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Example of a 2D orientable surface R in 3D
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The Construction

◮ By its restriction to R , the 3D euclidean metric induces a
metric on R . But to make R into a Riemann surface we must
change the metric, that is, introduce a new coordinate system
on R .
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Technical Details

A Riemann surface is a second countable Hausdorff space with
a complex structure as described above:

A topological space is a set X together with a collection of
subsets {S} of X that satisfies:
(a) ∅ ∪ X ⊂ {S}.
(b) The intersection of a finite number of subsets of {S} lies in

{S}, as well as the union of finite or infinitely many subsets.

The elements of {S} are called open sets and {S} itself is called a
topology of X .

X is second countable if there exists a countable collection of
open subsets {U} ⊂ X such that any open subset of X is a finite
union of elements of some subfamily of {U}.

A Hausdorff space is a topological space in which distinct points
have disjoint neighborhoods.
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Summary

A Riemann surface is a 1-dim C-manifold R = {(uα, fα)}.
{Uα} are open sets that cover R ;
fα : Uα 7→ fα(Uα) ⊂ C, a homeomorphism,
fα ◦ fβ

−1 : fβ(Uα ∩ Uβ) → fα(Uα ∩ Uβ), conf map of overlaps.
(Gives a “rule” for measuring angles on R)

Riemann Surface Properties:

• necessarily connected,
• has a countable basis, {(Uα, fα)}
• Can be closed (no bdry), OR compact with bdry, OR

open (non compact).

Topologically determined by:

• Given O ∈ R , π1(R ;O), fund. group based at O.
•H1(R ,Z), integral homology basis.
• genus= #“handles”.
• boundary or “ideal boundary at ∞′′,

• punctures—removal of isolated points on R .
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Covering Surfaces; Universal Covering Surface
Let R be a Riemann surface and O ∈ R a fixed pt.
Set R̃ = {(z , γz) : z ∈ R γz ,a simple path from O to γz},

(z , γz) ≡ (z ′, αz) iff z = z ′ AND γz
−1(αz ) from O to O is

retractable to O (homotopic to id.).

R̃ is also a Riemann surface; π : R̃ → R is loc. injective anal. map.
Pick Õ ∈ R̃ over O. A s.c. nbhd N of O lifts to a s.c. Ñ of Õ.
Lifts γ̃′ ∼ γ̃′1 in R̃ iff γ ∼ γ′ in R (homotopies).
Fund. gp π1(R̃ ; Õ) is isomorphic to a subgp G of π1(R ;O).

Conversely, given a subgroup H of π1(R ;O), construct a R-cover
(R̃ ; Õ) s.t. fundamental gp. π1(R̃ ; Õ) ∼= H (isomorphic).

Set H =, so π1(R̃ ; Õ) =. Then R̃ is simply connected! It is the
Universal Covering Surface: it covers all other covering surfaces.

Every R.S. is conf. equivalent to exactly one of: S2,C,D.
(a)R̃ ≡ S

2 iff R ≡ S
2. (b) R̃ ≡ C iff R ≡ C, OR

R≡ C \ 2pts., OR R ≡ a torus.
(c) R̃ ≡ D ALL OTHER CASES.
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The Riemann Surface of an Elliptic Curve
Consider the equation w2 = (z2 − 1)(z2 − 4).

Slit the complex plane C by the two horizontal line segments,
A = [−2,−1],B = [1, 2]. Denote the top and bottom edge of each
of A,B by {+,−}, respectively. We are going to construct a
2-sheeted parking ramp.

Take two copies of the plane in 3D, one lying over the other; call
them A and B . Each sheet with include a point at ∞. A car
travelling in copy A meeting a − edge will cross it and enter copy
B. A car travelling in copy B, crossing a + edge will enter copy A.
The two copies A ∪ B , together with their copies of ∞ form a
surface without any boundary. A car can travel over the whole
thing forever without leaving.

Each pair of values (z ,w) uniquely determines a point of the
Riemann surface. The map (z ,w) → z is a two-to-one analytic
map of the Riemann surface onto C ∪∞. There are branch points
at the end points of the segments.
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