- 1. Let $X_1, X_2, ..., X_n$ be i.i.d. U(0, 1) random variables. Let $U = \min(X_1, X_2, ..., X_n)$ and $V = \max(X_1, X_2, ..., X_n)$.
 - (i) For each 0 < x < y < 1, find $\mathbb{P}(U > x, V < y)$. Note that $\mathbb{P}(U > x, V < y)$ should depend on x and y.
 - (ii) Find the joint p.d.f. of U and V.[Hint:

$$\mathbb{P}(U > x, V < y) = \int_x^1 \int_0^y f_{U,V}(u, v) dv du,$$

where $f_{U,V}$ is the joint p.d.f. of U and V.]

2. The life-time of a car is a random variable with p.d.f.

$$f(x) = \frac{1}{10}e^{-x/10}$$
, if $x > 0$.

The car will be replaced at the end of its life-time or 6 years, whichever comes earlier. Calculate the average time before the car is replaced.

- 3. There are five closed boxes on a table. Three of the boxes have nice prizes inside. The other two do not. You open boxes one at a time until you find a prize (and then you stop). Let X be the number of boxes you open, including the last one that contains a prize.
 - (i) Find the probability mass function of x.
 - (ii) Find $\mathbb{E}[X]$.
 - (iii) Find $\operatorname{Var}(X)$.
 - (iv) Suppose the prize inside each of the three good boxes is \$100, but each empty box you open costs you \$100. What is your expected gain or loss in this game?