
LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION∗

DOUGLAS N. ARNOLD† , ARUP MUKHERJEE‡ , AND LUC POULY§

SIAM J. SCI. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 431–448

Abstract. We present an algorithm for the construction of locally adapted conformal tetrahedral
meshes. The algorithm is based on bisection of tetrahedra. A new data structure is introduced, which
simplifies both the selection of the refinement edge of a tetrahedron and the recursive refinement to
conformity of a mesh once some tetrahedra have been bisected. We prove that repeated application
of the algorithm leads to only finitely many tetrahedral shapes up to similarity, and we bound the
amount of additional refinement that is needed to achieve conformity. Numerical examples of the
effectiveness of the algorithm are presented.

Key words. bisection, tetrahedral meshes, adaptive refinement, similarity classes, finite ele-
ments

AMS subject classification. 65N50

PII. S1064827597323373

1. Introduction. The generation of locally adapted conforming tetrahedral
meshes is an important component of many modern algorithms, for example, in the
finite element solution of partial differential equations. Typically, such meshes are
produced by starting with a coarse tetrahedral mesh, selecting certain elements for
refinement, somehow refining those elements and others as necessary to maintain
conformity, and then possibly repeating this process one (or more than one) time.
In this paper we present a simple algorithm for this purpose, and we analyze its
behavior. In particular, we consider the question of the shape of tetrahedra that
may arise from repeated application of our algorithm and show in section 4 that only
a fixed finite number of dissimilar tetrahedra ever arise. A fortiori, the tetrahedral
shape cannot degenerate as the mesh is refined in the sense that all the solid angles
of all the descendants remain bounded below by a positive constant depending on the
tetrahedra in the initial mesh.

The basic refinement step in our algorithm is tetrahedral bisection as in Fig-
ure 1. When bisecting a tetrahedron, a particular edge—called the refinement edge—
is selected for the new vertex. As new tetrahedra are constructed in the course of
generating an adapted mesh, their refinement edges must be selected carefully; oth-
erwise element shapes may degenerate. A key aspect of any bisection algorithm is the
selection of the refinement edge.

To refine a given conforming mesh we first bisect those tetrahedra that have
been selected for refinement. This will usually lead to a nonconforming mesh (a mesh
in which neighboring elements do not meet face-to-face). We then apply a recursive
procedure to further refine until a conforming mesh is produced. Since it is not obvious

∗Received by the editors June 23, 1997; accepted for publication November 24, 1998; published
electronically July 13, 2000.

http://www.siam.org/journals/sisc/22-2/32337.html
†Department of Mathematics, Penn State University, University Park, PA 16802 (dna@

math.psu.edu). The work of this author was supported by NSF grants DMS-9500672 and DMS-
9870399.

‡Department of Mathematics-Hill Center, Rutgers—The State University of New Jersey, Piscat-
away, NJ 08854-8019 (arup@math.rutgers.edu).

§Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzer-
land (Luc.Pouly@elca.ch). Current address: ELCA Informatique SA, CH-1000 Lausanne 13, Switzer-
land. The work of this author was supported by the Swiss National Research Foundation.

431

432 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

Fig. 1. Bisection of a single tetrahedron.

that this procedure will terminate in finitely many steps, in section 3 we provide a
rigorous proof that this is the case and establish bounds on the number of steps.

Besides bisection, tetrahedra may be subdivided by octasection. This approach
has been studied by Zhang [13] and Ong [10] to obtain uniformly refined meshes.
However, octasection cannot be used alone to produce locally adapted conforming
meshes. Motivated by work in two dimensions, where local quadrisection has been
successfully combined with bisection to obtain conformity (cf., for example, Bank’s
code PLTMG [2]), Bey [4] has studied the use of local octasection combined with
a variety of supplemental refinement strategies which are used to obtain conformity.
By contrast, bisection can be used alone to create locally refined conforming meshes,
which adds to the simplicity of its implementation. A further advantage of bisection
over octasection is that it potentially allows finer control over mesh size. If an error
indicator flags an element for refinement, with bisection the element can be divided
to reduce its volume by a factor of 2, 4, . . . , as required, while with octasection it is
not possible to reduce element volume by a factor less than 8.

A number of other authors have proposed bisection-based algorithms for the re-
finement of tetrahedral meshes. In the pioneering paper [3], Bänsch presented an
algorithm for local tetrahedral mesh refinement and discussed element shape degener-
ation. Although our algorithm appears quite different from Bänsch’s, it is essentially
equivalent, as we shall discuss in section 2. Another paper which influenced our work
is that of Maubach [7]. Maubach considered the question of assigning refinement edges
to successive bisections of a single simplex in an arbitrary number of dimensions. His
algorithm cannot be easily applied to generate conforming adapted meshes, except
for quite special initial meshes. For successive refinement of a single tetrahedron, we
establish the precise relationship between our method and his in section 4. We show
that his method generates only finitely many similarity classes of simplices (in n di-
mensions), and from this we deduce the same result for our algorithm. Liu and Joe [6]
also study local refinement by bisection. Their algorithm, which is relatively compli-
cated to state and to analyze, is in fact closely related to Bänsch’s and therefore to
ours. The relationship is discussed in section 2. Liu and Joe [5] prove that their al-
gorithm generates only finitely many similarity classes, although their bound exceeds
our sharp one by a large factor. A quite different approach to tetrahedral bisection has
been pursued by Rivara [11] and Rivara and Levin [12]. They always use the longest
edge of a tetrahedron as the refinement edge. In two dimensions, this approach leads
to a finite number of similarity classes, although the number may be arbitrarily large,
depending on the initial triangle [1]. As far as we know, the question of finiteness of
similarity classes or even of element degeneration for longest edge bisection remains
open in three dimensions.

A new aspect of our work is a data structure, which we name marked tetrahe-
dron, used to store a geometric tetrahedron together with information necessary to
choose its refinement edge and that of its descendants. This data structure is small—it
contains just a little additional information beyond the vertices of the tetrahedron—

LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION 433

and it allows us to describe the bisection algorithm simply. Moreover, the marked
tetrahedron data structure is useful for insuring mesh conformity. Any conforming
tetrahedral mesh can be marked to yield a conforming mesh of marked tetrahedra,
and therefore our algorithm does not require any restriction on the initial mesh.

2. Bisection of a single tetrahedron. In this section we describe the marked
tetrahedron data structure and present the algorithm BisectTet. BisectTet bisects
a marked tetrahedron by introducing a new vertex at the midpoint of the refinement
edge and joining it to the two vertices of the original tetrahedron that do not lie on
the refinement edge. It also marks the children (for use in further refinement).

To define a marked tetrahedron we introduce some terminology. For a tetrahedron
τ , let V(τ), E (τ) , and F(τ) denote the set of its vertices, edges, and faces, respectively.
For ϕ ∈ F(τ), E (ϕ) denotes the edges contained in ϕ. Once a particular edge has been
specified as the refinement edge of τ, the two faces that intersect at the refinement
edge are called its refinement faces. For a marked tetrahedron we specify not only the
refinement edge, but also a particular edge of each of the two nonrefinement faces.
These are called the marked edges of these faces, and we take the refinement edge
itself as the marked edges of the two refinement faces. Each marked tetrahedron is
also assigned a boolean flag. The flag is always unset unless the marked edges of the
four faces are all coplanar (we call this a planar marked tetrahedron), in which case
the flag may or may not be set.

More precisely, a marked tetrahedron τ is a 4-tuple(V(τ), rτ , (mϕ)ϕ∈F(τ), fτ
)
,

where
V(τ) is a set of four noncoplanar points in R3, the vertices of τ ;
rτ ∈ E (τ) is the refinement edge of τ ;
mϕ ∈ E (ϕ) is the marked edge of ϕ, with mϕ = rτ if rτ ⊂ ϕ;
fτ ∈ {0, 1} is the flag, with fτ = 0 if τ is not planar.

Each marked nonrefinement edge of a marked tetrahedron is either adjacent or
opposite to the refinement edge. Thus, we can classify marked tetrahedra into types
as follows (cf. Figure 2).

• Type P, planar: the marked edges are coplanar. A type P tetrahedron is
further classified as type Pf or type Pu, according to whether its flag is set
or not, respectively.

• Type A, adjacent: the marked edges intersect the refinement edge, but are
not coplanar.

• Type O, opposite: the marked edges of the nonrefinement faces do not in-
tersect the refinement edge. In this case, a pair of opposite edges are marked
in the tetrahedron: one as the refinement edge, and the other as the marked
edge of the two nonrefinement faces intersecting there.

• Type M, mixed: the marked edge of just one of the nonrefinement faces
intersects the refinement edge.

When a tetrahedron τ is bisected to create children τ1 and τ2, a face ϕ ∈ F(τi)
is called an inherited face if ϕ ∈ F(τ), a cut face if ϕ � ϕ′ for some ϕ′ ∈ F(τ), and
a new face otherwise. Each child has one inherited face, two cut faces, and one new
face, which is common to both children. Cf. Figure 3. We are now ready to state
BisectTet.

Algorithm {τ1, τ2} = BisectTet(τ)
input: A marked tetrahedron τ

434 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

P

O M

A

Fig. 2. The four types of marked tetrahedra: P, A, O, and M . Each marked edge is indicated
by a double line and the refinement edge is marked for both faces containing it. Each tetrahedron is
shown in three dimensions and cut open and unfolded into two dimensions.

2

3

4

1

4 4

4

3

4

4

1 4

4

1

4
3

+ν ν

i
nc

c

n
i

c

c

Fig. 3. Typical bisection of a tetrahedron with the new vertex marked ν, cut faces marked c,
inherited faces marked i, and new face marked n.

output: Marked tetrahedra τ1 and τ2
1. Bisect τ by joining the midpoint of its refinement edge to each of the two

vertices not lying on the refinement edge. This defines V(τi) for i = 1 and 2.
Mark the faces of the children as follows.
2. The inherited face inherits its marked edge from the parent, and this marked

edge is the refinement edge of the child.
3. On the cut faces of the children mark the edge opposite the new vertex with

respect to the face.
4. The new face is marked the same way for both children. If the parent is type

Pf , the marked edge is the edge connecting the new vertex to the new refinement
edge. Otherwise it is the edge opposite the new vertex.

5. The flag is set in the children if and only if the parent is type Pu.
The algorithm is illustrated in Figure 4. Note that the tetrahedra τ1 and τ2 output

by BisectTet will be of the same type. Figure 5 summarizes the relation between the
input tetrahedron type and the output tetrahedra type. Note that types M and O
are never output.

We close this section by relating the algorithm just described to those of Bänsch [3]
and Liu and Joe [5], [6]. The relationship to the work of Maubach [7] will be treated in
section 4. Bänsch used a slightly different system for marking a tetrahedron. Namely
he associated to each face of the tetrahedron a unique marked edge. He assumes
that at least one edge is marked in both faces containing it, and he calls such an
edge a global refinement edge. This allows the possibility that a tetrahedron has two
global refinement edges. Bänsch is not explicit in how such a tetrahedron is bisected.
Presumably an arbitrary selection of one of the global refinement edges is made.
Assuming such a selection, there is a direct correspondence between Bänsch’s marking

LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION 435

u

P

A

M

O

P A

P

P

Pf

u

u

P

f

u

Fig. 4. Bisection rules for marked tetrahedra.

A Pf

Pu

M O

✲✟✟✟✟✟✟✟✟✟✟✯ ❍❍❍❍❍❍❍❍❍❍❥

◗
◗

◗
◗�

✑
✑

✑
✑✰

Fig. 5. The types of tetrahedra produced by BisectTet.

and ours. Bänsch refers to a tetrahedron of type A as red, one of type P as black, and
does not explicitly name tetrahedra of type O or M . Our marking also involves a flag
which for planar tetrahedra may be either set or unset. Bänsch addresses the same
situation by referring to the parent of the tetrahedron: he singles out black tetrahedra
with black parents for special treatment. These are precisely our tetrahedra of type
Pf . For each type of tetrahedron Bänsch furnishes a picture showing how it should
be refined. The algorithm thus described is, via the correspondences just presented,
precisely equivalent to BisectTet. In this sense, BisectTet may be thought of as a
convenient reformulation of Bänsch’s algorithm.

The relationship to the work of Liu and Joe is less direct. In [5] they present
an algorithm for the repeated bisection of an arbitrary tetrahedron. For this they
introduce a special tetrahedron with a specific ordering of its vertices. The special
tetrahedron and its descendants are always bisected using the longest edge as the
refinement edge. They show that, for this particular tetrahedron, the mesh of nth

436 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

generation descendants is conforming and contains only one similarity class, which,
in fact, depends only on n mod 3. To bisect an arbitrary tetrahedron, they choose an
ordering for its vertices and use this to define a unique affine isomorphism with the
special tetrahedron. The descendants of the arbitrary tetrahedron are then given as the
inverse images of the descendants of the special tetrahedron under this transformation.
Liu and Joe prove that the descendants fall into at most 168 distinct similarity classes
and give a lower bound for a measure of their shape.

To draw the connection with BisectTet, we mark Liu and Joe’s special tetrahe-
dron with vertices p0, p1, p2, and p3, defined in their paper, so that p1p2 is the refine-
ment edge and p1p3 and p2p3 are the other marked edges. This is a planar marking,
and we leave the flag unset, so that the special tetrahedron is marked to be type Pu.
It can then be verified that applications of BisectTet to this marked tetrahedron
and its descendants always bisect the longest edge. Indeed, for the first three gener-
ations this can be computed explicitly, and it turns out that at the third generation
all of the descendants are similar to original special tetrahedron and correspondingly
marked, so the bisection of the longest edge continues. Thus, for the special tetrahe-
dron with appropriate marking, Liu and Joe’s algorithm coincides with BisectTet.
For an arbitrary tetrahedron with a selected ordering of its vertices we may use the
affine isomorphism of the previous paragraph to transfer the marking from the spe-
cial tetrahedron, and then we again have equivalence between the algorithm of Liu
and Joe and the algorithm BisectTet. To summarize, given an arbitrary tetrahedron
and an ordering of its vertices, we can determine a marking of this tetrahedron of
type Pu, so that our algorithm and Liu and Joe’s algorithm for repeated bisection of
the tetrahedron are equivalent. In this sense the algorithm of [5] is equivalent to the
special case of BisectTet applied to a tetrahedron of type Pu and its descendants.
As a consequence we may apply our results from section 4 below to deduce that the
descendants in fact fall into at most 36 similarity classes.

As remarked by the authors themselves, the question of how the algorithm of [5]
can be applied to create a locally refined conforming mesh is far from obvious. This
is the subject of [6]. The final algorithm, QLRB, which incorporates other algorithms
called BISECT1, BISECT2, TRANBIS, NEWTYPE, REFINE, and PREBISECT, is far too com-
plicated to describe here. We are not able to ascertain the precise relationship with
BisectTet and the algorithm LocalRefine presented in the next section, although
there are clearly points of similarity. In particular, the tetrahedron classes DD, DSS1,
DSS2, and DSS3 introduced in [6] directly correspond to our types O, P, A, and M,
respectively. In our analysis of LocalRefine in the next section we prove a termina-
tion theorem, Theorem 3.1. This is in fact the exact analogue of Theorem 3.1 for QLRB
of [6].

3. A locally adaptive mesh refinement procedure. In many applications,
such as adaptive finite element computations, one wishes to construct a sequence
of nested conforming meshes which are adapted to a given criterion. A key step is
the construction of a conforming refinement of a given conforming mesh, in which a
selected subset of elements has been refined. In this section we describe an algorithm
based on BisectTet to accomplish this.

Before stating the algorithm we fix some terminology. A mesh T of a domain Ω
in R3 is a set of closed tetrahedra with disjoint interiors and union Ω̄. The vertex
set of T is V(T) =

⋃{V(τ) : τ ∈ T }. The edge set E(T) and the face set F(T) are
defined similarly. A mesh is conforming if the intersection of two distinct tetrahedra
is either a common face, a common edge, a common vertex, or empty. If τ ∈ T and

LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION 437

ν ∈ V(T), we say that ν is a hanging node of τ if ν ∈ τ \ V(τ). A mesh is conforming
if no tetrahedron in it has a hanging node and every face of every tetrahedron in
the mesh either belongs to the boundary or is a face of another tetrahedron in the
mesh. A mesh is marked if each tetrahedron in it is marked. A marked conforming
mesh is conformingly-marked if each face has a unique marked edge (that is, when
a face is shared by two tetrahedra, the marked edge is the same for both). Given an
arbitrary conforming mesh the following marking procedure yields a conformingly-
marked mesh. Strictly order the edges of the mesh in an arbitrary but fixed manner,
for example, by length with a well-defined tie-breaking rule. Then choose the maximal
edge of each tetrahedron as its refinement edge and the maximal edge of each face as
its marked edge. Unset the flag on all tetrahedra. (The assumption that the coarse
mesh has no flagged tetrahedra will be used in the analysis below.)

We now state the main algorithm of this section.
Algorithm T ′ = LocalRefine (T ,S)

input: conformingly-marked mesh T and S ⊂ T
output: conformingly-marked mesh T ′

1. T̄ = BisectTets(T ,S)
2. T ′ = RefineToConformity(T̄)

The algorithm in the first step, BisectTets, is trivial; we simply bisect each tetrahe-
dron in S:

BisectTets(T ,S) = (T \ S) ∪
⋃
τ∈S

BisectTet(τ).

In the second step, we perform further refinement as necessary to obtain a conforming
mesh:

Algorithm T ′ = RefineToConformity(T)
input: marked mesh T
output: marked mesh T ′ without hanging nodes

1. set S = {τ ∈ T | τ has a hanging node}
2. if S �= ∅ then

T̄ = BisectTets(T ,S)
T ′ = RefineToConformity(T̄)

3. else
T ′ = T

The recursion in the Algorithm RefineToConformity could conceivably continue
forever. Moreover, even if the recursion terminates, the output mesh may not be
conforming (a mesh without hanging nodes can nonetheless be nonconforming; cf.
Figure 6). However, we shall prove that the recursion does terminate in the application
of RefineToConformity in Algorithm LocalRefine, and that the resulting output
mesh is conformingly-marked. Moreover, we shall bound the amount of refinement
which can occur before termination. To state this result precisely, we consider an initial
marked mesh T0 and set Q0 = T0, and Qk+1 = BisectTets(Qk,Qk), k = 0, 1,
Thus Q1 consists of all children of tetrahedra in the initial mesh, Q2 all grandchildren,
etc. We assign generation k to all tetrahedra in Qk.

Theorem 3.1. Let T0 be a conformingly-marked mesh with no flagged tetrahedra.
For k = 0, 1, . . . , choose Sk ⊂ Tk arbitrarily, and set Tk+1 = LocalRefine(Tk,Sk).
Then for each k, the application of RefineToConformity from within LocalRefine

terminates producing a conformingly-marked mesh, and each tetrahedron in Tk has a
generation of at most 3k. Moreover, if the maximum generation of a tetrahedron in

438 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

Fig. 6. A nonconforming mesh without hanging nodes (the barycenter is not a vertex of the
mesh).

Pu A O M

Fig. 7. The meshes obtained via three applications of BisectTet beginning with a tetrahedra of
type Pu, A, O, and M .

Tk is less than 3m for some integer m, then the maximum generation of a tetrahedron
in Tk+1 is less than or equal to 3m.

For the proof of the theorem, we need a classification of the edges that arise
from repeated bisection of an unflagged marked tetrahedron τ . Let Qτ

0 = {τ} and
define the meshes Qτ

k in analogy to the definition of the Qk above (so Qτ
k contains all

descendants of τ of generation k). We define Ek(τ) = E(Qτ
3k) and refer to these as the

edges of generation k. Thus the edges of generation 0 are exactly the edges of τ itself,
and, referring to Figure 7, we verify that the edges of generation 1 are precisely the
following 25 line segments:

• the line segment connecting the midpoint of the refinement edge to the mid-
point of the opposite edge;

• for each face, the line segment connecting the midpoint of the marked edge
to the opposite vertex;

• for each face, the two line segments connecting the midpoint of the marked
edge to the midpoints of the two nonmarked edges;

• for each edge, its two children.

Lemma 3.2. Let τ be an unflagged marked tetrahedron. Then for k = 1, 2, . . . ,
the mesh Qτ

3k, consisting of all descendants of τ of generation 3k, is conformingly-
marked. If τ is of type Pu, then all the tetrahedra in Qτ

3k are of type Pu, and otherwise
all the tetrahedra in Qτ

3k are of type A.

Proof. It is clear from Figure 7 that Qτ
3 is conforming. Moreover, the definition of

BisectTet insures Qτ
3 is conformingly-marked (because whenever a face is introduced,

it is marked identically in the tetrahedra containing it). From the diagram in Figure 5,
we see that tetrahedra in Qτ

3 are all either type Pu or type A, depending on whether
τ is type Pu. This verifies the lemma in case k = 1.

If τ ′ ∈ Qτ
3 , then the mesh of third generation descendants of τ ′ is, by the same

argument, conformingly-marked and uniformly of type Pu or A. Because Qτ
3 is it-

LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION 439

Table 1
The types of tetrahedra and generation of edges occurring in the meshes Qk.

Generations of Types of Generations
tetrahedra tetrahedra of edges

0 Pu nonplanar 0
1 Pf Pu 0,1
2 A Pf 0,1
3 Pu A 1
4 Pf Pu 1,2
5 A Pf 1,2
6 Pu A 2
...

...
...

...
3k Pu A k

3k + 1 Pf Pu k, k + 1
3k + 2 A Pf k, k + 1
3(k + 1) Pu A k + 1

self conformingly-marked, the mesh obtained by combining all these meshes is again
conformingly-marked, verifying the lemma in case k = 2. By induction we obtain the
result for all k.

If τ ′ is a generation 3k descendant of an unflagged marked tetrahedron τ, then,
by definition, all of the edges of τ ′ have generation k. The next lemma determines the
generations of the edges of descendants of generation 3k + 1 and 3k + 2.

Lemma 3.3. Let τ be an unflagged marked tetrahedron and τ ′ a descendant of τ
of generation 3k + 1 or 3k + 2. Then the edges of τ ′ all have generation k or k + 1.

Proof. The tetrahedron τ ′ is either a child or a grandchild of an unflagged tetra-
hedron of generation 3k. From Figure 7, it is easy to see that every edge of a child or
a grandchild of an unflagged tetrahedron is either an edge of that tetrahedron or an
edge of one of its great grandchildren. Thus each edge of τ ′ is an edge of a tetrahedron
whose generation is either 3k or 3k + 3.

Returning to Theorem 3.1, we easily deduce the following proposition from the
preceding lemmas.

Proposition 3.4. Let T0 be a conformingly-marked mesh with no flagged tetra-
hedra, and let Qk denote the mesh of all descendants of generation k of tetrahedra in
T0. Then the types of tetrahedra and the generation of edges of occurring in Qk are
as shown in Table 1. Moreover, the meshes Q3k are conformingly-marked.

Proof of Theorem 3.1. The proof will proceed in several steps. We use the termi-
nology descendant mesh of T0 to refer to any mesh that can arise from T0 by repeated
application of BisectTet.

Step 1. If T is any descendant mesh of T0 which has maximal tetrahedron gen-
eration 3k, then the application of BisectTets in step 2 of RefineToConformity(T)
returns a mesh which again has maximal tetrahedron generation 3k.

Proof. We refer to Table 1 to see that all the edges of tetrahedra in T are of most
generation k. Now if a tetrahedron in T has a hanging node, then the edge of the
tetrahedron on which the hanging node lies must have generation k − 1 or less (since
its children are also edges in the mesh and so have generation k or less). Hence, again
with reference to the table, a tetrahedron with a hanging node has generation strictly
less than 3k. That is, the set S defined in step 1 of RefineToConformity consists of
tetrahedra of generation less than 3k. Consequently the mesh output from BisectTets

in step 2 of RefineToConformity, again has maximal tetrahedron generation 3k.
Step 2. If T is any descendant mesh of T0 which has maximal tetrahedron gener-

440 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

ation 3k, then every mesh constructed in the recursive application of the algorithm
RefineToConformity(T) has maximal tetrahedron generation 3k and, moreover, the
algorithm terminates.

Proof. Indeed new tetrahedra are only introduced by the application of BisectTets
in step 2 of RefineToConformity, so the generation bound follows from the previous
step. Since there are only finitely many tetrahedra of generation 3k, the algorithm
must terminate.

Step 3. Each tetrahedron in Tk has generation at most 3k.

Proof. The proof is by induction on k, with the case k = 0 being the obvi-
ous final step. By the induction hypothesis, Tk−1 consists of tetrahedra of gener-
ation at most 3k − 3. Hence, the mesh T̄ output from BisectTets in step 1 of
LocalRefine(Tk−1,Sk−1) has maximum tetrahedron generation 3k − 2 ≤ 3k, and
the result follows from the preceding claim.

Step 4. The output mesh is conformingly-marked.

Proof. This follows easily from the fact that the output mesh is a descendant of
a conformingly-marked mesh and has no hanging nodes.

Step 5. The last sentence of the theorem follows directly from step 2.

4. Similarity classes. In [7] Maubach presented an algorithm, which we refer
to as BisectSimplex, for the bisection of an arbitrary n-simplex in Rn. After recalling
this algorithm, we shall show that in the special case n = 3, it is essentially equivalent
to BisectTet, when BisectTet is restricted to tetrahedra of types A and P as input.
Define a tagged simplex in Rn as an ordered pair, t =

(
(x0, x1, . . . , xn), d

)
, where

(x0, x1, . . . , xn) is an ordered (n + 1)-tuple of points in general position in Rn (the
vertices of the simplex), and d ∈ {1, 2, . . . , n} is a tag (x0xd is the refinement edge of
t). With this terminology, Maubach’s algorithm may be stated as follows.

Algorithm {t(1), t(2)} = BisectSimplex(t)

input: tagged n-simplex t

output: tagged n-simplices t(1) and t(2).

1. set d′ =

{
d− 1, d > 1

n, d = 1

2. create the new vertex z = 1
2 (x0 + xd)

3. set t(1) =
(
(x0, x1, . . . , xd−1, z, xd+1, ..., xn), d

′)
4. set t(2) =

(
(x1, x2, . . . , xd, z, xd+1, ..., xn), d

′)
We now define a correspondence between tagged simplices in R3 and marked tetra-

hedra of types P and A, and we show that repeated application of either BisectTet
or BisectSimplex to the same geometric tetrahedron yields the same sequence of
descendant tetrahedra. Let TT be the set of all tagged 3-simplices and TM be the set
of all marked tetrahedra; also, let Ta ⊂ TM denote the set of marked tetrahedra of
type A or P . Define a mapping F : TT → TM as follows.

For t =
(
(x

0
, x

1
, x

2
, x

3
), d

) ∈ TT , set F(t) = (V(τ), rτ ,mϕ, fτ) with V(τ) =
{x0, x1, x2, x3} and

rτ = x0x1, mϕ =

{
x0x3 if ϕ = x0x2x3,

x1x3 if ϕ = x1x2x3,
fτ = 1 if d = 1;

LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION 441

rτ = x0x2, mϕ =

{
x0x1 if ϕ = x0x1x3,

x1x2 if ϕ = x1x2x3,
fτ = 0 if d = 2;

rτ = x0x3, mϕ =

{
x0x2 if ϕ = x0x1x2,

x1x3 if ϕ = x1x2x3,
fτ = 0 if d = 3.

Note that F(t) has type Pf , Pu, or A, when d = 1, 2, or 3, respectively. Consequently,
F(TT) ⊂ Ta. In fact, we have the following proposition.

Proposition 4.1. The mapping F maps TT onto Ta and is precisely 2 to 1.
Proof. Given a marked tetrahedron τ = ({v0, v1, v2, v3}, rτ ,mϕ, fτ) ∈ Ta, we

define two tagged 3-simplices in its preimage under F as follows.
If τ has type A, we assume, without loss of generality, that its refinement and

nonrefinement edges are v0v1 and {v0v2, v1v3}, respectively. To get the first tagged
simplex, set d = 3 and choose x0 = v0 and xd = v1 (the end points of the refinement
edge). Set x1 = v3 (the second endpoint of the marked nonrefinement edge containing
xd) and x2 = v2. To obtain the second tagged simplex, we reverse x0 and x3 and x1 and
x2. Thus, the two tagged 3-simplices corresponding to the given marked tetrahedron
are

(
(v0, v3, v2, v1), 3

)
and

(
(v1, v2, v3, v0), 3

)
. It is straightforward to check that F

maps each of these tagged simplices to τ and that these are the only preimages of
τ under F . The argument is similar in the cases of τ of type Pu or Pf . In the Pu

case, we take the numbering so that the refinement and marked nonrefinement edges
are v0v1 and {v0v2, v1v2}, respectively, and find the two preimages

(
(v0, v2, v1, v3), 2

)
and

(
(v1, v2, v0, v3), 2

)
. In the Pf case with refinement and marked nonrefinement

edges v0v1 and {v0v2, v1v2}, the preimages are
(
(v0, v1, v3, v2), 1

)
and

(
(v1, v0, v3, v2),

1
)
.
The following theorem exhibits the relation between the algorithms BisectTet

and BisectSimplex.
Theorem 4.2. The following diagram commutes.

TT F−−−−→ TM
BisectSimplex

� �BisectTet

TT × TT F×F−−−−→ TM × TM
Proof. Suppose t =

(
(x0, x1, x2, x3), 3

) ∈ TT , and {t(1), t(2)} ∈ TT×TT is produced

by BisectSimplex(t). Then t(1) =
(
(x0, x1, x2, z), 2

)
with z = (x0 + x3)/2, and so

F(t(1)) yields the marked tetrahedron ({x0, x1, x2, z}, x0x2, {x0x1, x1x2}, 0). (Here,
only the markings for the nonrefinement faces of the tetrahedron are specified in
mϕ with the convention that the given edges are marked for the nonrefinement face
containing them.) On the other hand, F(t) = ({x0, x1, x2, x3}, x0x3, {x0x2, x1x3}, 0)
which is a tetrahedron of type A, and one of the marked tetrahedra produced by
applying BisectTet to this tetrahedron is F(t(1)). A similar verification is easily
carried out for the other cases.

Theorem 4.2 implies that if BisectSimplex is applied m times to a tagged 3-
simplex, the images under the mapping F of the 2m descendents are exactly the
descendents obtained by applying BisectTet m times to the image under F of the
parent. The following corollary is thus immediate.

Corollary 4.3. The 2m geometric 3-simplices obtained by applying the algo-
rithm BisectSimplex m times to t ∈ TT are exactly the same as those obtained by
applying BisectTet m times to F(t).

442 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

Our next goal is a bound on the number of similarity classes produced by repeated
application of algorithm BisectSimplex. (Two simplices are said to belong to the
same similarity class if one can be transformed to the other via a dilation and a rigid
motion.) This will be based on the following technical result from [7]. (Theorem 4.1
of [7] states this result in less generality, but the same proof applies to the statement
given here.)

Lemma 4.4. Let t′ be a descendent of the tagged n-simplex

t =
(
(0, e1, e1 + e2, . . . , e1 + e2 + · · ·+ en), n

)
obtained via k applications of BisectSimplex, where B = {e1, e2, . . . , en} is an ar-
bitrary basis of Rn. Define integers q ≥ 0 and r ∈ {0, . . . , n − 1} by k = qn + r.
Let (x0, x1, . . . , xn) be the ordered vertices of t′ and define yi = xi − x0 for i =
1, 2, . . . , n. Then, there exist two linear mappings π and R from Rn to Rn such that
{π(e1), π(e2), . . . , π(en)} is a permutation of the basis vectors of B, and R(ei) = ±ei,
1 ≤ i ≤ n, with

yi =

(
1

2

)q

αiRπ

i∑
j=1

ej , 1 ≤ i ≤ n,

where

αi =

{
1, 1 ≤ i ≤ n− r,
1
2 , n− r + 1 ≤ i ≤ n.

Theorem 4.5. The number of similarity classes of n-simplices produced by the
repeated application of BisectSimplex is bounded by nn!2n−2.

Proof. Without loss of generality we may assume that the initial simplex has tag
n, because an arbitrary tagged simplex is a descendant of such a simplex. For example,(
(x0, x1, x2, . . . , xn), n − 1

)
is a child of

(
(x0, x1, x2, . . . , 2xn − x0), n

)
. Moreover we

may translate so that the first vertex is at the origin, and thus the initial simplex can
be taken to be of the form t assumed in the lemma.

From this immediately get an upper bound of nn!2n similarity classes for the
descendants, since there are n! possibilities for the permutations π, 2n possibilities
for the reflections R, and exactly n different vectors αi. Noting that two different
reflections, R and −R, give n-simplices in the same similarity class, the bound can be
reduced by a factor of 2 to nn!2n−1. To prove the theorem it suffices to reduce this
by another factor of 2, which we shall do by showing that each n-simplex produced
is a translate of another.

Using the notations introduced in Lemma 4.4 and noting that q does not play a
role in the count for the number of similarity classes of tetrahedra, we will assume
q = 0 without any loss of generality. Define the mappings π̂ : Rn → Rn and R̂ : Rn →
Rn by

π̂(ej) =

{
π(en−r+1−j), 1 ≤ j ≤ n− r,

π(ej), n− r + 1 ≤ j ≤ n,
(1)

R̂π (ej) =

{
−Rπ(ej), 1 ≤ j ≤ n− r,

Rπ(ej), n− r + 1 ≤ j ≤ n,
(2)

LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION 443

for j ∈ {1, 2, . . . , n}. Note that π̂ is a permutation and R̂ a reflection relative to B.
The ordered set (0, y1, y2, . . . , yn) represents the vertices of the tagged n-simplex t′.
Denote the ordered set of vertices of another tagged n-simplex t̂ by (0, ŷ1, ŷ2, . . . , ŷn)

with ŷi = αiR̂π̂
∑i

j=1 ei for 1 ≤ i ≤ n. Let Φ : Rn → Rn be the translation defined by

Φ(x) = x−Rπ
n−r∑
j=1

ej = x− yn−r.

Then Φ(0) = −Rπ∑n−r
j=1 ej and

Φ(yi) =

−Rπ
n−r∑

j=i+1

ej , 1 ≤ i < n− r,

0, i = n− r,

− 1
2Rπ

n−r∑
j=1

ej +
1
2Rπ

i∑
j=n−r+1

ej , n− r + 1 ≤ i ≤ n.

Using (1), (2), and the definition of ŷi, we get Φ(0) = ŷn−r and

Φ(yi) =

ŷn−r−i, 1 ≤ i < n− r,

0, i = n− r,

ŷi, n− r + 1 ≤ i ≤ n.

Thus, t′ is related to t̂ via the translation Φ as desired.
For n = 2 the bound of four similarity classes furnished by the theorem is easily

seen to be sharp. For n = 3, the bound is 36. By direct computation on a par-
ticular tetrahedron we have verified that the bound of 36 is sharp. (For example,
if t =

(
(v0, v1, v2, v3), 3

)
, where v0 = (0, 0, 0), v1 = (23, 0, 0), v2 = (7, 0, 11), and

v3 = (17, 5, 33), then the upper bound of 36 is attained at the sixth generation.)
Maubach [8] has announced a proof that the bound of nn!2n−2 is sharp for all n.

In view of Proposition 4.1 and Theorem 4.2, the above result applies to bisection
of marked tetrahedra of types A and P : repeated application of BisectTet starting
from such a marked tetrahedron will produce at most 36 similarity classes. Since one
application of BisectTet to a tetrahedron of type O or M produces children of type
Pu, the repeated bisection of such a tetrahedron will produce at most 72 similarity
classes of tetrahedra. In particular, for an arbitrary initial mesh of marked tetrahedra,
only finitely many similarity classes will arise in its descendant meshes.

5. Examples. In this section, we give some examples of adapted tetrahedral
meshes generated using LocalRefine. A coarse initial mesh T0 is chosen and the
meshes Tk are generated using Tk = LocalRefine(Tk−1,Sk−1) as in section 3 with
different criteria being used to determine the sets Sk in each example.

Example 1. The first example is adapted from Maubach [7]. Let T0 be the sub-
division of the cube [0, 1]3 into six congruent tetrahedra. We choose the longest edge
of each face as its marked edge. It can easily be verified that all six tetrahedra are of
type A and they belong to the same similarity class. Let

H =

{
(x, y, z) ∈ R3|

(
x− 1

2

)2

+

(
y − 1

2

)2

+

(
z − 1

2

)2

=
1

16
with x ≥ 1

2

}

444 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

Fig. 8. The mesh T16 of Example 1. The first view shows the vertices of the mesh, the second
a cut along the plane x = 1/2, and the third a cut along the plane y = 1/2.

be a hemisphere embedded in the cube. We choose Sk−1 = {τ ∈ Tk−1|τ ∩H �= ∅} , so
that we attempt to adapt the meshes to the hemisphere H. Figure 8 shows different
views of T16 having 25, 448 tetrahedra. The local adaptivity around H is clear.

The algorithm LocalRefine has been incorporated into a code for solving second
order elliptic boundary value problems (cf. [9]). Error estimators are used to determine
the sets Sk in the code, leading to refinement in regions where the gradient of the
solution changes rapidly.

Example 2. This example is a test problem for which the exact solution is known
to be

uex = (x2 − x)(y2 − y)(z2 − z)e−100[(x−1/4)2+(y−1/4)2+(z−1/4)2],

and T0 was taken to be a subdivision of [0, 1]3 having 96 tetrahedra. The problem
was solved using piecewise linear finite elements, and a full multigrid solver based on
the sequence of adaptively defined meshes. Note that uex varies very rapidly near the
point (1/4, 1/4, 1/4), and has relatively slow variation in other parts of the domain.
This behavior is captured well by the adaptive mesh refinement process, as seen in T6

pictured in Figure 9.
Figure 10 shows a log-log plot of the errors in energy and L2 norms against

V(T)−1/3, which is an indicator of mesh size for locally refined meshes, using both
adaptive and uniform refinement. (Lines with slopes 1 and 2 are shown for easy com-
parison.) Using uniform refinement, the finest mesh has 68, 705 vertices and a relative
percentage energy error of approximately 15.85% while the maximum number of ver-
tices using adaptive refinement are 62, 738 and the corresponding relative percentage
energy error is 4.95%.

Example 3. As a final example, we consider a problem that arose in numerical rel-
ativity concerning compatible initial metric data for the collision of two black holes.
This involves a nonlinear elliptic boundary value problem which we solve with piece-
wise linear finite elements, an outer Newton iteration, and an inner multigrid iteration
based on the sequence of adapted meshes. For details, see [9]. The domain consists of
a ball about the origin of radius 64

√
3 minus two disjoint balls of radius

√
3/2 and√

3 centered at (0, 0,−2√3) and (0, 0, 2
√
3), respectively. Beginning with the mesh T0

containing 585 vertices and 2, 982 tetrahedra the code produced an adapted mesh T5

with 63, 133 vertices and 346, 084 tetrahedra. In Figures 11 and 12, which is a zoom
of the previous figure, we show results computed on the intermediate mesh T3 with

LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION 445

Fig. 9. Cut along the the plane x = 1/4 of T6 of Example 2 (there are 11, 418 tetrahedra and
2, 116 vertices in the mesh).

.02 .05 .1 .2 .3
10

−6

10
−5

10
−4

10
−3

10
−2

1

2

Fig. 10. The energy (◦) and L2 (×) errors and rates for example 2. The solid lines denote
the energy (respectively, L2) errors for uniform refinement while the dotted lines are for adaptive
refinement.

13,899 vertices and 75,300 tetrahedra.

The figures show a contour plot of the solution on the plane x = y (the plot shade
is keyed to the value of the solution). This is easier to interpret in the color version,
which can be found in [9]. The intersections of the tetrahedra with the plane are shown
slightly shrunken to improve visibility. Also shown are the mesh edges which intersect
the boundary. Next, Figure 13 gives evidence of the mesh quality in the initial and
final meshes. The shape measure used is the ratio of the circumscribed to inscribed
spheres, scaled so that an equilateral tetrahedron has shape measure one. The first
histogram shows that in the initial mesh more than 80% of elements have measure
less than 2, while the worst elements have quality around 3.5. In the final mesh, 72%
of the elements have measure less than 2, while 84% have measure less than 2.5, and
the worst elements have measure about 5.4.

446 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

X
Y

Z

 EXAMPLE 3

 13,899 VERTICES

 75,300 TETRAHEDRA

 MESH and ISOVALUES

 LEGEND

 3.624
 3.365
 3.170
 2.975
 2.781
 2.586
 2.392
 2.197
 2.002
 1.808
 1.613
 1.419
 1.224
 1.094

 Plane x=y.

Fig. 11. Solution to a binary black hole problem.

X
Y

Z

 EXAMPLE 3

 13,899 VERTICES

 75,300 TETRAHEDRA

 MESH and ISOVALUES

 LEGEND

 3.624
 3.365
 3.170
 2.975
 2.781
 2.586
 2.392
 2.197
 2.002
 1.808
 1.613
 1.419
 1.224
 1.094

 Plane x=y.

Fig. 12. Solution to a binary black hole problem, zoom.

Finally, Figure 14 shows a plot of the total CPU time for the solution of the
boundary value problem including the mesh refinement, error estimation, outer it-
eration, and the multigrid solve on a 1993 DEC 3000 model 500 with a single 150
MHz Alpha processor versus number of mesh vertices. The plot clearly shows that
the computation time is very nearly proportional to the number of vertices in the
mesh.

LOCALLY ADAPTED TETRAHEDRAL MESHES USING BISECTION 447

1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

2

4

6

8

10

12

14
x 10

4

Fig. 13. Shape measure histograms. Left: coarse mesh with 2,982 tetrahedra. Right: fine mesh
with 346,084 tetrahedra.

 1000 10000 100000
10

100

1000

10000

1

Fig. 14. CPU seconds, on the y-axis, versus number vertices, on the x-axis, for a binary black
hole problem.

6. Conclusion. In section 2 we introduced the notion of a marked tetrahedron,
and presented algorithm BisectTet for the bisection of a marked tetrahedron into two
children. We discussed its relation which other algorithms in the literature. In section
3 we showed how, beginning with an arbitrary conforming tetrahedral mesh, the
algorithm BisectTet can be applied to create locally refined conforming tetrahedral
meshes, and we bounded the amount of additional refinement that might be required
to obtain conformity. In the following section we showed that repeated application
of BisectTet to a given tetrahedron and its descendants generates at most 36 or 72
dissimilar tetrahedra in all (depending on the marking of the original tetrahedron).
In doing so, we showed that for some markings BisectTet is, in a certain specific
sense, equivalent to the three-dimensional case of Maubach’s algorithm for repeated
bisection of n-simplices, and for this algorithm we showed that at most nn!2n−2

dissimilar simplices are created. We closed the paper with numerical examples of the
performance of the algorithm.

448 DOUGLAS N. ARNOLD, ARUP MUKHERJEE, AND LUC POULY

REFERENCES

[1] A. Adler On the bisection method for triangles, Math. Comp., 40 (1983), pp. 571–574.
[2] R. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations,

Users’ Guide 7.0., SIAM, Philadelphia, 1994.
[3] E. Bänsch, Local mesh refinement in 2 and 3 dimensions, Impact Comput. Sci. Engrg., 3

(1991), pp. 181–191.
[4] Jürgen Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 271–288.
[5] A. Liu and B. Joe, On the shape of tetrahedra from bisection, Math. Comp., 63 (1994), pp.

141–154.
[6] A. Liu and B. Joe, Quality local refinement of tetrahedral meshes based on bisection, SIAM

J. Sci. Comput., 16 (1995), pp. 1269–1291.
[7] J. M. Maubach, Local bisection refinement for N-simplicial grids generated by reflection, SIAM

J. Sci. Comput., 16 (1995), pp. 210–227.
[8] J. M. Maubach, The Amount of Similarity Classes Created by Local n-Simplicial Bisection

Refinement, 1996, manuscript.
[9] A. Mukherjee, An Adaptive Finite Element Code for Elliptic Boundary Value Problems in

Three Dimensions with Applications in Numerical Relativity, Ph.D. thesis, The Pennsyl-
vania State University, University Park, PA, 1996.

[10] M. E. G. Ong, Hierarchical Basis Preconditioners for Second Order Elliptic Problems in Three
Dimensions, Ph.D. thesis, University of Washington, Seattle, 1989.

[11] M. C. Rivara, Local modification of meshes for adaptive and/or multigrid finite-element meth-
ods, J. Comput. Appl. Math., 36 (1991), pp. 79–89.

[12] M. C. Rivara and C. Levin, A 3-D refinement algorithm suitable for adaptive and multi-grid
techniques, Comm. Appl. Numer. Methods., 8 (1992), pp. 281–290.

[13] S. Zhang, Multi-Level Iterative Techniques, Ph.D. thesis, The Pennsylvania State University,
University Park, PA, 1988.

