaldson showed that the Dolgachev’s surface E(1)2,3 is
homemorphic but not diffemorphic to E(1) = CP2#9CP2 (1986).

n = 9 C. Okonek - A. Van de Ven (1986), R. Friedman - J. Morgan (1988)

inf. many smooth structures.

n = 8 D. Kotschick showed that the Barlow’s surface is homemorphic but

not diffemorphic to CP2#8CP2 (1989).
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n = 9 S. Donaldson showed that the Dolgachev’s surface E(1)2,3 is
homemorphic but not diffemorphic to E(1) = CP2#9CP2 (1986).

n = 9 C. Okonek - A. Van de Ven (1986), R. Friedman - J. Morgan (1988)

inf. many smooth structures.

n = 8 D. Kotschick showed that the Barlow’s surface is homemorphic but

not diffemorphic to CP2#8CP2 (1989).

n = 7 J. Park applying the rational blowdown to E(1) = CP2#9CP2

(2004).
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n = 7 J. Park applying the rational blowdown to E(1) = CP2#9CP2

(2004). P. Ozsvath - Z. Szabo (2004) Park manifold is minimal.

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 31 / 57



Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Past History of Small Exotic 4-Manifolds (1986 - 2005)

Exotic CP2#nCP2
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n = 7 J. Park applying the rational blowdown to E(1) = CP2#9CP2

(2004). P. Ozsvath - Z. Szabo (2004) Park manifold is minimal.
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Exotic CP2#nCP2

n = 9 S. Donaldson showed that the Dolgachev’s surface E(1)2,3 is
homemorphic but not diffemorphic to E(1) = CP2#9CP2 (1986).

n = 9 C. Okonek - A. Van de Ven (1986), R. Friedman - J. Morgan (1988)

inf. many smooth structures.

n = 8 D. Kotschick showed that the Barlow’s surface is homemorphic but

not diffemorphic to CP2#8CP2 (1989).

n = 7 J. Park applying the rational blowdown to E(1) = CP2#9CP2

(2004). P. Ozsvath - Z. Szabo (2004) Park manifold is minimal.

n = 6 A. Stipsicz - Z. Szabo applying the generalized rational blowdown

to E(1) = CP2#9CP2 (2005).

n = 6, 7, 8 R. Fintushel - R. Stern inf. many smooth structures (2005).
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Past History of Small Exotic 4-Manifolds (1986 - 2005)

Exotic CP2#nCP2

n = 9 S. Donaldson showed that the Dolgachev’s surface E(1)2,3 is
homemorphic but not diffemorphic to E(1) = CP2#9CP2 (1986).

n = 9 C. Okonek - A. Van de Ven (1986), R. Friedman - J. Morgan (1988)

inf. many smooth structures.

n = 8 D. Kotschick showed that the Barlow’s surface is homemorphic but

not diffemorphic to CP2#8CP2 (1989).

n = 7 J. Park applying the rational blowdown to E(1) = CP2#9CP2

(2004). P. Ozsvath - Z. Szabo (2004) Park manifold is minimal.

n = 6 A. Stipsicz - Z. Szabo applying the generalized rational blowdown

to E(1) = CP2#9CP2 (2005).

n = 6, 7, 8 R. Fintushel - R. Stern inf. many smooth structures (2005).

n = 5 J. Park - A. Stipsicz - Z. Szabo using the rational blowdown (2005).

At the time, it was not known if symplectic
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Exotic 3CP2#lCP2
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Exotic 3CP2#lCP2

R. Friedman - J. Morgan (l = 19) inf. many
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Exotic 3CP2#lCP2

R. Friedman - J. Morgan (l = 19) inf. many

R. Gompf (14 ≤ l ≤ 18)
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Exotic 3CP2#lCP2

R. Friedman - J. Morgan (l = 19) inf. many

R. Gompf (14 ≤ l ≤ 18)

A. Stipsicz - Z. Szabo, B. Yu (14 ≤ l ≤ 18) inf. many
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Exotic 3CP2#lCP2

R. Friedman - J. Morgan (l = 19) inf. many

R. Gompf (14 ≤ l ≤ 18)

A. Stipsicz - Z. Szabo, B. Yu (14 ≤ l ≤ 18) inf. many

D. Park (10 ≤ l ≤ 13) inf. many
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Exotic 3CP2#lCP2

R. Friedman - J. Morgan (l = 19) inf. many

R. Gompf (14 ≤ l ≤ 18)

A. Stipsicz - Z. Szabo, B. Yu (14 ≤ l ≤ 18) inf. many

D. Park (10 ≤ l ≤ 13) inf. many

A. Stipsicz - Z. Szabo (l = 9) and J. Park (l = 8) using the generailzed

rational blowdown. Not known if symplectic.
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Exotic 3CP2#lCP2

R. Friedman - J. Morgan (l = 19) inf. many

R. Gompf (14 ≤ l ≤ 18)

A. Stipsicz - Z. Szabo, B. Yu (14 ≤ l ≤ 18) inf. many

D. Park (10 ≤ l ≤ 13) inf. many

A. Stipsicz - Z. Szabo (l = 9) and J. Park (l = 8) using the generailzed

rational blowdown. Not known if symplectic.

All these construction starts with simply-connected 4-manifolds and apply

some surgery techniques that preserves simple connectivity.
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Small Exotic 4-Manifolds History of Small Exotic 4-Manifolds

Exotic 3CP2#lCP2

R. Friedman - J. Morgan (l = 19) inf. many

R. Gompf (14 ≤ l ≤ 18)

A. Stipsicz - Z. Szabo, B. Yu (14 ≤ l ≤ 18) inf. many

D. Park (10 ≤ l ≤ 13) inf. many

A. Stipsicz - Z. Szabo (l = 9) and J. Park (l = 8) using the generailzed

rational blowdown. Not known if symplectic.

All these construction starts with simply-connected 4-manifolds and apply

some surgery techniques that preserves simple connectivity.

We introduced a new technique in [A.A, 2006, Alg and Geom Topol], and

constructed exotic symplectic CP2#5CP2 and exotic 3CP2#7CP2 using

non-simply connected building blocks.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Theorem (A.A, 2006, Alg and Geom Topol)

Let M be one of the following 4-manifolds.

(i) CP2#mCP2 for m = 5,

(ii) 3CP2#kCP2 for k = 7,

(iii) (2n − 1)CP2#(2n + 3)CP2 for any integer n ≥ 3.

Then there exist an irreducible symplectic 4-manifolds homeomorphic but not

diffeomorphic to M.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Sketch of Proof

Let M = T2 × S2#4CP2.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Sketch of Proof

Let M = T2 × S2#4CP2.

M admits a genus two Lefschetz fibration over S2 with 8 singular fibers.
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M admits a genus two Lefschetz fibration over S2 with 8 singular fibers.
This fibration is known as Matsumoto’s fibration.

Matsumoto’s fibration can be obtained as a double branched cover of

T
2 × S

2 branched along the configuration 2[pt × S
2] + 2[T2 × pt ].
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Sketch of Proof

Let M = T2 × S2#4CP2.

M admits a genus two Lefschetz fibration over S2 with 8 singular fibers.
This fibration is known as Matsumoto’s fibration.

Matsumoto’s fibration can be obtained as a double branched cover of

T
2 × S

2 branched along the configuration 2[pt × S
2] + 2[T2 × pt ].

c2
1(M) = −4, χh(M) = 0, π1(M) = Z× Z
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Sketch of Proof Continued

The global monodromy of Matsumoto’s fibration: (Dβ1
Dβ2

Dβ3
Dβ4

)2 = 1,

β

3 4ββ

2β1
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Sketch of Proof Continued

The global monodromy of Matsumoto’s fibration: (Dβ1
Dβ2

Dβ3
Dβ4

)2 = 1,

β

3 4ββ

2β1

Let X be a symplectic fiber sum of M and
YK = MK × S1#Ft=Tm′

MK × S1 = (MK × S1)K along the genus two

surfaces, where K is a genus one fibered knot in S3.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Sketch of Proof Continued

The global monodromy of Matsumoto’s fibration: (Dβ1
Dβ2

Dβ3
Dβ4

)2 = 1,

β

3 4ββ

2β1

Let X be a symplectic fiber sum of M and
YK = MK × S1#Ft=Tm′

MK × S1 = (MK × S1)K along the genus two

surfaces, where K is a genus one fibered knot in S3.

c2
1(X) = c2

1(M) + c2
1(YK ) + 8(2 − 1) = 4,

χh(X) = χh(M) + χh(YK ) + (2 − 1) = 1.
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The global monodromy of Matsumoto’s fibration: (Dβ1
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)2 = 1,

β

3 4ββ

2β1

Let X be a symplectic fiber sum of M and
YK = MK × S1#Ft=Tm′

MK × S1 = (MK × S1)K along the genus two

surfaces, where K is a genus one fibered knot in S3.

c2
1(X) = c2

1(M) + c2
1(YK ) + 8(2 − 1) = 4,

χh(X) = χh(M) + χh(YK ) + (2 − 1) = 1.

X is simply connected, so homemorphic to CP2#5CP2.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Sketch of Proof Continued

The global monodromy of Matsumoto’s fibration: (Dβ1
Dβ2

Dβ3
Dβ4

)2 = 1,

β

3 4ββ

2β1

Let X be a symplectic fiber sum of M and
YK = MK × S1#Ft=Tm′

MK × S1 = (MK × S1)K along the genus two

surfaces, where K is a genus one fibered knot in S3.

c2
1(X) = c2

1(M) + c2
1(YK ) + 8(2 − 1) = 4,

χh(X) = χh(M) + χh(YK ) + (2 − 1) = 1.

X is simply connected, so homemorphic to CP2#5CP2.

X is minimal symplectic by M. Usher’s Minimality Theorem, so it cannot

be diffemorphic to CP
2#5CP2.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Theorem (A.A - Doug Park, Inven. Math, January 2007)

Let M be one of the following 4-manifolds.

(i) CP2#mCP2 for m = 3,

(ii) 3CP2#kCP2 for k = 5,

(iii) (2n − 1)CP2#(2n + 1)CP2 for any integer n ≥ 3.

Then there exist an irreducible symplectic 4-manifolds homeomorphic but not
diffeomorphic to M.
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Theorem (A.A - Doug Park, Inven. Math, January 2007)

Let M be one of the following 4-manifolds.

(i) CP2#mCP2 for m = 3,

(ii) 3CP2#kCP2 for k = 5,

(iii) (2n − 1)CP2#(2n + 1)CP2 for any integer n ≥ 3.

Then there exist an irreducible symplectic 4-manifolds homeomorphic but not
diffeomorphic to M.

Alternative construction of exotic CP2#3CP2 was later given by S. Baldridge -
P. Kirk, and R. Fintushel - D. Park - R. Stern.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Sketch of Proof

Let M = MK × S1#2CP2. M has a symplectic genus two surface of

self-intersection 0 which carry π1(M).
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Sketch of Proof

Let M = MK × S1#2CP2. M has a symplectic genus two surface of

self-intersection 0 which carry π1(M).

c2
1(M) = −2, χh(M) = 0, H1(M) = Z× Z
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Let M = MK × S1#2CP2. M has a symplectic genus two surface of

self-intersection 0 which carry π1(M).

c2
1(M) = −2, χh(M) = 0, H1(M) = Z× Z

Let X be a symplectic fiber sum of M and

YK = MK × S
1#Ft=Tm′

MK × S
1 = (MK × S

1)K along the genus two
surfaces, where K is a genus one fibered knot in S3.
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Let M = MK × S1#2CP2. M has a symplectic genus two surface of
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c2
1(M) = −2, χh(M) = 0, H1(M) = Z× Z

Let X be a symplectic fiber sum of M and

YK = MK × S
1#Ft=Tm′

MK × S
1 = (MK × S

1)K along the genus two
surfaces, where K is a genus one fibered knot in S3.

c2
1(X) = c2

1(M) + c2
1(YK ) + 8(2 − 1) = 6,

χh(X) = χh(M) + χh(YK ) + (2 − 1) = 1.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Sketch of Proof

Let M = MK × S1#2CP2. M has a symplectic genus two surface of

self-intersection 0 which carry π1(M).

c2
1(M) = −2, χh(M) = 0, H1(M) = Z× Z

Let X be a symplectic fiber sum of M and

YK = MK × S
1#Ft=Tm′

MK × S
1 = (MK × S

1)K along the genus two
surfaces, where K is a genus one fibered knot in S3.

c2
1(X) = c2

1(M) + c2
1(YK ) + 8(2 − 1) = 6,

χh(X) = χh(M) + χh(YK ) + (2 − 1) = 1.

X is simply connected 4-manifolds homemorphic but not diffemorphic to
CP2#3CP2.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Exotic CP2#3CP2 of Akhmedov - Park via Luttinger Surgery, (A.A - I.

Baykur - D. Park)

Use 3 copies of the 4-torus, T 4
1 , T 4

2 and T 4
3 .
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Exotic CP2#3CP2 of Akhmedov - Park via Luttinger Surgery, (A.A - I.

Baykur - D. Park)

Use 3 copies of the 4-torus, T 4
1 , T 4

2 and T 4
3 .

Fiber sum the first two along the 2-tori a1 × b1 and a2 × b2, with a gluing
map that identifies a1 with a2 and b1 with b2. We obtain T 2 × Σ2, where

the symplectic genus 2 surface Σ2 is obtained by gluing together the

orthogonal punctured symplectic tori (c1 × d1) \ D2 in T 4
1 and

(c2 × d2) \ D2 in T 4
2 . π1(T

2 × Σ2) has six generators a1 = a2, b1 = b2, c1,

c2, d1 and d2 with relations [a1, b1] = 1, [c1, d1][c2, d2] = 1 and a1 and b1

commute with all ci and di .
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Exotic CP2#3CP2 of Akhmedov - Park via Luttinger Surgery, (A.A - I.

Baykur - D. Park)

Use 3 copies of the 4-torus, T 4
1 , T 4

2 and T 4
3 .

Fiber sum the first two along the 2-tori a1 × b1 and a2 × b2, with a gluing
map that identifies a1 with a2 and b1 with b2. We obtain T 2 × Σ2, where

the symplectic genus 2 surface Σ2 is obtained by gluing together the

orthogonal punctured symplectic tori (c1 × d1) \ D2 in T 4
1 and

(c2 × d2) \ D2 in T 4
2 . π1(T

2 × Σ2) has six generators a1 = a2, b1 = b2, c1,

c2, d1 and d2 with relations [a1, b1] = 1, [c1, d1][c2, d2] = 1 and a1 and b1

commute with all ci and di .

The two symplectic tori a3 × b3 and c3 × d3 in T 4
3 intersect at one point.

Smooth out intersection point to get a symplectic surface of genus 2.
Blow up T 4

3 twice at the self-intersection points to obtain a symplectic

genus two surface Σ′ of self-intersection zero.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Take the symplectic fiber sum of Y = T 2 × Σ2 and Y ′ = T 4
3 #2CP2 along

the surfaces Σ2 and Σ′, determined by a map that sends the circles
c1, d1, c2, d2 to a3, b3, c3, d3 in the same order. By Seifert-Van Kampen

theorem, the fundamental group of the resulting manifold X ′ can be seen

to be generated by a1, b1, c1, d1, c2 and d2, which all commute with each
other. π1(X

′) is isomorphic to Z6, e(X ′) = 6 and σ(X ′) = −2, which are

also the characteristic numbers of CP2#3CP2.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Take the symplectic fiber sum of Y = T 2 × Σ2 and Y ′ = T 4
3 #2CP2 along

the surfaces Σ2 and Σ′, determined by a map that sends the circles
c1, d1, c2, d2 to a3, b3, c3, d3 in the same order. By Seifert-Van Kampen

theorem, the fundamental group of the resulting manifold X ′ can be seen

to be generated by a1, b1, c1, d1, c2 and d2, which all commute with each
other. π1(X

′) is isomorphic to Z6, e(X ′) = 6 and σ(X ′) = −2, which are

also the characteristic numbers of CP2#3CP2.

Perform six Luttinger surgeries on pairwise disjoint Lagrangian tori:
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Take the symplectic fiber sum of Y = T 2 × Σ2 and Y ′ = T 4
3 #2CP2 along

the surfaces Σ2 and Σ′, determined by a map that sends the circles
c1, d1, c2, d2 to a3, b3, c3, d3 in the same order. By Seifert-Van Kampen

theorem, the fundamental group of the resulting manifold X ′ can be seen

to be generated by a1, b1, c1, d1, c2 and d2, which all commute with each
other. π1(X

′) is isomorphic to Z6, e(X ′) = 6 and σ(X ′) = −2, which are

also the characteristic numbers of CP2#3CP2.

Perform six Luttinger surgeries on pairwise disjoint Lagrangian tori:

(a1 × c̃1, c̃1,−1), (a1 × d̃1, d̃1,−1), (ã1 × c2, ã1,−1),

(b̃1 × c2, b̃1,−1), (c1 × c̃2, c̃2,−1), (c1 × d̃2, d̃2,−1).
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

We obtain a symplectic 4-manifold X with π1(X) generated by a1, b1, c1, d1,
c2, d2 with relations:

[b1, d
−1
1 ] = b1c1b−1

1 , [c−1
1 , b1] = d1, [d2, b

−1
1 ] = d2a1d−1

2 ,

[a−1
1 , d2] = b1, [d1, d

−1
2 ] = d1c2d−1

1 , [c−1
2 , d1] = d2,

and all other commutators are equal to the identity.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

We obtain a symplectic 4-manifold X with π1(X) generated by a1, b1, c1, d1,
c2, d2 with relations:

[b1, d
−1
1 ] = b1c1b−1

1 , [c−1
1 , b1] = d1, [d2, b

−1
1 ] = d2a1d−1

2 ,

[a−1
1 , d2] = b1, [d1, d

−1
2 ] = d1c2d−1

1 , [c−1
2 , d1] = d2,

and all other commutators are equal to the identity.

Since [b1, c2] = [c1, c2] = 1, d1 = [c−1
1 , b1] also commutes with c2. Thus

d2 = 1, implying a1 = b1 = 1. The last identity implies c1 = d1 = 1, which in

turn implies c2 = 1.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

We obtain a symplectic 4-manifold X with π1(X) generated by a1, b1, c1, d1,
c2, d2 with relations:

[b1, d
−1
1 ] = b1c1b−1

1 , [c−1
1 , b1] = d1, [d2, b

−1
1 ] = d2a1d−1

2 ,

[a−1
1 , d2] = b1, [d1, d

−1
2 ] = d1c2d−1

1 , [c−1
2 , d1] = d2,

and all other commutators are equal to the identity.

Since [b1, c2] = [c1, c2] = 1, d1 = [c−1
1 , b1] also commutes with c2. Thus

d2 = 1, implying a1 = b1 = 1. The last identity implies c1 = d1 = 1, which in

turn implies c2 = 1.

X is simply-connected and surgeries do not change the characteristic

numbers, we have it homeomorphic to CP2#3CP2. Y is minimal and the

exceptional spheres in Y ′ intersect Σ′, Ushers Theorem guarantees that X ′ is
minimal. X is an irreducible symplectic 4-manifold which is not diffeomorphic

to CP2#3CP2.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Theorem (A.A - Doug Park, May 2007, Inven. Math)

Let M be one of the following 4-manifolds.

(i) CP
2#mCP

2 for m = 2, 4,

(ii) 3CP2#kCP2 for k = 4, 6, 8, 10,

(iii) (2n − 1)CP2#2nCP2 for any integer n ≥ 3.

Then there exist an irreducible symplectic 4-manifold and an infinite family of

pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds, all of

which are homeomorphic to M.
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Small Exotic 4-Manifolds Construction of Small Exotic 4-Manifolds

Handlebody of Akhmedov-Park’s exotic CP2#2CP2 by Selman Akbulut

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 42 / 57



The Geography of Spin Symplectic 4-Manifolds The Geography of Spin Symplectic 4-Manifolds

Past Results on Spin Symplectic Geography

The Geography of Spin Symplectic 4-Manifolds
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The Geography of Spin Symplectic 4-Manifolds The Geography of Spin Symplectic 4-Manifolds

Past Results on Spin Symplectic Geography

The Geography of Spin Symplectic 4-Manifolds

(σ < 0) Geography problem has been solved by D. Park - Z. Szabo and

R. Gompf.
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The Geography of Spin Symplectic 4-Manifolds The Geography of Spin Symplectic 4-Manifolds

Past Results on Spin Symplectic Geography

The Geography of Spin Symplectic 4-Manifolds

(σ < 0) Geography problem has been solved by D. Park - Z. Szabo and

R. Gompf.

(σ > 0) All but finitely many lattice points with 8χh < c1
2 ≤ 8.76χh. (J.

Park).
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Past Results on Spin Symplectic Geography

The Geography of Spin Symplectic 4-Manifolds

(σ < 0) Geography problem has been solved by D. Park - Z. Szabo and

R. Gompf.

(σ > 0) All but finitely many lattice points with 8χh < c1
2 ≤ 8.76χh. (J.

Park). The construction uses the spin complex surface by U. Persson- C.
Peters- G. Xiao with c1

2 = 8.76χh.
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The Geography of Spin Symplectic 4-Manifolds The Geography of Spin Symplectic 4-Manifolds

Past Results on Spin Symplectic Geography

The Geography of Spin Symplectic 4-Manifolds

(σ < 0) Geography problem has been solved by D. Park - Z. Szabo and

R. Gompf.

(σ > 0) All but finitely many lattice points with 8χh < c1
2 ≤ 8.76χh. (J.

Park). The construction uses the spin complex surface by U. Persson- C.
Peters- G. Xiao with c1

2 = 8.76χh.

(σ = 0) J. Park constructed the exotic smooth structures on

#2n−1(S
2 × S2) for n ≥ 267145kx2, where integer k and x are large

numbers, which were not explicitly computed.
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The Geography of Spin Symplectic 4-Manifolds The Geography of Spin Symplectic 4-Manifolds

Past Results on Spin Symplectic Geography

The Geography of Spin Symplectic 4-Manifolds

(σ < 0) Geography problem has been solved by D. Park - Z. Szabo and

R. Gompf.

(σ > 0) All but finitely many lattice points with 8χh < c1
2 ≤ 8.76χh. (J.

Park). The construction uses the spin complex surface by U. Persson- C.
Peters- G. Xiao with c1

2 = 8.76χh.

(σ = 0) J. Park constructed the exotic smooth structures on

#2n−1(S
2 × S2) for n ≥ 267145kx2, where integer k and x are large

numbers, which were not explicitly computed.

There are simply connected symplectic family by A. Stipsicz approaching
BMY line, but his examples are not spin.
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The Geography of Spin Symplectic 4-Manifolds Recent Results on Spin Symplectic Geography

Spin Symplectic 4-Manifolds Near BMY Line

Theorem (A. A - D. Park - G.Urzua, 2010)
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The Geography of Spin Symplectic 4-Manifolds Recent Results on Spin Symplectic Geography

Spin Symplectic 4-Manifolds Near BMY Line

Theorem (A. A - D. Park - G.Urzua, 2010)

There exisit an infinite family of closed simply connected minimal symplectic

4-manifolds {Mn|n ∈ N} satisfying 8.92χh < c1
2(Mn) < 9χh for every n ≥ 12,

and limn→∞

c1
2(Mn)

χh(Mn)
= 9. Moreover, Mn has ∞2-property for every n and spin if

n ≡ 4(mod8).
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The Geography of Spin Symplectic 4-Manifolds Recent Results on Spin Symplectic Geography

Spin Symplectic 4-Manifolds Near BMY Line

Theorem (A. A - D. Park - G.Urzua, 2010)

There exisit an infinite family of closed simply connected minimal symplectic

4-manifolds {Mn|n ∈ N} satisfying 8.92χh < c1
2(Mn) < 9χh for every n ≥ 12,

and limn→∞

c1
2(Mn)

χh(Mn)
= 9. Moreover, Mn has ∞2-property for every n and spin if

n ≡ 4(mod8).

Theorem (A. A - D. Park - G. Urzua, 2010 )

Let G be any finitely presented group. There exisit an infinite family of closed

spin symplectic 4-manifolds {Mk
G|k ∈ N} such that π1(Mk

G) = G and

0 < c1
2(Mk

G) < 9χh for every k, and limk→∞

c1
2(Mk

G)

χh(Mk
G)

= 9. If G is residually

finite, then Mk
G is irreducible.
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The Geography of Spin Symplectic 4-Manifolds Recent Results on Spin Symplectic Geography

Spin Symplectic 4-Manifolds Near BMY Line

Theorem (A. A - D. Park - G.Urzua, 2010)

There exisit an infinite family of closed simply connected minimal symplectic

4-manifolds {Mn|n ∈ N} satisfying 8.92χh < c1
2(Mn) < 9χh for every n ≥ 12,

and limn→∞

c1
2(Mn)

χh(Mn)
= 9. Moreover, Mn has ∞2-property for every n and spin if

n ≡ 4(mod8).

Theorem (A. A - D. Park - G. Urzua, 2010 )

Let G be any finitely presented group. There exisit an infinite family of closed

spin symplectic 4-manifolds {Mk
G|k ∈ N} such that π1(Mk

G) = G and

0 < c1
2(Mk

G) < 9χh for every k, and limk→∞

c1
2(Mk

G)

χh(Mk
G)

= 9. If G is residually

finite, then Mk
G is irreducible.

Our construction uses the spin complex surfaces of Hirzebruch near BMY

line, the elliptic surfaces E(2n3), and the spin symplectic 4-manifolds SG

of R. Gompf (with π1(S
G) = G, and c1

2(SG) = 0).
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The Geography of Spin Symplectic 4-Manifolds Recent Results on Spin Symplectic Geography

Symplectic 4-Manifolds with Signature 0

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let.

2010 )
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Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let.

2010 )

Let M be one of the following 4-manifolds.

(i) #2n−1(S
2 × S2) for n ≥ 138,

(ii) (2n − 1)CP2#(2n − 1)CP2 for any integer n ≥ 23.
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Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let.

2010 )

Let M be one of the following 4-manifolds.

(i) #2n−1(S
2 × S2) for n ≥ 138,

(ii) (2n − 1)CP2#(2n − 1)CP2 for any integer n ≥ 23.

Then there exist an irreducible symplectic 4-manifold and an infinite family of

pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds, all of
which are homeomorphic to M. Moreover, M in (i) has ∞2-property.
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Symplectic 4-Manifolds with Signature 0

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let.

2010 )

Let M be one of the following 4-manifolds.

(i) #2n−1(S
2 × S2) for n ≥ 138,

(ii) (2n − 1)CP2#(2n − 1)CP2 for any integer n ≥ 23.

Then there exist an irreducible symplectic 4-manifold and an infinite family of

pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds, all of
which are homeomorphic to M. Moreover, M in (i) has ∞2-property.

construction (i) uses the small surfaces bundles with non-zero signature
by J. Bryan and R. Donagi, and homotopy K 3 surfaces by R. Fintushel-

R. Stern.
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Building Blocks Surface Bundles with Non-Zero Signature

Branched Cover Construction of Surface Bundles with Non-Zero

Signature, after M. Atiyah, K. Kodaira, F. Hirzebruch

Theorem (J. Bryan - R. Donagi - A. Stipsicz)

For any integers n ≥ 2, there exisit smooth algebraic surface Xn that have

signature σ(Xn) = 8/3n(n − 1)(n + 1) and admit two smooth fibrations

Xn −→ B and Xn −→ B′ such that the base and fiber genus are
(3, 3n3 − n2 + 1) and (2n2 + 1, 3n) respectively.

Theorem (J. Bryan - R. Donagi)

For any pair of integers g, n ≥ 2, there exisit smooth algebraic surface Xn,g

that have signature σ(Xn) = 4/3g(g − 1)(n2 − 1)n2g−3 and admit two smooth
fibrations Xn,g −→ B and Xn,g −→ B′ such that the base and fiber genus are

(g(g − 1)n2g−2 + 1, gn) and (g, g(gn − 1)n2g−2 + 1) respectively.
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Building Blocks Surface Bundles with Non-Zero Signature

Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole.
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around the center hole. ∆ and ∆′ denote the diagonal and its image under
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around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.
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Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.
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around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2
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Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2 (use the image of

(id − τ)∗ : H1(B;Z/nZ) −→ H1(B;Z/nZ) to get the above surjection).
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Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2 (use the image of

(id − τ)∗ : H1(B;Z/nZ) −→ H1(B;Z/nZ) to get the above surjection).

B′ has genus 2n2 + 1.

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 47 / 57



Building Blocks Surface Bundles with Non-Zero Signature

Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2 (use the image of

(id − τ)∗ : H1(B;Z/nZ) −→ H1(B;Z/nZ) to get the above surjection).

B′ has genus 2n2 + 1.

Γπ and Γπ′ are the graphs of the maps π and π′ = τ ◦ π.
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Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2 (use the image of

(id − τ)∗ : H1(B;Z/nZ) −→ H1(B;Z/nZ) to get the above surjection).

B′ has genus 2n2 + 1.

Γπ and Γπ′ are the graphs of the maps π and π′ = τ ◦ π.

The homology class D = Γπ − Γπ′ is divisible by n and D2 = −8n2.
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Building Blocks Surface Bundles with Non-Zero Signature

Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2 (use the image of

(id − τ)∗ : H1(B;Z/nZ) −→ H1(B;Z/nZ) to get the above surjection).

B′ has genus 2n2 + 1.

Γπ and Γπ′ are the graphs of the maps π and π′ = τ ◦ π.

The homology class D = Γπ − Γπ′ is divisible by n and D2 = −8n2.

Let Xn be n-fold cyclic branched cover of B′ × B along D.
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Building Blocks Surface Bundles with Non-Zero Signature

Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2 (use the image of

(id − τ)∗ : H1(B;Z/nZ) −→ H1(B;Z/nZ) to get the above surjection).

B′ has genus 2n2 + 1.

Γπ and Γπ′ are the graphs of the maps π and π′ = τ ◦ π.

The homology class D = Γπ − Γπ′ is divisible by n and D2 = −8n2.

Let Xn be n-fold cyclic branched cover of B′ × B along D.

σ(Xn) = 8/3n(n − 1)(n + 1) by Hirzebruch’s signature formula.
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Building Blocks Surface Bundles with Non-Zero Signature

Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2 (use the image of

(id − τ)∗ : H1(B;Z/nZ) −→ H1(B;Z/nZ) to get the above surjection).

B′ has genus 2n2 + 1.

Γπ and Γπ′ are the graphs of the maps π and π′ = τ ◦ π.

The homology class D = Γπ − Γπ′ is divisible by n and D2 = −8n2.

Let Xn be n-fold cyclic branched cover of B′ × B along D.

σ(Xn) = 8/3n(n − 1)(n + 1) by Hirzebruch’s signature formula. Xn is spin if n
is odd
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Building Blocks Surface Bundles with Non-Zero Signature

Sketch of Proof:

Let B be a genus 3 surface and τ : B → B be a fixed point free involution of B

around the center hole. ∆ and ∆′ denote the diagonal and its image under

Id × τ . ∆−∆′ is not a divisible class, so we cannot apply Hirzebruch’s

branched cover construction.

Consider a certain unramified covering map π : B′ −→ B and pull back ∆ and
∆′ to B′ × B.

Let π : B′ −→ B be the (Z/nZ)2 cover given by the surjection
π(B) −→ H1(B;Z/nZ) −→ (Z/nZ)2 (use the image of

(id − τ)∗ : H1(B;Z/nZ) −→ H1(B;Z/nZ) to get the above surjection).

B′ has genus 2n2 + 1.

Γπ and Γπ′ are the graphs of the maps π and π′ = τ ◦ π.

The homology class D = Γπ − Γπ′ is divisible by n and D2 = −8n2.

Let Xn be n-fold cyclic branched cover of B′ × B along D.

σ(Xn) = 8/3n(n − 1)(n + 1) by Hirzebruch’s signature formula. Xn is spin if n
is odd (use the formula for the canonical class).
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm
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Σb be a genus b surface.
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm

Σb be a genus b surface.

Let X be a closed 4-manifold that is the total space of a genus f surface
bundle over Σb.
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm

Σb be a genus b surface.

Let X be a closed 4-manifold that is the total space of a genus f surface
bundle over Σb.

Assume that X is spin, σ(X) = 16s and X has a section Σb −→ X whose

image is a genus b surface of self-intersection −2t.
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm

Σb be a genus b surface.

Let X be a closed 4-manifold that is the total space of a genus f surface
bundle over Σb.

Assume that X is spin, σ(X) = 16s and X has a section Σb −→ X whose

image is a genus b surface of self-intersection −2t.

Symplectically resolve the double point of Σf and the image of a section to get

a symplectic submanifold of Σf+b in X of genus f + b and self intersection
2 − 2t.
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Building Blocks Surface Bundles with Non-Zero Signature
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm

Let r is a positive integer satisfying 1 − t ≤ r ≤ min{s, f + b + 1 − t}.
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm

Let r is a positive integer satisfying 1 − t ≤ r ≤ min{s, f + b + 1 − t}.

K be a fibered knot of genus g(K ) = f + b + 1 − t − r in S
3.

Let E(2r)K denote the homotopy elliptic surface of Fintushel and Stern.
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General Construction Algorithm

Let r is a positive integer satisfying 1 − t ≤ r ≤ min{s, f + b + 1 − t}.

K be a fibered knot of genus g(K ) = f + b + 1 − t − r in S
3.

Let E(2r)K denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2r) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2r in E(2r)K .
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm

Let r is a positive integer satisfying 1 − t ≤ r ≤ min{s, f + b + 1 − t}.

K be a fibered knot of genus g(K ) = f + b + 1 − t − r in S
3.

Let E(2r)K denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2r) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2r in E(2r)K .

By symplectically resolving r + t − 1 double points of the union of r + t − 1
fiberes and Sg(K ), we obtain a symplectic submanifold Σ′

f+b of genus f + b

and self-intersection 2t − 2.
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm

Let r is a positive integer satisfying 1 − t ≤ r ≤ min{s, f + b + 1 − t}.

K be a fibered knot of genus g(K ) = f + b + 1 − t − r in S
3.

Let E(2r)K denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2r) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2r in E(2r)K .

By symplectically resolving r + t − 1 double points of the union of r + t − 1
fiberes and Sg(K ), we obtain a symplectic submanifold Σ′

f+b of genus f + b

and self-intersection 2t − 2.

Z = X#Σf+b=Σ′

f+b
E(2r)K . Z is a spin symplectic 4-manifold with

σ(Z ) = 16(s − r) ≥ 0.
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Building Blocks Surface Bundles with Non-Zero Signature

General Construction Algorithm

Let r is a positive integer satisfying 1 − t ≤ r ≤ min{s, f + b + 1 − t}.

K be a fibered knot of genus g(K ) = f + b + 1 − t − r in S
3.

Let E(2r)K denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2r) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2r in E(2r)K .

By symplectically resolving r + t − 1 double points of the union of r + t − 1
fiberes and Sg(K ), we obtain a symplectic submanifold Σ′

f+b of genus f + b

and self-intersection 2t − 2.

Z = X#Σf+b=Σ′

f+b
E(2r)K . Z is a spin symplectic 4-manifold with

σ(Z ) = 16(s − r) ≥ 0.

Z is simply connected and irreducible.
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Building Blocks Spin complex surfaces of Hirzebruch

Spin complex surfaces near BMY line by Hirzebruch
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Building Blocks Spin complex surfaces of Hirzebruch

Spin complex surfaces near BMY line by Hirzebruch

For each n ≥ 2, Hirzebruch constructed a sequence Xn of minimal complex

surfaces of general type with the following invariants:
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Building Blocks Spin complex surfaces of Hirzebruch

Spin complex surfaces near BMY line by Hirzebruch

For each n ≥ 2, Hirzebruch constructed a sequence Xn of minimal complex

surfaces of general type with the following invariants:

e(Xn) = n7

c2
1(Xn) = 3n7 − 4n5
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Building Blocks Spin complex surfaces of Hirzebruch

Spin complex surfaces near BMY line by Hirzebruch

For each n ≥ 2, Hirzebruch constructed a sequence Xn of minimal complex

surfaces of general type with the following invariants:

e(Xn) = n7

c2
1(Xn) = 3n7 − 4n5

σ(Xn) = (n7 − 4n5)/3

χh(Xn) = (n7 − n5)/3
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Building Blocks Spin complex surfaces of Hirzebruch

Spin complex surfaces near BMY line by Hirzebruch

For each n ≥ 2, Hirzebruch constructed a sequence Xn of minimal complex

surfaces of general type with the following invariants:

e(Xn) = n7

c2
1(Xn) = 3n7 − 4n5

σ(Xn) = (n7 − 4n5)/3

χh(Xn) = (n7 − n5)/3

lim
n→∞

c1
2(Xn)

χh(Xn)
= 9.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn:

Let ζ = e2πi/6
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn:

Let ζ = e2πi/6 and let T be the elliptic curve

T = C/{Z · 1 + Zζ}.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn:

Let ζ = e2πi/6 and let T be the elliptic curve

T = C/{Z · 1 + Zζ}.

Consider the complex surface T× T, and denote its points by (z,w).

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 51 / 57



Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn:

Let ζ = e2πi/6 and let T be the elliptic curve

T = C/{Z · 1 + Zζ}.

Consider the complex surface T× T, and denote its points by (z,w).

Define four elliptic curves on T× T

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 51 / 57



Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn:

Let ζ = e2πi/6 and let T be the elliptic curve

T = C/{Z · 1 + Zζ}.

Consider the complex surface T× T, and denote its points by (z,w).

Define four elliptic curves on T× T

T0 : w = 0, T∞ : z = 0,
T1 : w = z, Tζ : w = ζz.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn:

Let ζ = e2πi/6 and let T be the elliptic curve

T = C/{Z · 1 + Zζ}.

Consider the complex surface T× T, and denote its points by (z,w).

Define four elliptic curves on T× T

T0 : w = 0, T∞ : z = 0,
T1 : w = z, Tζ : w = ζz.

These tori intersect at (0, 0) and do not intersect each other anywhere else.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn (continued)

Let Un be the lattice in T× T consisting of n4 points

Un = {(z,w)|(nz, nw) = (0, 0)}.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn (continued)

Let Un be the lattice in T× T consisting of n4 points

Un = {(z,w)|(nz, nw) = (0, 0)}.

For each point of Un there are four curves passing through it, parallel to the

curves T0, T∞, T1 and Tζ .
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn (continued)

Let Un be the lattice in T× T consisting of n4 points

Un = {(z,w)|(nz, nw) = (0, 0)}.

For each point of Un there are four curves passing through it, parallel to the

curves T0, T∞, T1 and Tζ .

Denote the union of n2 curves parallel to Ti as Di for i ∈ {0,∞, 1, ζ}.
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Sketch of Construction of Xn (continued)

Let Un be the lattice in T× T consisting of n4 points

Un = {(z,w)|(nz, nw) = (0, 0)}.

For each point of Un there are four curves passing through it, parallel to the

curves T0, T∞, T1 and Tζ .

Denote the union of n2 curves parallel to Ti as Di for i ∈ {0,∞, 1, ζ}.

We have 4n2 elliptic curves forming four parallel families. Except for the points

in Un there are no other intersection points.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn (continued)

Let Un be the lattice in T× T consisting of n4 points

Un = {(z,w)|(nz, nw) = (0, 0)}.

For each point of Un there are four curves passing through it, parallel to the

curves T0, T∞, T1 and Tζ .

Denote the union of n2 curves parallel to Ti as Di for i ∈ {0,∞, 1, ζ}.

We have 4n2 elliptic curves forming four parallel families. Except for the points

in Un there are no other intersection points.

Blow up n4 points of Un to get a smooth 4-manifold Yn = T4#n4CP
2 with Euler

characteristic n4.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn (continued)

Let Un be the lattice in T× T consisting of n4 points

Un = {(z,w)|(nz, nw) = (0, 0)}.

For each point of Un there are four curves passing through it, parallel to the

curves T0, T∞, T1 and Tζ .

Denote the union of n2 curves parallel to Ti as Di for i ∈ {0,∞, 1, ζ}.

We have 4n2 elliptic curves forming four parallel families. Except for the points

in Un there are no other intersection points.

Blow up n4 points of Un to get a smooth 4-manifold Yn = T4#n4CP
2 with Euler

characteristic n4.

There are n4 exceptional curves Lj (j ∈ Un) resulting from blow-ups. Denote

by D̃i the proper transforms of Di after the blow-up
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn Continued
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn Continued

Hirzebuch constructs a complex algebraic surface Xn as n3-fold cover of Yn

branched over D̃i for each i ∈ {0,∞, 1, ζ}.
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Sketch of Construction of Xn Continued

Hirzebuch constructs a complex algebraic surface Xn as n3-fold cover of Yn

branched over D̃i for each i ∈ {0,∞, 1, ζ}.

Denote this covering map as π : Xn → Yn.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn Continued

Hirzebuch constructs a complex algebraic surface Xn as n3-fold cover of Yn

branched over D̃i for each i ∈ {0,∞, 1, ζ}.

Denote this covering map as π : Xn → Yn.

c2(Xn) = n3 · e(Yn \ ∪D̃i) + n2 · e(∪D̃i) = n3 · n4 = n7.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn Continued

Hirzebuch constructs a complex algebraic surface Xn as n3-fold cover of Yn

branched over D̃i for each i ∈ {0,∞, 1, ζ}.

Denote this covering map as π : Xn → Yn.

c2(Xn) = n3 · e(Yn \ ∪D̃i) + n2 · e(∪D̃i) = n3 · n4 = n7.

Xn contains an embedded symplectic surface Fn of genus

g(Fn) = 3n5 − 3n4 + n3 + 1 and self-intersection 2n3.
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Building Blocks Spin complex surfaces of Hirzebruch

Sketch of Construction of Xn Continued

Hirzebuch constructs a complex algebraic surface Xn as n3-fold cover of Yn

branched over D̃i for each i ∈ {0,∞, 1, ζ}.

Denote this covering map as π : Xn → Yn.

c2(Xn) = n3 · e(Yn \ ∪D̃i) + n2 · e(∪D̃i) = n3 · n4 = n7.

Xn contains an embedded symplectic surface Fn of genus

g(Fn) = 3n5 − 3n4 + n3 + 1 and self-intersection 2n3.

Also, the inclusion induced homomorphism π1(Fn) −→ π1(Xn) is surjective.
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Building Blocks Spin complex surfaces of Hirzebruch

Lemma (A-Park-Urzua)

If n ≡ 4 (mod 8), then Xn is spin.
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Building Blocks Spin complex surfaces of Hirzebruch

Lemma (A-Park-Urzua)

If n ≡ 4 (mod 8), then Xn is spin.

It was shown by Hirzebruch that the canonical class K of Xn is given by

K =
∑

j∈Un

[Lj ] + (n − 1)
∑

i∈I

[Di ]

where [Lj ] = π∗[Lj ] and [Di ] =
1
n
π∗[D̃i ]
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Building Blocks Spin complex surfaces of Hirzebruch

Lemma (A-Park-Urzua)

If n ≡ 4 (mod 8), then Xn is spin.

It was shown by Hirzebruch that the canonical class K of Xn is given by

K =
∑

j∈Un

[Lj ] + (n − 1)
∑

i∈I

[Di ]

where [Lj ] = π∗[Lj ] and [Di ] =
1
n
π∗[D̃i ]

Assume n = 4m with m ≥ 1 odd integer.
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Building Blocks Spin complex surfaces of Hirzebruch

Lemma (A-Park-Urzua)

If n ≡ 4 (mod 8), then Xn is spin.

It was shown by Hirzebruch that the canonical class K of Xn is given by

K =
∑

j∈Un

[Lj ] + (n − 1)
∑

i∈I

[Di ]

where [Lj ] = π∗[Lj ] and [Di ] =
1
n
π∗[D̃i ]

Assume n = 4m with m ≥ 1 odd integer.

K =
∑

j∈Un
[Lj ] + (3m − 1)

∑

i∈I [Di ] + m
∑

i∈I [Di ]
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Building Blocks Spin complex surfaces of Hirzebruch

Lemma (A-Park-Urzua)

If n ≡ 4 (mod 8), then Xn is spin.

It was shown by Hirzebruch that the canonical class K of Xn is given by

K =
∑

j∈Un

[Lj ] + (n − 1)
∑

i∈I

[Di ]

where [Lj ] = π∗[Lj ] and [Di ] =
1
n
π∗[D̃i ]

Assume n = 4m with m ≥ 1 odd integer.

K =
∑

j∈Un
[Lj ] + (3m − 1)

∑

i∈I [Di ] + m
∑

i∈I [Di ]

= (3m − 1)
∑

i∈I [Di ] +
1
4
(4

∑

j∈Un
[Lj ] + n

∑

i∈I[Di ])
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Building Blocks Spin complex surfaces of Hirzebruch

Lemma (A-Park-Urzua)

If n ≡ 4 (mod 8), then Xn is spin.

It was shown by Hirzebruch that the canonical class K of Xn is given by

K =
∑

j∈Un

[Lj ] + (n − 1)
∑

i∈I

[Di ]

where [Lj ] = π∗[Lj ] and [Di ] =
1
n
π∗[D̃i ]

Assume n = 4m with m ≥ 1 odd integer.

K =
∑

j∈Un
[Lj ] + (3m − 1)

∑

i∈I [Di ] + m
∑

i∈I [Di ]

= (3m − 1)
∑

i∈I [Di ] +
1
4
(4

∑

j∈Un
[Lj ] + n

∑

i∈I[Di ])

= (3m − 1)
∑

i∈I [Di ] +
1
4
π∗(4

∑

j∈Un
[Lj ] +

∑

i∈I[D̃i ])
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Lemma (A-Park-Urzua)

If n ≡ 4 (mod 8), then Xn is spin.

It was shown by Hirzebruch that the canonical class K of Xn is given by

K =
∑

j∈Un

[Lj ] + (n − 1)
∑

i∈I

[Di ]

where [Lj ] = π∗[Lj ] and [Di ] =
1
n
π∗[D̃i ]

Assume n = 4m with m ≥ 1 odd integer.

K =
∑

j∈Un
[Lj ] + (3m − 1)

∑

i∈I [Di ] + m
∑

i∈I [Di ]

= (3m − 1)
∑

i∈I [Di ] +
1
4
(4

∑

j∈Un
[Lj ] + n

∑

i∈I[Di ])

= (3m − 1)
∑

i∈I [Di ] +
1
4
π∗(4

∑

j∈Un
[Lj ] +

∑

i∈I[D̃i ])

= (3m − 1)
∑

i∈I [Di ] +
1
4
π∗(n2

∑

i∈I[T̃
′

i ]).
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Building Blocks Spin complex surfaces of Hirzebruch

Lemma (A-Park-Urzua)

If n ≡ 4 (mod 8), then Xn is spin.

It was shown by Hirzebruch that the canonical class K of Xn is given by

K =
∑

j∈Un

[Lj ] + (n − 1)
∑

i∈I

[Di ]

where [Lj ] = π∗[Lj ] and [Di ] =
1
n
π∗[D̃i ]

Assume n = 4m with m ≥ 1 odd integer.

K =
∑

j∈Un
[Lj ] + (3m − 1)

∑

i∈I [Di ] + m
∑

i∈I [Di ]

= (3m − 1)
∑

i∈I [Di ] +
1
4
(4

∑

j∈Un
[Lj ] + n

∑

i∈I[Di ])

= (3m − 1)
∑

i∈I [Di ] +
1
4
π∗(4

∑

j∈Un
[Lj ] +

∑

i∈I[D̃i ])

= (3m − 1)
∑

i∈I [Di ] +
1
4
π∗(n2

∑

i∈I[T̃
′

i ]).

w2(Xn) ≡ K ≡ 0(mod 2)
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Building Blocks Spin complex surfaces of Hirzebruch

Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3.
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Building Blocks Spin complex surfaces of Hirzebruch

Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3. Let E(2n3)K

denote the homotopy elliptic surface of Fintushel and Stern.
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Building Blocks Spin complex surfaces of Hirzebruch

Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3. Let E(2n3)K

denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2n3) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2n3 in E(2n3)K .
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Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3. Let E(2n3)K

denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2n3) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2n3 in E(2n3)K . Mn = Xn#Σ=Sg(K )E(2n3)K .
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Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3. Let E(2n3)K

denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2n3) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2n3 in E(2n3)K . Mn = Xn#Σ=Sg(K )E(2n3)K . Mn is
a spin symplectic 4-manifold with
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Building Blocks Spin complex surfaces of Hirzebruch

Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3. Let E(2n3)K

denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2n3) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2n3 in E(2n3)K . Mn = Xn#Σ=Sg(K )E(2n3)K . Mn is
a spin symplectic 4-manifold with

e(Mn) = n7 + 12n5 − 12n4 + 28n3

c2
1(Mn) = 3n7 + 20n5 − 24n4 + 8n3

σ(Mn) = (n7 − 4n5)/3 − 16n3

χh(Mn) = (n7 + 8n5)/3 − 3n4 + 3n3
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Building Blocks Spin complex surfaces of Hirzebruch

Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3. Let E(2n3)K

denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2n3) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2n3 in E(2n3)K . Mn = Xn#Σ=Sg(K )E(2n3)K . Mn is
a spin symplectic 4-manifold with

e(Mn) = n7 + 12n5 − 12n4 + 28n3

c2
1(Mn) = 3n7 + 20n5 − 24n4 + 8n3

σ(Mn) = (n7 − 4n5)/3 − 16n3

χh(Mn) = (n7 + 8n5)/3 − 3n4 + 3n3

lim
n→∞

c1
2(Mn)

χh(Mn)
= 9.
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Building Blocks Spin complex surfaces of Hirzebruch

Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3. Let E(2n3)K

denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2n3) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2n3 in E(2n3)K . Mn = Xn#Σ=Sg(K )E(2n3)K . Mn is
a spin symplectic 4-manifold with

e(Mn) = n7 + 12n5 − 12n4 + 28n3

c2
1(Mn) = 3n7 + 20n5 − 24n4 + 8n3

σ(Mn) = (n7 − 4n5)/3 − 16n3

χh(Mn) = (n7 + 8n5)/3 − 3n4 + 3n3

lim
n→∞

c1
2(Mn)

χh(Mn)
= 9.

8.92χh < c1
2(Mn) < 9χh for every n ≥ 12.
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Building Blocks Spin complex surfaces of Hirzebruch

Construction

K be a fibered knot of genus g(K ) = 3n5 − 3n4 + n3 + 1 in S3. Let E(2n3)K

denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2n3) gives to a symplectic submanifold Sg(K ) of genus

g(K ) and self-intersection −2n3 in E(2n3)K . Mn = Xn#Σ=Sg(K )E(2n3)K . Mn is
a spin symplectic 4-manifold with

e(Mn) = n7 + 12n5 − 12n4 + 28n3

c2
1(Mn) = 3n7 + 20n5 − 24n4 + 8n3

σ(Mn) = (n7 − 4n5)/3 − 16n3

χh(Mn) = (n7 + 8n5)/3 − 3n4 + 3n3

lim
n→∞

c1
2(Mn)

χh(Mn)
= 9.

8.92χh < c1
2(Mn) < 9χh for every n ≥ 12. Mn is simply connected and

irreducible and has ∞2-property for every n ≥ 2.
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Building Blocks Spin complex surfaces of Hirzebruch

Arbitrary fundamental group

Theorem (R. Gompf)

Let G be a finitely presented group. There exisit a spin symplectic 4-manifold

SG with π1 = G, c1
2(SG) = 0, and χh(S

G) > 0. Moreover, SG contains a
symplectic torus T of self-intersection 0 such that the inclusion induced

homomorphism π1(T ) −→ π1(S
G) is trivial.
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Arbitrary fundamental group

Theorem (R. Gompf)

Let G be a finitely presented group. There exisit a spin symplectic 4-manifold

SG with π1 = G, c1
2(SG) = 0, and χh(S

G) > 0. Moreover, SG contains a
symplectic torus T of self-intersection 0 such that the inclusion induced

homomorphism π1(T ) −→ π1(S
G) is trivial.

SG is the symplectic sum of Σg × T and l copies of K 3 surface along
self-intersection 0 tori.
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Arbitrary fundamental group

Theorem (R. Gompf)

Let G be a finitely presented group. There exisit a spin symplectic 4-manifold

SG with π1 = G, c1
2(SG) = 0, and χh(S

G) > 0. Moreover, SG contains a
symplectic torus T of self-intersection 0 such that the inclusion induced

homomorphism π1(T ) −→ π1(S
G) is trivial.

SG is the symplectic sum of Σg × T and l copies of K 3 surface along
self-intersection 0 tori.

e(SG) = 24l

σ(SG) = −16l

χh(S
G) = 2l
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Building Blocks Spin complex surfaces of Hirzebruch

Arbitrary fundamental group

Theorem (R. Gompf)

Let G be a finitely presented group. There exisit a spin symplectic 4-manifold

SG with π1 = G, c1
2(SG) = 0, and χh(S

G) > 0. Moreover, SG contains a
symplectic torus T of self-intersection 0 such that the inclusion induced

homomorphism π1(T ) −→ π1(S
G) is trivial.

SG is the symplectic sum of Σg × T and l copies of K 3 surface along
self-intersection 0 tori.

e(SG) = 24l

σ(SG) = −16l

χh(S
G) = 2l

Our Mk
G is the symplectic sum of M8n−4 and SG along the tori.

Anar Akhmedov (University of Minnesota, Minneapolis) Exotic Smooth Structures on 4-Manifolds August 3, 2013 56 / 57



Building Blocks Spin complex surfaces of Hirzebruch

THANK YOU!
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