Spectral Clustering and Community Detection

Arnab Sen

June 2023
Part I.

- k-mean clustering
- Spectral clustering
- Worst case analysis ($k = 2$): Cheeger’s inequality

Part II.

- Random case analysis: Stochastic Block Model ($k = 2$)
- Dense case: analysis via spectral perturbation
- Sparse case: phase transition, spectral redemption.
Part I
Data: \(x_1, x_2, \ldots, x_n \) are points in \(\mathbb{R}^d \).

Goal: Partition the data points into \(k \) disjoint groups \(S = \{ S_1, S_2, \ldots, S_k \} \) with centers \(\mu = (\mu_1, \mu_2, \ldots, \mu_k) \) such that the following energy is minimized

\[
H(\mu, S) = \sum_{j=1}^{k} \sum_{i \in S_j} \| x_i - \mu_j \|_2^2.
\]

(1)

Here \(k \) = the number of clusters, which is assumed to be known. The above minimization is done with respect to all partitions \(S \) of \([n]\) and all centers \(\mu_1, \ldots, \mu_k \in \mathbb{R}^d \).
Minimization of k-mean energy

- The minimization of the k-mean-energy is NP-hard.

- Given the partition S, the optimal centers are given by the respective means of each partition blocks

$$
\mu_j = \frac{1}{|S_j|} \sum_{i \in S_j} x_i.
$$

- Given the centers $(\mu_j)_j$, the optimal partition is given by Voronoi partition of \mathbb{R}^d, that is,

$$
i \in S_j \iff \| x_i - \mu_j \|_2 \leq \| x_i - \mu_\ell \|_2 \text{ for all } \ell = 1, \ldots, k.
$$
Lloyd’s algorithm

Initialize centers $\mu_1^0, \mu_2^0, \ldots, \mu_k^0$.

It is an iterative algorithm that alternates between

Step I. (assignment step) Given the centers μ_1^t, \ldots, μ_k^t and the cluster assignments $(a_1^t, \ldots, a_n^t) \in \{1, 2, \ldots, k\}^n$, update the partition from S^t to S^{t+1} as follows.

For $i = 1, 2, \ldots, n$

$$\text{if } \arg\min_{1 \leq l \leq k} \|x_i - \mu_l^t\|_2 < \|x_i - \mu_{a_i^t}^t\|_2,$$

then assign x_i to the new cluster $a_i^{t+1} := \arg\min_{1 \leq l \leq k} \|x_i - \mu_l^t\|_2$. Otherwise (in case of equality), keep the previous assignment $a_i^{t+1} = a_i^t$.

Step II. (refitting step) Update the centers.

$$\mu_j^{t+1} = \frac{1}{|S_j^{t+1}|} \sum_{i \in S_j^{t+1}} x_i$$

The algorithm terminates during step I if we have $S^{t+1} = S^t$ for all j.
Convergence of Lloyd’s algorithm

Recall

\[H(\mu, S) = \sum_{j=1}^{k} \sum_{i \in S_j} \|x_i - \mu_j\|^2. \]

Lemma

The Lloyd’s algorithm decreases the energy in each step, i.e.,

- **Step I:**

 \[H(\mu, S^{t+1}) \leq H(\mu, S^t) \text{ for any } \mu. \]

 Furthermore, the equality holds if and only if \(S^{t+1} = S^t \).

- **Step II:**

 \[H(\mu^{t+1}, S) \leq H(\mu^t, S) \text{ for any } S. \]

Hence, the algorithm converges in a finite number of iterations.

- Lloyd’s algorithm may get stuck in local optima and is not guaranteed to converge to the global optima.
Deficiencies of Lloyd’s algorithm

- The final partition of Lloyd’s algorithm heavily depends on the initial choice of the centers.

- Lloyd’s algorithm always yields partition with convex regions. Hence, it often struggles with non-convex clusters.
Figure: The k-mean clustering is sensitive to initial choice of centers.
k-mean clusters for double-moon shaped data
Sometimes the data points do not live naturally in a metric space, but it comes with a graphical (similarity) structure. For example, Facebook network.

Given the data $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, we can naturally represent the data using a graph (undirected, possibly weighted) - examples in the next slide - such that "close" points are connected by an edge.

Partition the graph into disjoint components such that

- a lot of connections (large weights) within a components
- very few connections (small weights) across different components.
How to construct such graphs?

Construct a **weighted adjacency** matrix $W \in \mathbb{R}^{n \times n}$, which is symmetric, where

$$0 \leq W(i, j) = \text{encodes the how similar or close are the points } x_i \text{ and } x_j.$$

$W(i, j) > 0$ iff $i \sim j$.

- **ε-neighborhood graph**: Connect all points whose pairwise distances are smaller than ε.

Take W to be the adjacency matrix of the graph, i.e., $W(i, j) = 1$ if $x_i \sim x_j$ and $W(i, j) = 0$ otherwise.

- **k-nearest neighbor graph**: Connect vertex x_i with vertex x_j if x_i is among the k-nearest neighbors of x_j and vice-versa.

- **Gaussian weights**: Complete graph with weights

$$W(i, j) = \exp \left(-\frac{\|x_i - x_j\|^2}{2\sigma^2} \right).$$
Graph Laplacian

Let $G = (V, E)$ be a graph with a weighted adjacency matrix W. Let $D = \text{diag}(d_1, d_2, \ldots, d_n)$ be the diagonal matrix of (weighted) vertex degrees,

$$d_i = \sum_{j: j \sim i} w_{ij}.$$

The Laplacian matrix of G is defined as

$$L = D - W.$$

There are two versions of the normalized graph Laplacians

$$\mathcal{L} = D^{-1/2} L D^{-1/2} = I - D^{-1/2} W D^{-1/2},$$

$$Q = D^{-1} L = I - D^{-1} W.$$
Spectral properties of normalized Laplacian \mathcal{L}

Lemma

- \mathcal{L} is symmetric and positive semi-definite. The eigenvalues are non-negative reals

 \[0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq 2. \]

- $\lambda_k = 0$ iff G has at least k connected components. ($\Rightarrow \lambda_2 > 0$ iff G is connected).

- $\lambda_n = 2$ iff G has a bipartite connected component.
Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n.$$

Then

$$\lambda_1 = \min_{x \in \mathbb{R}^n} \frac{x^T M x}{x^T x},$$

$$\lambda_n = \max_{x \in \mathbb{R}^n} \frac{x^T M x}{x^T x}.$$

More generally,

$$\lambda_k = \min_{U: k \text{-dim subspace of } \mathbb{R}^n} \max_{x \in U} \frac{x^T M x}{x^T x}.$$

Moreover, the optimal U^* is spanned by the first k eigenvectors of M.
For simplicity, assume that the graph is unweighted. Then

\[x^T L x = \sum_{i \sim j} (x_i - x_j)^2 \geq 0. \]

\[\lambda_k(\mathcal{L}) = \min_{\tilde{\mathcal{U}}: k-\text{dim subspace}} \max_{x \in \tilde{\mathcal{U}}} \frac{x^T L x}{x^T x} \]

\[= \min_{\mathcal{U}: k-\text{dim subspace}} \max_{x \in \mathcal{U}} \frac{(D^{1/2}x)^T \mathcal{L}(D^{1/2}x)}{(D^{1/2}x)^T (D^{1/2}x)} \]

\[= \min_{\mathcal{U}: k-\text{dim subspace}} \max_{x \in \mathcal{U}} \frac{x^T L x}{x^T D x} \]

\[= \min_{\mathcal{U}: k-\text{dim subspace}} \max_{x \in \mathcal{U}} \frac{\sum_{i \sim j} (x_i - x_j)^2}{\sum_i d_i x_i^2} \]

Optimal \(U^* = D^{-1/2} \tilde{U}^* = D^{-1/2} \cdot \text{span(the first } k \text{ eigenvectors of } \mathcal{L} \text{)}. \)
\(\lambda_k = 0 \iff G \text{ has at least } k \text{ connected components} \)

- Suppose \(\lambda_k = 0 \). There exists a \(k \)-dimensional subspace \(U^* \) such that for all \(x \in U^* \)

\[
\sum_{i \sim j} (x_i - x_j)^2 = 0.
\]

This implies that if \(x \in U^* \), then \(x \) must be constant on connected components of \(G \). Thus

\[
k = \dim(U^*) \leq \# \text{connected components}.
\]

- If \(G \) has \(k \) connected components \(S_1, S_2, \ldots, S_k \), then take

\[
U^* = \text{span}(\mathbb{1}_{S_1}, \ldots, \mathbb{1}_{S_k}).
\]
Suppose G has k connected components ($\Rightarrow \lambda_k = 0$). Fix an optimal $U^* \in \mathbb{R}^{n \times k}$ of dimension k.

(i) The rows of U^* are constant vectors in \mathbb{R}^k over each connected components.

(ii) At least k rows of U^* are different.

We can take

$$U^* = D^{-1/2} [f^{(1)} : f^{(2)} : \ldots : f^{(k)}]$$

where $f^{(1)}, f^{(2)}, \ldots, f^{(k)}$ are first k eigenvectors of \mathcal{L}. Then the map

$$F(i) = d_i^{-1/2} (f_i^{(1)}, f_i^{(2)}, \ldots, f_i^{(k)}): [n] \to \mathbb{R}^k.$$

has the above two properties.
\(\mathcal{L} \) = normalized laplacian of a (possibly weighted graph) \(G \), \(f^{(1)}, f^{(2)}, \ldots, f^{(k)} \) are first \(k \) eigenvectors.

Spectral embedding into \(\mathbb{R}^k \).

\[
V = \{1, 2, \ldots, n\} \rightarrow (F(1), F(2), \ldots, F(n)),
\]

where

\[
F(i) = d_i^{-1/2} (f_i^{(1)}, f_i^{(2)}, \ldots, f_i^{(k)}).
\]

Intuition: If \(G \) has \(k \) `approximately' connected components, \(F \) maps the vertices into \(k \) distinct closely packed group of points in \(\mathbb{R}^k \).

For a connected graph \(f^{(1)} = D^{1/2} 1 \). So, \(D^{-1/2} f^{(1)} = 1 \). So, we can ignore the first component of \(F \) and just define the spectral embedding as

\[
\tilde{F}(i) = d_i^{-1/2} (f_i^{(2)}, \ldots, f_i^{(k)}) \in \mathbb{R}^{k-1}.
\]
Spectral embedding on random graph

Let $G = (V, E)$ be a random graph such that $V = S_1 \cup S_2 \cup S_3 \cup S_4$.

Independently for each pair i, j

$$P((ij) \in E) = \begin{cases} 0.2 & \text{if } i, j \in S_k \\ 0.02 & \text{if } i \in S_k, j \in S_l \end{cases}$$

Figure: (left) adjacency matrix of G, (right) spectral embedding.

It would be now easy for the k-mean algorithm to identify these groups of points.
Spectral clustering algorithm

Ng-Jordan-Weiss '02, Shi-malik '00:

Step I. Construct a similarity graph G (unweighted or weighted). Compute its normalized Laplacian matrix $\mathcal{L} = I - D^{-1/2}W D^{-1/2}$.

Step II. Map the points to \mathbb{R}^k using the spectral embedding

$$F(i) = d_i^{-1/2}(f_i^{(1)}, f_i^{(2)}, \ldots, f_i^{(k)}).$$

Step 3. (rounding step) Apply k-means to $F(1), F(2), \ldots, F(n)$ into k clusters.
spectral clusters for double-moon data using Gaussian weights
Another example

Figure: (top) data, (bottom left) k-mean clustering, (bottom right) spectral clustering
Rigorous worst-case analysis?

For simplicity, we will consider $k = 2$. In this case, the spectral embedding says the second eigenvector $f^{(2)}$ contains good information about the optimal partition of G into two “clusters”. Why?
Graph conductance, optimal cut

\(G = (V, E, W) \) be a weighted graph.

For \(S \subset V \), the total weight of the edges cut by \(S \)

\[
\omega(S, S^c) = \sum_{i \in S, j \in S^c} W(u, v).
\]

Normalized cut of \(S \):

\[
\phi(S) = \frac{\omega(S, S^c)}{\min(\text{vol}(S), \text{vol}(S^c))},
\]

where \(\text{vol}(S) = \sum_{i \in S} d_i \).

Conductance of \(G \).

\[
\Phi_G = \min_{S: \text{vol}(S) \leq \text{vol}(V)/2} \phi(S) \in [0, 1].
\]

If \(S^* = \arg\min \phi(S) \), then \((S^*, (S^*)^c)\) gives us the optimal cut.
• Solving combinatorial optimization problem Φ_G is NP-hard (search over binary vectors).

• (Roughly) If we relax the search space from $\{0, 1\}^n$ to \mathbb{R}^n, we get $\lambda_2(\mathcal{L})$.

• $\lambda_2 = 0 \iff G$ is disconnected $\iff \Phi_G = 0$.

Theorem (Cheeger’s inequality) For any finite graph G, $\lambda_2 \leq \phi_G \leq \sqrt{2} \lambda_2$, where λ_2 is the second smallest eigenvalue of \mathcal{L}. The lower bound is easy. The upper bound is hard. The Cheeger’s inequality also holds for weighted graph.
- Solving combinatorial optimization problem Φ_G is NP-hard (search over binary vectors).

- (Roughly) If we relax the search space from $\{0, 1\}^n$ to \mathbb{R}^n, we get $\lambda_2(\mathcal{L})$.

- $\lambda_2 = 0 \iff G$ is disconnected $\iff \Phi_G = 0$.

Theorem (Cheeger’s inequality)

For any finite graph G,

$$\frac{\lambda_2}{2} \leq \Phi_G \leq \sqrt{2\lambda_2},$$

where λ_2 is the second smallest eigenvalue of \mathcal{L}.

- The lower bound is easy. The upper bound is hard.

- The Cheeger’s inequality also holds for weighted graph.
The proof of the upper bound $\Phi_G \leq \sqrt{2\lambda_2}$ is constructive.

The proof gives a good cut S^o, obtained from suitably rounding $f^{(2)}$, such that

$$\phi(S) \leq \sqrt{2\lambda_2} \leq 2\sqrt{\Phi_G}.$$
Relaxation step: proof of $\lambda_2/2 \leq \Phi_G$

For simplicity, we will take G to be an unweighted d-regular graph. In this case, $\mathcal{L} = I - \frac{1}{d} A$.

\[
\lambda_2 = \min_{x \perp 1, x \neq 0} \frac{x^T \mathcal{L} x}{dx^T x} = \min_{x \perp 1, x \neq 0} \frac{\sum_{i \sim j} (x_i - x_j)^2}{d \sum_i x_i^2}
\]

\[
= \min_{x \perp 1, x \neq 0} \frac{\sum_{i \sim j} (x_i - x_j)^2}{2n \sum_{i,j} (x_i - x_j)^2}
\]

\[
= \min_{x \text{ non-constant}} \frac{\sum_{i \sim j} (x_i - x_j)^2}{d \sum_{i,j} (x_i - x_j)^2}
\]
Suppose we perform the above minimization over binary vectors. Take \(x = 1_S \). Then the optimal value becomes

\[
\min_S \frac{\sum_{i \sim j}(1_S(i) - 1_S(j))^2}{\frac{d}{2n} \sum_{i,j}(1_S(i) - 1_S(j))^2} = \min_S \frac{\omega(S, S^c)}{\frac{d}{n} |S||S^c|} = \min_S \frac{\omega(S, S^c)}{\frac{\text{vol}(S)\text{vol}(S^c)}{\text{vol}(V)}} \leq 2\Phi_G.
\]
Cheeger’s inequality: hard direction

- Need to show $\Phi_G \leq \sqrt{2\lambda_2}$.

Fiedler’s sweep algorithm

(a) Compute the eigenvector $f^{(2)}$ of L corresponding to λ_2.

(b) Order the vertices so that

$$\frac{f_1^{(2)}}{\sqrt{d_1}} \leq \frac{f_2^{(2)}}{\sqrt{d_2}} \leq \ldots \leq \frac{f_n^{(2)}}{\sqrt{d_n}}.$$

(c) Choose “sweep” cut $(S^o, (S^o)^c) = (\{1, 2, \ldots, i\}, \{i + 1, \ldots, n\})$ with smallest conductance.

- Will show that $\phi(S^o) \leq \sqrt{2\lambda_2} \Rightarrow \Phi_G \leq \sqrt{2\lambda_2}$.

Proof of Cheeger’s inequality: hard direction

Assume that G is d-regular.

Let x be the second eigenvector of \mathcal{L}. Set $y = x^+$. WLOG, $\text{supp}(y) \leq n/2$.

Define the Rayleigh quotient of z as

$$R(z) = \frac{z^T \mathcal{L} z}{z^T z} = \frac{\sum_{i \sim j} (z_i - z_j)^2}{d \sum_i z_i}.$$

Claim. $R(y) \leq R(x) = \lambda_2$.

Proof. Take i such that $y_i = x_i > 0$. Then

$$(\mathcal{L}y)_i = y_i - \frac{1}{d} \sum_{j: j \sim i} y_j \leq x_i - \frac{1}{d} \sum_{j: j \sim i} x_j = (\mathcal{L}x)_i = \lambda_2 x_i = \lambda_2 y_i.$$

So,

$$y^T \mathcal{L} y = \sum_{i} y_i (\mathcal{L} y)_i \leq \sum_{i: y_i > 0} \lambda_2 y_i^2 = \lambda_2 \sum_{i} y_i^2.$$
Key Lemma

Lemma

Let $y \geq 0$. For $t \in (0, \max_i y_i]$, set

$$S_t = \{ i : y_i^2 \geq t \}.$$

There exists t such that

$$\phi(S_t) \leq \sqrt{2R(y)}.$$

Plugging in $y = x_+$, we obtain $S_t \subseteq \text{supp}(y) \leq n/2$ and

$$\phi(S_t) \leq \sqrt{2R(y)} \leq \sqrt{2R(x)} = \sqrt{2\lambda_2},$$

which shows that

$$\Phi_G \leq \sqrt{2\lambda_2}.$$

Moreover, every such S_t is examined by Fiedler’s algorithm.
Proof of the key lemma

Proof in one line - "just pick a random threshold"!

By appropriate scaling, assume that $0 \leq y_i \leq 1$ for all i. Let $t \sim U(0, 1)$.

Recall $S_t = \{ i : y_i^2 \geq t \}$.

$$
\mathbb{E}[\omega(S_t)] = \sum_{i \sim j} \mathbb{P}(\text{the edge } (ij) \text{ is cut by } S_t)

= \sum_{i \sim j} \mathbb{P}(y_i^2 < t \leq y_j^2 \text{ or } y_j^2 < t \leq y_i^2)

= \sum_{i \sim j} |y_i^2 - y_j^2| = \sum_{i \sim j} |y_i - y_j||y_i + y_j|

\leq \sqrt{\sum_{i \sim j} (y_i - y_j)^2} \sqrt{\sum_{i \sim j} (y_i + y_j)^2}

\leq \sqrt{\sum_{i \sim j} (y_i - y_j)^2} \sqrt{2d \sum_i y_i^2}

= \sqrt{2R(y)} \cdot d \sum_i y_i^2.

[Cauchy Schwarz]

\[(a + b)^2 \leq 2(a^2 + b^2).\]
On the other hand,
\[\mathbb{E} \text{vol}(S_t) = d \mathbb{E} |S_t| = d \sum_i \mathbb{P}(y_i \geq t) = d \sum_i y_i^2. \]

Therefore,
\[\frac{\mathbb{E}[\omega(S_t)]}{\mathbb{E} \text{vol}(S_t)} \leq \sqrt{2R(y)}, \]
which implies
\[\mathbb{E} \left[\omega(S_t) - \sqrt{2R(y)} \text{vol}(S_t) \right] \leq 0. \]

We conclude that there exists a deterministic \(t \in [0, 1] \) such that
\[\omega(S_t) - \sqrt{2R(y)} \text{vol}(S_t) \leq 0. \]

Consequently,
\[\phi(S^o) \leq \phi(S_t) \leq \sqrt{2R(y)} \leq \sqrt{2R(x)} = \sqrt{2\lambda_2}. \]
The proof can be modified to show that if we perform sweep algorithm on any vector $x \perp 1$, we obtain

$$\phi(S^o) \leq \sqrt{2R(x)}.$$

Therefore, the sweep algorithm produces good cut if we feed an approximate second eigenvector (can be computed more efficiently using power method).
The dumbbell graph.

In this case,

\[\Phi_G = \Theta(n^{-2}). \]

By Cheeger, \(\lambda_2 = O(n^{-2}) \). It can be shown that (exercise) \(\lambda_2 = \Theta(n^{-2}) \).

The second eigenvector \(f^{(2)} \) will approximately +1 on the left part and −1 on the right part. Hence, the sweep algorithm gives the best cut.
Tightness of Cheeger’s inequality $\Phi_G = O(\sqrt{\lambda_2})$

- **Cycle C_n.** Let $x = (1, 1 - \frac{4}{n}, 1 - \frac{8}{n}, \ldots, -1, -1 + \frac{4}{n}, \ldots, 1) \perp 1$. Then

$$\lambda_2 \leq \frac{x^T L x}{2x^T x} = \frac{\sum_{i \sim j} (x_i - x_j)^2}{2 \sum_i x_i^2} = O(n^{-2}).$$

By Cheeger, $\Phi_G = O(\sqrt{\lambda_2}) = O(n^{-1})$. On the other hand, $\Phi_G = \Omega(n^{-1})$.

Therefore,

$$\Phi_G = O(n^{-1}), \quad \lambda_2 = O(n^{-2}).$$

Interestingly, the sweep algorithm still produces the optimal cut $\phi(S^0) = \Theta(n^{-1})$.
Two cycles $C_n + \text{hidden matching.}$

The red cut is the optimal cut, $\Phi_G = \Theta(n^{-2}).$

Second eigenvector = two copies of second eigenvectors of $C_n \Rightarrow \lambda_2 = \Theta(n^{-2}).$

The sweep algorithm still produces the green cut $\phi(S^o) = \Theta(n^{-1}).$
Improved Cheeger

The sweep algorithm outputs a set S^o such that

$$
\phi(S^o) = O(\sqrt{\lambda_2}) = O(\sqrt{\Phi_G}).
$$

Kwok-Lau-Lee-Oveis Gharan-Trevisan '13: For any $k \geq 2$, the sweep algorithm outputs a set S^o such that

$$
\phi(S^o) = O\left(\frac{k\lambda_2}{\sqrt{\lambda_k}}\right) = O\left(\frac{k\Phi_G}{\sqrt{\lambda_k}}\right).
$$

For example, if $\lambda_3 \geq c$, we get a $O(1)$-approximation of Φ_G.
Beyond $k = 2$: higher order Cheeger

Order-k conductance. Let $k \geq 2$.

$$\Phi_G(k) = \min_{S_1, S_2, \ldots, S_k \text{ disjoint}} \max_i \phi(S_i).$$

$$\Phi_G(k) = 0 \iff G \text{ has } \geq k \text{ connected components} \iff \lambda_k = 0.$$

Lee-Oveis Gharan-Trevisan '12:

$$\frac{\lambda_k}{2} \leq \Phi_G(k) = O(k^2 \sqrt{\lambda_k}).$$

Furthermore, there is an algorithm (spectral embedding + geometric partitioning) which returns

k disjoint sets S_1, S_2, \ldots, S_k such that $\max_i \phi(S_i) = O(k^2 \sqrt{\lambda_k})$.
References

- U von Luxburg (2007). A tutorial on spectral clustering
- D Spielman (2019). Spectral and Algebraic Graph Theory
- L Trevisan (2016). Lecture Notes on Graph Partitioning, Expanders and Spectral Methods