Problem Set 1

Spectral clustering and community detection

1. Show that Lloyd’s k-mean algorithm converges in finitely many steps.

2. Let \(x_1, x_2, \ldots, x_n \) be points in \(\mathbb{R}^d \). Define an \(n \times n \) weight matrix \(W \) with

\[
W(i, j) = \exp \left(-\frac{\|x_i - x_j\|^2}{2} \right).
\]

Show that \(W \geq 0 \), that is, \(W \) is a positive semi-definite matrix.

3. Let \(G \) be a finite undirected, unweighted graph. Let \(\mathcal{L} = D^{-1/2}(D - A)D^{-1/2} \) be its normalized Laplacian, where \(A \) is the adjacency matrix of the graph. Suppose \(\lambda_n \) be its maximum eigenvalue.

(a) Show that

\[
\lambda_n = \max_{x \neq 0} \frac{\sum_{i \sim j} (x_i - x_j)^2}{\sum_i d_i x_i^2} \leq 2,
\]

where \(d_i \) is the degree of the vertex \(i \).

(b) Prove that \(\lambda_n = 2 \) if and only if \(G \) has a bipartite connected component.

(c) Give an example of a non-bipartite (and disconnected) graph with \(\lambda_n = 2 \).

4. (a) Let \(G \) be a connected, unweighted graph, \(\lambda_2 \) the second smallest eigenvalue of the normalized Laplacian \(\mathcal{L} \) and \(\text{diam}(G) \) the diameter of \(G \). Then

\[
\lambda_2 \geq \frac{1}{\text{diam}(G) \text{vol}(G)},
\]

where \(\text{vol}(G) = \sum_i d(i) \).

Hint: Use the Courant-Fischer characterization for \(\lambda_2 \):

\[
\lambda_2 = \inf_{x \neq 0: \sum_i d_i x_i = 0} \frac{\sum_{i \sim j} (x_i - x_j)^2}{\sum_i d_i x_i^2}.
\]

(b) Consider the dumbbell graph of \(2n \). It is defined as the disjoint union of two complete graphs \(K_n \) connected by a single edge. Use part (a) to show that for this graph,

\[
\lambda_2 \geq cn^{-2},
\]

for some constant \(c > 0 \) independent of \(n \).

5. Let \(G \) be an undirected \(d \)-regular graph. The Cheeger’s inequality (hard direction) can be generalized as follows. Let \(z \) be any vector orthogonal to \(1 \). Let \(S \) be subset obtained by performing the sweep cut on \(z \). Then

\[
\phi(S) \leq \sqrt{2R(z)},
\]

where

\[
R(z) = \frac{\sum_{i \sim j} (z_i - z_j)^2}{d \sum_i z_i^2}.
\]

The following modifications of the proof are needed to obtain \(y \geq 0 \) such that \(\text{supp}(y) \leq n/2 \) and \(R(y) \leq R(z) \), on which we apply the key lemma (randomized rounding) as before.

(a) Show that \(R(z - c1) \leq R(z) \).
(b) Define $x = z - m$ where m is the median of the values of z. By definition, x has at most $n/2$ positive values and at most $n/2$ negative values.

(c) Set $x^+ = \max(x, 0)$ and $x^- = \max(-x, 0)$. Note that $x = x^+ - x^-$. Prove that

$$\min(R(x^+), R(x^-)) \leq R(x).$$

If $R(x^+) \leq R(x)$ take $y = x^+$. Otherwise, we must have $R(x^-) \leq R(x)$ and we take $y = x^-$.