MULTIVARIABLE CALCULUS

December 3, 2009 INSTRUCTOR: Anar Akhmedov

Name:	
Signature:	

ID #: _____

Show all of your work. No credit will be given for an answer without some work or explanation.

Problem	Points
1	
2	
3	
4	
5	
6	
Total (100 points)	

1. Convert the point $P = (1, 1, -\sqrt{2})$ from Cartesian to spherical coordinates. Plot the point P using the spherical coordinate system. (15 points)

Solution: We have x = 1, y = 1, and $z = -\sqrt{2}$. $\rho^2 = x^2 + y^2 + z^2 = 4$, so $\rho = 2$. Next, we find ϕ using $z = \rho \cos(\phi)$, which gives $\cos(\phi) = -\frac{\sqrt{2}}{2}$. Since $0 \le \phi \le \pi$, we have $\phi = \frac{3\pi}{4}$. Finally, use the equations $x = r \cos(\theta)$ and $y = r \sin(\theta)$ to find θ . We have $\cos(\theta) = \frac{1}{\sqrt{2}}$ and $\sin(\theta) = \frac{1}{\sqrt{2}}$, we obtain $\theta = \frac{\pi}{4}$.

Thus, the spherical coordinates of the point P is given by $(2, \frac{\pi}{4}, \frac{3\pi}{4})$.

2. Find the area of the region R bounded by the hyperbolas xy = 1 and xy = 2, and the curves $xy^2 = 3$ and $xy^2 = 4$. (17 points)

Solution:

Use the change of variables u = xy and $v = xy^2$. Solving for x and y, we obtain the inverse transformation given by $x = \frac{u^2}{v}$ and $y = \frac{v}{u}$. First, note that the image of the region R under the transformation u = xy, $v = xy^2$ is a square with vertices at (1,3), (2,3), (2,4), and (1,4). Next, we compute the Jacobian $\frac{\partial(x,y)}{\partial(u,v)} = 1/v$. Using the change of variable formula for double integrals, we have $Area = \int \int_D dA = \int_1^2 \int_3^4 \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du \, dv = \int_1^2 \int_3^4 \frac{1}{v} dv \, du = \ln(4) - \ln(3)$.

3. Show that the line integral $\int_C 2x \sin(y) dx + (x^2 \cos(y) - 3y^2) dy$ is independent of path and evaluate the given integral for any path from $(2, \pi/6)$ to (0, -2). (16 points)

Solution: First, we will show the vector field $F(x, y) = \langle 2x \sin(y), x^2 \cos(y) - 3y^2 \rangle$ is a gradient field of some function f(x, y). Using the equations $f_x = 2x \sin(y)$ and $f_y = x^2 \cos(y) - 3y^2$, we obtain $f(x, y) = x^2 \sin(y) - y^3 + C$. Next, using the Fundamental Theorem for Line Integrals, we show that the given line integral is independent of path.

Let C be any path from $(2, \pi/6)$ to (0, -2). $\int_C 2x \sin(y) dx + (x^2 \cos(y) - 3y^2) dy = f(0, -2) - f(2, \pi/6) = 6 + \frac{\pi^3}{216}$.

4. Find the volume of the solid that lies inside $x^2 + y^2 + z^2 = 2z$ and $z^2 = x^2 + y^2$. (17 points) Solution:

We will use the spherical coordinates to compute the volume. The equation of the sphere becomes $\rho^2 = 2\rho \cos(\phi)$, so $\rho = 2\cos(\phi)$. To convert the equation of the cone, add z^2 to both sides of the equation $z^2 = x^2 + y^2$. We get $2z^2 = x^2 + y^2 + z^2 = \rho^2$. Since $z = \rho \cos(\phi)$, we get $2\rho^2 \cos^2(\phi) = \rho^2$. Solving for ϕ , we obtain $\phi = \pi/4$ or $\phi = 3\pi/4$ for the equation of the cone.

To find the volume inside, we evaluate $V = \int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos(\phi)} \rho^2 \sin(\phi) \, d\rho \, d\theta \, d\phi = \pi$.

- 5. Compute the integral $\oint_C \frac{-y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$
 - a) Over any closed curve C not enclosing the origin. (10 points)
 - b) Over the circle of radius a centered at (0,0). (9 points)

Solution:

a) By Green's theorem, we have $\oint_C \frac{-y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy = \int \int_R \frac{\partial}{\partial x} (\frac{x}{x^2+y^2}) - \frac{\partial}{\partial y} (\frac{-y}{x^2+y^2}) dA = \int \int_D (\frac{y^2-x^2}{(x^2+y^2)^2} - \frac{y^2-x^2}{(x^2+y^2)^2}) dA = \int \int_D 0 dA = 0$

b) Notice that we can't apply Green's Theorem here, so we will compute the line integral directly. Let C_a denote the circle radius a centered at (0,0). We have $x = a\cos(t)$, $y = a\sin(t)$, $dx = -a\sin(t) dt$ and $dy = a\cos(t) dt$.

$$\int_{C_a} \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = \int_0^{2\pi} \frac{a^2 \sin^2(t) + a^2 \cos^2(t)}{a^2} dt = \int_0^{2\pi} 1 \, dt = 2\pi.$$

6. Find the area enclosed by the curve $\mathbf{r}(t) = \langle \cos^3(t), \sin^3(t) \rangle$, where t is in $[0, 2\pi]$, using Green's theorem. (16 points)

Solution: The area is given by

 $\begin{aligned} Area &= \frac{1}{2} \oint_C x dy - y dx = \frac{1}{2} \int_0^{2\pi} (x \frac{dy}{dt} - y \frac{dx}{dt}) dt = \frac{1}{2} \int_0^{2\pi} \cos^3(t) (3 \sin^2(t) \cos(t)) - \sin^3(t) (-3 \cos^2(t) \sin(t)) dt \\ &= \frac{3}{2} \int_0^{2\pi} \cos^2(t) \sin^2(t) dt = \frac{3}{8} \int_0^{2\pi} \sin^2(2t) dt = 3\pi/8. \end{aligned}$