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ABSTRACT

A nonconforming finite element procedure for the solution of second order,
nonlinear parabolic boundary value problems is formulated and analyzed. The finite
element space consists of discontinuous piecewise polynomial functions over quite
general meshes, with inter-element continuity being enforced approximately by means
of penalties. Optimal order error estimates in energy and L2 norms are stated in
terms of locally expressed quantities. They are proved first for a model problem

and then in general.



CHAPTER I

INTRODUCTION

In this paper we define a semidiscrete finite element procedure for the
numerical solution of a second order parabolic initial-boundary value problem.
The method is nonconforming in that the piecewise polynomial trial functions are,
in general, discontinuous and therefore do not lie in the Sobolev space Hl associ-
ated with variational form of the differential problem. Approximate continuity is
imposed by including in the form which defines the method penalty terms which are
weighted L2 inner products of the jumps in the function values across element edges.
In the case of Dirichlet boundary conditions, the penalty terms on the boundary of
the damain penalize the deviation of the approximate solution from the specified
value of the true solﬁtion, exactly as in a well-known method of Nitsche [10].

The primary motivation for the interior penalty method is the enhanced
flexibility afforded by discontinuous elements. This allows meshes which are
more general in their construction and degree of nonuniformity than is permitted
by more conventional finite element methods. Moreover, the local nature of the
trial space and the capability to regulate the degree of smoothness of the approxi-
mate solution -by local variation of the penalty weighting function should enable
closer approximation of solutions which vary in character from one part of the do-
main to another and should allow the incorporation of partial knowledge of the so-
Jution into the scheme. An important particular class of difficult equations is
that of parabolic equations with dominant transport terms for which the solution
varies rapidly on a small moving part of the domain.

The inclusion of penalty terms in the variational form defining a finite

element method is not new. The method of Nitsche referred to above and the penalty



method of Babuska [2] both employ this technique in order to impose essential
boundary conditions weakly. 2ienkiewicz [14] discussed the use of penalties
in the formulation of nonconforming methods for fourth order prdolems for which
the trial functions, though continuous, are not contained in H°. Babufka and
zlamal [3] have presented a scheme which does just that, using interior penalties
analogous to the boundary penalties of BabuSka's method to solve the bihaxnnnic
equation. More recently Douglas and Dupont [8] have analyzed a method analogous
to ours which uses interior penalties to enforce behavior between C0 and Cl on
conforming elements for linear elliptic and parabolic problems. Numerical ex-
periments with that method have clearly demonstrated the value of penalties for
solving certain problems which have proved intractable to more conventional methods
(see e.g, [7]). Closest to the present method are an interior penalty method
which Wheeler [13] has presented and analyzed for second order linear elliptic
equations, and a similar procedure due to Baker [4] for the biharmonic equation.
Since we wish to allow meshes which are relatively course in some parts of
the domain and fine in others, we do not assume quasi-uniformity, and we have
stated the error estimates in a manner which relates the size of each finite ele-
ment to the smoothness of the solution on that element. Thus, if hT is the dia-
meter of the element T, we have bounded the discretization error by quantities

of the form 1/2

T E
T
rather than the more usual

(max . )j il i .
2x )™ el ey



(In fact we shall even allow j and k to depend on T.) This pro-
vides motivation and some justification for schemes incorporating
adaptive mesh refinement, in which a new mesh is selected from
time to time using partial knowledge of the solution to equalize
h%“w“ﬁk(T). We also feel that finite element methods based on dis-
continuous elements will prove more amenable to such adaptive schemes
than do conforming methods.

The problem ccnsidered for most of the paper is the initial-
boundary value problem
(1.1a) wt(x,t)—v-[a(x,t,w(x,t})?w(x,t) + b(x,t,w(xt))]

= f(x,t,wix,t)),(x,t) € 90xI,

(1.1b) wi(x,t) g(x,t), (x,t)e 3OxI,

(l.1lc) w(x,0) = wo(x), x € Q.

Here O is a bounded domain in the plane with Lipschitz boundary,

I = [0,t*]C R, aecg(ﬁxrx R) , becg;(§><1>< R) ><CI]D'(§><I>< R), £ e cé(ﬁxrx R) .

(CE is the space of functions with continuous, bounded partial deri-

vatives of order up to n.) It is assumed that a < a(x,t,p) < a where
a and a are positive constants. Also, we assume that w and w, are
in C(I;Cl(ﬁ)) and that w € Lm(I:Hz(ﬂ)). (For the definition of this

latter space see subsection 2.1.)

In the next section we collect essential notations and set
out the general framework in which the investigation will preceed.
Before considering the general case, however, we present in section
3 the method and the energy estimates for a model problem which exhi-

bits the essential features of the analysis, unencumbered by techni-



cal detail. The formulation and analysis in the general case

are given in the following four sections, with the stronger re-
sults which can be obtained in less generality being presented

in remarks. In section 9 several extensions and generalizations
are considered, including in subsection 9.3 a method designed to
facilitate mesh adaptation. A final section collects various ob-

servations concerning the penalty function.



CHAPTER II

PRELIMINARIES

2.1. Function spaces.

We shall use the usual Lz-based Sobolev spaces Hk(s) with

norm “.“kls and seminorm

‘|, and the L™-based Sabolev spaces with norm ”‘:“W‘]:(S).
Hé{S) denotes the subspace of H'(S)consisting of functions which vanish on 3S.

Ifs < IR2, (',-)s [respectively < §>S] will denote the
inner product in LZ(S) where S is measured by the Lebesgue [respec-
tively, the one dimensional Hausdorff] measure.

By default, (+,*)=(+,*)q, <, D=<,>,, =" (),

and | -

= ! . = .
- Ju HO,Q ” ”LZ{Q)
If K is an interval, X is one of the function spaces intro-

duced above, and ¢ is a function on QXK then “@“LP(K-X] denotes the

norm in Lp(K) of the function t+“$(’;t)“x. LP(X) is short for LP(I,X).

2.2 The Mesh.

We wish to consider both triangular and rectangular finite
elements and to allow curved boundary elements. Hence we shall state
our definitions with sufficient generality to cover all cases.

By a mesh on Q we mean a finite set T of closed subsets of {

such that:
(i) Each element of T is the closure of its nonempty interior.
(ii) UT = Q.

(iii) Distinct elements of T have disjoint interiors.
For T € T let hT = diam(T), the diameter of T. The mesh T

is said to satisfy a shape constraint with shape constant K if for each




T € T there exists a homeomorphism ¥ of T onto a closed disc such
that K is a Lipschitz constant for both ¥ and W—l. Note that this
notion is independent of the concept of quasi-uniformity. (T is

said to be quasi-uniform with quasi-uniformity constant C if

th/hTZ < C for T]_ITZ €.

Remark 2.1. A family of meshes satisfying a shape constraint with common
constant K is a regular family [5,pg. 124], that is each mesh element
T contains a disc of diameter p-hT where p > 0 depends only on K (in
fact one can take p = l/Kz). (This condition assures nondegeneracy
of the elements.) If we restrict our attention to meshes of convex
sets, then the opposite implication holds. For given a compact con-
vex set T containing a disc of diameter p+diam(T), there is a bi-
Lipschitz homeomorphism of T onto a disc for which the Lipschitz con-
stants in both directions can be bounded in terms of p alone. See
[6,pg 55] for the simple construction. The shape constraint is
emﬁloyed to insure in addition to regularity that element boundaries
are sufficiently well behaved. The maps ¥ of the definition will be
used only analytically and will not enter into the formulation of the
procedure. In particular, we are not using the disc as a reference

element.

Remark 2.2. If the elements of T are triangles, then T satisfies a shape

constraint with K depending only on the minimum angle of the elements



of T. Again, if T consists of rectangles then there is a shape
constant for T depending only on the maximum ratio between the
side lengths of a rectangle in T.

A triangular mesh is a mesh each element of which is the

intersection of a triangle with Q. A rectangular mesh is one

whose elements are the intersections with € of rectangles having

sides parallel to the coordinate axes. All meshes appearing be-

low are implicitly assumed to be either triangular or rectangular.
Let T be a mesh and define

Ey = {Tlr]T2| T),T, € T are distinct, TOT, contains at

least two points},

E, = {TN3Q|T € T, TN3Q contains at least two points},
ET='{eeE| e<T}, TeET.
Let £_  be the lencth of e for e € E.

e
Next we introduce a property relating adjacent mesh elements.

In finite element theory one often works only with edge-to-edge

meshes; that is, meshes for which distinct intersecting elements
meet in either a common vertex or a common edge. One of the advan-
tages of the present method is that the much weaker condition of
gradedness suffices.

Note that, if T is an edge-to-edge mesh of either triangles
or rectangles, then E is simply the set of all edges of elements of
T. From Remark 2.1 it then follows that

2
K°L, > hgp, TeT, e €E
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For general (not necessarily edge-to-edge) meshes, the elements
of ET are segments of the edges of T, and will be called the edge-

segments of T. T is said to be graded with grade constant K' if

_K'ie‘i hes TEeT, ec¢€ Em-
While it is not true that a triangle need have only three edge-segments,
nor a rectangle four, it is easy to see that the cardinality of ET
is at most 3 K'[respectively 4 K'] for all triangles [respectively
rectangles] T € T.

For e € E,, we select one of the two unit normals to e and
denote it n, or simply n. If e € E3 (in which case n, may be non-
constant on e), we choose n, to point exterior to Q.

Since our finite element space will consist of discontinuous
elements, it will not lie in HLIQ) but rather in the piecewise Sobolev
space defined by

H£(T) = {9 € Lzm)lcpfT e HE(T) for all T € T}.
Differential operators will be understood to act on such spaces
pPiecewise and not in the sense of distributions. Thus, for example,
if ¢ € Hl(TJ, we view V9 as a function in LZ(Q)XLZ(Q).

For ¢ € Hl(T), we define the jump and average of ¢- - denoted
[¢] and {9}, respectively-- as functions on UE as follows. For each
e €E, [9], {9} € Lz(e). If e € Ey, then e = T; N T, with n, exterior

to T, for some pair of elements ITerz). Set

(9] = (olqp )| = (oln)
Tlle TZIe
{9} = [(qJITlJIe + (?ITz)[el/z-
If e € E,, then [¢] = {9} = @le. The restrictions to e are taken

in the sense of traces.



In this notation we can state the basic integration by

parts formula

(2.1) (Vo9 ¥) = ~(9,79) + <pom, ¥+ ) (<loben, [¥1D,
e€t
0

+ <[el*n,{91> ),
valid for ¢ € H- (T)xE-XT) and ¥ € H*(T).
| We shall also require an inequality of the Poincare-Friedrichs

. 1 . . . .
type valid for ¢ € H (T). This result in turn requires a geometric

lemma, the proof of which appears in the appendix.

LEMMA 2.3. Let T be a mesh on a polygonal domain with T consisting entirely

of triangles [ respectively rectangles ]. Then there exists a constant

C dqgaxﬁggtmﬂy'gg;the damﬁu;and the shape and grade constants - for T

such that for every line L in R? [ respectively every line L parallel to

the axis ], -

Z{ze|e € E,enL # g} < C.

THEOREM 2.4. Let T be a triangular or rectangular mesh on Q. Then there
exists a constant C depending only on O and the shape and grade con-

stants for T such that

| ) -1 1
(2.2) lel® < ¢ (lvel? + ZE eZte1l? ) for 9 e (M.
e€ !

Proof. The proof will be given only in the triangular case, the
rectangular case being simpler. We begin by reducing to the situa-

tion where Q is polygonal and all the elements of T are triangles.
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Note that, if ’I‘l e T and ey e Ea{]ET, then

lely o < ctivelly .

=1y 12
+ £ IICP” ) ;
1 1 ey 0,e

1

in fact, the right hand side even bounds E;zﬂvﬂg o, Moreover,
"1

if T2 is a triangle all of whose edge-segments lie in E0 and which

shares an edge-segment e, with T, (see Figure 1), then

oty 02 -1
e, lel, <208 " 2 -1 2
2 Wl lo,e, e, ”@|T1Jo,e2 * L, ”[@]“o,ez)
i 12 -1 2 -1 2
< C(nV@hole + Eel H@Horel + Eez “[@]do,ez)'

Figure 1. Triangles meeting 5Q.

These claims are easily proved on an lsoceles right triangle and

preserved under a Lipschitz homeomorphism. (Each of our elements
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is by assumption Lipschitz equivalent to a disc, and hence to an
isoceles right triangle.) Consequently, if we prove the assertion
for the restriction of the triangulation to the domain obtained by
removing from Q all elements with boundary edges, then the result-
ing right hand side will be dominated by the right hand side of
(2.2) . Hence, changing notation, we assume that T consists of tri-
angles.

Let § = I, x I, be a square of side length 2 diam(Q) contain-
ing § in its interior. Extend ¢ to S by zero. For any y € I, such

that Ilk{y} contains no element e € E, define J ?(y) as follows:

if Ilk{y}(\e=ﬁ, then J_9(y) = 0;

if 1,x{y} ne={x,y}, then JP(y) = @(xt,y) - @(x=,y).
Let Te be the projection of e onto the y-axis and Pe the

length of that projection. By the lemma

E[pele e E, I, x{y}ne#g} < M,
where M depends only on Q and the shape and grade constants. Hence,
squaring the inequality

| p(x,y) | gf I@x(t.y) ldt + Z |Je‘P(Y) |
I e€t o :
which holds for almost all (x,y) € S, we see that )
fCP(X_.y)I252[f o, (toy) [at1? + 21) |3 0(y) 12
I, e€t

< 4 diam(ﬂ)f | o, (try) |2dt + ZMZp;l[Jecp(y) |2,
I, e€t
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We have used the Cauchy-Schwartz inequality in the form

2 -1, 2
Z}‘i < (Zai) (Zai YD, oag N > 0.

Now

j ERIRE =f |5 9(x) | 2ay = B2 [te1l} ..

I2 TTe

Therefore integration of the last inequality over (x,y) € S yields

lol? < sraiam@1? llo % + 4 u aiam@) Y 22t rerl2 ..

e€t
For the remainder of the paper we concentrate -- for sim-
plicity of notation -- on one fixed triangular or rectangular
mesh T on Q with shape constant K and grade constant K'. Let

h=max hT. We shall prove estimates beiow in which certain errors
are bounded by expressions involving constant multiples of powers

of hT and h. Of course, what we have in mind is a family of meshes
for which the corresponding values of h approach zero. Thus, for
our results to be meaningful it is essential that the constants
appearing depend on T only through K and K'. In short we shall
prove asymptotic estimates valid for any uniformly shape constrained

family of uniformly graded meshes.

2.3. The Finite Element Space.

Let r be a fixed positive integer. For each T € T, let Qr(T)
be the set of functions which are restrictions to T of polynomials
of separate degree at most r in each variable, and let Pr(T) be the
subset consisting of restrictions of polynomials of total degree at
most r. Set M _(T) = P_(T) if T is triangular and Mr(T)' = Q (1) if

T is rectangular.
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Now T contains a disc of radius hT/K2 (see remark 2.1),
from which it follows that there exists a constant C depending

only on r and K such that
?liy,r = ~2r 1%l

< Ch

ol o7 < Chn lollg 1o

122]5 5p <GBy lol;

el

-1
< Ch el
wl(n) T 19l

for all PeM.(T). These relations are referred to as local
inverse inequalities.

If ¢ is continuous on the triangle T, define IT@ to be the
unique function in Mr(T) interpolating ¢ at the (r+l) (r+2)/2 points of
T with barycentric coordinates in {0,1/r,2/r,...,1} (see Figure 2).
Similarly, for rectangular T define LPQ to be the unique element of

Mr(T) interpolating ¢ at (r+l)2 evenly spaced grid points on T.

..-J:,..

.

Figure 2, Interpolation points on a triangular and
a rectangular finite element. r = 3,
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I

In both cases, there exists a constant C C(r,K) such that

IA

! ! _ =1 ..l s . .
(2.3) lo-Tpell; ¢ <ong™ oy gr0oci<d w1, 522
If Te€ T has a curvilinear edge, we may choose the interpolation
points off the interior edges in any fashion which preserves (2.3).

The finite element space we shall employ is

M=T M (T).
reT T

If x € Mand T € T, we denote the T component of ¥ by XlT' i.e.,

X = (XlT)TeT’ X will be viewed as a function in L2(Q), its value
being defined unambiguously on Q\LIEO.
Define I: HA(T) + M by

I

(I9) [ = Iplely), T €T

Then, if we temporarily set II =1,
(A1) T: H2(T) » M is linear.
fem - ' =i .1 . . .
(a2) le = mol; p<c@r ng™ lelly v 0cdi<icm, 322

If T is an edge-to-edge mesh, then in addition

(A3) e is continuous if ¢ is continuous.

(A3) does not hold for general triangular or rectangular meshes.
This leads to a further definition. We have seen that in all cases
there is an approximation operator I = I. If there exists Il satis-

fying also (A3), we shall then say that M approximates smoothly.

(More precisely, this could be viewed as a property of a family of

triples (T,M,1) but we shall avoid this formality.)
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Let I satisfying (Al) and (A2) (and (A3) if M approximates

smoothly) be chosen and fixed. Now for e € ET and ¢ € H2 (T) the

following trace inequalities held ([1l, Theorem 3.101) .

12 -1y,l12 2 1
(2.4) lelly o < ¢ @ tllely,q + 2olel] o) @€ H (),
(2.5) 13212 <c et feld L+ kg l0l5 0y e e @,

Hence, for all ¢ € HJ(T)p

(2.6) lo - mel? ,+ Y reZthe - mel? |+ 2 lintene) 2
e€t
< cng 3™ el o 2 <3<

where C depends only on r, K and K'.

2.4. Forms, Norms and Penalties.

In order to derive a weak formulation of (l1.1l) we note that

(2.1) implies

(v a7, = aw TR, Ty - Y <atndE, 1> -<a(e) 22,4

e€E,
for ¢ € Hz(ﬂ) and Y € HJTT). If we symmetrize the form appearing on
the right hand side and replace the unknown solution w by a function

p, we arrive at the form

A(p:;9,¥) = (a(p)Veo,VY¥) - Z [<a({p}){ ]'r [‘if]>
eeE0

+<a({p})m{ }>1 [<a<g> D>+ <a(g)<p. 2>

defined for p,9,Y € 2 (7).
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Penalties will be introduced via the form

39, 0=y i<olel, 1>, p¥erm,
eeE
where o: (JEXJ -+ [yo ©) < (0,%) is a measurable function, differentiable in t when

viewed as a function into L(UE). J depends on t through o. Note that the defi-
nitions of A and J are independent of the choice of the interior normals n_.
We also set
B(pi*,*) = Alpie,°) + J(,°),
B(*,*) = B(wi*,*).
It follows from (2.1) that the solution w satisfies

(2.7) (W, X)+B(w,X) +(b(w) ,Vx) -z <bWw) *n, {x1>e-<b(g) -n,x>
e€t

= (f(W),x)-<a(g)g.g§>+ Z ﬂ;l<fg;x>
e€t

forallerz(T]. Here and elswhere we suppress scme of the arguments of the co-
efficients in the notation.

On the space H’e[T} we place the obvious norm:
2 .1/2

1@ = ( @ )7

bell, N I’ .

The following norm, which incorporates a measure of discontinuity into the Hl(T]
norm is naturally associated with the form A. Define
2 _ 2 -1 2 0P, 112
Wl =ohs p+ & et o2 o+ ¢, D22 o,
for ¢e€ HZ(T). We have immediately the inequality
2.8) [aie,0| <afl@ll N¥ll, oc.p¥ e ).
I

The following lemma shows that restricted to M

|| is equivalent to a simpler norm.
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LEMMA 2.5. There exists a constant C = C(K) such that

len®<c el + Y &Hor]z,  een
e€t

The proof follows directly fram the inverse inequality

2912 2
(2.9) Z 2 "{Eﬂ'}"o,e. < Cuq’ul,'r’ @ € M.
eeE
Fram (2.6) it follows that for integers j(T),

2100 ¢ - nell < cwmrxy () w2E@ o2 )12,
Tl

2<3j(T) <rtl, TET.

In the course of the analysis we shall impose restrictions on the
penalty function o¢. These restrictions will refer to various gquantities

which are collected here for reference.

YU = a positive lower bound for o;

Y; = sw {o(x,t) | x € VE, t eI}

=sup {o(x,t) | x€ 3, t eI

=<
(N}
I

Y3 = sw {|o (x,t) || xe VE, teI}
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Y, = swp {07 (x,t) 0, b) | [ x €UE, t € I};
Vg = sup {o(x,0)| x € VE

YG = sup {0(x,0)| x € 3Q}.
When the statement of a result refers to some v,, it is tacitly assumed that

Y3 exists and is finite.

2.5. Constants

As has already been seen, the letter C will denote a generic constant,
changing from appearance to appearance. Occasionally its dependence will be
presented explicitly. Other times the dependence will be indicated implicitly;
e.g. C(r,K,K'). However, dependence on r, K, K', a, a, 2, t*;

lla Uy ILBI L gte ILE Dl Il Wil oty ana ”“’t“L”(wi; will not necessarily
be noted. Similar remarks apply to €, which will be used to denote a generic

small positive constant.



CHAPTER III

A MODEL PROBLEM

In this section we consider an interior penalty method for the heat
equation. The results we obtain here are special cases of sharper ones which
will be proven in the following sections, and a number of dispensable assump-
tions are made in the interest of simplicity.

Let w be a smooth function satisfying the heat equation

W, - Aw=0 on QxI,
wt_-='0 on NI,
w(+,0) = WO on Q.

We assume that Q is polygonal and that the mesh T consists entirely of triangles
or rectangles and is edge-to-edge. T need not be quasi-uniform, but the estimates
will not be stated in a manner which reflects the advantage of local refinement.

We consider only a constant penalty function

o(x,t) = vqy XeQn, tel.
Thus,
- 3 oY

and

I =¥, Z e, 112>,

e€E

Clearly,

| awwl < Mol el

Fa@¥)l< vy el il
for @,v € B (T).

19
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Let Cy and C2 be the constants appearing in (2.9) and

(2.2), respectively. then
2 - |
Ao 2 vell - 20 e JEEHE 020 e HiterlE o2
e 0,e

> lvel? - zclzz;lﬂm uo .
> Urel? + 32, 10IR  <2e,0 2, b
> lvel® + ;—CZ lod? + Zﬂ IaRz |

-(2¢, +—)Z£l lte1l .-

for all 9 € M. Now assume that Yo 2 4C; + %.

Then

|v

2
e llelll® + 3909, ¢ €M,
1 .

S 1 1 1
where e,=min (§, Zbl’ e )

2

>0'

Now w satisfies
(3.2)  (wo,x) + B(w,x) = 0, x € HX(T).
The interior penalty finite element approximation to w is defined
by analogy as the unique function W: I - M such that
(3.3a) (We,x) + B(W,x) = 0, X € M,
(3.3b) W(0) = Iwo.
Let'{xi}?=l be a basis for M. Define m x m matrices

@ and B and an m-vector Wg by
Gij = (Xjrxi)r

Bij = B(Xjrxi)r

m
Iwo = z:
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Then, writing W(t) = I mjit)xj, (3.3) can be regarded as an ordinary

differential initial value problem for the unknown vector :
aw' (t) + Bw(t) = 0,  t€ZL

w(0) = w,. .
Since the matrix is nonsingular (in fact positive definite),

a unique solution exists.

Note that, if we choose{xi} in the obvious manner, by selec-
ting a canonical basis for eachMr(T) and extending all the resulting
function to by zero, then both the matrices o and 8 are sparse. More-
over, to evaluate a nonzero entry of requires only an integration
over a single element and some one-dimensional quadrature over its
edges. Note also that the size of these matrices is considerably
larger than for conforming finite element methods oflthe same de-
gree over the mesh.

We now analyze the proposed procedure by the method of energy
estimates. Let z=W-w. Then from (3.2) and (3.3),

(3.4) (Torx) + B(5,x) = 0, x €M,

‘Decompose ¢ as U=V where u = Iw-w, v= Iw-W. Note that [ulZ 0 on
VEx I; thus,

(3.5)  (veox) + BOV,X) = (ueox) + Aluyx),  x € M.

Since v(t) € M we can set x=v(t), obtaining

ld

5 S [vi? + B(v,v)

[

(ut.v) + A(u,v)

! £
shu? + 1% + clilull® + S2v 2,

| A

Therefore, we can apply the coercivity result
(3.1) to get

S oI+ e vl% avav) < vl + du I + el 2
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Since v(0)= 0, Gronwall's lemma implies that

(3.6) v iiiw(L2) +I|l|\JH|2 dt +f J(vv)dt < C(flfutfizL2(L2} +f Nl %at,
I

I
I

Since £ = y=v and [u] = 0,

lil? , +f 2l %at +fJ(C,C)dt

L® (L%) I I

. 2 f I
< ctlube g2y +[ulae + lu 22 2)).
I

Thus, as is typical in finite element theory, error bounds for the finite ele-

ment approximation to the true solution reduce to error bounds for a much sim-
pler sort of approximation, in this case the piecewise polynamial interpolant.
These latter bounds have already been noted in (2.3) and (2.10) and hence we

have obtained the following theorem.

THEOREM 3.1. The error ¢ in the interior penalty finite element

method for the heat equation satisfies the inequality
2...1/2 1
el g2y + ([0 + ([ s, 0a0
I I

/2

<l oy + lwll g2gmvdy + Il 2 4m)) -

*
'IhecccnstanthependsonlyB_nr, K, t @Q

Remark 3.2. This theorem does not supply an optimal order estimate on || z]| 21?)

In section 6 we use the technique of comparing W to an interior penalty elliptic
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projection to derive an O(hﬁl) bound on z in Lw(Lz) .

The choice x = Ve in (3.5) leads to the second energy estimate.

Then,
2 .14 1 2
oell©+ 3G BOw) <3 Mgl ? + 3 lvlh 2 + aeovy
SO
..7) tﬂv | 2at + B(ve),v(£)) < llu 132, 2, + 2| tA( at|

0 0

The final term may be integrated by parts in time. Hence.

t t
2| f Alw,v Jdt| < 2[aue) )| + 2|J' Alp, v)at|

0
2
< SLlv@ I+ [ i + cowliull? + [ g i 2ae.
' I I

Moreover, by (3.6),f|”vlﬂzdt can be absorbed into the last term. If (3.1)

I

is applied to (3.7), it follows that

t .
f v ll Zat + [flvee Il + Teved v (£))
0

< ctaw lull? + [lllnli%ae
I

Since this result cbviously remains true if we replace v by u, it holds
also for r, giving the following theorem.

THEOREM 3.3. There existsg_constantcdependin_gonly on r, K, t* and Q

such that

el 22) + szl + sw &, 012

< @FIwl] oy + Dl 2



CHAPTER IV

DEFINITICN OF THE METHOD

In light of (2.7) we define the approximate solution W: J -+ M
by the equations
(4.1) () + BOHW,X) + (b),70 = ) <b(E) 0, k1>,
eeEO

= (EW,0 -<a@g > + Y 7 <ogix>, +<blg) n )X,
e€t,
xeM teT.
Upon choice of a basis for M, (4.1) may be viewed as a system of ordinary
differential equations in the unknown coefficients of W. Once an initial
condition is imposed, it follows that W is determined uniquely and more-
over is computable from f and g. Assume that the initial value W(0) € M
satisfies _
(4.2) 1 Wo) - WO“2 < 2 z h;{j(T)-l] I ‘\,0”:{2_('1.“’1“r
TeT
2 ¢ j(T) £ r+l.
(That is, (4.2) is supposed to hold for all integer valued functions
TrH> j(T) € [2, r+l].) Acceptable choices of W(0) are, for example, the
interpolant Tw, of w,, the L’ projection of w, into N, or the elliptic pro-
jection of Wy defined by the linear system

B(W(0) ,x) = B(WOIXJ: X € M.

24
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In the first two cases,

1w = woll < cEng P flwg 13y v 1< 3@ < o4,

while the error estimate (4.2) will be shown for the elliptic projection
in Theorem 6.2 below.

Iet = W-w. In the following three sections we shall derive esti-
mates on ¢ which are strengthened and generalized versions of the estimates

stated in Theorem 3.1, Remark 3.2, and Theorem 3.3, respectively.



CHAPTER V

THE FIRST ENERGY ESTIMATE

The object of this section is the demonstration of the following
theorem.

THEOREM 5.1. Assume that (4.2) holds for a selection of j(T),

T €T, satisfying 2 < j(T) < r+l. Then there exists a constant

C depending on Y1 such that the error satisfies the inequality
2
(5.1) IIc[lL«»(Lz) +f izl © + 3z, 9lat
I

2 m™-1
< cZ GO () 22,301y s+ 5 20y -

We begin by proving a coercivity result for the form B.

THEOREM 5.2. There exists a positive constant ¢ such that if Yo

is sufficiently large, then
B(oi99 > ellelll® +3 36,9

forallg e Mand o € HX(T).

Proof. A(0i¢,¥)>a || Vo> -ZaZII{ hgell o1l g o
e€E

> allve)? -6Zz & }uf,e cﬁ‘lZE I w1l g,

where 6>0 is arbitrary. Using (2.9) we see that by taking § small enough

26
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we get

A9, 9 zgallve |2 -0 ol 2=c) w2,
eet

where §'> 0 can be taken as small as desired (with C correspondingly large).
The theorem therefore follows from Theorem 2.4 and Lemma 2.5.
Hereafter, it is assumed that YO is sufficiently large in the

sense of Theorem 5.2. Now «

(5.2) (Cer X + BW;L,X) == (b(W) = b(w),X)
+ ) <BUA - b I, D>+ (EM - £64) %)
oE,
+ A(w;w,X) - A(W;w,X), X €M,

as one verifies by subtracting (2.7) from (4.1l). Next set y=llw-w and

v=Ilw-W, and substitute

(5.3) p=v=g
into (5.2), to obtain
(5.4) (VX0 + BOV,0 = (4,0 + B,
+ B0 - b, 70 - ) < ) - b 101>,

eeEO
- (EW) - £w),X) + [AW;w,X) - Aw;w,X)], X €M

The following lemma, will prove useful here and in the sequel.

LEMMA 5.3. Let a,8.8,,and Y be real-valued functions on {OxR. each of

which satisfies a Lipschitz condition with respect to its second

arqument uniformly over Q, with Lipschitz constant M. Let ¢ e'cl(T)

for each T € T and set. Ii?“wl(T) = sup, f]cpﬂwl(T) . Then there is a
0 T ®

constant C = C(M,fltpﬂwl(.r)) such that, for all Pyr Py v e H2(T) ,
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(5.5) | (lalpy) - alpy) Ve, W¥) | + [(B(py) - B(p,),7¥)|

ol = viey), 0| < cley - oyl H?HI’T:

(5.6) 3. (I<lallph) - allo,] (21,191 |
eeEO

+ | <18({py 1) - B({o,}1 0, [¥] > )

<ctloy = oyl + € ) w2loy=e 2 M2 Y eZtinal2 Y2

TeT e€t,
5.7y I<la(le D= (o,h1 (&1, 191>
e€E0
-1 | - 2] 12 1/2
< csm @Ml gy toy-p,l + () n2llog=e,l2 12
o TeT
(¥, 12 1/2
() e g E 22
e€t

Proof. The inequality (5.5) is clear with C = M(“QP“W}_(T}-!-Z}.

For (5.6), note that

(5.8) | lalloyh) = allo,H] (321, (¥1 > |
+ | <I8Uorh) - ({p,h)1om, [¥1> |
< M(“@HWI(T) + 1) ﬂé/zﬂ{pl-oz}ﬂo'e z;lf?H[wzﬂo'e.

Now, by (2.4),

I 2
Z 2 e -0 1y o < Z Z H(pl—pz)le]g'e

e€E TeT eeET

| 12 2 2
TET



29
Now, by (2.4),

D Ll teppHI2 <) z:”meHHOeiCZHHTQHOT
eet eT eeE
+ 12l opmegll? )
Thus (5.6) results from summing (5.8) over e € Eo;
(5.7) is obtained similarly.
It follows from the lemma and the fact that [{w] = 0 on UEO that

the last four of the six terms on the right hand side of (5.4) are bounded

by
c e+ w2 el? p+ & i
TeT

where € is the value furnished by Theorem 5.2. We next apply the triangle
inequality and an inverse inequality to see that
GO - 2<Z S LD U IIER

TeT €T LT

2
ccdlviZ+ 2 w2 ul? .
TeT

Thus,

(VtIX) + B(W;V,X) < (utrX) + B(W; 1, X)

2, n.n2 20, i@ € 2
e (lull®+ivdl® + nglds )+ 51Xl
for all yeMand t € I.
We now set x = v(t) € M and apply Theorem 5.2:

(5.10) SV 2+ e v + 3o,

< 2y + 2800 + ¢ (lull 2+ ol +Z h%“ ull ]2_,T}'
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Dominating B(W;1,V) by C(vy) |[ulfl® + £ [[Iv[l|? and integrating (5.10)
over t € [O,to_] C I, we get

t
Il v(t) N2 +f 0 [%mvmz + J(v,v)]dt
0
t
2,1
IO I+ Flvll =2 + clllugll 2 2, [ % NIl %t
0

+ [ Hulll%at) .

I
As this holds for all t0 eI,
(5.11) 1ol 2= 2, +f Mvli2 + 3v,v) at
I
2 2
sedlvorl ? + ugll 212+ i,

I

By (4.2),

v il % < 2dlu@ l| 2+ o | g Y 2E@U gy 2 -
TeT

Since P = W -w,, the property (A2) of the operator Il implies that

2 2[5 (T)=-1 2
I “t” <c hT[J( ) ]” wt“ 2L
Finally, by (2.10),
2 2[3(T)-1] 2
ull? <) n2 1l gy
Hence (5.11) implies the assertion of Theorem 5.1 with £ replaced by v.

Since the assertion is clear when { is replaced by u, Theorem 5.1 is proven.

Remark 5.4. If M approximates smoothly we can strengthen the conclusion of
the theorem. Instead of assuming that o remains bounded on VExI we need on-
ly assume that o stays bounded on 3QxI with no restriction made on the be-
havior of ¢ on interior edges except that ¢ > Y° The constant C in the

statement of the theorem will depend on Yo rather than the larger
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quantity Yy In fact, the only points in the proof where Y1 entered
was in the bound BWiu,v) < Crp) [[[ulll? + £ [flv]l|? and in bounding
f J(u,u)dt by the right hand side of (5.1) at the very last step. How~
Zver, if M approximates smoothly, then p is continuous and the interior
penalty terms of B(W;u,v) and J(u,u) vanish; thus, only the values of o

on ) enter.



CHAPTER VI

AN OPTIMAL ORDER ESTIMATE IN L~ (L)

The bound for || ¢l 122 provided by Theorem 5.1 is not of optimal
order in h. To achieve an optimal order bound we use the technique intro-
duced by Wheeler [12] of comparing the approximate solution to an elliptic
projection of the true solution. This approach could also be used to pro-
duce optimal order estimates of |||z||| and J(z,z), but these results would
not be as satisfactory as those of the last section for two reasons. First,
in this section we shall have to impose mild restrictions on the growth of
the penalty function o as a function of time; second, the bounds derived
through the projection are not expressed entirely locally and hence are
weaker in the case of a family of meshes which is not quasi-uniform. In
this section we also assume that O-regularity holds for the Laplace opera-

tor on Q, i.e., U > || V]| is supposed to be a norm on Hang)'

equivalent to the H2 norm. This is the case if, for instance, Q is of

class C2 [1, Theorem 9.8] or if Q is convex [9].

LEMMA 6.1. Let t € I be fixed and suppose that & € H>(T) satisfies

B(¢,x) =F(x), XEM,
where F: H(T) = IR.is a linear map. Let M, and M, be constants for which
| Feo) | <y Illelll; o € HA(T),
and
L F | <myllvll, o v e ENH.
Toen, el < cdifelll + Mph+m,,

vmereCdepmds_q_nyl.

32
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Proof. Define VY € H2 nﬂé by the relation

-Ve(a(w)V¥) =
Then,
(6.1) ¥l o < cllell
the constant depending on a, || a(t,-,-

*)

|yt Now, by
(2.10) and (6.1),

loll 2 = 2,7+ a@)v®) = @wve,v) - ) <awa (o], 2

e
e€E
= B(9,¥) = B(®,¥-T¥) - F(¥-T¥) + F(Y¥)
< Bl ¥=-1¥) | + My flly-me|l| + M, ||l11r12'Q
scorp) lelll e = mefll + oy fije-ne [l + o el , o

A

[Clyp) (lilelll +Mph + M) |f o]l .

The next theorem introduces the elliptic projection and contains
the analysis of the interior penalty method for an associated elliptic
problem. It generalizes to our situation Theorem 1 of [13].

THEOREM 6.2. There exists a unique function Z: J > M satisfying

B(Zr)() = B(W,‘X), x € M.
The error n = Z-w satisfies at each t €I
-1
62 il + st e ) B2EPH el
TeT
2 2[j(T)~-1]
6.3  JInlf < Z ) IlwIlJ(T, ”
2[3(T)-1]
64 i | ct Z Nll 2 gy g+ Mool 3 gy 01
2 -1
(6.5) In ll? <’ Z Bm= (IlwlljtTJ p+ v IIJ(T) ]
TeT

for 2 < j(T) ¢ r+l. The constants depend on vy and Y3
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Proof. The uniqueness of Z and therefore its existence follow from

the positivity of the form B, which was established in Theorem 5.2.
Moreover, since

B(",X) =0, X e M,
(6.3) is a consequence of (6.2) and Lemma 6.1. To prove (6.2) we apply

Theorem 5.2 to 6 = Z- Iw . It follows that

6.6)  [llelll% + 3(6,8) < cB(8,8). = CB(w- Tiw, ©) < cor) llw-mw )l ()l ell] -

Thus, by (2.10), .

61 Minlll < Mell + vl < cliwml] <cc) r2B@ 2 - 372,
TET

Since J(n,n) < v |||n||]i,(6.2) follows from (6.6) and (6.7).

To estimate Nes differentiate the defining equation for Z to obtain

B(TltrX) + Bt (n'x) = 0, X e M,
where |

B'(#,¥) = (Gp aen)va,7Y)- Z (<G am g1, 39>

et
+{GamBE1, WY+ ) 1 Loy
eet

Note that

B' o) | <CCyy) lilnlll el , o € HA(T).

Moreover, for ¥ € H*NH; an integration by parts using (2.1) shows that
8" () | = [ (7 G 2D | <clinll 1¥ll, o

Thus, Lemma 6.1 applies, and
gl < crtdlingdll + linlihn + {Infl.

Consequently, (6.2)-(6.4) imply (6.5), and it remains only to demonstrate

(6.4).
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Recall that

2
(6.8) 2 wma 12 <c ) 2BE g )2 j(T) T’
TeT

2 <j(T) < r+l.
Also, by Theorem 5.2,

2
6.9)  lle Ml + 3(e6.,0,) < CB(B,6,)

= CIB((w-Tw) ,6,) - B'(n,6)]

< clrp) U3t I+ inllD oGl + ) €2 Koy b 1|

eet
1 2 -
<3 dlel®+ ) oM a2
e€E

+c (I @ [f12 + [finl)? Z o™ 20nlg -

Therefore,

(6.10) lin i? < 2¢llie i + ligg oo %)

< ctllige w=ma 1% + Wnlll® + v3vg2 a1,
and (6.4) follows from (6.2) and (6.8).
In analogy with (5.3) we shall use the decamposition n—-£=z where
E=2-WEM. Substituting this into (5.2) leads to the relation
(6.11)  (nyrx) + B(Win,x) = (E,x) + BW:g,x) - (b(W) - b(w),Vx)

+ ) < - be)1on, K> + (EW= £ ,x) + AWw,x) - AWw,x)

eeEO

B(W;n,x) - A(w;w,x) + A(W:;w,y)
= B(Wi'ﬂr)() - B(WerX) + B(W?W;X)
= B(W;Z,x) = B(w;Z,Y%)

= A(W;Z’X) - A(W}Z,X).
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Thus,
(6.12) (Et,x) + B(W;E,%) = (nt,x) + [A(W:Z,X)-A(w;Z,X)]

+ (b -bw), VX~ ) <KIB(WH-bw) 10, [x] >,

eefo

= (£EW)=-£(w) ,x) -
The last four of the five terms on the right hand side of (6.12)

can be estimated by Lemma 5.3, and

(Egrx) + BW;E,X) < (ng,x) + ctlni+iel? E:hgun
TeT

+ Ellx 12,

where C depends on.”zﬂwl[T] and sgg 2 “{Z]ﬂLm(e) and € is de-
o e
0

fived from Theorem 5.2. Note also that the triangle

inequality and an inverse inequality have been used in the same
manner as in (5.9). If the choice x=f is made and the argument

by which (5.1;) was derived from (5.10) is adapted, then the in-

equality

Il &ll 2 2, +I el + 3,81
I

2
sclle@l + lingll 22y + nll Z22) +) m2lnll 22 -
2 2[5(T)-1 T . _ .
<o ) RO (2 s il 2@ gy el 2 -
results fram (4.2) and Theorem 6.2. This estimate together with (6.3) im—

plies the following theorem.
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THEOREY: 6.3. There exists a constant C depending o Y1r Yy, lz | LG(W]'(T})

-1
and Zeugg £ |l 1z21]] 17 (e) Such that the error ¢ satisfies the inequality
0

) 203 (1)-1) 2 2, .
l2ll 1= g2y < cnl % B ol ey o + MWl fogd (D oy

2 .
vl 22 g3 (D) o)1
for 2 < §(T) < r+l.

Below we shall remark on cases for which bounds for || z] 126 (7))
"o

-1 : . .

and swp £ || [21]] 1”(e) &re readily available. We have also had to assume

e€E ' ' N
that o and o, are bounded If M approximates smoothly, we can considerably
weaken this constraint. Instead of the dependence on Yy and Y3 in Theorem
6.3, dependence on Yy and Y4 suffices. The necessary alterations to the
argument will be outlined briefly. First a slightly modified form of Lemma
6.1 is needed.

LEMMA 6.4. Let t € I be fixed and suppose that ¢ € HZ(T) satisfies

B(2,x) =F(y), X € M,

where F: HZ(T)-»R'Eglinearmap. IetMlanszg;cmstantsforvﬂﬁch
I® ()< mliloll], o e (1N @),

and

o F ol ivlhe  vengl.

Then, . ol < c(]l] ¢]l] + M;)h + M,, where C depends on Yye

Note that the test function p now varies only over fhe continuous
subspace of Hz(T) . The proof is essentially the same as for Lemma
6.1. Since_ the function ¥ introduced in that proof is continuous,
the hypothesis of smooth a;;proximation implies that p = ¥-I¥ is con-

tinuous. So, the weakened hypothesis suffices, and, as the interior
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penalty terms of B(¢, ??HW) vanish, the improved dependence re-
sults.
To adapt the proof of Theorem 6.2, note that similarly
Y, may be replaced by Y, in (6.6). Since [n] = [6] on Eqr (6.2)
then follows from (6.6) and (6.7) with the improved constant.
Then, (6.3) follows from Lemma 6.4.

From the definition of B'
B (n.e) | < ¢ (swp_ o D) [Inlll Welll, o e r*(Mac@.
aNxI

Moreover, Y,*Y, is a bound for ]ct[ on 3QxI. Thus, Lemma 6.4 implies
(6.5) with the constant depending only on Yo and Yy if such a constant
suffices in (6.4). This is possible because the constant Y%-Yaz which
was introduced in passing from (6.9) to (6.10) can equally well be
replaced by Yi. Consequently, the improved version of Theorem 6.2
follows, and Theorem 6.3 results as before.

We conclude this section by giving two cases in which the
dependence of the constant in Theorem 6.3 on |”Z[HWi(T) and
sug £;}“ [Z]”Lm(e) can be suppressed. This dependence was introduced
iﬁ gounding |A(W:Z,%x) - A(w;Z,x)| by Lemma 5.3. Hence, if.the coeffi-
cient a is independent of w, then the constant can be taken indepen-

dent of these gquantities. In particular, this is the case if the

differential equation is linear or even semilinear.

Also, in the case of a quasi-uniform family of edge-to-edge
meshes the dependence of the constant C of Theorem 6.3 on Z reduces

to dependence on the solution.
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THEOREM 6.5. Suppose that IW is continuous. Iet M = sup h/hT Then there
TeT

exists a constant C = C(M, || wl| 2 o) such that

. -1 I
“ ZHWi(T) + ;JE ‘Ee " fz] l&.‘”(e) < C, tel.
0

Proof. Set 0 =2 - Iw. From an inverse mequal:l.ty, (6.2), and (2.3), we
obtain

Welidm =z el 2y < c e wlhel g

ccun el recuninl, o+ e 1) L7

<CM | W” 2,0
Since || Iw]| W]'(Q') < cllwli w]-(jr). “zHWl(T)f- c.
Finally, for e € EO a one~dimensional inverse inequality and (6.2)
imply that
-1 = 1
£e ” [z] ” Lm(E) = ’ee " [e] “ Lm(e)

< Vel =c g2 ml g < clvl,



CHAPTER VII

THE SECOND ENERGY ESTIMATE

In this section we prove an O (h') estimate on iz “L (L )

+ sup izl 1In particular an o(h*) estimate on |“C(0)”[ must

hold. Thus, assume that W(0) is chosen to satisfy

f _ 1 2[3(T)=-1] (12 .
(7.1 Iw -y Il < c ) 12 g3 gy v 23 (M erel,
TEeT
in addition to (4.2). The elliptic projection of w, is a satis-

0
factory choice (by Theorem 6.2), as is the interpolant Iwo (by

(2.10)).

The L2 projection of w, into M may also be selected to

0
initialize the procedure. Indeed Lemma 2.5 and an inverse assump-

tion imply that, for any W(0) € M,

liweoy- 1wl ? < c z hp 2l (0) -1wg I
TET
12 | _ 12
<C Zh (lw(o)- =W {IG,T +, 1on IWOIJO T)
TET

Now if W(0) is the L2 projection of w,, then W(0) |T is the L2

projection of wol into Mr(T) for each T € T. Consequently,

T

W (0) -w < Chj (T) “woﬂ ; SO HIW(O)—IWOHI 2

0“0 T = j(T),T

. 2[3(T)-1] 1 2 . . e
= CZhT ‘lwo Ilj (ry, 7+ 2pd (7.1) is satisfied.
Because of the nonlinearity and time-dependence of our

differential operator it does not commute with time differentiation,

40
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a fact which accounts for a multitude of terms appearing in
the analysis below. We begin by considering some of these
terms separately. Fix a function j: T » 2 such that

2 < j(T)<r+l for all T, and let

= 2[j(T)-1] 2 : L2, s
TET

+ HWO‘F@(TJ 'T) .

LEMMA 7.1. Given € > 0, there exist positive constants C=C(E,Y1}

* * *
and h = h (¢)such that for h<h and t € I,

t . - . -
(7.2) J[ {[A(W:w,ct) A(w,w:ct)] + (b(W) b(wJ;VEt)
0

) <[b({W}-b(w)]*n, (L] >, = (£(W)-£(w),{,)}dt
e€k
0

2 2
celleer P+ e [l e + e
0

t
Proof. We consider only J[ [A(W;W,Gt)—A(w:w,Ct)]dt, since the

0

lower order terms can be treated similarly. From integration by

parts it follows that

t
Jf [A(W;wfct)-A(w:w,Ct)]dt =J; + 3, + T35+ J,,
0
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where

3y = [AMWw,E) - AGwiw, D) 1],

t
3, =f [A(w;wt,c) - A(w;wt,c)]dt:
0

t 4 4
Jy = "f ([d_t a(W)- 3¢ a(w)lWw,Vg)dt,
0

t d
=t[ z < I3: a(W)-_-a(w)]{ } (¢l > dt.
0 e€t

Now,

|awsw, ) -atwiw,2) | < cttlel + ) n2lelf 22 llzll

by Lemma 5.3. Thus, if h is sufficiently small, then

19,0 < ecllewll®+ el ? + cligls w2
which is bounded by the right hand side of
(7.2) by (7.1) and Theorem 5.1.
Next, the same lemma shows that
t
3,1 < ctlel2 2, + () n2igl22 lm)l/znf Il 2l 2ae) +/2

0

< e[ " llelPar < cuy.

0

-To estimate J3 we use the decomposition

a d
gt 2W=gg atw=la (M) -a, (w) I+a, (W) g +[a, (W) -2, () v .
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Applying (5.5), we obtain the inequality

134 <& [ lel? K
) <3 fzd%at + ¢ [ Ul 2l %ae.
0 0

Similarly,

2
3,1 < ctliclf2 2, + (ZhTuc wlmy) 2+ (f le li%atyt

t - t
+ (f Zh,%llctﬂdet) 1/2, (f 2l 2ae) Y2
0 0

Now apply an inverse inequality as was done in (5.9), but with

t,v,and u replaced by their time derivatives. Hence,

t | t | o
(7.3) f Zhgilctflf,Tdt < 0f (1lc;tf12 + llutﬂz+th‘I’.dutﬂi 7)
0

0

t _ : 11, \
< Cf e I? +y 2By 122 5(m-1 4 ) at.
0

Therefore,
t , t
ol < 5[ leplfae v et [ el 2ae
0 _ 0

2[3(T)-11 I, 12 s (MY -
+) 20 w172 g3 (1) =1 7y ]

which is again of the desired form. This completes the proof

of the lemma.

dt
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LEMMA 7.2. Given € > 0, there exists C = C(YI'Y3“C”Lm(wi(T)N
such that
t t
(7.4)f l{fﬁ B(Wig,z)=2B(W;z,z)|dt < Ef -“Ct“zdt + CH,.
£ J
0
Proof. The integrand on the left hand side of
(7.4) can be rewritten as
d
(7.5) (G amve,vo - ) <G atwh &8, >,
eeE
2le 3z Z -1
25 a5, c> + 0 Lo le1, 121> .
e€t

We bound these terms individually. First,

| (g am Ve, o) | < | (a, ()5, 75,70) |+] (a,(Ww Ve,72) |+ (a, (W) Yz, VE) |

£ |
El Jl + C (1lgliL (W (T))Jljﬁlll,-r’

the time integral of which is bounded by the right hand side of
(7.4) by Theorem 5.1.

Similarly,

L <& awm Gah @13 | <ZI< () (g H2}, 21>,
eEE0

D | < a,mw B, >, | +Y [<ag @ &

The latter two terms are clearly bounded by c]||e;j|| while by (5.6) and (7.3),
21 <3 e HER 18) > 1< el el ol ) a2+ w2l gl 52l

Fhecd 2+ cllal pogd oy Aleli® B @ g 20 0.

I~
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The third term of (7.5) presents no difficulty, and

-1 -1
D <oylel > ] <y Yt | <ot Lta> |
Thus the proof is completed by an appeal to Theorem 5.1.

THEOREM 7.3 There exists C = C{yl,y3,75,!| zll Lm(wl(T))} so that for h

sufficiently small and any selection of integers j(T) € [2, r+l1], the

error g satisfies the inequality

2 2
el 202) + s llefil” + Swp I (2,2)

2[3(T)-1] 2

= ¢C j(T), "

2 ' o2 . 1 [
(0 1l 123 @=L gy #0152 (53 (T) gy )+ iy

Proof. Setting y = Tp = M in (5.2) yields the inequality

(7.6) [zl ’ 4 BT, Ty < (Gusm) + BT, M) + F(g) - Flu),
where by definition

F(9) == (o) -bW),79) + ) < (W) = blw]on, [ 9] >,

e€E,
+ (EW) - £(w), @) + A(w;w, @) - A(W;w, Q).

In view of Lemma 5.3,

B@wzu) |+ [Fu | < c izl Ml
Consequently,

f (IBMz,u) | + | Fuy) ])dtiC:[—Ij.

I

Also, [(z .m) | < % Izl 2, CHj. Applying these estimates and the
lemmas of this section to (7.6) yields the relation

t

t

2 . 1d 1 2 € 2

IHI z,l +§§B(W:Cfmdt_<5f Iz ll “at + % lllcce) || +CH, ter,
0

0
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where € > 0 is the value furnished by Theorem 5.2. Application of that

theorem and (7.1) completes the demonstration of Theorem 7.3.

Remark 7.4. The dependence of the constant on Yy in Theorem 7.3 results
from the frequent reliance on the first energy estimate. Hence, we can
replace Y1 by Yy in the conclusion if M approximates smoothly (see Remark
5.4). M::reoxfer, in that case the dependence of Y3 can be reduced to depen-
dence on Yy 4 Finally, the dependence on Yg arose only at the last step in
bounding J(z(0), £ (0)). Hence, if W(0) is taken to be a continuous func-
tion (which is, in principle, possible if M approximates smoothly), then
dependence on Yy 4 suffices. Thus, if M approximates smoothly, the second
energy estimate is valid independent of a bound on the interior penalty
function or its time derivative, and depends only on their ratio.

An inspection of the proof reveals that the dependence of the con-
stant on | z|| Lm(Wi; ™) is unnecessary if the coefficient a(x, t, w) is in-

dependent of w.



CHAPTER VIII
GENERALIZATIONS AND EXTENSIONS

8.1. A More General Equation.

We sketch briefly the modifications to the method and the proof
of Theorem 5.1 necessary to obtain the first energy estimate for the more
general differential equation

ow

. 9 ow
clx,t,w) =— = Z T qpg (Xetsw) = = f(x,t,w,Vw)
at r r r r
e 8xp Pq qu

Rere, f€ . @ x I x B, apq, ceq (@ xIxR), and the matrix (@
is symmetric. Moreover, we assume the existence of positive constants a
and ¢ such that
2
< ’ t.f r
alw] __Zapq(x p) Up ¥
¢ <Cx, t, 0
for all w € R® and (%, t, p)e Q X I xR.
Letn = (nl ’ nz) anddefinetheoononnaln;=n; (x, t, p)
1l .
(a n +a21e, 12:E!+a22n) Redefine the form A to be
- — acp -—
A9 = 3 @ (e) ) g—) > [<{an* b 1>, +<lel, 3L malVel
P,q9 eet

wherethef;inalargmrentofn;ismﬂerstoodtobe pif e€ E, and g if

0
e e Ea. Again set B = AhJ. Then Theorem 5.2 follows as before.
Define W: I —> M by
O + BEH,Y) = (0,7 W0 ~<g, 8>~ Y £ <og x>,
eEEa
for all x € M, as the same equations hold with w replacing W.

47
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The relation below is analagous to (5.4):
(C(let; X +*BWv,y = (C(W)ut;x) + B(Wip, y)

- (W), VW) - £(w,%w ) i) + [A(wwy) - A(w;w,x)]+([c(W)-c(w)]wt,x) .
As before, the last two of the five terms onthe right hand side are

bounded by
clull®+ ol 2+ w2 w2 )+ &l
TeT
Moreover,

| (£(W, VW) ~£(w, VW) ,x) | < | (£(H, VW) =£(w, VW) , %) |+] (£ (w, VW) =£ (w, VW) , x) |

sc izl + flvellxles Mvll® + S Wull + cll xIP.

Thus, setting y=v, we obtain

(8.1) (c)v,,v) + el]|v]]|? + %J(\J,v) < vyl + ﬁilllvlll2

+clllulll® + vi3.

Now,
d v Voga
(c{W)vt,\J) = EE[I pc(u-p)dpdx —ff pa—EC(u-p)dodx.
Q0 Q70
v
. 1 .42
Since f f pc(u=-p) dpdx >3 cilvil
Q 0
and

v
| _[ f o g—t c(u-p) dpdx | < cllvii?
2“0

integration of (8.1) over (0,t).c I achieves Theorem 5.1.
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8.2. Neumann Boundary Conditions.

We now indicate the alterétions to be made to the interior penalty
method and the foregoing analysis if the Dirichlet boundary condition (1.1b)

is rémexxihw'thexwﬁuralt%aﬁann condition

(8.2) a(x,t,w(x,t)). g—ﬁ(x,t)_-c- b(x,t,w(x,t))*n = g(x,t), (x,t)€3axI.

In this case the definitions of the forms A, J, and B, and the

associated norm are altered as follows:

Alpi9,¥) = (alp)Ve,VY) - z [ a({p}){%%},[¥17e+<a({o}) [?];{%} >e,
eeEo
Jew) =y totel s >,
eeE0

B(o:; 9 ¥)="A(p:o,¥) + J(9,¥)
B(¢,¥) = B(w;9,¥),

2_ ! 2 "r_@_CEr2 Z "'lj' '2
Mol = dei ;+ ) e 4322+ e titenl2

eeEO eeEO

for p,¢,¥ € HZ(T). Note that in the case of a natural boundry
condition the penalty function ¢ is defined only on the interior
edges.

The boundedness inequality (2.8) remains valid. However,
the coercivity result stated in Theorem 5.2 does not, as can be
seen by taking ¢ to be constant. Nevertheless, the proof of that
theorem can be employed to show that
%iflvcpilz - el - CZ 271 (o112

o e 1 EP 10'el‘
e€t

Alp: 9, 9) >

0
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where §' > 0 can be taken arbitrarily small if C is corres-

pondingly large. Hence we get the following Ggrding inequality.

THEOREM 8.1. There exists € > 0 such that for sufficiently

large Yo’
2 2
Blp: 9, @) + lled® >¢ |llloll|° + -%—J(cp,(p)
for all ¢ € M and p € H2(T).
The finite element solution W: I + M is defined by the

equations
(W_,x) + B(W;W,x) + (b(W),Vx) - Z <b'({w})-n,[x]>e=(f(W),X)-<g.x>
eefo
for all x € M. These equations are also satisfied when W is re-
placed by the exact solution,w. Equation (5.2) for the error
L=W-w then holds. Decomposing Z as u-v we obtain (5.4) exactly
as in the ‘case of Dirichlet boundary conditions. One can then
extract (5.10) as before, noting only that we must add,ﬂvﬂz‘to
both sides. The proof of the first energy estimate can then be
completed without difficulty, giving the statement of Theorem
5.1 unaltered except that Yy and the sum on the left hand side
are taken with reference to E0 rather than all of E. If M approxi-
mates smoothly, then the constant in Theorem 5.1 is entirely inde-
pendent of ¢ > Yor
In order to adapt the results of section 6, the elliptic
projection Z must be defined in such a manner that it does not
hinge on the strict coercivity of the form B. Let Z: I+M be de-
fined by the equations

B(2,X) + (Z,X) = B(w,Xx) + (w,X), xeM terI.
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The following lemma is the appropriate variant of Lemma 6.1.

LEMMA 8.2. Let t € I be fixed and suppose that ¢ € H2(T) satis-

fies the equations

B(¢IX) + (d,x) = F(X)r X € M:

where F: H2(T) + [R is a linear map. Let M; and M, be constants

for which

| Feo)! < Mylllelll  i£ 0 e v2(D),

it | . 2 —'a—'i_
| F(¥)] < 1\12,11%]2’9 if ¥ € B° and z— = 0 on 0.

Then, . ol < c(]||&]]] + M,)h + M,, where C depends on

sup {o(x,t) | (x,t) € VEI}.
The proof is a simple modification of that of Lemma 6.1. Naturally,
the function ¥ in the proof is defined by the boundary value problem
-Ve(a(w)V¥)+ ¥ = ¢, %% = 0 on 30. Next, one derives without diffi-
culty the Neumann version of Theorem 6.2 in which the form B is
replaced by B(+,*) + (+,*) and Y1 and Y3 are defined with reference
only to U|UEOXJ. This accomplished, the proof of Theorem 6.3 adapts
simply to the present case. Indeed, (6.1l) is correct as given.
Since
B(Win,x) - Alw;w,x) + A(Wi;w,X) = A(W;Z,X) - A(w;Z,x) =(n.X),

instead of (6.12) we obtain that

(st,x) + B(W;E,%X) + (§,%) = (ngeX) + [A(W;2,X) - A[w;2Z,X)]

(5,0 + (B)=b(W),TX) = ) bW} - blw) Ion, [X]>
e€E

-(£(wW) = £(w),X).
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The additional term (£,y%) on the left hand side allows us to use
the weakened coercivity result of Theorem 8.1, while the term
(z,x) on the left hand side causes no additional trouble.

The proof of the second energy estimate is based on (5.2),
which holds in the Neumann case. Thus one has little difficulty
adapting the proof. The details, whiéh are of the same sort con-
sidered above, will be cmitted.

8.3. A Multipenalty Method.

If the mesh T is to be changed from time to time as the char-
acter of the solution w changes, it is necessary to interpolate the
approximate solution from one mesh to another, which inevitably intro-
duces interpolation errors. Let us sketch briefly and heuristically

how interior penalties can be used to minimize such errors.

Let
- ) Y
Ty = Y £.<oy 13, 15 Do
eeEO
where o4 € L” QJEOXI)is a non-negative function, and set BI§B+J1.

Define Wl: I - M by the equations derived from (4.1) by replacing

B with B,- Then it is easy to show, as is indicated below, that

gowt, wh + 3, ', wl) is bounded by the right

hand side of (5.1). If ¢ and g, are large on some edge e € EO’
this estimate tells us that the discontinuities of Wl and its
normal derivative across e, are small and decrease with h. Suppose

1. . . . . . .
now that r=1, so that W  is a piecewise linear or piecewise bilinear
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function. Such a function is determined by its values and
those of its normal derivative along a line segment. Hence,
when o and o, are large on ey Wl is essentially the same
function on both sides of e. Therefore, if we interpolate Wl
into the mesh derived from T by removing the edge e, the error
should be small.

Conversely, to introduce a new edge into the mesh, we
can begin with the penalties at that edge large and reduce them
to pass smoothly from the old mesh to the refinement.

For r > 1, the same heuristic considerations apply if we
use the form B = B + J; + Jyt...t Jr' where

1

k k
_ 2k-1 3 Y
T o) =) 4 <o L1, T >
eeE0

Now, for all ¢ € Hk(T) and e € ET'

k
o 12 -1 2 2
R O S T A Y + 2_ | ) .
ank 0,e e k,T e k+1,T

It follows that, if ¢ € HI(T) with k+l<jer+l, then

2k-1
e

k
na -
LT e (-1 ug,e < cczjk 2 [rp—IcpI]i,T + EZkICP—WI,Z{ﬂ,T)-

an

r+l

Thus, for ¢ € H (T)’

- k
E : 2k-1 y .9 _ 12 < z: 2[3(T)-11 .42
e€t TEeT

k+lej(T)=r+l.
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In the multipenalty method we define Wk via the form
Bk and let Ck = Wk - W.

THEOREM 8.3. There exists a constant depending on Y and

sup'{[oi(x,t)ll x €vEy, t € I, l=i<k} such that

2 2
I

234D =11 (1 12y sy 2, .
=c ) »l G i g 3D =1 gy 23 @ gy
TeT

+ h%)w ) for k+leJ(T)<r+l.

I 2
ot j(T),T
The proof of Theorem 5.1, almost unchanged, gives
Theorem 8.3. Since Ji(w,x) = 0 for all i > 1 and x € M, the
error equation (5.2) holds with By and Cx replacing B and Cx
replacing B and 7. Moreover, it is clear from Theorem 5.2

that

2 1 .
B(pi@r®) Z e [[[@lll® + 3 T3 (0,9 +3 (9,0 4. 4T (2,9)

Thus, the claimed bounds reduce to bounds on u, which hold
by (8.3).

In a similar manner analogues of the Lm(Lz) and second
energy estimates can be shown for the multipenalty method.

We note that the form Jl is exactly the one used by
Douglas and Dupont [8] in creating their conforming interior

penalty method mentioned in the introduction.
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8.4. Elements of Varying Degree.

In the context of discontinuous finite elements it is an easy
matter to let the degree r vary from element to element. This fact was
exploited by Percell and Wheeler [1l] in their local residual finite
element procedure, and they proposed the strategy of using polynomials
of low degree subordinate to a fine mesh in regions where the solution
is relatively rough and higher degree polynomials subordinate to a
coarse mesh in regions of smoothness of the solution.

There is no difficulty in adapting our analysis to allow
for this possibility. Given an integer-valued function
TETHKH r(T) =1, set

Moo= {xe @) Xlp € My @, TETh
The usual range 2 < j(T) < r+l should then be replaced with 2 < j(T)=r(T)+1.
All the results previously stated remain valid. Note however that with r
variable M will not generally approximate smoothly even if the mesh is

edge—-to—-edge.

8.5. The Interior Penalty Method in Three Dimensions.

We have thus far restricted our attention to two-dimensional domains
because of the greater complexity of the geometry of three dimensions. In
particular, general tetrahedral meshes are of a complexity sufficient to
make their irré:lemantation impractical in most cases. This is certainly not
true of rectangular meshes in IR3, which are little more complicated than
their two-dimensional counterparts. Because the interior penalty method

does not require an edge-to-edge mesh (in three dimensions better termed
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a "face-to-face mesh"), it offers the possibility of using a
refined rectangular mesh only in that part of the domain where
it is needed, a consideration of particular importance in three
dimensional problems. Therefore, we feel it is worth observing
that the previous analysis can easily be applied on domains of
three (or n) dimensions.

Let T be a rectangular mesh of a domain Qc[R3. Thus each
element T € T is a rectangular parallelpiped of the férm T=leI2XI3
with Ij a closed interval. In practice some allowance for boun-
dary elements must also be made. T is again subject to a shape
constraint by assuming that each T € T is Lipschitz to a closed

ball in RS

with the Lipschitz constant of the homeomorphism and
its inverse bounded by a fixed constant K. Equivalently, we
assume the existence of a fixed constant bounding the ratios of
the faces of T € T.

The appropriate definitions of EO and Ea are:

E ='{Tlr1T2[ T,» T, € T are distinct, T

0 NT

1
is not contained in a line },

2

Ey = {T, N3a | T, N 3% is not contained in a line}.
For e € E = Eot)Ea let £e = VE;, the square root of the area of e.
As before, T is graded with a grade constant K' if £e Z:KhT for
each e € E and T € T such that e<T. Thus, as in the two-dimen-
sional case, £e is taken to be representative of the diameters of
the nearby finite elements. Note that the trace inequalities (2.4)

and (2.5) remain wvalid.
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The analogue of Lemma 2.3 is the assertion that
z:{iel e €E, enL # #} < C (XK, K, Q)

for each line L parallel to the x-axis in R3. Its demonstration,
as in the rectangular case in IRZ, is trivial.

Almost without exception the remainder of the definitions
and assertions adapt to several dimensions without difficulty.
One result depending on the dimension is the inverse inequality

relating Wi(T) and Hl(T) norms. In n dimensions.

-n/2 ."'lt?r'LHl (T)

'“W“wi(m) < Ch
for all polynomials ¢ on T, where C depends on the shape of T
and the degree bf ¢. This affects the proof of Theorem 6.5 and
the reqgularity required on w for that result. Similarly, the one-

dimensional inverse inequality used in that proof must be replaced

by the appropriate two-dimensional inequality.



CHAPTER IX

THE PENALTY FUNCTION

In subsection 8.3 we suggested an application of the
interior penalty method to mesh refinement for which it is
clearly valuable to be able to choose the penalty functions
with some degree of flexibility. In addition, one of the
initial motivations of this study was the possibility of using
interior penalties to adjust the smoothness of the approximation
to the behavior of the solution. For these reasons we have
avoided placing undue restrictions on the penalty function o,
even when this would have simplified the analysis. Let us re-
call what restrictions have been made.

These have been formulated in terms of the boundedness
of the guantities Yir listed at the end of subsection 2.4. First,
we have assumed throughout that Yor @ lower bound for o, is suffi-
ciently large. This is necessary for the coercivity result of
Theorem 5.2 (or even for a G;rding inequality as in Theorem 8.1)
and is entirely to be expected. In case M approximates smoothly
the only additional assumption.necessary-is that Yoo the supremum
on the boundary of the penalty function, remain bounded. This
is a very mild restriction since our main interest is in adjusting
the interior penalties, and it is not unreasonable to fix G[BQXI
at some sufficiently large constant value. However, in the general

case our estimates also depended on Yqr the least upper bound for
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o on all edge-segments. This limitation is not unexpected,
for -- reasoning heuristically-- if the constant C in (5.1)
were to remain bounded as we let ¢ tend to infinity, then

W

W would tend to a continuous optimal order approximation
of w in the subspace M. But if M does not approximate smoothly,
then there exist functions w for which no continuous optimal
order approximation can be found in M.

This distinction of cases is reflected in the Lm(Lz)
and second energy estimates as well. These require bounds on

o and |o (Yl and Y3 respectively) in general but only on

¢l
cr|8Q and a growth condition in case M approximates smoothly.

Note that in the latter case ¢ may be arbitrarily large on EO,
so the growth condition, that vy, = sup | o_lct] be bounded, is
much weaker thatn the assumption that [Gt| be bounded.

Since a change in ¢ causes a change in W, it is reasonable
that the estimate Of'HCtHLZ{LZ) provided by Theorem 7.3 depends
on o,. In Theorem 6.3, however, this dependence was introduced
by the method of proof which bounded. ,HC“LW(LZ) in terms of the

time derivative of the error in the elliptic projection. The author

does not know whether another proof might be found which avoids
this difficulty.

In Theorem 7.3 it was also assumed that y. = sup|o(x,0) |
(or Ye if M approximates smoothly and W(0) is continuous) be
bounded. This is easily seen to be necessary.

Finally, let us note that o need not be furnished as an

explicit function of x and t. For example, in the favorable case
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of smooth approximation the basic energy estimate remains
valid if o] VE T is any function which is bounded below by
Yo+ In particular, ¢ can depend on the approximate solution
at an earlier time. The very interesting question of effective

choice of the penalty function is presently under investigation.



APPENDIX

We now give the deferred proof of the assertion of Lemma 2,3

that

(A.1) > {)ze| ee E, e NL # §} < C(K,K",Q)

for each line L in IRZ. Here Q is a polygonal domain, E is the set
of edge-segments of a mesh T on Q which consists entirely of tri-
angles or rectangles, K is a shape constant for T, and K' is a grade
constant, Actually, in the rectangular case, we restricted L to be a
line parallel to the x-axis since this sufficed for our purposes and
rendered the proof trivial. However, the full claim in the rectangular
case can be derived from that in the triangular by adding a single
diagonal to each rectangle, a construction which does not decrease the
sum in (9.1), leaves K' unchanged, and at most doubles K.

To prove the lemma in case | is a triangulation (i.e., a mesh
consisting of triangles), we shall use as a measure of the shape con-
straint on T an angle bound for the triangulation; that is, a positive
lower bound on all angles of triangles in T (see Remark 2,2). We first

prove the assertion for edge-to-edge triangulations.
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LEMMA, Let £ _be the set of edges of an edge-to-edge triangulation

with angle bound 6. Then,

S {t |eekE,enL#F} < C(6,9)

for all lines L in IR.Z.

Proof. First we claim that we can assume without loss of generality

. . . . + -
that L contains no vertex of the triangulation. For, if L and L
are sufficiently near parallel translations of L in opposite directions,
then neither contains a vertex, and every edge intersected by L is also
. . + - . .
intersected by either L or L with the exception of any edges con-

tained in L. Therefore,

Z{ze] enL#¢} gZ{ze] enst#¢} +E{ze|en L # ¢} +diam(Q),

and so it suffices to bound the latter two sums.

Let N be the least number of convex subsets of 2 which cover Q.
Since T is a finite convex cover, N < co. The number of connected com-
ponents of L neQ is at most N, so it suffices to prove the existence of
C = C(6,Q) such that

2. (e lentfglcc

for each connected component I of LNQ.

The following notations are illustrated in Figure 3. Let

Tl’ Tz, cees Tm be the triangles intersecting I taken in order (beginning
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at either end of I). Let eo, €preves em be the edges intersecting I,

again ordered, so € .1 Ueic_ Ti ,i=1,,.., m  Let H+ and H be
2

the two components of IR \ L, H+ being the half plane which contains

only one vertex of 'I'1 .

Figure 3. m=6, k=3, i(1)=2, i(2)=4, i(3)=5.

We shall say that the triangle Ti points up if Ti has a single vertex in H+:

otherwise, T, points down. By construction, ']."1 points up. For certain
1

integers i, 1<i<m-1, 'I‘i and Ti+1 point differently. Let
i(1) <i(2) < .-+ <i(k) be all such integers. Also, set i(0) = 0, i(k+l) = m,
Our next claim is that there exists a constant Ml depending only

on 6 such that i(j+l) - i(j) < M, for j=0,1,...,k. Indeed, the tri-

1

angles Ti all point in the same direction, say up,

G+1 TiG)+2 " Tig)

. . +
and all share a common vertex, namely the unique vertex of eachin H .
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Now, the sum of the angles of these triangles at this vertex is the angle
formed by e.,., and e,,. . Since both these edges meet I, this sum
i) i(j+1) e ’

is less than w, Thus i,. - i, .})8 < mw, and we can take M., = 7w/60.
» Gy G <™ /

1
As a consequence, there exists a constant MZ depending only on ©

such that

(A.2) max{ze lij)g i< i(j+1)} < M, rﬁin{!e' li() < i<i(j+1)}, j=0,1,..., k.

i i
Now, if k =0, then m = i(l) S_Ml +i(0) = Ml’ so that
m
> 1 < (M, + 1)diam(Q) ,
: e, 1
i=0 i
and the lemma is proven, Hence, we assume k> 0,
Let p. =e.,. L, j=0,1,...,k+l, and set v, =e_,. Ne,,.
P = &g N i G- TG e

j=1,2,...,k+l (see Figure 4).

Figure 4. The points p, and Vi
1

Now the angle formed by e, and e measures at least 8, so

i(0) i(1)
[pl - pol > |v1 - pl[sine. Similarly, [pz- pl[ > [pl - v2|sin8 .
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Adding, we get |p2- p0| 2 £, sin6. By (A. 2),

i(1)
i(2
2.t o< (M4 1)M2{p2- Pyl /siné .
=i(0) i
Similarly,
i(j+1

. 5M3|pj+l-pj_1| , j=1,2,...,k,

i=i(G+1) i

where M3 = (ZM1 + l)Mz/sin 8. Summing, we find that

m Kk i(j+l K
Z !e < z Ie < M3z Jp-_;_l' P-_li
i=0 i j=11i=i(j-1) ‘i j=1 J
K
< 2M3J§J lpj+1 - pjl < 2M,diam(@) .

This completes the proof of the lemma.,

To prove Lemma 2.3 for general triangulations, we show that an
arbitrary triangulation can be refined to an edge-to-edge triangulation
without loss of control of the grade constant or angle bound. Given a
triangulation U of @, let E ( U) be its set of edge-segments. A second

triangulation V of Q is a refinementof U if E (U)< E (V).

LEMMA. A triangulation T with grade constant K and angle bound 6
has an edge-to-edge refinement U such that K is a grade constant for

U and a.rv:s.in(l{z-k sin®) 1is an angle bound for U,
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Proof. If T 1is not already edge-to-edge, let T € T be a triangle and
E an edge of T such that some vertex of the triangulation lies interior

to E. Let VorVyree- )V B > 1, be all the vertices on E in order so

that Yo and v, are the endpoints of E. Denote by e, the edge-

segment from Vil to v, Then

diam(T) 2 > £ 2 > diam(T)/K ;
i=1

i=1 i i=

so, n< K.
Let v be the vertex of T opposite E and consider the refine-

ment T . of T obtained by dividing T along the line segment from

1
v to v, (see Figure 5). Note that K is a grade constant for T |+ since

the new edge has length

|v—v1| 2min(|v-v0|, ]v-vn|) > diam(T)/K.

Figure 5. Division of the triangle T.
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-1
Moreover, we shall show that arcsin(K ~ sin®) is an angle bound

and v,. We

forT 1 Consider the triangle T, with vertices ViV 1

1

must show that Kﬁl sin® is a lower bound for the sines of the angles

of T.. Let o, Py and ? be the angles at v,v_, and v. respectively,

1 0 1

By hypothesis sin ?0 2 sin 6. Using the law of sines we obtain that

!V'Vol -1
sin ¢, = sing, > K sin§,
1 }V'Vll 0 -
v, -v. | )
sin ¢ = S sin 20 > K lsinG,
I

as claimed,
We apply the same arguments to the sequence of refinements

. - T - . .
TZ’ T3,..., -1’ where Ti is obtained from i-1 by joining v

to v,. It follows that K is a grade constant for each .Ti while
i

- 1-
arcsin(K 'sin 8) is an angle bound. In particular, arcsin(K K sin 8)

is an angle bound for T n-l"

It is also possible that there lie vertices of the original tri-

angulation on other edges of the triangle T. Consider the refinement

to ‘Tn | obtained by joining these vertices to the opposite vertex of

the subtriangle of T in which they lie (e.g., vertices on the edge
from v to vy are joined to vl). The same argument shows that K

2-2
and arcsin(K Kyin 8), respectively, are grade constant and angle

bound for this refined partition.
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Finally, we note that the same construction may be applied to
all the triangles of T , resulting in the desired edge-to-edge

triangulation [ .
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