On the Asymptotic Convergence of Spline Collocation Methods for Partial
Differential Equations

Douglas N. Arnold, Jukka Saranen

SIAM Journal on Numerical Analysis, Volume 21, Issue 3 (Jun., 1984), 459-472.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or
otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

SIAM Journal on Numerical Analysis is published by Society for Industrial and Applied Mathematics. Please
contact the publisher for further permissions regarding the use of this work. Publisher contact information may be
obtained at http://www jstor.org/journals/siam. html.

SIAM Journal on Numerical Analysis
©1984 Society for Industrial and Applied Mathematics

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2001 JSTOR

http://www.jstor.org/
Tue Jan 9 19:36:09 2001



SIAM J. NUMER. ANAL. © 1984 Society for Industrial and Applied Mathematics
Vol. 21, No. 3, June 1984 004

ON THE ASYMPTOTIC CONVERGENCE OF SPLINE COLLOCATION
METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS*

DOUGLAS N. ARNOLD? AND JUKKA SARANEN#

Abstract. We examine the asymptotic accuracy of the method of collocation for the approximate
solution of linear elliptic partial differential equations. Specifically we consider the nodal collocation of a
second order equation in the plane with biperiodicity conditions using tensor product smooth splines of odd
degree as trial functions. We prove optimal rates of convergence in L? for partial derivatives of the
approximate solution which are of order at least two in one variable, while the solution itself and its gradient
converge in L? at rates less than the optimal approximation theoretic results.

1. Introduction. In the method of collocation an approximate solution to a differ-
ential equation (or other functional equation) is determined in a given space of trial
functions of finite dimension n by the condition that the equation be satisfied at n
specified collocation points. This method, appealing for its conceptual simplicity, wide
applicability, and ease of implementation, dates back five decades to the work of
Kantorovitch [25] and Frazer, Jones and Skan [20]. In [25] Kantorovitch sought the
solution of a partial differential equation, but collocated only in a single variable for
each fixed value of the second variable. (Thus, he used collocation in conjunction with
a method of lines procedure.) For several decades, authors taking up his work concen-
trated on one-dimensional collocation, that is collocation of ordinary differential
equations [27],[26, ch. XIV.5.1],[43],[44]. Frazer, Jones and Skan were also primarily
concerned with ordinary differential equations, but already in 1938 [19, p. 227] Frazer,
Duncan and Collar specifically remark on the direct applicability of the collocation
method to partial differential equations. In his monograph of 1951 on the numerical
solution of differential equations, Collatz includes discussion and examples of colloca-
tion for both ordinary and partial differential equations [16, ch. II1.4.1, ch. V.4.2]. *

The choice of the trial space and collocation points greatly influences the effective-
ness of a collocation method. The first three decades of study focused almost exclusively
on trial spaces formed from polynomials satisfying the boundary conditions [25], [20],
[30],[19, ch. 7.9],[16, ch. 111.4.1, ch. V.4.2],[27], [31, ch. VII.17], [26, ch. XIV.5.1],
[45], [43], [44]. It was realized quite early that with such trial functions equidistant
collocation points are not appropriate,' but that rather the Chebyshev points, Gauss
points, or similarly constructed points should be used [30], [27], [31, ch. VIL.7], [26,
ch. XIV.5.1], [45], [43], [44]. This form of collocation, collocation by polynomials at
the roots of orthogonal polynomials, is often termed orthogonal collocation. An error
analysis was first given by Karpilovskaya in 1953 [27]; see also [26, ch. XIV.5.1], [43].
Ten years later, Karpilovskaya [28] analyzed a collocation method in two dimensions,
considering a perturbation of the Laplacian on a square and collocating with
trigonometric polynomials of two variables at points on a uniform grid. A generalization
to an equation with biharmonic principal part is studied in [29].

* Received by the editors April 7, 1983, and in final form October 25, 1983. This work was carried
out at the Technical University of Darmstadt, West Germany, while the first author was supported by a
North Atlantic Treaty Organization Postdoctoral Fellowship and the second author by an Alexander von
Humboldt-Stiftung Research Fellowship.

t Department of Mathematics, University of Maryland, College Park, Maryland 20742.

t Department of Mathematics, Faculty of Technology, University of Oulu, Linnanmaa, 90570, Oulu
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! This is not surprising in view of the famous example of Runge showing the failure of interpolation—
which is collocation of the identity operator—by polynomials at equally spaced points [12, ch. II].
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In the wake of the great surge of interest in spline functions in the nineteen sixties,
their use as collocation trial functions was proposed. In light of the superior qualities
of spline interpolation and the suitability of splines for computer implementation, such
spline collocation is very appealing and a number of researchers began, naturally, with
the case of nodal point collocation by cubic splines for a second order two point
boundary value problem [11], [1, ch. 2.7], [32], [10], [2], [21]. This method converges
as the mesh size tends to zero, but it was soon realized that the maximum error
decreases as the square of the mesh size rather than as the fourth power which is
achieved by other projection methods using cubic spline trial functions [11]. Nodal
collocation by smoothest splines of higher order was also found to be convergent with
order two less than optimal [39], [33].

In 1973 de Boor and Swartz published an influential paper [13] analyzing colloca-
tion for ordinary differential equations using splines of positive defect (i.e., less than
smoothest splines) and collocating at Gauss points in each mesh interval. We follow
Prenter [36, ch. 8] in terming these orthogonal spline collocation methods. In the
simplest case, a Hermite cubic approximation to the solution of a second order problem
is determined by collocation at two Gauss points within each subinterval. Unlike nodal
cubic spline collocation, this method converges with fourth order in the maximum
norm, although at the expense of larger bandwidth and larger matrices for the same
mesh. The past decade witnessed much research on spline collocation for ordinary
differential equations, both nodal and orthogonal for quite general problems, splines
of arbitrary order, etc. [22], [17], [3], [5], [40], [18], [23], [34], [38].

The theory of cubic spline collocation for partial differential equations is far less
developed. In 1972, Cavendish [15] and Ito [24] separately proved second order
convergence of the method of bicubic spline collocation (at the nodal points) for a
second order elliptic equation on a square. This result, whose proof is reproduced in
[36, ch. 8], is a generalization of the convergence results for cubic spline nodal
collocation in one dimension. Four years later, Prenter and Russell [37] analyzed the
two-dimensional analogue of Hermite cubic orthogonal collocation; that is, they
considered the approximation of the solution of a second order elliptic equation on a
square using bicubic Hermite trial functions and collocating at the 2 X 2 product Gauss
points in each mesh rectangle. They proved optimal fourth order convergence for this
method. In 1980 Percell and Wheeler [35] proved analogous results for orthogonal
collocation using tensor product C' Hermite trial functions of degree r, r=3.

In the present paper we analyze the method of nodal collocation by tensor product
smoothest splines of arbitrary odd order for second order elliptic differential equations.
We prove convergence with sharp rates in a variety of norms. In order to describe the
results, we first recall the results of Arnold and Wendland [5] concerning the conver-
gence of nodal collocation by odd order splines in one dimension. In this paper, in
which is considered a very general class of equations (integral, differential, integrodiffer-
ential, etc.), the failure of nodal spline collocation to approximate the values of the
solution of a differential equation with optimal order is exposed in a different light.
By introducing a new technique of proof that enables the application of the well-
developed theory of Galerkin methods, it is shown that the method does converge
with optimal order in various Sobolev spaces, but only those with order greater than
or equal to the order of the operator. For second order problems, for example, the
derivatives of order at least two and no greater than the degree of the splines, are
approximated at the optimal order, but the first derivatives and values are not approxi-
mated with higher order than the second derivatives, thus accounting for the loss of
two orders of convergence for the values of solution.
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In the two-dimensional case considered here we prove analogous results. It turns
out, however, that the Sobolev spaces are not appropriate. After stating the problems
and method precisely in the next section we define the special function spaces we
require for the analysis in the § 3. In the final two sections the method is analyzed.
For the analysis, we first show that the collocation solution is equal to the approximation
produced by a Galerkin method using the splines as trial and test functions paired,
however, by a rather unusual bilinear form. In § 4, this method is shown to be stable
(that is, the map taking the exact solution to the approximate solution is shown to be
bounded independent of the mesh) in a certain specially constructed space. In § 5, we
proceed from this point to establish L? rates of convergence with respect to the mesh
size for each partial derivative of the error. As in the one-dimensional case, optimal
order convergence occurs only for derivatives of order at least two.

2. The differential equation and the collocation method. We consider the numeri-
cal solution of the second order, linear, partial differential equation

(2.1) Lu(x, y)= kgsz au(x, y)akaju(x, y)=f(xy), (xy)eR:

The coefficients a,; and the forcing function f are real-valued functions one periodic
in each argument. We assume that f € C°(R?) and a,, € C¢(R?) where d is the degree
of the collocating spline functions. Moreover, we assume that the coefficients of the
principal part of L have the form

(2.2) au(x,y)=—dwa(x,y), k+Il=2,

where a(x, y) is a strictly positive biperiodic function and the constants d,, satisfy the
strong ellipticity condition
(23) Z dklxkylz ‘Y(x2+)’2), (xa )’)ERZ,
k+1=2

for some y> 0. The eigenvalues for L (for the biperiodic eigenvalue problem) then
form a sequence tending to infinity; we assume that 0 is not among them. That is, we
assume that (2.1) has a unique biperiodic solution u which we seek to approximate.

Remark 2.1. The restriction (2.2) on the coefficients of the principal part of L
will allow us to reduce to the case of principal part with constant coefficients. The
assumption is satisfied, for example, if L is of the form

Lu=-V-aVu+bou+cou+du

where a, b, c and d are sufficiently smooth biperiodic functions with a strictly positive.

Remark 2.2. The choice of the periodic problem rather than, for example, the
Dirichlet or Neumann boundary value problem results in three simplifications. First,
we may apply elliptic regularity theory to conclude any desired degree of smoothness
for u supposing that the coefficients and forcing function are sufficiently smooth. This
does not hold for boundary value problems on the square. Second, we utilize the
periodicity in defining various Sobolev and related norms in terms of Fourier
coefficients. This is convenient but not indispensable. (We do not, however, use Fourier
techniques to analyze the numerical solution, and will not require a uniform mesh.)
Third and most important, we avoid difficulties with collocation conditions at the
" boundary. Even in one dimension for splines of degree greater than three for a second
order problem the selection of boundary conditions for the collocation solution is not
straightforward [22]. For partial differential equations the problem is greater. Even
in the simplest case, bicubic spline collocation of Poisson’s equation on the square with
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homogeneous Dirichlet data, special collocation conditions must be imposed at the
corners [36, ch. 8]. We do not address these matters here.
For the numerical approximation of (2.1), we select mesh points

0=xo<x; <+ <xpy=1, O=yo<y < -<yn=1,

and extend these to periodic meshes A, ={X,}ncz, &y ={Yn}nez, With Xpipr—x,=
Yn+n—Yn =1 for all n. For d =3 an odd integer we define S,;(A,) to be the space of
smooth periodic splines of degree d subordinate A,, i.e., the space of 1-periodic
functions in C**(R) which restrict to polynomials of degree at most d on each of the
subintervals (x,_;, x,). We recall that dim S,(A,) =M, dim S,(A,) = N, and each space
has a basis consisting of periodic B-splines which are supported in d+1 consecutive
subintervals and their integral translates. Let A=A, X A, denote the product mesh and
set h, =max,, max (X,, — X,,—1, ¥m — ¥m-1). The collocation method we investigate is
based on the trial space #,(A) = S,(A,)® S4(A,), spanned by the products ¢(x)¢(y),
0 €S,4(AL), e S,(A,). This space has dimension MN and consists of all 1-biperiodic
piecewise polynomials of degree at most d in each variable separately subordinate to
the product mesh and having continuous derivatives of all orders up to d—1 in each
variable separately. Implementation and other matters related to periodic and tensor
product splines are discussed in [12, ch. XVI], [41, ch. 8] and [12, ch. XVII], [41,
ch. 9] respectively.

The collocation method may now be defined. It seeks an approximate solution
uy € M4(A) satisfying the collocation equations

(24) LuA(xma yn)=f(xm’ yn)’ 1§M§M, 1§n§N

3. Preliminaries. Let &,(R) denote the space of all 1-periodic real-valued distri-
butions on the real line. Recall [42, ch. VII.1] that to each ve Z/,(R) is associated the
complex sequence {H(m)},,.z of its Fourier coefficients given by

1
d(m) = J‘ v(x, y) e 2™ dx
0

in case v is a locally integrable function. Using the notation m =max (27|m|, 1) we
define for p e Z the Hilbert space

1/2
Hf,(R)={ve@,’,,(R) ||u||,,5(m:=[ Zz|6(m)|2r_n2”] <oo}.

These are the periodic Sobolev spaces. For nonnegative p an equivalent norm on

H?(R) is
2 ] 1/2
L3(I)
where I denotes the unit interval.
Similarly for v e 9/,(R?), the space of 1-biperiodic distributions, there is associated
a double Fourier series, so that

P
dx*

p 1/2
v»[z > |6(m>|2|2wm|2*] =[§

k=0 meZ k=0

1 1
o(m, n)= J‘ J’ v(x, y) e 2™+ gy dy

0 JO

for locally integrable v. We shall define various Hilbert spaces of the form

(3.1) {ve@;(Rz) ) Iﬁ(m,n)|2[<p(m,n)]"<°0}

m,neZ
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with inner product

(v, w)—> ¥ d(mn)W(m, n)[¢(m,n)]

mneZ

Particular choices of the positive multiplier function ¢: Z*>R determine particular
spaces. For p, g € Z we define the following spaces by (3.1):

H? with ¢(m, n) =max (m?”, n?),

H? with ¢(m, n) = m®n4,

H{? with ¢(m, n) = max (m*n?, mn”),
H?%? with ¢ (m, n) =min (m?n?, mn®).

The spaces H” = HR® are the biperiodic Sobolev spaces. For nonnegative p an
equivalent norm is given by

p p—k 1/2
oo £5 toaoliz]
k=0 I=0
where L>=L*(IxI)=H".
The space H”? is the Hilbert space tensor product H?(I)® H(I), cf. [6, ch. 12].
For p and q nonnegative the norm in H?? is equivalent to the norm
1/2
ool £ 3 wraponiz]
k=0 =0
Further, HR?= H”* N H*? and H}? = H??+ H%? and the given norms are equivalent
to the intersection and sum norms [14, ch. 3.2.1].

The H° inner product extends compatibly to pairings on H? X H™?, HP1 X H™P™1,
H%* X HP™%, and HY? X HP"9,for all p, q. These pairing establish isometric isomorph-
isms of H?, H™, H%?, and H%? onto the dual spaces of H 7, H™»9 H.»™? and
HAP"1 respectively. We denote the extended inner product by (-, ).

‘Throughout this paper the letters k, I, m, n, p, and q refer to integers. The symbols
C and h, will be used as generic positive constants. The letter d is reserved for the
degree of the splines (an odd integer at least 3), and j for (d+1)/2=2.

We conclude this section with some basic results on the best approximation by
tensor product splines.

THEOREM 3.1. Let 0=k, I=d and let Py: H*' > #,(A) denote the orthogonal
projection. Then there exists a constant C such that ‘

[0 = Pavl| gt = ChE[|| v || ++ri + || 0] gei+»]

whenever 0=p=d+1—max (k,l) and ve H*P'N H"P*!

Proof. Let Q,_: H*(R)-> S,(A,) and Ry, : H.(R)> S4(4A,) denote the orthogonal
projections. Then, from well-known results for best spline approximation in one
dimension we have

W= Qa, Wl uiw) = ChE|| W 1k +nm)s we H;™(R),
lw—Ra,wlluim = ChE|| Wl ui+rw), we H.P(R).
Therefore
‘ ”'-’_PAU”H""g”U_(QAX®RA,)U"H""
=[|[(I - Qa,) ®I]v| g+ + I[Qas,®U - RA,)]”"H""
= ChEL)| Wllszeens + || W] syo0-0].
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(I denotes the identity operator. For the tensor product of operators see,
eg.,[6,ch.12]) O

THEOREM 3.2. Let 0=k=d—1 and let Py: H5*"' > M,(A) denote the orthogonal
projection. Then there exists a constant C such that

”v PAv"Hk k+1<ChA||v”Hr’§"”’P*1

for all pe[0,d—k], ve HK**P*!,
Proof. The case p=0 is obvious, so we assume p=1. Let Q,, CH*Y(I)> S,(4,)
denote the orthogonal projection. Then

1w = Qa, Wl k@ = Challw— Qs Wl k1) = ChE™|| Wl ey
for all ge[k+1,d+1], we HI(R). Now
0= (Qs,® Qs ) vl <*1 = |[(I — Qa,) ® Qa, 0| s+t + [T (I — Qa )]0 proxts
= ChE[| ol geories + 0] sserr].
But it is easy to check (using the Fourier series definition of the norms), that
lollzxspxr = [ 0] prgares,
SO
lo=(Qa,® Q4,) vl rs4+1 = ChE [ v]| prgseres.
By symmetry we in fact have
lo—=(Qa, ® Qu,) vl s+ = ChE [0 rrfx+os,
and the theorem follows. 0O

4. Stability analysis. The starting point for our analysis is the realization of the
collocation solution u, by a Galerkin procedure. For p € Z the integral vv—>Ll, v(x) dx
defines a continuous linear functional on H{(R) which we denote either by J, or J,.
If q is positive the trapezoidal approximations,

M —_ N —_
Jap= Y IRy, s 3 IRy,
m=1 m=1
are also bounded functionals on H%(R). The tensor products J =J,®J,: H?” >R and
Ja=Js,®Js,: H** >R are thus bounded for such p and g, and are simply the integral
over I XI and the product trapezoidal rule approximation respectively. A key role in
the following analysis will be played by the operator Ba: H"' > H™*"¢ defined by

(4.1) Bi=Jy+05" ®Jy, +Js, @35 a5 951
Thus if v is a smooth biperiodic function,

Biv(x,y)= Af g (Xm+1= Xm=1)(Yn+1— Yn-1)

m=1n=1 4

(X, Yn)

M X, X
+ Z Yrtr ™ Yot gaeryy ey, ) 4 Z == 00 0 (s )

n=1 2 2

+ ad+l d+l

v(x, y).

The following lemma is analogous to [S, Thm. 2.1.1].
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LEMMA 4.1. A function we H"' vanishes at all the nodal points (x,,, y,) €A if
and only if

4.2) (Béw, v)=0 forallve My(D).

Proof. Note that
1

(Bw, v)=J,w- Jv—J. (a,@JAy)w(af@)Jy)v dx
0

(4.3)

1

1 1
—J‘ (JAx®ax)w(Jx®a§)vdy+J’ J’ 9 aywafa‘y’vdxdy.
(1] 0 JoO

Now for ve My(A), (33®J,)v and (J,®%) v are piecewise constant functions of one
variable subordinate to the meshes A, and A, respectively, and 82 a‘y‘v is a piecewise
constant function of two variables subordinate to the product mesh. Therefore the
integrations indicated in (4.3) may be performed separately on the individual subinter-
vals and rectangles, and we see that (B2 w, v) reduces to a linear combination of nodal
values of w. Hence if w vanishes on A, then (4.2) holds.

Conversely, suppose that (4.2) holds. We first note that each of the four terms
on the right-hand side of (4.3) must vanish for v € #,(A). Indeed, taking v=1 we see
that J,w vanishes. Then taking v(x, y) = ¢(x), (peSd(A ) we see that (3, ®Ja, )w is
orthogonal to 3¢ for all ¢ € S;(A,), and hence to (3¢ ®J,)v for all ve My(A). Hence
the second term of (4.3) vanishes. Similarly the third term vanishes, and consequently
also the last.

Next we choose, as in [5], ¢, € S;(A,) satisfying

-1
(X = Xm-1)" s X1 <X <X,
d _ -1
ax‘Pm(x)_ (xm+l_xm) ’ X <X <Xp+1,
Oa xm+l<x<xm—l+1,

and ¢, € S4(4,) satisfying

_(yn_yn—l)_l, yn—1<y<ym
a‘yil//n(y)= (yn+1_Yn)_ly yn<y<yn+1’
0, Yrr1 <Y <Yo—1t+1.

For each fixed m we have

1 1

(4.4) J ayU 3.w(x, y) 320, (x) dx] a§¢,,(y) dy=0, n=1,---,N—1.
0

Setting

®,,(n)= I 3W(x, Yn) 3% @m(x) dx

(4.5)
— w(xm-l-l, yn) - w(xma yn) _ w(xma yn) - w(xm—l’ Yn)

Xm+1— Xm Xm — Xm—1

. (4.4) can be rewritten

@,(n+t1)-P,(n) P,(n)—Pn(n—1)
Yn+1— yn Yn— yn—l
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Since ®,,(0) = ®,,(N), it follows that there exists for each m a constant C,, independent
of n such that

(4.6) ®,.(n)=C,, forall mandn.
Next we use the vanishing of the second term on the right-hand side of (4.3) when
v(x,y)=¢,(x), m=1,---,M—1, in a similar way to infer that
N —_
4.7 3 B, y) =,

with the same constant C for all m. Combining (4.6), (4.5), and (4.7) yields

N —_
Cp= 3 21219 (n) =0,
n=1 2
i.e., ®,,(n)=0 for all m and n. Applying this successively for m=1,---, M —1 with
n fixed and again invoking periodicity we see that the nodal value w(x,,, y,) must be
independent of m. Similarly this value must be independent also of n, so w assumes
a constant value on A. Since J,w =0, w in fact vanishes on A. 0O
As a direct consequence at Lemma 4.1 we have the Galerkin formulation of the
collocation equations upon which the subsequent analysis is based. Recalling (2.2) let
L=a"'L, so that the different operator L has principal part with constant coefficients.
Set Ai=BiL.
THEOREM 4.2. A function u, € M,(A) satisfies the collocation equations (2.4) if
and only if it satisfies the Galerkin equations

(48) (AguA, U) = (Agu’ U), ve '/”d(A)-

We now proceed to establish the stability of the Galerkin method (4.8) in the
space H4*"! where j=(d + 1)/2. We shall treat the operator A% as a small perturbation
of the operator A% = B[ where

(4.9) BY=J+0d ®J, +J, @33 4931 53+,

LEMMA 4.3. The operator A* maps H{*" isomorphically onto its dual H7" /7",
Proof. 1t is easily verified that
(4.10)  (B%) “(m,n)=m*'n*"'6(m, n) = m¥n*d(m,n), veD,R.

Hence B is an isometric isomorphism of H’/™! onto H7*7/~! and it suffices to prove
that the differential operator L maps H*' isomorphically onto H’/™".
Decompose L as Ly+ L,, where

L0u=— 2 dkl afalyu+u
k+1=2

and L, is a first order operator. Now
(4.11) (Lou) “(m, n) =o(m, n)ii(m, n), mnez,
where

omn)=1- Y duQmim)*(2min)".
k+1=2

Using the ellipticity condition (2.3) we find that there exists a constant C such that

(4.12) C ™! max (m?, n®) = o(m, n) = C max (m?, n?), m,nel.
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Since
max (m?, n®) min (m’~'n/, m'n’"") = max (m'n’*', m**'n’),
it follows easily that L, maps H¥ "' isomorphically onto H’/~',
The partial derivative operators 9, and 9, and the inclusion operator are clearly

bounded operators H{ "' > H". Also H" is compactly included in H%'™" (this follows
from the fact that the ratio of the multipliers, m’n’/min (m’n’~!, m’~'n’), tends to

infinity as min (|m|, |n|) tends to infinity). Finally, since the coefficients of L are assumed
to have d continuous derivatives, multiplication by the coefficients of L map H%'™!
boundedly into itself. In all, then, L, maps H #*1 compactly into H”™!, and con-
sequently the Fredholm alternative holds for L = Lo+ L,. Since by assumption L, and
so L, has trivial nullspace, L is an isomorphism as claimed. 0O ,
The next lemma shows that as the mesh size parameter ha tends to zero A tends
to A? in the operator norm HX¥*'» H* 771,
LEMMA 4.4. There exists a constant C such that for every A

[(AS— AY)Yw| gz s-i-1'= Chyl| W g o, we HY'.
_ Proof. By definition AZ— A? = (B3~ B“)L. In the previous proof we showed that
L maps H*' isomorphically onto H’~". Thus it suffices to prove that

|(B= B Wllps 1 S Challwlass,  we HY,
Subtracting (4.9) from (4.1) gives
(4.13) Bi—B%=(J,=D)+3i"'®Ua,—J,) +(Ja, — J)®05.
Now it is easy to establish the following one-dimensional estimates:
(4.14) |(Ja, =T el +|(Ja, = )y)e|=ChEll@|luzm, ¢€HIR), p=1lor2,
(4.15) ol a0l s el =Clelluim,  ¢€HLR),
with C independent of A. Thus, for we H"' = HL(R)® H.(R),

[(Ja= D)Wl g7i-r =|(J = Ja)w| =|[(Ja, — i) ®JA,]W| +H[J® (Ja, =Jy)w|
= ChA” W”Hl-1 = ChA” W”Hivf'l.

It remains to bound the last two terms on the right-hand side of (4.13) in operator
norm, and by symmetry it is clearly sufficient to consider one. Now if ¢(x,y) is
independent of y, then one easily verifies that [|32* ¢ gz i--1 =185 ¢]| 2. Thus

”[af“ ® (-’Ay = L) Iw|| i = ”[3{:_1 ® (-’Ay =J)Iwll.
= Chy||w| g1 = Chy|| W] g2, 0
The mapping properties of A4 follow directly from the previous two lemmas.
THEOREM 4.5. There exist constants C, ho>0 such that for every A satisfying
ha=ho, AL maps H{*' isomorphically onto H7"~' and
C | Wlagin S | AdWlziom S Cllwllgr,  we HE
Having established the mapping properties of A3 we now show that the Galerkin

projection onto the spline space #,(A) is stable uniformly with respect to A.
THEOREM 4.6. There exist constants vy, ho> 0 such that for every A with hy = h,

Afy,
(4.16) in sup (Asow)

0 ve Ma(8) 0% weMa(s) ||V ||Hr';"*‘ I W||H,4-'*‘
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Proof. In light of Lemma 4.4 it suffices to prove (4.16) with A in place of A%.
Furthermore, decomposing L as Ly+L, as in the proof of Lemma 4.3, we have
A?=B%L,+ B°L, with B°L,: H¥{*'> H;*”’~! compact. It follows [4, Thm. 4.9], [7,
Lemma 4.2] that it in fact suffices to prove (4.16) with A% replaced by B°L,.

Now it follows directly from Parseval’s formula, (4.10), (4.11), (4.12), and the

deﬁl’lltion Of the norm in H]r.’{'-"l that there exiStS a positive constant ,yl>0 Such that
(B'Lov, )2 7'|0llmgr,  ve HH™.

Thus Theorem 4.6 is proven. 0

5. Convergence analysis. Theorems 4.2, 4.5, and 4.6 imply by standard arguments
[8], [9, ch. 5] quasioptimality of the collocation method. In light of the approximation
theoretic result of Theorm 3.2 we also infer convergence estimates in the H4*' norm.

THEOREM 5.1. There exist positive constants hy, and C such that the collocation
equations (2.4) have a unique solution u, € M,(A) whenever hy = hy. Moreover

lu—usllpforr = Cve.:llgf(A) llu— U”Hrgvl*'-

If in addition ue HX*" for some k €[ j, d], then
”u - uA”Hr!','/*‘ = Chl,;_j”u”Hr’;J”‘-

Theorem 5.1 shows that for 0= p = j the derivatives 3" 8%(u — u,) and 8% 8} (u —
u,) converge to zero at the optimal rate in L? as hy— 0, that is, as h4/ for smooth w.
This implies in particular such an optimal rate of convergence in the Sobolev space
H’*'. We now establish higher rates of convergence for certain derivatives of lower
order.

THEOREM 5.2. For each integer pe(2, j] and A with hy= h, we have

(51) ||u—uA||Hp.p§Ch’:l_"||u—uA||HA.f+1.
Moreover if ue HX*" for some k e[}, d, then
| = uall prr = CRE 7P|l u|| gy g5

Proof. The second assertion is a consequence of the first and the preceding
theorem. To prove (5.1) we use a duality argument involving several cases.

First suppose p€[3,j]. Then a simple variant of the proofs of Lemmas 4.3 and
4.4 show that A% maps H?? isomorphically onto H P=2iP=2i~2 for h, =< h,. Moreover
it is clear from (4.10) that B?*~! (this operator is defined by (4.9) with d replaced by
2p—1) maps H?? isomorphically onto H »"P. Consequently there exists a unique
we H¥P%*27P (the dual space of H5 ?~2/~?) such that

(5.2) (Alv, wy=(v, B '(u—u,)), veH".
Moreover,
(5.3) |wll srzi-pais2-r = C|lu—us|| gro.

Setting v =u—u, in (5.2) we get
| = ual|2re = (u—up, B (u—u,))
=(Al(u—uy), wy=_inf (AL(u—us), w=0)
S Cllu=uglgrr gt Iw= ol

= OHE P = wslsgoms| Wl s

= Ch]:l_p” u-— uA||Hr/1.,+n ” u- uA“Hp.p,
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where we have used (4.10), (5.2), Theorems 4.2, 4.5, and 3.2, and (5.3). Thus (5.1)
is established for p=3.
For p =2 we cannot define w by (5.2) since A4 is not defined on H*2. Instead,
we HY %% is defined by
(A%, wy=(v, B3(u—u,)), ve H*2.

Again, w is well defined and

(5.4) Wl rzim2a = Cllu—us| w22
Now
(5.5) Il — uallFr22 = (u—ua, B> (u—uy))
=(AL(u—uy), w)+((A! = AD(u—us), w).
As before
56 KAL(u—uy), w)| = ,Aat KA (4 —us), w=)]

= Chi u—uall gl u— ual 22
To bound the final term of (5.5), note that
(A= AD(u—uy), w)
=(J-Ja)L(u—u,) - Jw

(5.7) +(-1)! J [0 ® (Jy—Ja)IL(u—uy) - (35 ® J,) wdx

+(=1)*! J [(Jx—Ja,)®IL(u—uy) - (J,®8} ) w dy.

0

Now we distinguish two subcases. First suppose j=2 or 3. Then we apply (4.14) and
(4.15) to get

KAY = AD(u—113), W)| = CHEE (= ) - Wl o00
(5.8) = ChiT u— |y -vin | Wl g2
= hj:l"u_uA"HA“"*'”“‘uA“H“,

where we invoked (5.4) in the last step. In the case p=2 and j=2 or 3, (5.1) now
follows from (5.5), (5.6), and (5.8).

Finally, we consider the case p =2, j = 4. Integrate by parts in (5.7) to get in place
of (5.8)

K(A? = AD (1= us), W) =|(J = Ja) L(u—us)||Iw|
+[03® (J, = Ja ) IL(u = ua) | oll (07 2@ T,) Wil a0
+ (e =Ja,) ® 3L (1 — us) | 1ol (T ® 853 w0
= ChIL(u — us)| 22l | 13 22
= Chillu—uallmesllu— ual w22
Since (5.1) has already been established for p=4=,

llu— wall e = ChA > ||u— gl g2,
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so again we have
|<(Ad —AD(u—uy), w)| = Ch£_1|| U= upl| gl u— usll 22,

and (5.1) follows. 0O

Theorems 5.1 and 5.2 show that for sufficiently smooth u the partial derivatives
9% 9'(u—u,) of the error converge to zero at the optimal rate O(h**'™™*Y) in L?
for any integers k, [ with max (k, /) €[2, j+1] and min (k, /) <j+1. The highest rate
of convergence, O(hﬁ_‘), is achieved by all derivatives of order at most two in each
variable, and is exactly twice the rate of convergence achieved in H H *1 the space in
which we proved quasioptimality of the collocation method. Note that this estimate
is suboptimal by two powers of h, for the L? norm of the error itself and by one
power for L? norm of its gradient. As mentioned in the introduction this suboptimality
is a property of the collocation method and not merely due to the method of analysis.
It occurs already for ordinary differential equations, as proved in [5].

We conclude by applying a standard argument to show that for quasiuniform
meshes optimal order approximation also holds in the Sobolev space H?, j+1<p<
d+1. Recall that the mesh A is p-quasiuniform if p min (Xp = Xm—1, Ym — Ym—1) = ha
for all m.

THEOREM 5.3. For each p=1 there exists a constant C so that if A is a p-
quasiuniform mesh, then for pe[j+1,d], qe[p,d+1), ue H, there holds

llu—uall e = ChE™P||ul| 1.
Proof. Because of the quasiuniformity the inverse property
(59) "U"Hz‘(n)gChz_m”U"H:(R), vGSd(Ax), 0§n§m§d,

holds. It follows easily that the H%(R) projection P, : Ho(R) > S,(A,) satisfies the
optimal order error estimates

|v=Pa, vl amey = Cha™ ™| 0|l nawys ve HL(R),

for all me[0, d], ne[m, d+1]. Letting then Qy =P, ®P,,: H®-> M,4(4) it is easy to
establish the conclusion of the theorem with u, replaced by Q,u. Also from (5.9) we
may infer the two-dimensional inverse property

Wil > = ChA ' 2| Wl e, we My(8), pe(j+1,d]
Therefore
lu—uallpr = |u— Qaté]| e + | Qatt — ua||
= |lu— Qaull e+ ChY P[llu— Qa1 + || = uaf| 1]
= ChL™P||ullpge,
where we have used Theorem 5.1 to estimate
lu— sl = llu—uallm o a

Remark. The rate O(h2*'7P) in the Sobolev space H”, which is established in
Theorem 5.3 for ue H"*!, is optimal. However if max (k, [)e[j+1, d], then we can
only infer convergence of 9% a\(u—u,) to zero in L? from the preceding theorems
when k + [ =d, and then only with rate O(h3"'~*"). This rate is optimal only if k=0
or =0. For the high order mixed derivatives we do not know if optimal order
convergence holds.
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