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4 From Flight Dynamics
to Control Algorithms

In a natural environment, insects are constantly being
knocked about by wind or visual and mechanical per-
turbations. And yet they appear to be unperturbed and
are able to correct their course with ease. The halteres,
mentioned earlier, provide a fast gyroscopic sensor that
enables a fruit fly to keep track of its angular rotational
rate. Recent work has found that when a fruit fly’s body
orientation is perturbed with a torque impulse, it auto-
matically adjusts its wing motion to create a corrective
torque. If the perturbation is small, the correction is
almost perfect.

Exactly how their brains orchestrate this is a question
for neural science as well as for mathematical modeling
of the whole organism. By examining how insects turn
and respond to external perturbations, we can begin to
learn about their thoughts.
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VI.6 The Flight of a Golf Ball
Douglas N. Arnold

A skilled golfer hitting a drive can accelerate his club
head from zero to 120 miles per hour in the quarter
of a second before making contact with the ball. As a
result, the ball leaves the tee with a typical speed of
175 miles per hour and at an angle of 11◦ to the ground.
From that moment the golfer no longer exercises con-
trol. The trajectory of the ball is determined by the laws
of physics.

Figure 1 The actual trajectory of a
golf ball is far from parabolic.

In elementary calculus we learn to model the trajec-
tory of an object under the influence of gravity. The hor-
izontal component of its velocity is constant, while it
experiences a vertical acceleration down toward Earth
at 32.2 feet per second per second. This results in a
parabolic trajectory that can be described exactly. Over
a flat course, a ball traveling with the initial speed and
launch angle mentioned above would return to Earth at
a point 256 yards from the tee. In fact, observation of
golf ball trajectories reveals that their shape is far from
parabolic, as illustrated in figure 1, and that golfers
often drive the ball significantly higher and farther than
the simple formulas from calculus predict, even on a
windless day. The discrepancy can be attributed to the
fact that these formulas assume that gravity is the only
force acting on the ball during its flight. They neglect
the forces that the atmosphere exerts on the ball pass-
ing through it. Surprisingly, this air resistance can help
to increase the range of the ball.

1 Drag and Lift

Instead of decomposing the air resistance force vec-
tor into its horizontal and vertical components, it is
more convenient to make a different choice of coordi-
nate directions: namely, the direction opposite to the
motion of the ball, and the direction orthogonal to that
and directed skyward (see figure 2). The correspond-
ing components of the force of air resistance are then
called the drag and the lift, respectively. Drag is the
same force you feel pushing on your arm if you stick it
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Figure 2 Air resistance is decomposed into drag and lift.

out of the window of a moving car. Golfers want to min-
imize it, so their ball will travel farther. Lift is largely a
consequence of the back spin of the ball, which speeds
the air passing over the top of the ball and slows the air
passing under it. By Bernoulli’s principle, the result is
lower pressure above and therefore an upward force on
the ball. Lift is advantageous to golfers, since it keeps
the ball aloft far longer than would otherwise be the
case, allowing it to achieve more distance.

Drag and lift are very much affected by how the air
interacts with the surface of the ball. In the middle of
the nineteenth century, when rubber golf balls were
introduced, golfers noticed that old scuffed golf balls
traveled farther than new smooth balls, although no
one could explain this unintuitive behavior. This even-
tually gave rise to the modern dimpled golf ball. Along
the way a great deal was learned about aerodynam-
ics and its mathematical modeling. Hundreds of dif-
ferent dimple patterns have been devised, marketed,
and patented. However, even today the optimal dim-
ple pattern lies beyond our reach, and its discovery
remains a tough challenge for applied mathematics and
computational science.

2 Reynolds Number

Drag and lift—which are also essential to the design of
aircraft and ships, the swimming of fish and the flight
of birds, the circulation of blood cells, and many other
systems—are not easy to model mathematically. In this
article, we shall concentrate on drag. It is caused by
two main sources: the friction between the ball’s sur-
face and the air, and the difference in pressure ahead

of and behind the ball. The size and relative impor-
tance of these contributions depends greatly on the
flow regime. In the second half of the nineteenth cen-
tury, George Stokes and Osborne Reynolds realized that
a single number could be assigned to a flow that cap-
tured a great deal about its qualitative behavior. Low
Reynolds number flows are slow, orderly, and laminar.
Flows with high Reynolds number are fast, turbulent,
and mixing.

The Reynolds number has a simple formula in terms
of four fundamental characteristics of the flow: (1) the
diameter of the key features (e.g., of the golf ball),
(2) the flow speed, (3) the fluid density, and (4) the fluid
viscosity. The formula is simple: the Reynolds number
is simply the product of the first three of these divided
by the fourth. This results in a dimensionless quantity:
it does not matter what units you use to compute the
four fundamental characteristics as long they are used
consistently. The viscosity, which enters the Reynolds
number, measures how thick the fluid is: water, for
example, is a moderately thin fluid and has viscosity
5 × 10−4 lb/ft s, while honey, which is much thicker,
has a viscosity of 5 in the same units, and pitch, which
is practically solid, has a viscosity of about 200 000 000.

Using the diameter of a golf ball (0.14 feet), its speed
(257 feet per second), and the density (0.74 pounds per
cubic foot) and viscosity (0.000012 lb/ft s) of air, we
compute the Reynolds number for a professionally hit
golf ball in flight as about 220 000, much more than a
butterfly flying (4000) or a minnow swimming (1), but
much less than a Boeing 747 (2 000 000 000).

3 The Mysterious Drag Crisis

At the very beginning of the twentieth century, as
the Wright brothers made the first successful air-
plane flight, aerodynamics was a subject of intense
interest. The French engineer Alexandre Gustave Eif-
fel, renowned for his famous tower, dedicated his later
life to the study of aerodynamics. He built a laboratory
in the Eiffel tower and a wind tunnel on its grounds
and measured the drag on various objects at various
Reynolds numbers. In 1912 Eiffel made a shocking dis-
covery: the drag crisis. Although one would expect that
drag increases with increasing speed, Eiffel found that
for flow around a smooth sphere, there is a paradoxical
drop in drag as the flow speed increases past Reynolds
number 200 000. This is illustrated in figure 3. Of great
importance in some aerodynamical regimes, the drag
crisis begged for an explanation.
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Figure 3 A smooth sphere moving through a fluid exhibits
the drag crisis: between Reynolds numbers of approxi-
mately 200 000 and 300 000, the drag decreases as the
speed increases.

4 The Drag Crisis Resolved

The person who was eventually to explain the drag cri-

sis was Ludwig Prandtl. Eight years before Eiffel dis-

covered the crisis, Prandtl had presented one of the

most important papers in the field of fluid dynamics

at the International Congress of Mathematicians. In his

paper he showed how to mathematically model flow in

the boundary layer. As a ball flies through the air, a

very accurate mathematical model of the flow is given

by the system of partial differential equations known

as the navier–stokes equations [III.23]. If we could

solve these equations, we could compute the drag and

thereby elucidate the drag crisis. But the solution of the

Navier–Stokes equations is too difficult. Prandtl showed

how parts of the equations could be safely ignored

in certain parts of the flow: namely, in the extremely

thin layer where the air comes into contact with the

ball. His equations demonstrated how the air speed

increased rapidly from zero (relative to the ball) at the

surface of the ball to the ball speed outside a thin layer

around the ball surface. Prandtl also described very

accurately the phenomenon of boundary-layer separa-

tion, by which higher pressure behind the ball (the pres-

sure being lower on the top and bottom of the ball, by

Bernoulli’s principle) forces the boundary layer off the

ball and leads to a low-pressure trailing wake behind

the ball, much like the wake left behind by a ship.

This low-pressure trailing wake is a major source of

drag.

Boundary-layer separation

Trailing wake

Tripwire

Figure 4 Flow past a smooth sphere, clearly exhibiting
boundary-layer separation and the resulting trailing wake.
A tripwire has been added to the lower sphere. The result-
ing turbulence in the boundary layer delays separation and
so leads to a smaller trailing wake. (Photos from An Album
of Fluid Motion, Milton Van Dyke.)

In 1914 Prandtl used these tools to give the following
explanation of the drag crisis.

(1) At high speed, the boundary layer become tur-
bulent. For a smooth sphere, this happens at a
Reynolds number of about 250 000.

(2) The turbulence mixes fast-moving air outside the
boundary layer into the slow air of the boundary
layer, thereby speeding it up.

(3) The air in the boundary layer can therefore resist
the high-pressure air from behind the ball for
longer, and boundary-layer separation occurs far-
ther downwind.

(4) The low-pressure trailing wake is therefore nar-
rower, reducing drag.

Prandtl validated this subtle line of reasoning experi-
mentally by measuring the drag on a sphere in an air
stream and then adding a small tripwire to the sphere
to induce turbulence. As you can see in a reproduc-
tion of this experiment shown in figure 4, the result
is indeed a much smaller trailing wake.
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Figure 5 Simulation of flow over dimples.

5 The Role of Dimples

The drag crisis means that when a smooth sphere
reaches a Reynolds number of 250 000 or so, it expe-
riences a large decrease in drag and can travel farther.
This would be a great boon to golfers were it not for one
fact: a golf ball–size sphere would need to travel over
200 miles per hour to achieve that Reynolds number,
a speed that is not attained in golf. So why is the drag
crisis relevant to golfers? The answer lies in the dim-
ples. Just as a tripwire can be added to a smooth sphere
to induce turbulence and precipitate the drag crisis,
so can other perturbations of the surface. By suitably
roughening the surface of a golf ball, e.g., by adding
dimples, the Reynolds number at which the drag cri-
sis occurs can be lowered to about 50 000, well within
the range of any golfer. The resulting drag reduction
doubles the distance flown by the ball over what can be
achieved with a smooth ball.

6 Stalking the Optimal Golf Ball

As we have seen, dimples dramatically affect the flight
of a golf ball, so a natural question is how to design
an optimally dimpled ball. How many dimples should
there be and in what pattern should they be arranged?
What shape of dimple is best: round, hexagonal, tri-
angular, …, some combination? What size should they
be? How deep and with what profile? There are count-
less possibilities, and the thousands of dimple patterns
that have been tested, patented, and marketed encom-
pass only a small portion of the relevant design space.
Modern computational science offers the promise that
this space can be explored in depth with computa-
tional simulation, and indeed great progress has been
made. For example, in 2010 a detailed simulation of
flow over a golf ball with about 300 spherical dimples at
a Reynolds number of 110 000 was carried out by Smith

et al. (2012). The computation was based on a finite-
difference discretization of the Navier–Stokes equa-
tions using about a billion unknowns and it required
hundreds of hours on a massive computing cluster to
solve. It furnished fascinating insights into the role of
the dimples in boundary-layer detachment and reat-
tachment, hinted at in figure 5. But even such an
impressive computation neglects some important and
difficult aspects, such as the spin of the golf ball, and
once those issues have been addressed the coupling
of the simulation to effective optimization procedures
will be no small task. The understanding of the flight of
a golf ball has challenged applied mathematicians for
over a century, and the end is not yet in sight.

Further Reading

Smith, C. E., N. Beratlis, E. Balaras, K. Squires, and M.
Tsunoda. 2012. Numerical investigation of the flow over
a golf ball in the subcritical and supercritical regimes.
International Journal of Heat and Fluid Flow 31:262–73.

VI.7 Automatic Differentiation
Andreas Griewank

1 From Analysis to Algebra

In school, many people have suffered the pain of having
to find derivatives of algebraic formulas. As in some
other domains of human endeavor, everything begins
with just a few simple rules:

(u+ cv)′ = u′ + cv′, (uv)′ = u′v +uv′. (1)

With a constant factor c, the first identity means that
differentiation is a linear process; the second identity
is known as the product rule. Here we have assumed
that u and v are smooth functions of some variable x,
and differentiation with respect to x is denoted by a
prime. Alternatively, one writes u′ = u′(x) = du/dx
and also calls the derivative a differential quotient. To
differentiate composite functions, suppose the inde-
pendent variable x is first mapped into an intermedi-
ate variable z = f(x) by the function f , and then z is
mapped by some function g into the dependent vari-
able y . One then obtains, for the composite function
y = h(x) ≡ g(f(x)),

h′(x) = g′(f (x))f ′(x) = dy
dx

= dy
dz

dz
dx
. (2)

This expression for h′(x) as the product of the deriva-
tives g′ and f ′ evaluated at z = f(x) and x, respec-
tively, is known as the chain rule. One also needs to
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