Exotic Smooth Structures on 4-Manifolds

Anar Akhmedov

University of Minnesota, Twin Cities

August 3, 2013 University of Minnesota, Twin Cities

Anar Akhmedov (University of Minnesota, Minneapolis Exotic Smooth Structures on 4-Manifolds

Outline

5)

6

Introduction

The Geography and Botany Problems

Construction Techniques

- Construction Tools
- Symplectic Connected Sum
- Branched Cover
- Knot Surgery
- Luttinger Surgery
- Construction of fake symplectic $\mathbb{S}^2\times\mathbb{S}^2$

Small Exotic 4-Manifolds

- History of Small Exotic 4-Manifolds
- Construction of Small Exotic 4-Manifolds
- The Geography of Spin Symplectic 4-Manifolds
 - The Geography of Spin Symplectic 4-Manifolds
 - Recent Results on Spin Symplectic Geography

Building Blocks

- Surface Bundles with Non-Zero Signature
- Spin complex surfaces of Hirzebruch

X closed,

X closed, oriented,

X closed, oriented, smooth,

X closed, oriented, smooth, simply connected 4-manifold.

X closed, oriented, smooth, simply connected 4-manifold.

Definition

X closed, oriented, smooth, simply connected 4-manifold.

Definition

Let e(X) and $\sigma(X)$ denote the Euler characteristic and the signature of 4-manifold *X*, respectively.

X closed, oriented, smooth, simply connected 4-manifold.

Definition

Let e(X) and $\sigma(X)$ denote the Euler characteristic and the signature of 4-manifold *X*, respectively. We define

$$c_1^2(X) := 2e(X) + 3\sigma(X), \quad \chi_h(X) := \frac{e(X) + \sigma(X)}{4}, \quad t(X) := type(X),$$

X closed, oriented, smooth, simply connected 4-manifold.

Definition

Let e(X) and $\sigma(X)$ denote the Euler characteristic and the signature of 4-manifold *X*, respectively. We define

$$c_1^2(X) := 2e(X) + 3\sigma(X), \quad \chi_h(X) := rac{e(X) + \sigma(X)}{4}, \quad t(X) := type(X),$$

If X is a complex surface, then $c_1^2(X)$ and $\chi_h(X)$ are the self-intersection of the first Chern class $c_1(X)$ and the holomorphic Euler characteristic.

X closed, oriented, smooth, simply connected 4-manifold.

Definition

Let e(X) and $\sigma(X)$ denote the Euler characteristic and the signature of 4-manifold *X*, respectively. We define

$$c_1^2(X) := 2e(X) + 3\sigma(X), \quad \chi_h(X) := rac{e(X) + \sigma(X)}{4}, \quad t(X) := type(X),$$

If X is a complex surface, then $c_1^2(X)$ and $\chi_h(X)$ are the self-intersection of the first Chern class $c_1(X)$ and the holomorphic Euler characteristic. If X admits a symplectic structure, then $\chi_h(X) \in \mathbb{Z}$.

X closed, oriented, smooth, simply connected 4-manifold.

Definition

Let e(X) and $\sigma(X)$ denote the Euler characteristic and the signature of 4-manifold *X*, respectively. We define

$$c_1^2(X) := 2e(X) + 3\sigma(X), \quad \chi_h(X) := \frac{e(X) + \sigma(X)}{4}, \quad t(X) := type(X),$$

If X is a complex surface, then $c_1^2(X)$ and $\chi_h(X)$ are the self-intersection of the first Chern class $c_1(X)$ and the holomorphic Euler characteristic. If X admits a symplectic structure, then $\chi_h(X) \in \mathbb{Z}$. These invariants completely classify smooth simply connected 4-manifolds up to homeomorphism.

Geography

The Geography Problem (Existence)

The Geography Problem (Existence)

Which triples $(c_1^2, \chi_h, t) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$ can occur for some irreducible smooth (or minimal symplectic) 4-manifold *X*?

The Geography Problem (Existence)

Which triples $(c_1^2, \chi_h, t) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$ can occur for some irreducible smooth (or minimal symplectic) 4-manifold *X*?

The Geography Problem (Existence)

Which triples $(c_1^2, \chi_h, t) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$ can occur for some irreducible smooth (or minimal symplectic) 4-manifold *X*?

• If
$$t(X) = 0$$
, then $c_1^2(X) - 8\chi_h(X) = \sigma(X) \equiv 0 \mod (16)$ (V. Rokhlin, 1952).

Which triples $(c_1^2, \chi_h, t) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$ can occur for some irreducible smooth (or minimal symplectic) 4-manifold *X*?

- If t(X) = 0, then $c_1^2(X) 8\chi_h(X) = \sigma(X) \equiv 0 \mod (16)$ (V. Rokhlin, 1952).
- Further constraints on the intersection form by S. Donaldson (1983); M. Furuta ($\frac{10}{8}$ Theorem, t(X) = 0) (2001).

Which triples $(c_1^2, \chi_h, t) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$ can occur for some irreducible smooth (or minimal symplectic) 4-manifold *X*?

- If t(X) = 0, then $c_1^2(X) 8\chi_h(X) = \sigma(X) \equiv 0 \mod (16)$ (V. Rokhlin, 1952).
- Further constraints on the intersection form by S. Donaldson (1983); M. Furuta ($\frac{10}{8}$ Theorem, t(X) = 0) (2001).
- $\frac{11}{8}$ Conjecture ($b_2(X) \ge \frac{11}{8} |\sigma(X)|$ if X is spin).

Which triples $(c_1^2, \chi_h, t) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$ can occur for some irreducible smooth (or minimal symplectic) 4-manifold *X*?

- If t(X) = 0, then $c_1^2(X) 8\chi_h(X) = \sigma(X) \equiv 0 \mod (16)$ (V. Rokhlin, 1952).
- Further constraints on the intersection form by S. Donaldson (1983); M. Furuta ($\frac{10}{8}$ Theorem, t(X) = 0) (2001).
- $\frac{11}{8}$ Conjecture $(b_2(X) \ge \frac{11}{8} |\sigma(X)|$ if X is spin).
- If X is a minimal complex surface of general type, $c_1^2(X) \le 9\chi_h(X)$ (Bogomolov-Miyaoka-Yau inequality) (1977-78).

Which triples $(c_1^2, \chi_h, t) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$ can occur for some irreducible smooth (or minimal symplectic) 4-manifold *X*?

- If t(X) = 0, then $c_1^2(X) 8\chi_h(X) = \sigma(X) \equiv 0 \mod (16)$ (V. Rokhlin, 1952).
- Further constraints on the intersection form by S. Donaldson (1983); M. Furuta ($\frac{10}{8}$ Theorem, t(X) = 0) (2001).
- $\frac{11}{8}$ Conjecture $(b_2(X) \ge \frac{11}{8} |\sigma(X)|$ if X is spin).
- If X is a minimal complex surface of general type, $c_1^2(X) \le 9\chi_h(X)$ (Bogomolov-Miyaoka-Yau inequality) (1977-78).
- If X is a minimal complex surface of general type, $2\chi_h 6 \le c_1^2(X)$ (Noether inequality), $0 < \chi_h(X)$, and $c_1^2(X) > 0$.

Botany

Botany Problem (Uniqueness)

Determine all oriented smooth irreducible (or minimal symplectic) simply connected 4-manifolds with a fixed (c_1^2, χ_h, t).

Botany Problem (Uniqueness)

Determine all oriented smooth irreducible (or minimal symplectic) simply connected 4-manifolds with a fixed (c_1^2, χ_h, t).

Botany problem is not so well understood.

Botany Problem (Uniqueness)

Determine all oriented smooth irreducible (or minimal symplectic) simply connected 4-manifolds with a fixed (c_1^2, χ_h, t).

Botany problem is not so well understood.

• No known examples that admit only finitely many smooth structures.

Botany Problem (Uniqueness)

Determine all oriented smooth irreducible (or minimal symplectic) simply connected 4-manifolds with a fixed (c_1^2, χ_h, t).

Botany problem is not so well understood.

- No known examples that admit only finitely many smooth structures.
- Open for the simple 4-manifolds \mathbb{S}^4 , \mathbb{CP}^2 .

Botany Problem (Uniqueness)

Determine all oriented smooth irreducible (or minimal symplectic) simply connected 4-manifolds with a fixed (c_1^2, χ_h, t).

Botany problem is not so well understood.

- No known examples that admit only finitely many smooth structures.
- Open for the simple 4-manifolds \mathbb{S}^4 , \mathbb{CP}^2 .
- Many lattice points can be realized by inf. many smooth structures.

Botany Problem (Uniqueness)

Determine all oriented smooth irreducible (or minimal symplectic) simply connected 4-manifolds with a fixed (c_1^2, χ_h, t).

Botany problem is not so well understood.

- No known examples that admit only finitely many smooth structures.
- Open for the simple 4-manifolds \mathbb{S}^4 , \mathbb{CP}^2 .
- Many lattice points can be realized by inf. many smooth structures.

We'll usually put restriction on X

Botany Problem (Uniqueness)

Determine all oriented smooth irreducible (or minimal symplectic) simply connected 4-manifolds with a fixed (c_1^2, χ_h, t).

Botany problem is not so well understood.

- No known examples that admit only finitely many smooth structures.
- Open for the simple 4-manifolds \mathbb{S}^4 , \mathbb{CP}^2 .
- Many lattice points can be realized by inf. many smooth structures.

We'll usually put restriction on X

X will be oriented irreducible with SW_X ≠ 0 (X is irreducible if X = X₁#X₂, then either X₁ or X₂ is homemorphic to S⁴) or a minimal symplectic 4-manifold (i.e. doesn't contain symplectic −1 sphere).

Botany Problem (Uniqueness)

Determine all oriented smooth irreducible (or minimal symplectic) simply connected 4-manifolds with a fixed (c_1^2, χ_h, t).

Botany problem is not so well understood.

- No known examples that admit only finitely many smooth structures.
- Open for the simple 4-manifolds \mathbb{S}^4 , \mathbb{CP}^2 .
- Many lattice points can be realized by inf. many smooth structures.

We'll usually put restriction on X

- X will be oriented irreducible with SW_X ≠ 0 (X is irreducible if X = X₁#X₂, then either X₁ or X₂ is homemorphic to S⁴) or a minimal symplectic 4-manifold (i.e. doesn't contain symplectic -1 sphere).
- M. Hamilton and D. Kotschick: minimal symplectic 4-manifolds with residually finite fundamental groups are irreducible.

One would hope that irreducibility implies the existence of some extra structure on X.

One would hope that irreducibility implies the existence of some extra structure on X.

Conjecture (R. Thom)

An irreducible 4-manifold ($\neq \mathbb{S}^4$) always diffemorphic to a complex surface.

One would hope that irreducibility implies the existence of some extra structure on X.

Conjecture (R. Thom)

An irreducible 4-manifold ($\neq \mathbb{S}^4$) always diffemorphic to a complex surface.

disproved by R. Gompf- T. Mrowka, 1993

One would hope that irreducibility implies the existence of some extra structure on X.

Conjecture (R. Thom)

An irreducible 4-manifold ($\neq \mathbb{S}^4$) always diffemorphic to a complex surface.

disproved by R. Gompf- T. Mrowka, 1993

Conjecture

An irreducible 4-manifold (with non-trivial Seiberg-Witten invariants) always diffemorphic to a symplectic 4-manifold.
One would hope that irreducibility implies the existence of some extra structure on X.

Conjecture (R. Thom)

An irreducible 4-manifold ($\neq \mathbb{S}^4$) always diffemorphic to a complex surface.

disproved by R. Gompf- T. Mrowka, 1993

Conjecture

An irreducible 4-manifold (with non-trivial Seiberg-Witten invariants) always diffemorphic to a symplectic 4-manifold.

disproved by Z. Szabo, 1996

One would hope that irreducibility implies the existence of some extra structure on X.

Conjecture (R. Thom)

An irreducible 4-manifold ($\neq \mathbb{S}^4$) always diffemorphic to a complex surface.

disproved by R. Gompf- T. Mrowka, 1993

Conjecture

An irreducible 4-manifold (with non-trivial Seiberg-Witten invariants) always diffemorphic to a symplectic 4-manifold.

disproved by Z. Szabo, 1996 {Complex Geography}

One would hope that irreducibility implies the existence of some extra structure on X.

Conjecture (R. Thom)

An irreducible 4-manifold ($\neq \mathbb{S}^4$) always diffemorphic to a complex surface.

disproved by R. Gompf- T. Mrowka, 1993

Conjecture

An irreducible 4-manifold (with non-trivial Seiberg-Witten invariants) always diffemorphic to a symplectic 4-manifold.

disproved by Z. Szabo, 1996 {Complex Geography} ⊂ {Symplectic Geography}

One would hope that irreducibility implies the existence of some extra structure on X.

Conjecture (R. Thom)

An irreducible 4-manifold ($\neq \mathbb{S}^4$) always diffemorphic to a complex surface.

disproved by R. Gompf- T. Mrowka, 1993

Conjecture

An irreducible 4-manifold (with non-trivial Seiberg-Witten invariants) always diffemorphic to a symplectic 4-manifold.

disproved by Z. Szabo, 1996

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}}^2 \ (0 \le k \le 9),$

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$ ($0 \le k \le 9$), $\mathbb{S}^2 \times \mathbb{S}^2$

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$ ($0 \le k \le 9$), $\mathbb{S}^2 \times \mathbb{S}^2$ ($\chi_h = 1$).

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \ (0 \le k \le 9), \mathbb{S}^2 \times \mathbb{S}^2 \ (\chi_h = 1). \ 3 \mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \ (0 \le l \le 19),$

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \text{ (} 0 \leq k \leq 9\text{)}, \mathbb{S}^2 \times \mathbb{S}^2 \text{ (} \chi_h = 1\text{)}. \text{ } 3\mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \text{ (} 0 \leq l \leq 19\text{)}, \\ \#_3(\mathbb{S}^2 \times \mathbb{S}^2),$

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \text{ (} 0 \le k \le 9\text{)}, \mathbb{S}^2 \times \mathbb{S}^2 \text{ (} \chi_h = 1\text{)}. \text{ } 3\mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \text{ (} 0 \le l \le 19\text{)}, \\ \#_3(\mathbb{S}^2 \times \mathbb{S}^2), E(2) \text{ (} \chi_h = 2\text{)}.$

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \ (0 \le k \le 9), \ \mathbb{S}^2 \times \mathbb{S}^2 \ (\chi_h = 1). \ 3\mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \ (0 \le l \le 19), \\ \#_3(\mathbb{S}^2 \times \mathbb{S}^2), \ E(2) \ (\chi_h = 2).$

4-Manifolds with Signature Zero

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \ (0 \le k \le 9), \ \mathbb{S}^2 \times \mathbb{S}^2 \ (\chi_h = 1). \ 3\mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \ (0 \le l \le 19), \\ \#_3(\mathbb{S}^2 \times \mathbb{S}^2), \ E(2) \ (\chi_h = 2).$

4-Manifolds with Signature Zero

 $\#_{2n-1}(\mathbb{S}^2 \times \mathbb{S}^2),$

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \text{ (} 0 \le k \le 9\text{)}, \mathbb{S}^2 \times \mathbb{S}^2 \text{ (} \chi_h = 1\text{)}. \text{ 3} \mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \text{ (} 0 \le l \le 19\text{)}, \\ \#_3(\mathbb{S}^2 \times \mathbb{S}^2), E(2) \text{ (} \chi_h = 2\text{)}.$

4-Manifolds with Signature Zero

$$\#_{2n-1}(\mathbb{S}^2\times\mathbb{S}^2), (2n-1)\mathbb{CP}^2\#(2n-1)\overline{\mathbb{CP}^2} \ (\chi_h=n).$$

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \text{ (} 0 \leq k \leq 9\text{)}, \mathbb{S}^2 \times \mathbb{S}^2 \text{ (} \chi_h = 1\text{)}. \text{ } 3\mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \text{ (} 0 \leq l \leq 19\text{)}, \\ \#_3(\mathbb{S}^2 \times \mathbb{S}^2), E(2) \text{ (} \chi_h = 2\text{)}.$

4-Manifolds with Signature Zero

$$\#_{2n-1}(\mathbb{S}^2\times\mathbb{S}^2), (2n-1)\mathbb{CP}^2\#(2n-1)\overline{\mathbb{CP}^2} \ (\chi_h=n).$$

Spin (Symplectic) 4-Manifolds with Positive Signature and Near BMY Line

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \text{ (} 0 \le k \le 9\text{)}, \mathbb{S}^2 \times \mathbb{S}^2 \text{ (} \chi_h = 1\text{)}. \text{ } 3\mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \text{ (} 0 \le l \le 19\text{)}, \\ \#_3(\mathbb{S}^2 \times \mathbb{S}^2), E(2) \text{ (} \chi_h = 2\text{)}.$

4-Manifolds with Signature Zero

$$\#_{2n-1}(\mathbb{S}^2\times\mathbb{S}^2), (2n-1)\mathbb{CP}^2\#(2n-1)\overline{\mathbb{CP}^2} \ (\chi_h=n).$$

Spin (Symplectic) 4-Manifolds with Positive Signature and Near BMY Line

Construct 4-manifolds homeo. but not diff. to the examples as above.

We'll study the geography and botany problem for the following homeomorphism types of 4-manifolds

4-Manifolds with Small Euler Characteristics

 $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} \text{ (} 0 \le k \le 9\text{)}, \mathbb{S}^2 \times \mathbb{S}^2 \text{ (} \chi_h = 1\text{)}. \text{ } 3\mathbb{CP}^2 \# l \overline{\mathbb{CP}^2} \text{ (} 0 \le l \le 19\text{)}, \\ \#_3(\mathbb{S}^2 \times \mathbb{S}^2), E(2) \text{ (} \chi_h = 2\text{)}.$

4-Manifolds with Signature Zero

$$\#_{2n-1}(\mathbb{S}^2\times\mathbb{S}^2), (2n-1)\mathbb{CP}^2\#(2n-1)\overline{\mathbb{CP}^2} \ (\chi_h=n).$$

Spin (Symplectic) 4-Manifolds with Positive Signature and Near BMY Line

Construct 4-manifolds homeo. but not diff. to the examples as above. Such a new smooth structure will be called an *exotic smooth structure*.

 Symplectic Connected Sum (1995) (M. Gromov, R. Gompf, J. McCarthy-J. Wolfson)

- Symplectic Connected Sum (1995) (M. Gromov, R. Gompf, J. McCarthy-J. Wolfson)
- Luttinger Surgery (1995) (K. Luttinger

- Symplectic Connected Sum (1995) (M. Gromov, R. Gompf, J. McCarthy-J. Wolfson)
- Luttinger Surgery (1995) (K. Luttinger, D. Auroux- S. Donaldson- L. Katzarkov)

- Symplectic Connected Sum (1995) (M. Gromov, R. Gompf, J. McCarthy-J. Wolfson)
- Luttinger Surgery (1995) (K. Luttinger, D. Auroux- S. Donaldson- L. Katzarkov)
- Knot Surgery (1998) (R. Fintushel- R. Stern)

- Symplectic Connected Sum (1995) (M. Gromov, R. Gompf, J. McCarthy-J. Wolfson)
- Luttinger Surgery (1995) (K. Luttinger, D. Auroux- S. Donaldson- L. Katzarkov)
- Knot Surgery (1998) (R. Fintushel- R. Stern)
- Branched Covers (F. Hirzebruch)

Symplectic Connected Sum

Definition

Symplectic Connected Sum

Definition

Symplectic Connected Sum

Definition

$$c_1^2(X_1 \#_{\Psi} X_2) = c_1^2(X_1) + c_1^2(X_2) + 8(g-1),$$

Symplectic Connected Sum

Definition

$$\begin{aligned} c_1^2(X_1 \#_{\Psi} X_2) &= c_1^2(X_1) + c_1^2(X_2) + 8(g-1), \\ \chi_h(X_1 \#_{\Psi} X_2) &= \chi_h(X_1) + \chi_h(X_2) + (g-1), \end{aligned}$$

Theorem (M. Usher, 2006)

Theorem (M. Usher, 2006)

Let $Z = X_1 \#_{F_1=F_2} X_2$ be sympletic fiber sum of manifolds X_1 and X_2 . Then:

Theorem (M. Usher, 2006)

Let $Z = X_1 \#_{F_1=F_2} X_2$ be sympletic fiber sum of manifolds X_1 and X_2 . Then: (i) If either $X_1 \setminus F_1$ or $X_2 \setminus F_2$ contains an embedded sympletic sphere of square -1, then Z is not minimal.

Theorem (M. Usher, 2006)

Let $Z = X_1 \#_{F_1=F_2} X_2$ be sympletic fiber sum of manifolds X_1 and X_2 . Then: (i) If either $X_1 \setminus F_1$ or $X_2 \setminus F_2$ contains an embedded sympletic sphere of square -1, then Z is not minimal.

(ii) If one of the summands X_i (say X_1) admits the structure of an \mathbb{S}^2 -bundle over a surface of genus g such that F_i is a section of this fiber bundle, then Z is minimal if and only if X_2 is minimal.
Minimality of Sympletic Sums

Theorem (M. Usher, 2006)

Let $Z = X_1 \#_{F_1=F_2} X_2$ be sympletic fiber sum of manifolds X_1 and X_2 . Then: (*i*) If either $X_1 \setminus F_1$ or $X_2 \setminus F_2$ contains an embedded sympletic sphere of square -1, then *Z* is not minimal. (*ii*) If one of the summands X_i (say X_1) admits the structure of an \mathbb{S}^2 -bundle over a surface of genus g such that F_i is a section of this fiber bundle, then *Z* is minimal if and only if X_2 is minimal. (*iii*) In all other cases, *Z* is minimal.

Definition

Definition

Definition

Definition

$$e(X) = e(S) - (n-1)e(D),$$

Definition

$$e(X) = e(S) - (n-1)e(D),$$

 $\sigma(X) = n\sigma(S) - \frac{n^2 - 1}{3n}D^2,$

Branched Cover

Branched Cover Construction of Hirzebruch

Definition

$$\begin{array}{lll} e(X) & = & e(S) - (n-1)e(D), \\ \sigma(X) & = & n\sigma(S) - \frac{n^2 - 1}{3n}D^2, \\ K_X & = & \pi^*(K_S + (n-1)[D]) \end{array}$$

Definition

Let *X* be a 4-manifold (with $b_2^+(X) \ge 1$) which contains a homologically nontrivial torus *T* of self-intersection 0. Let N(K) be a tubular neighborhood of *K* in \mathbb{S}^3 , and let $T \times D^2$ be a tubular neighborhood of *T* in *X*.

Definition

Let *X* be a 4-manifold (with $b_2^+(X) \ge 1$) which contains a homologically nontrivial torus *T* of self-intersection 0. Let N(K) be a tubular neighborhood of *K* in \mathbb{S}^3 , and let $T \times D^2$ be a tubular neighborhood of *T* in *X*. Then the knot surgery manifold X_K is defined as

Definition

Let *X* be a 4-manifold (with $b_2^+(X) \ge 1$) which contains a homologically nontrivial torus *T* of self-intersection 0. Let N(K) be a tubular neighborhood of *K* in \mathbb{S}^3 , and let $T \times D^2$ be a tubular neighborhood of *T* in *X*. Then the knot surgery manifold X_K is defined as

 $X_{\mathcal{K}} = (X \setminus (T \times D^2)) \cup (\mathbb{S}^1 \times (\mathbb{S}^3 \setminus N(\mathcal{K})))$

Definition

Let *X* be a 4-manifold (with $b_2^+(X) \ge 1$) which contains a homologically nontrivial torus *T* of self-intersection 0. Let N(K) be a tubular neighborhood of *K* in \mathbb{S}^3 , and let $T \times D^2$ be a tubular neighborhood of *T* in *X*. Then the knot surgery manifold X_K is defined as

$$X_{\mathcal{K}} = (X \setminus (T \times D^2)) \cup (\mathbb{S}^1 \times (\mathbb{S}^3 \setminus N(\mathcal{K})))$$

 $e(X_{\mathcal{K}}) = e(X)$

Definition

Let *X* be a 4-manifold (with $b_2^+(X) \ge 1$) which contains a homologically nontrivial torus *T* of self-intersection 0. Let N(K) be a tubular neighborhood of *K* in \mathbb{S}^3 , and let $T \times D^2$ be a tubular neighborhood of *T* in *X*. Then the knot surgery manifold X_K is defined as

$$X_{\mathcal{K}} = (X \setminus (T \times D^2)) \cup (\mathbb{S}^1 \times (\mathbb{S}^3 \setminus N(\mathcal{K})))$$

 $e(X_K) = e(X)$ $\sigma(X_K) = \sigma(X)$

• If *K* is fibered knot and *X* and *T* both symplectic, then X_K is symplectic.

- If *K* is fibered knot and *X* and *T* both symplectic, then X_K is symplectic.
- If the Alexander polynomial Δ_K(t) of knot K is not monic then X_K admits no symplectic structure.

- If K is fibered knot and X and T both symplectic, then X_K is symplectic.
- If the Alexander polynomial Δ_K(t) of knot K is not monic then X_K admits no symplectic structure.
- If X and X \ T are simply connected and T lies in a cusp neighborhood in X, and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic, but not diffemorphic to X.

- If K is fibered knot and X and T both symplectic, then X_K is symplectic.
- If the Alexander polynomial Δ_K(t) of knot K is not monic then X_K admits no symplectic structure.
- If X and X \ T are simply connected and T lies in a cusp neighborhood in X, and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic, but not diffemorphic to X.
- The Seiberg-Witten invariants of X_K is given by

- If K is fibered knot and X and T both symplectic, then X_K is symplectic.
- If the Alexander polynomial Δ_K(t) of knot K is not monic then X_K admits no symplectic structure.
- If X and X \ T are simply connected and T lies in a cusp neighborhood in X, and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic, but not diffemorphic to X.
- The Seiberg-Witten invariants of X_K is given by

 $\mathcal{SW}_{X_{K}} = \mathcal{SW}_{X} \cdot \Delta_{K}(t^{2})$

Luttinger surgery

Luttinger surgery

Definition

Definition

Let *X* be a symplectic 4-manifold with a symplectic form ω , and the torus Λ be a Lagrangian submanifold of *X* with self-intersection 0. Given a simple loop λ on Λ , let λ' be a simple loop on $\partial(\nu\Lambda)$ that is parallel to λ under the Lagrangian framing. For any integer *m*, the $(\Lambda, \lambda, 1/m)$ Luttinger surgery on *X* will be $X_{\Lambda,\lambda}(1/m) = (X - \nu(\Lambda)) \cup_{\phi} (\mathbb{S}^1 \times \mathbb{S}^1 \times D^2)$, the 1/m surgery on Λ with respect to λ under the Lagrangian framing. Here $\phi : \mathbb{S}^1 \times \mathbb{S}^1 \times \partial D^2 \rightarrow \partial(X - \nu(\Lambda))$ denotes a gluing map satisfying $\phi([\partial D^2]) = m[\lambda'] + [\mu_{\Lambda}]$ in $H_1(\partial(X - \nu(\Lambda))$, where μ_{Λ} is a meridian of Λ .

Luttinger surgery

Definition

Let *X* be a symplectic 4-manifold with a symplectic form ω , and the torus Λ be a Lagrangian submanifold of *X* with self-intersection 0. Given a simple loop λ on Λ , let λ' be a simple loop on $\partial(\nu\Lambda)$ that is parallel to λ under the Lagrangian framing. For any integer *m*, the $(\Lambda, \lambda, 1/m)$ Luttinger surgery on *X* will be $X_{\Lambda,\lambda}(1/m) = (X - \nu(\Lambda)) \cup_{\phi} (\mathbb{S}^1 \times \mathbb{S}^1 \times D^2)$, the 1/m surgery on Λ with respect to λ under the Lagrangian framing. Here $\phi : \mathbb{S}^1 \times \mathbb{S}^1 \times \partial D^2 \rightarrow \partial(X - \nu(\Lambda))$ denotes a gluing map satisfying $\phi([\partial D^2]) = m[\lambda'] + [\mu_{\Lambda}]$ in $H_1(\partial(X - \nu(\Lambda))$, where μ_{Λ} is a meridian of Λ .

 $X_{\Lambda,\lambda}(1/m)$ possesses a symplectic form that restricts to the original symplectic form ω on $X \setminus \nu \Lambda$.

Luttinger surgery

Definition

Let *X* be a symplectic 4-manifold with a symplectic form ω , and the torus Λ be a Lagrangian submanifold of *X* with self-intersection 0. Given a simple loop λ on Λ , let λ' be a simple loop on $\partial(\nu\Lambda)$ that is parallel to λ under the Lagrangian framing. For any integer *m*, the $(\Lambda, \lambda, 1/m)$ Luttinger surgery on *X* will be $X_{\Lambda,\lambda}(1/m) = (X - \nu(\Lambda)) \cup_{\phi} (\mathbb{S}^1 \times \mathbb{S}^1 \times D^2)$, the 1/m surgery on Λ with respect to λ under the Lagrangian framing. Here $\phi : \mathbb{S}^1 \times \partial D^2 \rightarrow \partial(X - \nu(\Lambda))$ denotes a gluing map satisfying $\phi([\partial D^2]) = m[\lambda'] + [\mu_{\Lambda}]$ in $H_1(\partial(X - \nu(\Lambda))$, where μ_{Λ} is a meridian of Λ .

 $X_{\Lambda,\lambda}(1/m)$ possesses a symplectic form that restricts to the original symplectic form ω on $X \setminus \nu \Lambda$.

Luttinger surgery has been very effective tool recently for constructing exotic smooth structures.

Luttinger Surgery

Luttinger Surgery and Sympletic Kodaira Dimension

Definition

For a minimal symplectic 4-manifold (M^4, ω) with symplectic canonical class K_{α} , the Kodaira dimension of (M^4, ω) is defined in the following way:

$$\kappa^{s}(M^{4},\omega) = \begin{cases} -\infty & \text{if } K_{\omega} \cdot [\omega] < 0 \text{ or } & K_{\omega} \cdot K_{\omega} < 0, \\ 0 & \text{if } K_{\omega} \cdot [\omega] = 0 \text{ and } & K_{\omega} \cdot K_{\omega} = 0, \\ 1 & \text{if } K_{\omega} \cdot [\omega] > 0 \text{ and } & K_{\omega} \cdot K_{\omega} = 0, \\ 2 & \text{if } K_{\omega} \cdot [\omega] > 0 \text{ and } & K_{\omega} \cdot K_{\omega} > 0. \end{cases}$$

If (M^4, ω) is not minimal, its Kodaira dimension is defined to be that of any of its minimal models.

T. J. Li proved that the symplectic Kodaira dimension is a diffeomorphism invariant.

Luttinger Surgery

Luttinger Surgery and Sympletic Kodaira Dimension

Definition

For a minimal symplectic 4-manifold (M^4, ω) with symplectic canonical class K_{ω} , the Kodaira dimension of (M^4, ω) is defined in the following way:

$$\kappa^{s}(M^{4},\omega) = \begin{cases} -\infty & \text{if } K_{\omega} \cdot [\omega] < 0 \text{ or } & K_{\omega} \cdot K_{\omega} < 0, \\ 0 & \text{if } K_{\omega} \cdot [\omega] = 0 \text{ and } & K_{\omega} \cdot K_{\omega} = 0, \\ 1 & \text{if } K_{\omega} \cdot [\omega] > 0 \text{ and } & K_{\omega} \cdot K_{\omega} = 0, \\ 2 & \text{if } K_{\omega} \cdot [\omega] > 0 \text{ and } & K_{\omega} \cdot K_{\omega} > 0. \end{cases}$$

If (M^4, ω) is not minimal, its Kodaira dimension is defined to be that of any of its minimal models.

T. J. Li proved that the symplectic Kodaira dimension is a diffeomorphism invariant.

Theorem (C.-I. Ho and T.J. Li, 2008)

The symplectic Kodaira dimension is unchanged under Luttinger surgery.

Construction of fake symplectic $\mathbb{S}^2\times\mathbb{S}^2$

Construction of fake symplectic $\mathbb{S}^2\times\mathbb{S}^2$

Theorem (A.A, 2006)

Let *K* be a genus one fibered knot in \mathbb{S}^3 . Then there exist a minimal symplectic 4-manifold X_K cohomology equivalent to $\mathbb{S}^2 \times \mathbb{S}^2$.

Construction of fake symplectic $\mathbb{S}^2 \times \mathbb{S}^2$

Theorem (A.A, 2006)

Let *K* be a genus one fibered knot in \mathbb{S}^3 . Then there exist a minimal symplectic 4-manifold X_K cohomology equivalent to $\mathbb{S}^2 \times \mathbb{S}^2$.

Theorem (A.A, 2006)

Let *K* be a genus one and *K'* be any genus $2 \le g$ fibered knot in \mathbb{S}^3 . Then there exist an infinite family of minimal symplectic 4-manifolds $V_{KK'}$ cohomology equivalent to $\#_{2g-1}(\mathbb{S}^2 \times \mathbb{S}^2)$.

Symplectic 4-manifold $M_K \times \mathbb{S}^1$

Let *K* be a genus one fibered knot (i.e., the trefoil or the figure eight knot) in \mathbb{S}^3 and *m* a meridional circle to *K*.

Symplectic 4-manifold $M_K \times \mathbb{S}^1$

Let *K* be a genus one fibered knot (i.e., the trefoil or the figure eight knot) in \mathbb{S}^3 and *m* a meridional circle to *K*.

Symplectic 4-manifold $M_K \times \mathbb{S}^1$

Let *K* be a genus one fibered knot (i.e., the trefoil or the figure eight knot) in \mathbb{S}^3 and *m* a meridional circle to *K*.

$\pi_1(\mathbb{S}^3 \setminus K) = \langle a, b \mid aba = bab \rangle$

M_K be 3-manifold obtained by 0-framed Dehn surgery on K.
$M_{\mathcal{K}}$ be 3-manifold obtained by 0-framed Dehn surgery on \mathcal{K} . $M_{\mathcal{K}}$ has the same integral homology as $\mathbb{S}^2 \times \mathbb{S}^1$, where *m* generates $H_1(M_{\mathcal{K}}, \mathbb{Z})$.

 M_{K} be 3-manifold obtained by 0-framed Dehn surgery on K. M_{K} has the same integral homology as $\mathbb{S}^{2} \times \mathbb{S}^{1}$, where *m* generates $H_{1}(M_{K}, \mathbb{Z})$. Since *K* has genus one and fibered, $M_{K} \times \mathbb{S}^{1}$ is a torus bundle over a torus, admits a symplectic structure, minimal, and homology equivalent to $\mathbb{T}^{2} \times \mathbb{S}^{2}$.

 M_K be 3-manifold obtained by 0-framed Dehn surgery on K. M_K has the same integral homology as $\mathbb{S}^2 \times \mathbb{S}^1$, where m generates $H_1(M_K, \mathbb{Z})$. Since K has genus one and fibered, $M_K \times \mathbb{S}^1$ is a torus bundle over a torus, admits a symplectic structure, minimal, and homology equivalent to $\mathbb{T}^2 \times \mathbb{S}^2$. $T_m = m \times \mathbb{S}^1 = m \times x$ is a section of this fibration.

 M_K be 3-manifold obtained by 0-framed Dehn surgery on *K*. M_K has the same integral homology as $\mathbb{S}^2 \times \mathbb{S}^1$, where *m* generates $H_1(M_K, \mathbb{Z})$. Since *K* has genus one and fibered, $M_K \times \mathbb{S}^1$ is a torus bundle over a torus, admits a symplectic structure, minimal, and homology equivalent to $\mathbb{T}^2 \times \mathbb{S}^2$. $T_m = m \times \mathbb{S}^1 = m \times x$ is a section of this fibration. The generators $\gamma_1 = a^{-1}b$, $\gamma_2 = b^{-1}aba^{-1}$ of the fiber torus F_t , coming from the Seifert surface, are trivial in 1st homology.

 M_K be 3-manifold obtained by 0-framed Dehn surgery on *K*. M_K has the same integral homology as $\mathbb{S}^2 \times \mathbb{S}^1$, where *m* generates $H_1(M_K, \mathbb{Z})$. Since *K* has genus one and fibered, $M_K \times \mathbb{S}^1$ is a torus bundle over a torus, admits a symplectic structure, minimal, and homology equivalent to $\mathbb{T}^2 \times \mathbb{S}^2$. $T_m = m \times \mathbb{S}^1 = m \times x$ is a section of this fibration. The generators $\gamma_1 = a^{-1}b$, $\gamma_2 = b^{-1}aba^{-1}$ of the fiber torus F_t , coming from the Seifert surface, are trivial in 1st homology.

$$\pi_1(M_K \times \mathbb{S}^1) = \langle a, b, x \mid aba = bab, ab^2 ab^{-4} = 1, [a, x] = [b, x] = 1 > 0$$

 M_K be 3-manifold obtained by 0-framed Dehn surgery on *K*. M_K has the same integral homology as $\mathbb{S}^2 \times \mathbb{S}^1$, where *m* generates $H_1(M_K, \mathbb{Z})$. Since *K* has genus one and fibered, $M_K \times \mathbb{S}^1$ is a torus bundle over a torus, admits a symplectic structure, minimal, and homology equivalent to $\mathbb{T}^2 \times \mathbb{S}^2$. $T_m = m \times \mathbb{S}^1 = m \times x$ is a section of this fibration. The generators $\gamma_1 = a^{-1}b$, $\gamma_2 = b^{-1}aba^{-1}$ of the fiber torus F_t , coming from the Seifert surface, are trivial in 1st homology.

$$\pi_1(M_K \times \mathbb{S}^1) = \langle a, b, x \mid aba = bab, ab^2 ab^{-4} = 1, [a, x] = [b, x] = 1 > 0$$

 $H_1(M_K \times \mathbb{S}^1, \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$

 M_K be 3-manifold obtained by 0-framed Dehn surgery on *K*. M_K has the same integral homology as $\mathbb{S}^2 \times \mathbb{S}^1$, where *m* generates $H_1(M_K, \mathbb{Z})$. Since *K* has genus one and fibered, $M_K \times \mathbb{S}^1$ is a torus bundle over a torus, admits a symplectic structure, minimal, and homology equivalent to $\mathbb{T}^2 \times \mathbb{S}^2$. $T_m = m \times \mathbb{S}^1 = m \times x$ is a section of this fibration. The generators $\gamma_1 = a^{-1}b$, $\gamma_2 = b^{-1}aba^{-1}$ of the fiber torus F_t , coming from the Seifert surface, are trivial in 1st homology.

$$\pi_1(M_K \times \mathbb{S}^1) = \langle a, b, x \mid aba = bab, ab^2 ab^{-4} = 1, [a, x] = [b, x] = 1 > 0$$

 $H_1(M_K \times \mathbb{S}^1, \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$ $H_2(M_K \times \mathbb{S}^1, \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}.$

Symplectic 4-manifold Y_K

Take two copies of $M_K \times \mathbb{S}^1$.

Take two copies of $M_K \times \mathbb{S}^1$. Let Y_K denote the twisted fiber sum $Y_K = M_K \times \mathbb{S}^1 \#_{F_t = T_{m'}} M_K \times \mathbb{S}^1$.

Take two copies of $M_K \times \mathbb{S}^1$. Let Y_K denote the twisted fiber sum $Y_K = M_K \times \mathbb{S}^1 \#_{F_t = T_{m'}} M_K \times \mathbb{S}^1$. $Y_K = (M_K \times \mathbb{S}^1)_K$.

Take two copies of $M_K \times \mathbb{S}^1$. Let Y_K denote the twisted fiber sum $Y_K = M_K \times \mathbb{S}^1 \#_{F_t = T_{m'}} M_K \times \mathbb{S}^1$. $Y_K = (M_K \times \mathbb{S}^1)_K$. We could also use a different genus one fibered knot in this step.

Take two copies of $M_K \times \mathbb{S}^1$. Let Y_K denote the twisted fiber sum $Y_K = M_K \times \mathbb{S}^1 \#_{F_t = T_{m'}} M_K \times \mathbb{S}^1$. $Y_K = (M_K \times \mathbb{S}^1)_K$. We could also use a different genus one fibered knot in this step.

Symplectic 4-manifold Y_K

Symplectic 4-manifold Y_K

$H_1(Y_K, \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z} = \langle x, m \rangle$

$egin{aligned} & H_1(Y_{\mathcal{K}},\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z} = < x,m > \ & H_2(Y_{\mathcal{K}},\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z} = < \mathcal{S},T > \end{aligned}$

$$egin{aligned} &\mathcal{H}_1(Y_{\mathcal{K}},\mathbb{Z})=\mathbb{Z}\oplus\mathbb{Z}=< x,m>\ &\mathcal{H}_2(Y_{\mathcal{K}},\mathbb{Z})=\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}=< S,T>\ &c_1^2(Y_{\mathcal{K}})=2c_1^2(M_{\mathcal{K}} imes\mathbb{S}^1)=\ &0\ &\chi_h(Y_{\mathcal{K}})=2\chi_h(M_{\mathcal{K}} imes\mathbb{S}^1)=\ &0 \end{aligned}$$

Symplectic genus two surface in Y_K

Symplectic genus two surface in Y_K

Symplectic 4-manifold X_K , fake symplectic $\mathbb{S}^2 \times \mathbb{S}^2$

Next, take two copies of $Y_{\mathcal{K}}$.

Symplectic 4-manifold $X_{\mathcal{K}}$, fake symplectic $\mathbb{S}^2 \times \mathbb{S}^2$

Next, take two copies of Y_K . Let X_K denote the symplectic fiber sum $X_K = Y_K \#_{\phi} Y_K$ along the symplectic surface $\Sigma_2 = T_m \# F_{t'}$.

Symplectic 4-manifold $X_{\mathcal{K}}$, fake symplectic $\mathbb{S}^2 \times \mathbb{S}^2$

Next, take two copies of $Y_{\mathcal{K}}$. Let $X_{\mathcal{K}}$ denote the symplectic fiber sum $X_{\mathcal{K}} = Y_{\mathcal{K}} \#_{\phi} Y_{\mathcal{K}}$ along the symplectic surface $\Sigma_2 = T_m \# F_{t'}$. We choose ϕ to be an elliptic involution of Σ_2 with two fixed points.

Symplectic 4-manifold X_K , fake symplectic $\mathbb{S}^2 \times \mathbb{S}^2$

Next, take two copies of Y_K . Let X_K denote the symplectic fiber sum $X_K = Y_K \#_{\phi} Y_K$ along the symplectic surface $\Sigma_2 = T_m \# F_{t'}$. We choose ϕ to be an elliptic involution of Σ_2 with two fixed points.

$$c_1^2(X_K) = 2c_1^2(Y_K) + 8(2-1) = 8$$

$$\chi_h(X_K) = 2\chi_h(Y_K) + (2-1) = 1$$

$$c_1^2(X_K) = 2c_1^2(Y_K) + 8(2-1) = 8$$

$$\chi_h(X_K) = 2\chi_h(Y_K) + (2-1) = 1$$

$\begin{array}{rcl} H_1(X_K,\mathbb{Z}) &=& 0\\ H_2(X_K,\mathbb{Z}) &=& \mathbb{Z}\oplus\mathbb{Z}. \end{array}$

$$c_1^2(X_K) = 2c_1^2(Y_K) + 8(2-1) = 8$$

$$\chi_h(X_K) = 2\chi_h(Y_K) + (2-1) = 1$$

 $\begin{array}{rcl} H_1(X_K,\mathbb{Z}) &=& 0\\ H_2(X_K,\mathbb{Z}) &=& \mathbb{Z}\oplus\mathbb{Z}. \end{array}$

Remark: Using non-fibered genus one *n*-twist knots leads to non-symplectic fake $\mathbb{S}^2 \times \mathbb{S}^2$.

Construction of $V_{K'K}$ is similar.

Construction of $V_{K'K}$ is similar. Use $M_{K'} \times \mathbb{S}^1$, where g(K') = g, to get a genus g + 1 symplectic surface inside of $Y_{K'K} = (M_{K'} \times \mathbb{S}^1)_K$.

Construction of $V_{K'K}$ is similar. Use $M_{K'} \times \mathbb{S}^1$, where g(K') = g, to get a genus g + 1 symplectic surface inside of $Y_{K'K} = (M_{K'} \times \mathbb{S}^1)_K$. Next, we apply the symplectic fiber sum.

Construction of $V_{K'K}$ is similar. Use $M_{K'} \times \mathbb{S}^1$, where g(K') = g, to get a genus g + 1 symplectic surface inside of $Y_{K'K} = (M_{K'} \times \mathbb{S}^1)_K$. Next, we apply the symplectic fiber sum.

$$c_1^2(V_{K'K}) = 2c_1^2(Y_{K'K}) + 8((g+1)-1) = 8g,$$

$$\chi_h(V_{K'K}) = 2\chi_h(Y_{K'K}) + ((g+1)-1) = g,$$

Construction of $V_{K'K}$ is similar. Use $M_{K'} \times \mathbb{S}^1$, where g(K') = g, to get a genus g + 1 symplectic surface inside of $Y_{K'K} = (M_{K'} \times \mathbb{S}^1)_K$. Next, we apply the symplectic fiber sum.

$$\begin{array}{rcl} c_1^2(V_{K'K}) &=& 2c_1^2(Y_{K'K}) + 8((g+1)-1) = 8g, \\ \chi_h(V_{K'K}) &=& 2\chi_h(Y_{K'K}) + ((g+1)-1) = g, \end{array}$$

 $H_1(V_{K'K}, \mathbb{Z}) = 0, H_2(V_{K'K}, \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$, there are 2(2g - 1) copies of \mathbb{Z}

Construction of $V_{K'K}$ is similar. Use $M_{K'} \times \mathbb{S}^1$, where g(K') = g, to get a genus g + 1 symplectic surface inside of $Y_{K'K} = (M_{K'} \times \mathbb{S}^1)_K$. Next, we apply the symplectic fiber sum.

$$c_1^2(V_{K'K}) = 2c_1^2(Y_{K'K}) + 8((g+1)-1) = 8g,$$

$$\chi_h(V_{K'K}) = 2\chi_h(Y_{K'K}) + ((g+1)-1) = g,$$

 $H_1(V_{K'K}, \mathbb{Z}) = 0, H_2(V_{K'K}, \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$, there are 2(2g - 1) copies of \mathbb{Z}

Remark: Y_K , X_K , $Y_{K'K}$, $V_{K'K}$ serve as an important building blocks in the construction of (small or big) exotic 4-manifolds

Exotic $\mathbb{CP}^2 \# n\overline{\mathbb{CP}}^2$

Exotic $\mathbb{CP}^2 \# n\overline{\mathbb{CP}^2}$

n = 9 S. Donaldson showed that the Dolgachev's surface E(1)_{2,3} is homemorphic but not diffemorphic to E(1) = CP²#9CP² (1986).

Exotic $\mathbb{CP}^2 \# n\overline{\mathbb{CP}^2}$

- n = 9 S. Donaldson showed that the Dolgachev's surface E(1)_{2,3} is homemorphic but not diffemorphic to E(1) = CP²#9CP² (1986).
- n = 9 C. Okonek A. Van de Ven (1986), R. Friedman J. Morgan (1988) inf. many smooth structures.
- n = 9 S. Donaldson showed that the Dolgachev's surface E(1)_{2,3} is homemorphic but not diffemorphic to E(1) = CP² #9CP² (1986).
- n = 9 C. Okonek A. Van de Ven (1986), R. Friedman J. Morgan (1988) inf. many smooth structures.
- n = 8 D. Kotschick showed that the Barlow's surface is homemorphic but not diffemorphic to CP²#8CP² (1989).

- n = 9 S. Donaldson showed that the Dolgachev's surface E(1)_{2,3} is homemorphic but not diffemorphic to E(1) = CP²#9CP² (1986).
- n = 9 C. Okonek A. Van de Ven (1986), R. Friedman J. Morgan (1988) inf. many smooth structures.
- n = 8 D. Kotschick showed that the Barlow's surface is homemorphic but not diffemorphic to CP²#8CP² (1989).
- n = 7 J. Park applying the rational blowdown to $E(1) = \mathbb{CP}^2 \# 9\overline{\mathbb{CP}^2}$ (2004).

- n = 9 S. Donaldson showed that the Dolgachev's surface E(1)_{2,3} is homemorphic but not diffemorphic to E(1) = CP²#9CP² (1986).
- n = 9 C. Okonek A. Van de Ven (1986), R. Friedman J. Morgan (1988) inf. many smooth structures.
- n = 8 D. Kotschick showed that the Barlow's surface is homemorphic but not diffemorphic to CP²#8CP² (1989).
- n = 7 J. Park applying the rational blowdown to E(1) = CP²#9CP² (2004). P. Ozsvath Z. Szabo (2004) Park manifold is minimal.

- n = 9 S. Donaldson showed that the Dolgachev's surface E(1)_{2,3} is homemorphic but not diffemorphic to E(1) = CP²#9CP² (1986).
- n = 9 C. Okonek A. Van de Ven (1986), R. Friedman J. Morgan (1988) inf. many smooth structures.
- n = 8 D. Kotschick showed that the Barlow's surface is homemorphic but not diffemorphic to CP²#8CP² (1989).
- n = 7 J. Park applying the rational blowdown to E(1) = CP²#9CP² (2004). P. Ozsvath Z. Szabo (2004) Park manifold is minimal.
- n = 6 A. Stipsicz Z. Szabo applying the generalized rational blowdown to $E(1) = \mathbb{CP}^2 \# 9\overline{\mathbb{CP}^2}$ (2005).

- n = 9 S. Donaldson showed that the Dolgachev's surface E(1)_{2,3} is homemorphic but not diffemorphic to E(1) = CP²#9CP² (1986).
- n = 9 C. Okonek A. Van de Ven (1986), R. Friedman J. Morgan (1988) inf. many smooth structures.
- n = 8 D. Kotschick showed that the Barlow's surface is homemorphic but not diffemorphic to CP²#8CP² (1989).
- n = 7 J. Park applying the rational blowdown to E(1) = CP²#9CP² (2004). P. Ozsvath Z. Szabo (2004) Park manifold is minimal.
- n = 6 A. Stipsicz Z. Szabo applying the generalized rational blowdown to $E(1) = \mathbb{CP}^2 \# 9\overline{\mathbb{CP}^2}$ (2005).
- n = 6, 7, 8 R. Fintushel R. Stern inf. many smooth structures (2005).

- n = 9 S. Donaldson showed that the Dolgachev's surface E(1)_{2,3} is homemorphic but not diffemorphic to E(1) = CP²#9CP² (1986).
- n = 9 C. Okonek A. Van de Ven (1986), R. Friedman J. Morgan (1988) inf. many smooth structures.
- n = 8 D. Kotschick showed that the Barlow's surface is homemorphic but not diffemorphic to CP²#8CP² (1989).
- n = 7 J. Park applying the rational blowdown to E(1) = CP²#9CP² (2004). P. Ozsvath Z. Szabo (2004) Park manifold is minimal.
- n = 6 A. Stipsicz Z. Szabo applying the generalized rational blowdown to $E(1) = \mathbb{CP}^2 \# 9\overline{\mathbb{CP}^2}$ (2005).
- n = 6, 7, 8 R. Fintushel R. Stern inf. many smooth structures (2005).
- n = 5 J. Park A. Stipsicz Z. Szabo using the rational blowdown (2005). At the time, it was not known if symplectic

Anar Akhmedov (University of Minnesota, Minneapolis Exotic Smooth Structures on 4-Manifolds

Anar Akhmedov (University of Minnesota, Minneapolis Exotic Smooth Structures on 4-Manifolds

• R. Friedman - J. Morgan (l = 19) inf. many

- R. Friedman J. Morgan (l = 19) inf. many
- R. Gompf (14 ≤ *l* ≤ 18)

- R. Friedman J. Morgan (l = 19) inf. many
- R. Gompf (14 ≤ *l* ≤ 18)
- A. Stipsicz Z. Szabo, B. Yu ($14 \le l \le 18$) inf. many

- R. Friedman J. Morgan (l = 19) inf. many
- R. Gompf (14 ≤ *l* ≤ 18)
- A. Stipsicz Z. Szabo, B. Yu ($14 \le l \le 18$) inf. many
- D. Park ($10 \le l \le 13$) inf. many

- R. Friedman J. Morgan (l = 19) inf. many
- R. Gompf (14 ≤ *l* ≤ 18)
- A. Stipsicz Z. Szabo, B. Yu ($14 \le l \le 18$) inf. many
- D. Park ($10 \le l \le 13$) inf. many
- A. Stipsicz Z. Szabo (*l* = 9) and J. Park (*l* = 8) using the generalized rational blowdown. Not known if symplectic.

- R. Friedman J. Morgan (l = 19) inf. many
- R. Gompf (14 ≤ *l* ≤ 18)
- A. Stipsicz Z. Szabo, B. Yu ($14 \le l \le 18$) inf. many
- D. Park ($10 \le l \le 13$) inf. many
- A. Stipsicz Z. Szabo (*l* = 9) and J. Park (*l* = 8) using the generalized rational blowdown. Not known if symplectic.

All these construction starts with simply-connected 4-manifolds and apply some surgery techniques that preserves simple connectivity.

- R. Friedman J. Morgan (*l* = 19) inf. many
- R. Gompf (14 ≤ *l* ≤ 18)
- A. Stipsicz Z. Szabo, B. Yu ($14 \le l \le 18$) inf. many
- D. Park ($10 \le l \le 13$) inf. many
- A. Stipsicz Z. Szabo (*l* = 9) and J. Park (*l* = 8) using the generalized rational blowdown. Not known if symplectic.

All these construction starts with simply-connected 4-manifolds and apply some surgery techniques that preserves simple connectivity.

We introduced a new technique in [*A.A, 2006, Alg and Geom Topol*], and constructed exotic symplectic $\mathbb{CP}^2 \# 5\overline{\mathbb{CP}^2}$ and exotic $3\mathbb{CP}^2 \# 7\overline{\mathbb{CP}^2}$ using non-simply connected building blocks.

Theorem (A.A, 2006, Alg and Geom Topol)

Let M be one of the following 4-manifolds.

- (i) $\mathbb{CP}^2 \# m \overline{\mathbb{CP}^2}$ for m = 5,
- (ii) $3\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$ for k = 7,

(iii) $(2n-1)\mathbb{CP}^2 \# (2n+3)\overline{\mathbb{CP}^2}$ for any integer $n \geq 3$.

Then there exist an irreducible symplectic 4-manifolds homeomorphic but not diffeomorphic to *M*.

• Let $M = \mathbb{T}^2 \times \mathbb{S}^2 \# 4 \overline{\mathbb{CP}^2}$.

- Let $M = \mathbb{T}^2 \times \mathbb{S}^2 \# 4 \overline{\mathbb{CP}^2}$.
- *M* admits a genus two Lefschetz fibration over S² with 8 singular fibers. This fibration is known as Matsumoto's fibration.

- Let $M = \mathbb{T}^2 \times \mathbb{S}^2 \# 4 \overline{\mathbb{CP}^2}$.
- M admits a genus two Lefschetz fibration over S² with 8 singular fibers. This fibration is known as Matsumoto's fibration.
- Matsumoto's fibration can be obtained as a double branched cover of ^{T²} × S² branched along the configuration 2[*pt* × S²] + 2[T² × *pt*].

- Let $M = \mathbb{T}^2 \times \mathbb{S}^2 \# 4 \overline{\mathbb{CP}^2}$.
- *M* admits a genus two Lefschetz fibration over S² with 8 singular fibers. This fibration is known as Matsumoto's fibration.
- Matsumoto's fibration can be obtained as a double branched cover of $\mathbb{T}^2 \times \mathbb{S}^2$ branched along the configuration $2[pt \times \mathbb{S}^2] + 2[\mathbb{T}^2 \times pt]$.

•
$$c_1^2(M) = -4, \chi_h(M) = 0, \pi_1(M) = \mathbb{Z} \times \mathbb{Z}$$

• The global monodromy of Matsumoto's fibration: $(D_{\beta_1}D_{\beta_2}D_{\beta_3}D_{\beta_4})^2 = 1$,

• The global monodromy of Matsumoto's fibration: $(D_{\beta_1}D_{\beta_2}D_{\beta_3}D_{\beta_4})^2 = 1$,

 Let X be a symplectic fiber sum of M and Y_K = M_K × S¹ #_{F_l=T_m}, M_K × S¹ = (M_K × S¹)_K along the genus two surfaces, where K is a genus one fibered knot in S³.

• The global monodromy of Matsumoto's fibration: $(D_{\beta_1}D_{\beta_2}D_{\beta_3}D_{\beta_4})^2 = 1$,

 Let X be a symplectic fiber sum of M and Y_K = M_K × S¹ #_{F_l=T_m}, M_K × S¹ = (M_K × S¹)_K along the genus two surfaces, where K is a genus one fibered knot in S³.

•
$$c_1^2(X) = c_1^2(M) + c_1^2(Y_K) + 8(2-1) = 4,$$

 $\chi_h(X) = \chi_h(M) + \chi_h(Y_K) + (2-1) = 1.$

• The global monodromy of Matsumoto's fibration: $(D_{\beta_1}D_{\beta_2}D_{\beta_3}D_{\beta_4})^2 = 1$,

 Let X be a symplectic fiber sum of M and Y_K = M_K × S¹ #_{F_l=T_m}, M_K × S¹ = (M_K × S¹)_K along the genus two surfaces, where K is a genus one fibered knot in S³.

•
$$c_1^2(X) = c_1^2(M) + c_1^2(Y_K) + 8(2-1) = 4,$$

 $\chi_h(X) = \chi_h(M) + \chi_h(Y_K) + (2-1) = 1.$

• *X* is simply connected, so homemorphic to $\mathbb{CP}^2 \# 5\overline{\mathbb{CP}^2}$.

• The global monodromy of Matsumoto's fibration: $(D_{\beta_1}D_{\beta_2}D_{\beta_3}D_{\beta_4})^2 = 1$,

• Let *X* be a symplectic fiber sum of *M* and $Y_{K} = M_{K} \times \mathbb{S}^{1} \#_{F_{t}=T_{m'}} M_{K} \times \mathbb{S}^{1} = (M_{K} \times \mathbb{S}^{1})_{K}$ along the genus two surfaces, where *K* is a genus one fibered knot in \mathbb{S}^{3} .

•
$$c_1^2(X) = c_1^2(M) + c_1^2(Y_K) + 8(2-1) = 4,$$

 $\chi_h(X) = \chi_h(M) + \chi_h(Y_K) + (2-1) = 1.$

- *X* is simply connected, so homemorphic to $\mathbb{CP}^2 \# 5\overline{\mathbb{CP}^2}$.
- X is minimal symplectic by M. Usher's Minimality Theorem, so it cannot be diffemorphic to CP²#5CP².

Theorem (A.A - Doug Park, Inven. Math, January 2007)

Let M be one of the following 4-manifolds.

- (i) $\mathbb{CP}^2 \# m \overline{\mathbb{CP}^2}$ for m = 3,
- (ii) $3\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$ for k = 5,
- (iii) $(2n-1)\mathbb{CP}^2 \# (2n+1)\overline{\mathbb{CP}^2}$ for any integer $n \geq 3$.

Then there exist an irreducible symplectic 4-manifolds homeomorphic but not diffeomorphic to *M*.

Theorem (A.A - Doug Park, Inven. Math, January 2007)

Let M be one of the following 4-manifolds.

- (i) $\mathbb{CP}^2 \# m \overline{\mathbb{CP}^2}$ for m = 3,
- (ii) $3\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$ for k = 5,
- (iii) $(2n-1)\mathbb{CP}^2 \# (2n+1)\overline{\mathbb{CP}^2}$ for any integer $n \geq 3$.

Then there exist an irreducible symplectic 4-manifolds homeomorphic but not diffeomorphic to *M*.

Alternative construction of exotic $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ was later given by S. Baldridge - P. Kirk, and R. Fintushel - D. Park - R. Stern.

Let M = M_K × S¹ #2CP². M has a symplectic genus two surface of self-intersection 0 which carry π₁(M).

- Let M = M_K × S¹ #2 C P². M has a symplectic genus two surface of self-intersection 0 which carry π₁(M).
- $c_1^2(M) = -2, \chi_h(M) = 0, H_1(M) = \mathbb{Z} \times \mathbb{Z}$

- Let M = M_K × S¹ #2 CP². M has a symplectic genus two surface of self-intersection 0 which carry π₁(M).
- $c_1^2(M) = -2, \chi_h(M) = 0, H_1(M) = \mathbb{Z} \times \mathbb{Z}$
- Let X be a symplectic fiber sum of M and Y_K = M_K × S¹ #_{F_l=T_m}, M_K × S¹ = (M_K × S¹)_K along the genus two surfaces, where K is a genus one fibered knot in S³.

- Let M = M_K × S¹ #2 CP². M has a symplectic genus two surface of self-intersection 0 which carry π₁(M).
- $c_1^2(M) = -2, \chi_h(M) = 0, H_1(M) = \mathbb{Z} \times \mathbb{Z}$
- Let *X* be a symplectic fiber sum of *M* and $Y_{K} = M_{K} \times \mathbb{S}^{1} \#_{F_{t}=T_{m'}} M_{K} \times \mathbb{S}^{1} = (M_{K} \times \mathbb{S}^{1})_{K}$ along the genus two surfaces, where *K* is a genus one fibered knot in \mathbb{S}^{3} .

•
$$c_1^2(X) = c_1^2(M) + c_1^2(Y_K) + 8(2-1) = 6,$$

 $\chi_h(X) = \chi_h(M) + \chi_h(Y_K) + (2-1) = 1.$

- Let M = M_K × S¹ #2CP². M has a symplectic genus two surface of self-intersection 0 which carry π₁(M).
- $c_1^2(M) = -2, \chi_h(M) = 0, H_1(M) = \mathbb{Z} \times \mathbb{Z}$
- Let *X* be a symplectic fiber sum of *M* and $Y_{K} = M_{K} \times \mathbb{S}^{1} \#_{F_{t}=T_{m'}} M_{K} \times \mathbb{S}^{1} = (M_{K} \times \mathbb{S}^{1})_{K}$ along the genus two surfaces, where *K* is a genus one fibered knot in \mathbb{S}^{3} .

•
$$c_1^2(X) = c_1^2(M) + c_1^2(Y_K) + 8(2-1) = 6,$$

 $\chi_h(X) = \chi_h(M) + \chi_h(Y_K) + (2-1) = 1.$

• X is simply connected 4-manifolds homemorphic but not diffemorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Exotic $\mathbb{CP}^2 # 3\overline{\mathbb{CP}}^2$ of Akhmedov - Park via Luttinger Surgery, (A.A - I. Baykur - D. Park)

• Use 3 copies of the 4-torus, T_1^4 , T_2^4 and T_3^4 .

Exotic $\mathbb{CP}^2 # 3\overline{\mathbb{CP}}^2$ of Akhmedov - Park via Luttinger Surgery, (A.A - I. Baykur - D. Park)

- Use 3 copies of the 4-torus, T_1^4 , T_2^4 and T_3^4 .
- Fiber sum the first two along the 2-tori $a_1 \times b_1$ and $a_2 \times b_2$, with a gluing map that identifies a_1 with a_2 and b_1 with b_2 . We obtain $T^2 \times \Sigma_2$, where the symplectic genus 2 surface Σ_2 is obtained by gluing together the orthogonal punctured symplectic tori $(c_1 \times d_1) \setminus D^2$ in T_1^4 and $(c_2 \times d_2) \setminus D^2$ in T_2^4 . $\pi_1(T^2 \times \Sigma_2)$ has six generators $a_1 = a_2$, $b_1 = b_2$, c_1 , c_2 , d_1 and d_2 with relations $[a_1, b_1] = 1$, $[c_1, d_1][c_2, d_2] = 1$ and a_1 and b_1 commute with all c_i and d_i .

Exotic $\mathbb{CP}^2 # 3\overline{\mathbb{CP}}^2$ of Akhmedov - Park via Luttinger Surgery, (A.A - I. Baykur - D. Park)

- Use 3 copies of the 4-torus, T_1^4 , T_2^4 and T_3^4 .
- Fiber sum the first two along the 2-tori $a_1 \times b_1$ and $a_2 \times b_2$, with a gluing map that identifies a_1 with a_2 and b_1 with b_2 . We obtain $T^2 \times \Sigma_2$, where the symplectic genus 2 surface Σ_2 is obtained by gluing together the orthogonal punctured symplectic tori $(c_1 \times d_1) \setminus D^2$ in T_1^4 and $(c_2 \times d_2) \setminus D^2$ in T_2^4 . $\pi_1(T^2 \times \Sigma_2)$ has six generators $a_1 = a_2$, $b_1 = b_2$, c_1 , c_2 , d_1 and d_2 with relations $[a_1, b_1] = 1$, $[c_1, d_1][c_2, d_2] = 1$ and a_1 and b_1 commute with all c_i and d_i .
- The two symplectic tori a₃ × b₃ and c₃ × d₃ in T₃⁴ intersect at one point. Smooth out intersection point to get a symplectic surface of genus 2. Blow up T₃⁴ twice at the self-intersection points to obtain a symplectic genus two surface Σ' of self-intersection zero.

• Take the symplectic fiber sum of $Y = T^2 \times \Sigma_2$ and $Y' = T_3^4 \# 2\overline{\mathbb{CP}^2}$ along the surfaces Σ_2 and Σ' , determined by a map that sends the circles c_1, d_1, c_2, d_2 to a_3, b_3, c_3, d_3 in the same order. By Seifert-Van Kampen theorem, the fundamental group of the resulting manifold X' can be seen to be generated by a_1, b_1, c_1, d_1, c_2 and d_2 , which all commute with each other. $\pi_1(X')$ is isomorphic to \mathbb{Z}^6 , e(X') = 6 and $\sigma(X') = -2$, which are also the characteristic numbers of $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.
- Take the symplectic fiber sum of $Y = T^2 \times \Sigma_2$ and $Y' = T_3^4 \# 2\overline{\mathbb{CP}^2}$ along the surfaces Σ_2 and Σ' , determined by a map that sends the circles c_1, d_1, c_2, d_2 to a_3, b_3, c_3, d_3 in the same order. By Seifert-Van Kampen theorem, the fundamental group of the resulting manifold X' can be seen to be generated by a_1, b_1, c_1, d_1, c_2 and d_2 , which all commute with each other. $\pi_1(X')$ is isomorphic to \mathbb{Z}^6 , e(X') = 6 and $\sigma(X') = -2$, which are also the characteristic numbers of $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.
- Perform six Luttinger surgeries on pairwise disjoint Lagrangian tori:

- Take the symplectic fiber sum of $Y = T^2 \times \Sigma_2$ and $Y' = T_3^4 \# 2\overline{\mathbb{CP}^2}$ along the surfaces Σ_2 and Σ' , determined by a map that sends the circles c_1, d_1, c_2, d_2 to a_3, b_3, c_3, d_3 in the same order. By Seifert-Van Kampen theorem, the fundamental group of the resulting manifold X' can be seen to be generated by a_1, b_1, c_1, d_1, c_2 and d_2 , which all commute with each other. $\pi_1(X')$ is isomorphic to \mathbb{Z}^6 , e(X') = 6 and $\sigma(X') = -2$, which are also the characteristic numbers of $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.
- Perform six Luttinger surgeries on pairwise disjoint Lagrangian tori:

$$\begin{array}{ll} (a_1\times \tilde{c}_1,\tilde{c}_1,-1), & (a_1\times \tilde{d}_1,\tilde{d}_1,-1), & (\tilde{a}_1\times c_2,\tilde{a}_1,-1), \\ (\tilde{b}_1\times c_2,\tilde{b}_1,-1), & (c_1\times \tilde{c}_2,\tilde{c}_2,-1), & (c_1\times \tilde{d}_2,\tilde{d}_2,-1). \end{array}$$

We obtain a symplectic 4-manifold X with $\pi_1(X)$ generated by a_1 , b_1 , c_1 , d_1 , c_2 , d_2 with relations:

$$b_1, d_1^{-1}] = b_1 c_1 b_1^{-1}, \ [c_1^{-1}, b_1] = d_1, \ [d_2, b_1^{-1}] = d_2 a_1 d_2^{-1}, \\ [a_1^{-1}, d_2] = b_1, \ [d_1, d_2^{-1}] = d_1 c_2 d_1^{-1}, \ [c_2^{-1}, d_1] = d_2,$$

and all other commutators are equal to the identity.

We obtain a symplectic 4-manifold X with $\pi_1(X)$ generated by a_1 , b_1 , c_1 , d_1 , c_2 , d_2 with relations:

$$\begin{bmatrix} b_1, d_1^{-1} \end{bmatrix} = b_1 c_1 b_1^{-1}, \quad [c_1^{-1}, b_1] = d_1, \quad [d_2, b_1^{-1}] = d_2 a_1 d_2^{-1}, \\ \begin{bmatrix} a_1^{-1}, d_2 \end{bmatrix} = b_1, \quad [d_1, d_2^{-1}] = d_1 c_2 d_1^{-1}, \quad [c_2^{-1}, d_1] = d_2,$$

and all other commutators are equal to the identity.

Since $[b_1, c_2] = [c_1, c_2] = 1$, $d_1 = [c_1^{-1}, b_1]$ also commutes with c_2 . Thus $d_2 = 1$, implying $a_1 = b_1 = 1$. The last identity implies $c_1 = d_1 = 1$, which in turn implies $c_2 = 1$.

We obtain a symplectic 4-manifold X with $\pi_1(X)$ generated by a_1 , b_1 , c_1 , d_1 , c_2 , d_2 with relations:

$$\begin{bmatrix} b_1, d_1^{-1} \end{bmatrix} = b_1 c_1 b_1^{-1}, \quad [c_1^{-1}, b_1] = d_1, \quad [d_2, b_1^{-1}] = d_2 a_1 d_2^{-1}, \\ \begin{bmatrix} a_1^{-1}, d_2 \end{bmatrix} = b_1, \quad [d_1, d_2^{-1}] = d_1 c_2 d_1^{-1}, \quad [c_2^{-1}, d_1] = d_2,$$

and all other commutators are equal to the identity.

Since $[b_1, c_2] = [c_1, c_2] = 1$, $d_1 = [c_1^{-1}, b_1]$ also commutes with c_2 . Thus $d_2 = 1$, implying $a_1 = b_1 = 1$. The last identity implies $c_1 = d_1 = 1$, which in turn implies $c_2 = 1$.

X is simply-connected and surgeries do not change the characteristic numbers, we have it homeomorphic to $\mathbb{CP}^2 \# 3\mathbb{CP}^2$. *Y* is minimal and the exceptional spheres in *Y'* intersect Σ' , Ushers Theorem guarantees that *X'* is minimal. *X* is an irreducible symplectic 4-manifold which is not diffeomorphic to $\mathbb{CP}^2 \# 3\mathbb{CP}^2$.

Theorem (A.A - Doug Park, May 2007, Inven. Math)

Let M be one of the following 4-manifolds.

- (i) $\mathbb{CP}^2 \# m \overline{\mathbb{CP}^2}$ for m = 2, 4,
- (ii) $3\mathbb{CP}^2 \# k \overline{\mathbb{CP}}^2$ for k = 4, 6, 8, 10,

(iii) $(2n-1)\mathbb{CP}^2 \# 2n\overline{\mathbb{CP}^2}$ for any integer $n \ge 3$.

Then there exist an irreducible symplectic 4-manifold and an infinite family of pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds, all of which are homeomorphic to *M*.

Handlebody of Akhmedov-Park's exotic $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}}^2$ by Selman Akbulut

The Geography of Spin Symplectic 4-Manifolds

 (σ < 0) Geography problem has been solved by D. Park - Z. Szabo and R. Gompf.

- (σ < 0) Geography problem has been solved by D. Park Z. Szabo and R. Gompf.
- ($\sigma > 0$) All but finitely many lattice points with $8\chi_h < c_1^2 \le 8.76\chi_h$. (J. Park).

- (σ < 0) Geography problem has been solved by D. Park Z. Szabo and R. Gompf.
- ($\sigma > 0$) All but finitely many lattice points with $8\chi_h < c_1^2 \le 8.76\chi_h$. (J. Park). The construction uses the spin complex surface by U. Persson- C. Peters- G. Xiao with $c_1^2 = 8.76\chi_h$.

- (σ < 0) Geography problem has been solved by D. Park Z. Szabo and R. Gompf.
- ($\sigma > 0$) All but finitely many lattice points with $8\chi_h < c_1^2 \le 8.76\chi_h$. (J. Park). The construction uses the spin complex surface by U. Persson- C. Peters- G. Xiao with $c_1^2 = 8.76\chi_h$.
- (σ = 0) J. Park constructed the exotic smooth structures on #_{2n-1}(S² × S²) for n ≥ 267145kx², where integer k and x are large numbers, which were not explicitly computed.

- (σ < 0) Geography problem has been solved by D. Park Z. Szabo and R. Gompf.
- ($\sigma > 0$) All but finitely many lattice points with $8\chi_h < c_1^2 \le 8.76\chi_h$. (J. Park). The construction uses the spin complex surface by U. Persson- C. Peters- G. Xiao with $c_1^2 = 8.76\chi_h$.
- (σ = 0) J. Park constructed the exotic smooth structures on #_{2n-1}(S² × S²) for n ≥ 267145kx², where integer k and x are large numbers, which were not explicitly computed.
- There are simply connected symplectic family by A. Stipsicz approaching BMY line, but his examples are not spin.

Theorem (A. A - D. Park - G.Urzua, 2010)

Theorem (A. A - D. Park - G.Urzua, 2010)

There exisit an infinite family of closed simply connected minimal symplectic 4-manifolds $\{M_n | n \in \mathbb{N}\}$ satisfying $8.92\chi_h < c_1^2(M_n) < 9\chi_h$ for every $n \ge 12$, and $\lim_{n\to\infty} \frac{c_1^2(M_n)}{\chi_h(M_n)} = 9$. Moreover, M_n has ∞^2 -property for every n and spin if $n \equiv 4 \pmod{8}$.

Theorem (A. A - D. Park - G.Urzua, 2010)

There exisit an infinite family of closed simply connected minimal symplectic 4-manifolds $\{M_n | n \in \mathbb{N}\}$ satisfying $8.92\chi_h < c_1^2(M_n) < 9\chi_h$ for every $n \ge 12$, and $\lim_{n\to\infty} \frac{c_1^2(M_n)}{\chi_h(M_n)} = 9$. Moreover, M_n has ∞^2 -property for every n and spin if $n \equiv 4 \pmod{8}$.

Theorem (A. A - D. Park - G. Urzua, 2010)

Let G be any finitely presented group. There exisit an infinite family of closed spin symplectic 4-manifolds $\{M_k^G | k \in \mathbb{N}\}$ such that $\pi_1(M_k^G) = G$ and $0 < c_1^2(M_k^G) < 9\chi_h$ for every k, and $\lim_{k\to\infty} \frac{c_1^2(M_k^G)}{\chi_h(M_k^G)} = 9$. If G is residually finite, then M_k^G is irreducible.

Theorem (A. A - D. Park - G.Urzua, 2010)

There exisit an infinite family of closed simply connected minimal symplectic 4-manifolds $\{M_n | n \in \mathbb{N}\}$ satisfying $8.92\chi_h < c_1^2(M_n) < 9\chi_h$ for every $n \ge 12$, and $\lim_{n\to\infty} \frac{c_1^2(M_n)}{\chi_h(M_n)} = 9$. Moreover, M_n has ∞^2 -property for every n and spin if $n \equiv 4 \pmod{8}$.

Theorem (A. A - D. Park - G. Urzua, 2010)

Let G be any finitely presented group. There exisit an infinite family of closed spin symplectic 4-manifolds $\{M_k^G | k \in \mathbb{N}\}$ such that $\pi_1(M_k^G) = G$ and $0 < c_1^2(M_k^G) < 9\chi_h$ for every k, and $\lim_{k\to\infty} \frac{c_1^2(M_k^G)}{\chi_h(M_k^G)} = 9$. If G is residually finite, then M_k^G is irreducible.

• Our construction uses the spin complex surfaces of Hirzebruch near BMY line, the elliptic surfaces $E(2n^3)$, and the spin symplectic 4-manifolds S^G of R. Gompf (with $\pi_1(S^G) = G$, and $c_1^2(S^G) = 0$).

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let. 2010)

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let. 2010)

Let M be one of the following 4-manifolds.

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let. 2010)

Let M be one of the following 4-manifolds.

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let. 2010)

Let M be one of the following 4-manifolds.

(i) $\#_{2n-1}(\mathbb{S}^2 \times \mathbb{S}^2)$ for $n \ge 138$,

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let. 2010)

Let M be one of the following 4-manifolds.

- (i) $\#_{2n-1}(\mathbb{S}^2 \times \mathbb{S}^2)$ for $n \ge 138$,
- (ii) $(2n-1)\mathbb{CP}^2 \# (2n-1)\overline{\mathbb{CP}^2}$ for any integer $n \geq 23$.

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let. 2010)

Let M be one of the following 4-manifolds.

(i) $\#_{2n-1}(\mathbb{S}^2 \times \mathbb{S}^2)$ for $n \ge 138$,

(ii) $(2n-1)\mathbb{CP}^2 \# (2n-1)\overline{\mathbb{CP}^2}$ for any integer $n \geq 23$.

Then there exist an irreducible symplectic 4-manifold and an infinite family of pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds, all of which are homeomorphic to M. Moreover, M in (i) has ∞^2 -property.

Theorem (A. A - D. Park, Gokova Geom and Top 2008, Math. Res. Let. 2010)

Let M be one of the following 4-manifolds.

(i) $\#_{2n-1}(\mathbb{S}^2 \times \mathbb{S}^2)$ for $n \ge 138$,

(ii) $(2n-1)\mathbb{CP}^2 \# (2n-1)\overline{\mathbb{CP}^2}$ for any integer $n \geq 23$.

Then there exist an irreducible symplectic 4-manifold and an infinite family of pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds, all of which are homeomorphic to M. Moreover, M in (i) has ∞^2 -property.

 construction (i) uses the small surfaces bundles with non-zero signature by J. Bryan and R. Donagi, and homotopy K3 surfaces by R. Fintushel-R. Stern.

Branched Cover Construction of Surface Bundles with Non-Zero Signature, after M. Atiyah, K. Kodaira, F. Hirzebruch

Theorem (J. Bryan - R. Donagi - A. Stipsicz)

For any integers $n \ge 2$, there exisit smooth algebraic surface X_n that have signature $\sigma(X_n) = 8/3n(n-1)(n+1)$ and admit two smooth fibrations $X_n \longrightarrow B$ and $X_n \longrightarrow B'$ such that the base and fiber genus are $(3, 3n^3 - n^2 + 1)$ and $(2n^2 + 1, 3n)$ respectively.

Theorem (J. Bryan - R. Donagi)

For any pair of integers $g, n \ge 2$, there exisit smooth algebraic surface $X_{n,g}$ that have signature $\sigma(X_n) = 4/3g(g-1)(n^2-1)n^{2g-3}$ and admit two smooth fibrations $X_{n,g} \longrightarrow B$ and $X_{n,g} \longrightarrow B'$ such that the base and fiber genus are $(g(g-1)n^{2g-2}+1,gn)$ and $(g,g(gn-1)n^{2g-2}+1)$ respectively.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under $Id \times \tau$.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$ (use the image of $(id - \tau)_* : H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z})$ to get the above surjection).

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$ (use the image of $(id - \tau)_* : H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z})$ to get the above surjection). B' has genus $2n^2 + 1$.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$ (use the image of $(id - \tau)_* : H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z})$ to get the above surjection). B' has genus $2n^2 + 1$.

 Γ_{π} and $\Gamma_{\pi'}$ are the graphs of the maps π and $\pi' = \tau \circ \pi$.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$ (use the image of $(id - \tau)_* : H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z})$ to get the above surjection). B' has genus $2n^2 + 1$.

 Γ_{π} and $\Gamma_{\pi'}$ are the graphs of the maps π and $\pi' = \tau \circ \pi$.

The homology class $D = \Gamma_{\pi} - \Gamma_{\pi'}$ is divisible by *n* and $D^2 = -8n^2$.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$ (use the image of $(id - \tau)_* : H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z})$ to get the above surjection). B' has genus $2n^2 + 1$.

 Γ_{π} and $\Gamma_{\pi'}$ are the graphs of the maps π and $\pi' = \tau \circ \pi$. The homology class $D = \Gamma_{\pi} - \Gamma_{\pi'}$ is divisible by *n* and $D^2 = -8n^2$. Let X_n be *n*-fold cyclic branched cover of $B' \times B$ along *D*.

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$ (use the image of $(id - \tau)_* : H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z})$ to get the above surjection). B' has genus $2n^2 + 1$.

 Γ_{π} and $\Gamma_{\pi'}$ are the graphs of the maps π and $\pi' = \tau \circ \pi$.

The homology class $D = \Gamma_{\pi} - \Gamma_{\pi'}$ is divisible by *n* and $D^2 = -8n^2$.

Let X_n be *n*-fold cyclic branched cover of $B' \times B$ along *D*. $\sigma(X_n) = 8/3n(n-1)(n+1)$ by Hirzebruch's signature formula.
Sketch of Proof:

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$ (use the image of $(id - \tau)_* : H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z})$ to get the above surjection). B' has genus $2n^2 + 1$.

 Γ_{π} and $\Gamma_{\pi'}$ are the graphs of the maps π and $\pi' = \tau \circ \pi$.

The homology class $D = \Gamma_{\pi} - \Gamma_{\pi'}$ is divisible by *n* and $D^2 = -8n^2$.

Let X_n be *n*-fold cyclic branched cover of $B' \times B$ along *D*. $\sigma(X_n) = 8/3n(n-1)(n+1)$ by Hirzebruch's signature formula. X_n is spin if *n* is odd

Sketch of Proof:

Let *B* be a genus 3 surface and $\tau : B \to B$ be a fixed point free involution of *B* around the center hole. Δ and Δ' denote the diagonal and its image under

 $Id \times \tau$. $\Delta - \Delta'$ is not a divisible class, so we cannot apply Hirzebruch's branched cover construction.

Consider a certain unramified covering map $\pi : B' \longrightarrow B$ and pull back Δ and Δ' to $B' \times B$.

Let $\pi : B' \longrightarrow B$ be the $(\mathbb{Z}/n\mathbb{Z})^2$ cover given by the surjection $\pi(B) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^2$ (use the image of $(id - \tau)_* : H_1(B; \mathbb{Z}/n\mathbb{Z}) \longrightarrow H_1(B; \mathbb{Z}/n\mathbb{Z})$ to get the above surjection). B' has genus $2n^2 + 1$.

 Γ_{π} and $\Gamma_{\pi'}$ are the graphs of the maps π and $\pi' = \tau \circ \pi$.

The homology class $D = \Gamma_{\pi} - \Gamma_{\pi'}$ is divisible by *n* and $D^2 = -8n^2$.

Let X_n be *n*-fold cyclic branched cover of $B' \times B$ along *D*. $\sigma(X_n) = 8/3n(n-1)(n+1)$ by Hirzebruch's signature formula. X_n is spin if *n* is odd (use the formula for the canonical class).

 Σ_b be a genus *b* surface.

 Σ_b be a genus *b* surface.

Let *X* be a closed 4-manifold that is the total space of a genus *f* surface bundle over Σ_b .

 Σ_b be a genus *b* surface.

Let *X* be a closed 4-manifold that is the total space of a genus *f* surface bundle over Σ_b .

Assume that X is spin, $\sigma(X) = 16s$ and X has a section $\Sigma_b \longrightarrow X$ whose image is a genus b surface of self-intersection -2t.

 Σ_b be a genus *b* surface.

Let *X* be a closed 4-manifold that is the total space of a genus *f* surface bundle over Σ_b .

Assume that X is spin, $\sigma(X) = 16s$ and X has a section $\Sigma_b \longrightarrow X$ whose image is a genus b surface of self-intersection -2t.

Symplectically resolve the double point of Σ_f and the image of a section to get a symplectic submanifold of Σ_{f+b} in X of genus f + b and self intersection 2 - 2t.

Let *r* is a positive integer satisfying $1 - t \le r \le \min\{s, f + b + 1 - t\}$.

Let *r* is a positive integer satisfying $1 - t \le r \le \min\{s, f + b + 1 - t\}$.

K be a fibered knot of genus g(K) = f + b + 1 - t - r in \mathbb{S}^3 .

Let $E(2r)_{\mathcal{K}}$ denote the homotopy elliptic surface of Fintushel and Stern.

Let *r* is a positive integer satisfying $1 - t \le r \le \min\{s, f + b + 1 - t\}$.

K be a fibered knot of genus g(K) = f + b + 1 - t - r in \mathbb{S}^3 .

Let $E(2r)_{K}$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2r) gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection -2r in $E(2r)_{K}$.

- Let *r* is a positive integer satisfying $1 t \le r \le \min\{s, f + b + 1 t\}$.
- *K* be a fibered knot of genus g(K) = f + b + 1 t r in \mathbb{S}^3 .
- Let $E(2r)_{\mathcal{K}}$ denote the homotopy elliptic surface of Fintushel and Stern.
- A sphere section of E(2r) gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection -2r in $E(2r)_{K}$.
- By symplectically resolving r + t 1 double points of the union of r + t 1 fiberes and $S_{g(K)}$, we obtain a symplectic submanifold Σ'_{f+b} of genus f + b and self-intersection 2t 2.

Let *r* is a positive integer satisfying $1 - t \le r \le \min\{s, f + b + 1 - t\}$.

K be a fibered knot of genus g(K) = f + b + 1 - t - r in \mathbb{S}^3 .

Let $E(2r)_{\mathcal{K}}$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2r) gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection -2r in $E(2r)_{K}$.

By symplectically resolving r + t - 1 double points of the union of r + t - 1 fiberes and $S_{g(K)}$, we obtain a symplectic submanifold Σ'_{f+b} of genus f + b and self-intersection 2t - 2.

 $Z = X \#_{\Sigma_{t+b} = \Sigma'_{t+b}} E(2r)_{K}$. *Z* is a spin symplectic 4-manifold with $\sigma(Z) = 16(s-r) \ge 0$.

Let *r* is a positive integer satisfying $1 - t \le r \le \min\{s, f + b + 1 - t\}$.

K be a fibered knot of genus g(K) = f + b + 1 - t - r in \mathbb{S}^3 .

Let $E(2r)_{\mathcal{K}}$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of E(2r) gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection -2r in $E(2r)_{K}$.

By symplectically resolving r + t - 1 double points of the union of r + t - 1 fiberes and $S_{g(K)}$, we obtain a symplectic submanifold Σ'_{f+b} of genus f + b and self-intersection 2t - 2.

 $Z = X \#_{\Sigma_{t+b} = \Sigma'_{t+b}} E(2r)_{K}$. *Z* is a spin symplectic 4-manifold with $\sigma(Z) = 16(s - r) \ge 0$. *Z* is simply connected and irreducible.

For each $n \ge 2$, Hirzebruch constructed a sequence X_n of minimal complex surfaces of general type with the following invariants:

For each $n \ge 2$, Hirzebruch constructed a sequence X_n of minimal complex surfaces of general type with the following invariants:

 $e(X_n) = n^7$ $c_1^2(X_n) = 3n^7 - 4n^5$

For each $n \ge 2$, Hirzebruch constructed a sequence X_n of minimal complex surfaces of general type with the following invariants:

 $e(X_n) = n^7$ $c_1^2(X_n) = 3n^7 - 4n^5$ $\sigma(X_n) = (n^7 - 4n^5)/3$ $\chi_h(X_n) = (n^7 - n^5)/3$

For each $n \ge 2$, Hirzebruch constructed a sequence X_n of minimal complex surfaces of general type with the following invariants:

 $e(X_n) = n^7$ $c_1^2(X_n) = 3n^7 - 4n^5$ $\sigma(X_n) = (n^7 - 4n^5)/3$ $\chi_h(X_n) = (n^7 - n^5)/3$

$$\lim_{n\to\infty}\frac{c_1^2(X_n)}{\chi_h(X_n)}=9.$$

Let
$$\zeta = e^{2\pi i/6}$$

Let $\zeta = e^{2\pi i/6}$ and let *T* be the elliptic curve

 $\mathbb{T} = \mathbb{C} / \{\mathbb{Z} \cdot \mathbf{1} + \mathbb{Z}\zeta\}.$

Let $\zeta = e^{2\pi i/6}$ and let *T* be the elliptic curve

 $\mathbb{T} = \mathbb{C}/\{\mathbb{Z} \cdot \mathbf{1} + \mathbb{Z}\zeta\}.$

Consider the complex surface $\mathbb{T} \times \mathbb{T}$, and denote its points by (z, w).

Let $\zeta = e^{2\pi i/6}$ and let *T* be the elliptic curve

 $\mathbb{T} = \mathbb{C}/\{\mathbb{Z} \cdot \mathbf{1} + \mathbb{Z}\zeta\}.$

Consider the complex surface $\mathbb{T} \times \mathbb{T}$, and denote its points by (z, w). Define four elliptic curves on $\mathbb{T} \times \mathbb{T}$

Let $\zeta = e^{2\pi i/6}$ and let *T* be the elliptic curve

 $\mathbb{T} = \mathbb{C}/\{\mathbb{Z} \cdot \mathbf{1} + \mathbb{Z}\zeta\}.$

Consider the complex surface $\mathbb{T} \times \mathbb{T}$, and denote its points by (z, w). Define four elliptic curves on $\mathbb{T} \times \mathbb{T}$

$$T_0: w = 0, T_\infty: z = 0, T_1: w = z, T_\zeta: w = \zeta z$$

Let $\zeta = e^{2\pi i/6}$ and let *T* be the elliptic curve

 $\mathbb{T} = \mathbb{C}/\{\mathbb{Z} \cdot \mathbf{1} + \mathbb{Z}\zeta\}.$

Consider the complex surface $\mathbb{T} \times \mathbb{T}$, and denote its points by (z, w).

Define four elliptic curves on $\mathbb{T}\times\mathbb{T}$

$$T_0: w = 0,$$
 $T_\infty: z = 0,$
 $T_1: w = z,$ $T_\zeta: w = \zeta z.$

These tori intersect at (0,0) and do not intersect each other anywhere else.

Let U_n be the lattice in $\mathbb{T} \times \mathbb{T}$ consisting of n^4 points

$$U_n = \{(z, w) | (nz, nw) = (0, 0)\}.$$

Let U_n be the lattice in $\mathbb{T} \times \mathbb{T}$ consisting of n^4 points

$$U_n = \{(z, w) | (nz, nw) = (0, 0)\}.$$

For each point of U_n there are four curves passing through it, parallel to the curves T_0 , T_{∞} , T_1 and T_{ζ} .

Let U_n be the lattice in $\mathbb{T} \times \mathbb{T}$ consisting of n^4 points

$$U_n = \{(z, w) | (nz, nw) = (0, 0)\}.$$

For each point of U_n there are four curves passing through it, parallel to the curves T_0 , T_{∞} , T_1 and T_{ζ} .

Denote the union of n^2 curves parallel to T_i as D_i for $i \in \{0, \infty, 1, \zeta\}$.

Let U_n be the lattice in $\mathbb{T} \times \mathbb{T}$ consisting of n^4 points

$$U_n = \{(z, w) | (nz, nw) = (0, 0)\}.$$

For each point of U_n there are four curves passing through it, parallel to the curves T_0 , T_{∞} , T_1 and T_{ζ} .

Denote the union of n^2 curves parallel to T_i as D_i for $i \in \{0, \infty, 1, \zeta\}$. We have $4n^2$ elliptic curves forming four parallel families. Except for the points in U_n there are no other intersection points.

Let U_n be the lattice in $\mathbb{T} \times \mathbb{T}$ consisting of n^4 points

$$U_n = \{(z, w) | (nz, nw) = (0, 0)\}.$$

For each point of U_n there are four curves passing through it, parallel to the curves T_0 , T_{∞} , T_1 and T_{ζ} .

Denote the union of n^2 curves parallel to T_i as D_i for $i \in \{0, \infty, 1, \zeta\}$. We have $4n^2$ elliptic curves forming four parallel families. Except for the points in U_n there are no other intersection points.

Blow up n^4 points of U_n to get a smooth 4-manifold $Y_n = \mathbb{T}^4 \# n^4 \mathbb{CP}^2$ with Euler characteristic n^4 .

Let U_n be the lattice in $\mathbb{T} \times \mathbb{T}$ consisting of n^4 points

$$U_n = \{(z, w) | (nz, nw) = (0, 0)\}.$$

For each point of U_n there are four curves passing through it, parallel to the curves T_0 , T_{∞} , T_1 and T_{ζ} .

Denote the union of n^2 curves parallel to T_i as D_i for $i \in \{0, \infty, 1, \zeta\}$. We have $4n^2$ elliptic curves forming four parallel families. Except for the points in U_n there are no other intersection points.

Blow up n^4 points of U_n to get a smooth 4-manifold $Y_n = \mathbb{T}^4 \# n^4 \overline{\mathbb{CP}^2}$ with Euler characteristic n^4 .

There are n^4 exceptional curves L_j ($j \in U_n$) resulting from blow-ups. Denote by \tilde{D}_i the proper transforms of D_i after the blow-up

Hirzebuch constructs a complex algebraic surface X_n as n^3 -fold cover of Y_n branched over \tilde{D}_i for each $i \in \{0, \infty, 1, \zeta\}$.

Hirzebuch constructs a complex algebraic surface X_n as n^3 -fold cover of Y_n branched over \tilde{D}_i for each $i \in \{0, \infty, 1, \zeta\}$.

Denote this covering map as $\pi : X_n \to Y_n$.

Hirzebuch constructs a complex algebraic surface X_n as n^3 -fold cover of Y_n branched over \tilde{D}_i for each $i \in \{0, \infty, 1, \zeta\}$.

Denote this covering map as $\pi : X_n \to Y_n$.

 $c_2(X_n) = n^3 \cdot e(Y_n \setminus \cup \tilde{D}_i) + n^2 \cdot e(\cup \tilde{D}_i) = n^3 \cdot n^4 = n^7.$

Hirzebuch constructs a complex algebraic surface X_n as n^3 -fold cover of Y_n branched over \tilde{D}_i for each $i \in \{0, \infty, 1, \zeta\}$.

Denote this covering map as $\pi : X_n \to Y_n$.

 $c_2(X_n) = n^3 \cdot e(Y_n \setminus \cup \tilde{D}_i) + n^2 \cdot e(\cup \tilde{D}_i) = n^3 \cdot n^4 = n^7.$

 X_n contains an embedded symplectic surface F_n of genus $g(F_n) = 3n^5 - 3n^4 + n^3 + 1$ and self-intersection $2n^3$.
Sketch of Construction of X_n Continued

Hirzebuch constructs a complex algebraic surface X_n as n^3 -fold cover of Y_n branched over \tilde{D}_i for each $i \in \{0, \infty, 1, \zeta\}$.

Denote this covering map as $\pi : X_n \to Y_n$.

 $c_2(X_n) = n^3 \cdot e(Y_n \setminus \cup \tilde{D}_i) + n^2 \cdot e(\cup \tilde{D}_i) = n^3 \cdot n^4 = n^7.$

 X_n contains an embedded symplectic surface F_n of genus $g(F_n) = 3n^5 - 3n^4 + n^3 + 1$ and self-intersection $2n^3$. Also, the inclusion induced homomorphism $\pi_1(F_n) \longrightarrow \pi_1(X_n)$ is surjective.

If $n \equiv 4 \pmod{8}$, then X_n is spin.

If $n \equiv 4 \pmod{8}$, then X_n is spin.

It was shown by Hirzebruch that the canonical class \overline{K} of X_n is given by

$$\overline{K} = \sum_{j \in U_n} [\overline{L_j}] + (n-1) \sum_{i \in I} [\overline{D_i}]$$

where $[\overline{L_j}] = \pi^*[L_j]$ and $[\overline{D_i}] = \frac{1}{n}\pi^*[\tilde{D}_i]$

If $n \equiv 4 \pmod{8}$, then X_n is spin.

It was shown by Hirzebruch that the canonical class \overline{K} of X_n is given by

$$\overline{K} = \sum_{j \in U_n} [\overline{L_j}] + (n-1) \sum_{i \in I} [\overline{D_i}]$$

where $[\overline{L_j}] = \pi^*[L_j]$ and $[\overline{D_i}] = \frac{1}{n}\pi^*[\tilde{D}_i]$ Assume n = 4m with $m \ge 1$ odd integer.

If $n \equiv 4 \pmod{8}$, then X_n is spin.

It was shown by Hirzebruch that the canonical class \overline{K} of X_n is given by

$$\overline{K} = \sum_{j \in U_n} [\overline{L_j}] + (n-1) \sum_{i \in I} [\overline{D_i}]$$

where $[\overline{L_j}] = \pi^*[L_j]$ and $[\overline{D_i}] = \frac{1}{n}\pi^*[\tilde{D}_i]$ Assume n = 4m with $m \ge 1$ odd integer.

 $\overline{K} = \sum_{j \in U_n} [\overline{L_j}] + (3m - 1) \sum_{i \in I} [\overline{D_i}] + m \sum_{i \in I} [\overline{D_i}]$

If $n \equiv 4 \pmod{8}$, then X_n is spin.

It was shown by Hirzebruch that the canonical class \overline{K} of X_n is given by

$$\overline{K} = \sum_{j \in U_n} [\overline{L_j}] + (n-1) \sum_{i \in I} [\overline{D_i}]$$

where $[\overline{L_j}] = \pi^*[L_j]$ and $[\overline{D_i}] = \frac{1}{n}\pi^*[\tilde{D}_i]$ Assume n = 4m with $m \ge 1$ odd integer.

 $\begin{aligned} \overline{K} &= \sum_{j \in U_n} \overline{[L_j]} + (3m-1) \sum_{i \in I} \overline{[D_i]} + m \sum_{i \in I} \overline{[D_i]} \\ &= (3m-1) \sum_{i \in I} \overline{[D_i]} + \frac{1}{4} (4 \sum_{j \in U_n} \overline{[L_j]} + n \sum_{i \in I} \overline{[D_i]}) \end{aligned}$

If $n \equiv 4 \pmod{8}$, then X_n is spin.

It was shown by Hirzebruch that the canonical class \overline{K} of X_n is given by

$$\overline{K} = \sum_{j \in U_n} [\overline{L_j}] + (n-1) \sum_{i \in I} [\overline{D_i}]$$

where $[\overline{L_j}] = \pi^*[L_j]$ and $[\overline{D_i}] = \frac{1}{n}\pi^*[\tilde{D}_i]$ Assume n = 4m with $m \ge 1$ odd integer.

$$\begin{split} \overline{K} &= \sum_{j \in U_n} [\overline{L_j}] + (3m-1) \sum_{i \in I} [\overline{D_i}] + m \sum_{i \in I} [\overline{D_i}] \\ &= (3m-1) \sum_{i \in I} [\overline{D_i}] + \frac{1}{4} (4 \sum_{j \in U_n} [\overline{L_j}] + n \sum_{i \in I} [\overline{D_i}]) \\ &= (3m-1) \sum_{i \in I} [\overline{D_i}] + \frac{1}{4} \pi^* (4 \sum_{j \in U_n} [L_j] + \sum_{i \in I} [\tilde{D_i}]) \end{split}$$

If $n \equiv 4 \pmod{8}$, then X_n is spin.

It was shown by Hirzebruch that the canonical class \overline{K} of X_n is given by

$$\overline{K} = \sum_{j \in U_n} [\overline{L_j}] + (n-1) \sum_{i \in I} [\overline{D_i}]$$

where $[\overline{L_j}] = \pi^*[L_j]$ and $[\overline{D_i}] = \frac{1}{n}\pi^*[\tilde{D}_i]$ Assume n = 4m with $m \ge 1$ odd integer.

$$\begin{split} \overline{K} &= \sum_{j \in U_n} [\overline{L_j}] + (3m-1) \sum_{i \in I} [\overline{D_i}] + m \sum_{i \in I} [\overline{D_i}] \\ &= (3m-1) \sum_{i \in I} [\overline{D_i}] + \frac{1}{4} (4 \sum_{j \in U_n} [\overline{L_j}] + n \sum_{i \in I} [\overline{D_i}]) \\ &= (3m-1) \sum_{i \in I} [\overline{D_i}] + \frac{1}{4} \pi^* (4 \sum_{j \in U_n} [L_j] + \sum_{i \in I} [\tilde{D_i}]) \\ &= (3m-1) \sum_{i \in I} [\overline{D_i}] + \frac{1}{4} \pi^* (n^2 \sum_{i \in I} [\tilde{T}'_i]). \end{split}$$

If $n \equiv 4 \pmod{8}$, then X_n is spin.

It was shown by Hirzebruch that the canonical class \overline{K} of X_n is given by

$$\overline{K} = \sum_{j \in U_n} [\overline{L_j}] + (n-1) \sum_{i \in I} [\overline{D_i}]$$

where $[\overline{L_j}] = \pi^*[L_j]$ and $[\overline{D_i}] = \frac{1}{n}\pi^*[\tilde{D}_i]$ Assume n = 4m with $m \ge 1$ odd integer.

$$\begin{split} \overline{K} &= \sum_{j \in U_n} [\overline{L_j}] + (3m-1) \sum_{i \in I} [\overline{D_i}] + m \sum_{i \in I} [\overline{D_i}] \\ &= (3m-1) \sum_{i \in I} [\overline{D_i}] + \frac{1}{4} (4 \sum_{j \in U_n} [\overline{L_j}] + n \sum_{i \in I} [\overline{D_i}]) \\ &= (3m-1) \sum_{i \in I} [\overline{D_i}] + \frac{1}{4} \pi^* (4 \sum_{j \in U_n} [L_j] + \sum_{i \in I} [\tilde{D_i}]) \\ &= (3m-1) \sum_{i \in I} [\overline{D_i}] + \frac{1}{4} \pi^* (n^2 \sum_{i \in I} [\tilde{T_i}]). \end{split}$$

 $w_2(X_n) \equiv \overline{K} \equiv 0 (mod \ 2)$

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 .

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 . Let $E(2n^3)_K$ denote the homotopy elliptic surface of Fintushel and Stern.

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 . Let $E(2n^3)_K$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of $E(2n^3)$ gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection $-2n^3$ in $E(2n^3)_K$.

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 . Let $E(2n^3)_K$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of $E(2n^3)$ gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection $-2n^3$ in $E(2n^3)_K$. $M_n = X_n \#_{\Sigma = S_g(K)} E(2n^3)_K$.

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 . Let $E(2n^3)_K$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of $E(2n^3)$ gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection $-2n^3$ in $E(2n^3)_K$. $M_n = X_n \#_{\Sigma = S_g(K)} E(2n^3)_K$. M_n is a spin symplectic 4-manifold with

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 . Let $E(2n^3)_K$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of $E(2n^3)$ gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection $-2n^3$ in $E(2n^3)_K$. $M_n = X_n \#_{\Sigma = S_g(K)} E(2n^3)_K$. M_n is a spin symplectic 4-manifold with

 $e(M_n) = n^7 + 12n^5 - 12n^4 + 28n^3$ $c_1^2(M_n) = 3n^7 + 20n^5 - 24n^4 + 8n^3$ $\sigma(M_n) = (n^7 - 4n^5)/3 - 16n^3$ $\chi_h(M_n) = (n^7 + 8n^5)/3 - 3n^4 + 3n^3$

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 . Let $E(2n^3)_K$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of $E(2n^3)$ gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection $-2n^3$ in $E(2n^3)_K$. $M_n = X_n \#_{\Sigma = S_g(K)} E(2n^3)_K$. M_n is a spin symplectic 4-manifold with

 $e(M_n) = n^7 + 12n^5 - 12n^4 + 28n^3$ $c_1^2(M_n) = 3n^7 + 20n^5 - 24n^4 + 8n^3$ $\sigma(M_n) = (n^7 - 4n^5)/3 - 16n^3$ $\chi_h(M_n) = (n^7 + 8n^5)/3 - 3n^4 + 3n^3$

$$\lim_{n\to\infty}\frac{c_1^{\ 2}(M_n)}{\chi_h(M_n)}=9.$$

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 . Let $E(2n^3)_K$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of $E(2n^3)$ gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection $-2n^3$ in $E(2n^3)_K$. $M_n = X_n \#_{\Sigma = S_g(K)} E(2n^3)_K$. M_n is a spin symplectic 4-manifold with

 $e(M_n) = n^7 + 12n^5 - 12n^4 + 28n^3$ $c_1^2(M_n) = 3n^7 + 20n^5 - 24n^4 + 8n^3$ $\sigma(M_n) = (n^7 - 4n^5)/3 - 16n^3$ $\chi_h(M_n) = (n^7 + 8n^5)/3 - 3n^4 + 3n^3$

$$\lim_{n\to\infty}\frac{c_1^{2}(M_n)}{\chi_h(M_n)}=9.$$

8.92 $\chi_h < c_1^2(M_n) < 9\chi_h$ for every $n \ge 12$.

K be a fibered knot of genus $g(K) = 3n^5 - 3n^4 + n^3 + 1$ in \mathbb{S}^3 . Let $E(2n^3)_K$ denote the homotopy elliptic surface of Fintushel and Stern.

A sphere section of $E(2n^3)$ gives to a symplectic submanifold $S_{g(K)}$ of genus g(K) and self-intersection $-2n^3$ in $E(2n^3)_K$. $M_n = X_n \#_{\Sigma = S_g(K)} E(2n^3)_K$. M_n is a spin symplectic 4-manifold with

 $e(M_n) = n^7 + 12n^5 - 12n^4 + 28n^3$ $c_1^2(M_n) = 3n^7 + 20n^5 - 24n^4 + 8n^3$ $\sigma(M_n) = (n^7 - 4n^5)/3 - 16n^3$ $\chi_h(M_n) = (n^7 + 8n^5)/3 - 3n^4 + 3n^3$

$$\lim_{n\to\infty}\frac{c_1^2(M_n)}{\chi_h(M_n)}=9.$$

8.92 $\chi_h < c_1^2(M_n) < 9\chi_h$ for every $n \ge 12$. M_n is simply connected and irreducible and has ∞^2 -property for every $n \ge 2$.

Theorem (R. Gompf)

Let G be a finitely presented group. There exisit a spin symplectic 4-manifold S^G with $\pi_1 = G$, $c_1^2(S^G) = 0$, and $\chi_h(S^G) > 0$. Moreover, S^G contains a symplectic torus T of self-intersection 0 such that the inclusion induced homomorphism $\pi_1(T) \longrightarrow \pi_1(S^G)$ is trivial.

Theorem (R. Gompf)

Let G be a finitely presented group. There exisit a spin symplectic 4-manifold S^G with $\pi_1 = G$, $c_1^2(S^G) = 0$, and $\chi_h(S^G) > 0$. Moreover, S^G contains a symplectic torus T of self-intersection 0 such that the inclusion induced homomorphism $\pi_1(T) \longrightarrow \pi_1(S^G)$ is trivial.

 S^G is the symplectic sum of $\Sigma_g \times T$ and *I* copies of *K*3 surface along self-intersection 0 tori.

Theorem (R. Gompf)

Let G be a finitely presented group. There exisit a spin symplectic 4-manifold S^G with $\pi_1 = G$, $c_1^2(S^G) = 0$, and $\chi_h(S^G) > 0$. Moreover, S^G contains a symplectic torus T of self-intersection 0 such that the inclusion induced homomorphism $\pi_1(T) \longrightarrow \pi_1(S^G)$ is trivial.

 S^G is the symplectic sum of $\Sigma_g \times T$ and *I* copies of *K*3 surface along self-intersection 0 tori.

 $egin{aligned} e(S^G) &= 24I \ \sigma(S^G) &= -16I \ \chi_h(S^G) &= 2I \end{aligned}$

Theorem (R. Gompf)

Let G be a finitely presented group. There exisit a spin symplectic 4-manifold S^G with $\pi_1 = G$, $c_1^2(S^G) = 0$, and $\chi_h(S^G) > 0$. Moreover, S^G contains a symplectic torus T of self-intersection 0 such that the inclusion induced homomorphism $\pi_1(T) \longrightarrow \pi_1(S^G)$ is trivial.

 S^G is the symplectic sum of $\Sigma_g \times T$ and *I* copies of *K*3 surface along self-intersection 0 tori.

 $egin{aligned} e(S^G) &= 24I \ \sigma(S^G) &= -16I \ \chi_h(S^G) &= 2I \end{aligned}$

Our M_k^G is the symplectic sum of M_{8n-4} and S^G along the tori.

THANK YOU!