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INTRODUCTION

Boundary element methods are being applied with increasing frequency
to time dependent problems, especially to boundary value problems for
parabolic differential equations. Here we shall consider the heat equation
as the prototype of such equations. Various types of integral equations
arise when solving boundary value problems for the heat equation. An
important one is the single layer heat potential operator equation, i.e.,
the Volterra integral equation of the first kind with the fundamental so-
lution as kernel. This equation is not well understood. The fundamental
questions of existence and uniqueness of solutions and continuous depen-
dence of the solution on the data have thus far not been answered. Such
an investigation is basic. It must precede any rigorous analysis of the con-
vergence of numerical methods for the equation. In this paper we shall set
out the proper mathematical framework and establish the well-posedness
of the single layer heat potential operator equation.

We begin by recalling how this equation arises. The direct method for
deriving an integral equation formulation for transient heat conduction
begins with a representation of the temperature at any point in the spatial
domain Ω ⊂ R3 and any positive time in terms of the temperature and
flux on the boundary for all previous times and the initial temperature.
Let u(x, t) denote the temperature at a point x in Ω, the spatial domain,
and a time t ≥ 0, and assume that the thermal diffusivity is scaled to
unity, so that u satisfies the heat equation

∂u

∂t
(x, t)−∆u(x, t) = 0, x ∈ Ω, t > 0.

Denote by K(x, y) the fundamental solution for the heat equation,

K(x, t) =


exp(−|x|2/4t)

(4πt)3/2
, x ∈ R3, t > 0,

0, x ∈ R3, t ≤ 0.

(1)



Let Γ denote the boundary of Ω (which we assume for convenience to be
smooth) and n = ny the unit outward normal to Ω at a point y ∈ Γ. The
representation in question can then be written

u(x, t)

=
∫ t

0

∫
Γ

[
∂u

∂n
(y, s)K(x− y, t− s)− u(y, s)

∂K

∂ny
(x− y, t− s)

]
dσyds

+
∫

Ω

u(y, 0)K(x− y, t) dy, x ∈ Ω, t > 0. (2)

This can be verified simply by using Green’s theorem. See, e.g., Pina and
Fernandez.1 The quantity

U(x, t) :=
∫ t

0

∫
Γ

q(y, s)K(x− y, t− s) dσyds, x ∈ R3, t ≥ 0, (3)

which occurs in Equation (2) (with q = ∂u/∂n) is called the single layer
heat potential with density q. Assuming that the density is continuous
on Γ, the single layer heat potential defines a continuous function for all
x ∈ R3 and all t ≥ 0 which satisfies the heat equation everywhere except
for x in Γ and which vanishes when t = 0. The derivatives of the single
layer potential, however, are discontinuous on Γ. In fact for any x ∈ Γ the
classical jump relation states that

lim
z→x

∂U

∂n
(z, t) = ±1

2
q(x, t) +

∫ t

0

∫
Γ

∂K

∂nx
(x− y, t− s) dσyds. (4)

The plus sign holds in Equation (4) if z tends to x from within Ω (nontan-
gentially to Γ), while the minus sign holds if z tends to x from outside Ω.
(The coefficient 1/2 depends on the fact that the boundary Γ is smooth.
If x were an edge or a conical point on the boundary this coefficient would
assume another value.) A proof of the jump relation can be found, for
example, in Friedman,2 Chapter 5. The double layer heat potential

V (x, t) :=
∫ t

0

∫
Γ

q(y, s)
∂K

∂ny
(x− y, t− s) dσyds, x ∈ R3, t ≥ 0,

satisfies a similar jump relation:

lim
z→x

V (z, t) = ∓1
2
q(x, t) +

∫ t

0

∫
Γ

∂K

∂ny
(x− y, t− s) dσyds, (5)



where now the plus sign holds for the limit from the exterior. Now let the
point x in Equation (2) tend to a point on the boundary. Using Equation
(5), we find that

1
2
u(x, t) =∫ t

0

∫
Γ

[
∂u

∂n
(y, s)K(x− y, t− s)− u(y, s)

∂K

∂ny
(x− y, t− s)

]
dσyds

+
∫

Ω

u(y, 0)K(x− y, t) dy, x ∈ Γ, t > 0. (6)

The boundary integral equation Equation (6) relates the temperature
u and flux ∂u/∂n on the lateral boundary Γ × [0, T ] of the space-time
cylinder and the initial data u(·, 0). Now, for the standard initial-boundary
value problems the initial data is known and at each point of the lateral
boundary either the temperature or the flux is known. (Or, in the case
of a Robin problem, one may be expressed in terms of the other). Then
Equation (6) may be used to determine the unknown quantity, either the
boundary temperature or flux. Once both the boundary temperature and
flux are known the integral representation in Equation (2) determines the
temperature everywhere.

If the flux is known (i.e., if we are dealing a Neumann problem), then
Equation (6) is a Volterra integral equation of the second kind with the
double layer heat potential kernel, ∂K/∂n, for the unknown value of the
temperature u on Γ. The theory for such second kind equations is quite
well developed. In particular it is known that the equation admits a unique
solution which can be written as a convergent Neumann series. See, for
example, Chapter 5 of Friedman2 or Chapter 13 of Pogorzelski.3 Similar
considerations are valid for the Robin problem, for which the flux is given
in terms of the boundary temperature. This leads again to a second kind
equation with only a slightly more complicated kernel. The arguments
involved in establishing the well-posedness of the second kind equations
can also be applied to the study of collocation and Galerkin methods for
their numerical solution. Such an analysis has been carried out in some
generality by Costabel, Onishi, and Wendland.4

For the Dirichlet problem, in which the temperature is given on the
boundary, Equation (6) becomes a Volterra integral equation of the first
kind for the unknown flux with the kernel K. The theory of first kind
integral equations is much less straightforward than that for second kind



equations. The main result of this paper is to show that in fact this
equation has a unique solution, and to determine norms for the solution
and data for which continuous dependence can be shown.

Before entering into the technical detail that will be needed to accom-
plish this goal, we shall describe the nature of the result informally. Since
the time of Hadamard a problem has been called well-posed if for all data
in some reasonable class there exists one and only one solution in some
other class, and if the map which associates the solution to the data is
continuous. To formalize this notion for a particular problem, we must
specify the classes in which the data and solution are to lie, and, most
importantly, we must specify in what sense the solution operator is con-
tinuous. We shall use a Hilbert space setting. That is, we shall define two
Hilbert spaces, H1 and H2, say, whose elements are functions (or distri-
butions) on Γ× [0, T ]. We shall define an operator, L, which associates to
each function q in H1 a function Lq in H2 in a continuous fashion. This
operator L will be the single layer heat potential operator in the sense
that if q is a nice function on Γ × [0, T ], then Lq will be the restriction
to Γ× [0, T ] of the function U in Equation (3). In this operator notation,
our problem may be stated thus: given a function g in H2 find a function
q in H1 such that

Lq = g. (7)

We shall show that for every function g Equation (7) has one and only
one solution u. Further we shall have that the solution operator which
send g to u, namely the operator L−1, is continuous. In other words we
shall show that L is an isomorphism from the Hilbert space H1 onto the
Hilbert space H2.

THE SINGLE LAYER POTENTIAL

The standard single layer potential plays the same role for electrostatic
problems as the single layer heat potential for heat conduction problems.
In this context, too, the question arises: in what sense is the single layer
potential operator equation well-posed? This question has been answered
by several authors. See Hsiao and McCamy5 and Nedelec and Planchard.6

The answer and the arguments used to derive it have been essential to
establishing the basic convergence theory for boundary element methods
for potential problems. Here we shall briefly describe a simplified version
of the argument in Nedelec and Planchard, since it allows us to introduce
in simple setting some (but not all!) of the essential ideas for the single
layer heat potential.



For φ ∈ C∞0 (R3) we define ‖φ‖W = ‖∇φ‖L2(R3) and let W denote
the closure of C∞0 (R3) in this norm. Then W is a Hilbert space. Since
C∞0 (R3) is dense in W , the dual space, W ∗, of W may be identified with
a space of distributions on R3. It can be shown using Hardy’s inequality
(Hardy, Littlewood, and Polya,7 Theorem 328) that∫

R3

|φ(x)|2

|x|2
dx ≤ 4‖φ‖2

W (8)

for all φ ∈ W . Note that the space W is not contained in L2(R3) and
correspondinglyW ∗ does not contain L2(R3). However, it follows from the
inequality (8) that all functions that are square integrable with respect to
the measure |x|2dx are contained in W ∗, and in particular C∞0 (R3) ⊂W ∗.
For ψ ∈ C∞0 (R3) and φ ∈ W the duality pairing 〈φ, ψ〉W×W∗ and the
integral

∫
R3 φψ coincide. We shall follow convention in using the integral

notation for such duality pairings even when the distribution is not a
locally integrable function.

The usual Sobolev space H1(R3) is a dense subspace of W with contin-
uous inclusion. These two spaces differ only in the permitted behavior near
infinity. Intuitively, if φ ∈ H1(R3), then—since φ is square integrable—
φ(x) decays at least as fast as |x|−3/2 as |x| → ∞. However functions
in W—which need only have square integrable gradient—may decay as
slowly as |x|−1/2. For any bounded smooth region K, though, the set of
restrictions of functions in W to K coincides with H1(K). Consequently
we may carry over the trace theory for Sobolev spaces to the space W .
It is well known that for any bounded smooth surface Γ, the trace oper-
ator, which extends the restriction operator from C∞0 (R3), maps H1(R3)
boundedly onto H1/2(Γ). (For example, see Lions and Magenes,8 Theo-
rem 8.3.) Consequently, the trace operator also defines a continous linear
operator of W onto H1/2(Γ).

Let Ω denote a smoothly bounded region in R3 with boundary Γ and
denote by γ the trace operator on W . We use the notation δq for γ∗q, the
image of q under the adjoint operator, so

〈δq, v〉 = 〈q, γv〉 =
∫

Γ

qv dσx for all q ∈ H−1/2(Γ), v ∈W.

Since γ : W → H1/2(Γ) is surjective, its adjoint maps H−1/2(Γ) isomor-
phically onto a closed subspace ofW ∗, i.e., there is a constant C depending
only on Γ such that

C−1‖δq‖W∗ ≤ ‖q‖H−1/2(Γ) ≤ C‖δq‖W∗ for all q ∈ H−1/2(Γ).



Let uq be the unique solution to the variational problem∫
R3
∇uq ∇ v dx = 〈δq, v〉 for all v ∈W, (9)

and define L : H−1/2(Γ) → H1/2(Γ) by Lq = γuq. It follows directly from
this definition that L is a continuous self-adjoint linear operator. Since
Equation (9) is the variational formulation of Poisson’s problem on R3, the
solution may be written as a convolution with the fundamental solution
of the Laplacian, i.e.,

uq(x) = 〈Nx, δq〉,

where Nx(y) = 1/(4π|x−y|). In particular, if q is a smooth function, then

Lq(x) =
1
4π

∫
Γ

q(y)
|x− y|

dσy. (10)

Choosing v = uq in Equation (9) we get

〈q, Lq〉 = ‖uq‖2
W = ‖δq‖2

W∗ ≥ C−1‖q‖−1/2
H (Γ).

Consequently the mapping q 7→ 〈q, Lq〉 is an innerproduct on H−1/2(Γ)
which gives rise to an equivalent norm. This implies that LmapsH−1/2(Γ)
isomorphically onto H1/2(Γ). Summarizing these considerations, we have
proven the following theorem.

Theorem 1. The single layer potential operator defined in Equation

(10) extends to a bounded self-adjoint linear operator L from H−1/2(Γ) to

H1/2(Γ) which is one-to-one and onto. Moreover the associated bilinear

form q 7→ 〈q, Lq〉 is innerproduct on H−1/2(Γ) equivalent to the usual one.

THE INITIAL VALUE PROBLEM

In order to develop a Hilbert space theory for the single layer heat poten-
tial, we shall need to know the basic results of the Hilbert space theory
for the heat operator itself. For a more complete version of the theory,
including the case of nonzero initial data, see Lions and Magenes,8 Chap-
ter 3.

The Hilbert space approach to the heat equation may be based on the
following variant of the projection lemma due to Lions.9



Lemma 2. Let H be a Hilbert space, Φ a subspace of H, and Λ : Φ →
H∗ a linear operator. (It is not assumed that Φ is closed nor that Λ is

continuous). Assume that there exists ε > 0 such that

〈Λφ, φ〉 ≥ ε‖φ‖2
H for all φ ∈ Φ. (11)

Then for all F ∈ H∗ there exists u ∈ H such that

〈Λφ, u〉 = 〈F, φ〉 for all φ ∈ Φ.

Moreover ‖u‖H ≤ ε−1‖F‖H∗ .

In applying this formulation to the heat equation we shall require
several norms and spaces of functions defined on R3 × (0, T ). We define

S = L2(0, T ;W ), V =
{
u ∈ L2(0, T ;W ) : ∂u/∂t ∈ L2(0, T ;W ∗)

}
,

with the associated norms

‖u‖S =

(∫ T

0

‖u‖2
W dt

)1/2

=

(∫ T

0

∫
R3
|∇u(x)|2 dxdt

)1/2

and

‖u‖V =

(∫ T

0

(‖u‖2
W + ‖∂u

∂t
‖2

W∗) dt

)1/2

.

It can be shown that every u ∈ V maps [0, T ] continuously into L2(R3),
with

sup
t∈([0,T ]

‖u(., t)‖L2(R3) ≤ C‖u‖W .

(See Theorem 3.1 in Chapter 1 of Lions and Magenes8 for the proof of a
similar result.) Consequently, for each t ∈ [0, T ], we may define the closed
subspace

V (t) = {u ∈ V : u(·, t) = 0 } .

We have V (t) ⊂ S ⊂ L2(R3× [0, T ]) with continuous inclusions, each space
being dense in the next. Identifying L2(R3× [0, T ]) with its dual, we then
have L2(R3 × [0, T ]) ⊂ S∗ ⊂ V (t)∗.



Theorem 3. For all f ∈ S∗ there exists a unique u ∈ V such that

∂u

∂t
−∆u = f on R3 × (0, T ), (12)

u = 0 on R3 × {0}. (13)

Moreover, there exists a constant C such that

‖u‖V ≤ C‖f‖S∗ .

Proof. We begin by applying Lemma 2 with H = S, Φ = V (T ), and

〈Λv, u〉 =
∫ T

0

∫
R3

(−u∂v
∂t

+∇u∇ v) dxdt for all v ∈ V (T ), u ∈ S.

Note that
〈Λv, v〉 =

1
2
‖v(·, 0)‖2

L2(R3) + ‖v‖2
S ,

so the inequality (11) holds with ε = 1. We conclude that for all F ∈ S∗

there exists u ∈ S with ‖u‖S ≤ ‖f‖S∗ satisfying∫ T

0

∫
R3

(−u∂v
∂t

+∇u∇ v) dxdt = 〈f, v〉 for all v ∈ V (T ). (14)

Now Equation (14) implies that ∂u/∂t exists in the sense of distributions
and equals ∆u+ f ∈ S∗, whence u ∈ V and ‖∂u/∂t‖S∗ ≤ 2‖f‖S∗ . Then
Equation (14) also implies that u(·, 0) = 0. Thus we have shown existence
of the solution and the desired a priori estimate. To show uniqueness
of the solution, it suffices to show that if ∂u/∂t − ∆u = 0 for some
u in V (0), then u = 0. Pairing the differential equation with u gives
‖u(T )‖2

L2(R3) + ‖u‖2
S = 0, so u indeed vanishes. This completes the proof.

Define a bilinear form B : V (0) × S → R by

B(u, v) =
∫ T

0

∫
R3

(
∂u

∂t
v +∇u∇ v) dxdt.

Then Theorem 3 shows that the correspondence u 7→ B(u, ·) is a linear
isomorphism of V (0) onto S∗. In the exactly the same way, we can show
that the bilinear form

B′(v, u) =
∫ T

0

∫
R3

(−u∂v
∂t

+∇u∇ v) dxdt,

defines an isomorphism, v 7→ B′(v, ·), of V (T ) onto S∗. It follows that the
adjoint operator is an isomorphism of S onto V (T )∗. This adjoint operator
is given by the correspondence u 7→ B′(·, u). Thus we have the following
result.



Theorem 4. For all f ∈ V (T )∗ there exists a unique u ∈ S such that

Equation (14) holds. Moreover, there exists a constant C such that

‖u‖S ≤ C‖f‖V (T )∗ .

Theorem 4 shows that even when f is only in V (T )∗, a sense can be
given to the initial value problem for which it is well-posed. If f ∈ S∗, then
the solution u ∈ V (0) to Equations (12)-(13), whose existence is guaranteed
by Theorem 3, satisfies Equation (14), and so coincides with the solution
of Theorem 4. In short, the heat operator defines an isomorphism of S
onto V (T )∗. Its restriction to V (0) defines an isomorphism of this spaces
onto S∗.

THE DIRICHLET PROBLEM FOR THE HEAT EQUATION

To discuss the heat equation with Dirichlet boundary conditions in a
variational setting, we must give a sense to the the boundary values of
functions in S and V . Since such functions are not continous, it is not
immediately obvious how to do this. Fortunately it is well understood
how to define such traces. The spaces S and V differ from the spaces
L2(0, T ;H1(R3)) and L2(0, T ;H1(R3))∩ H1(0, T ;H−1(R3)), respectively,
only in the behavior near infinity. In light of this we can easily extend
the known theory of traces for the latter spaces to the former. Let Γ be a
smooth bounded surface in R3. Recall from the last section that the trace
operator maps W boundedly onto H1/2(Γ). Consequently, if we define
S = L2(0, T ;H1/2(Γ)), then the restriction operator from C∞0 (R3× [0, T ])
to C∞(Γ× [0, T ]) extends to a bounded linear operator of S onto S. Define
V = L2(0, T ;H1/2(Γ))∩H1/4(0, T ;L2(Γ)). Then it can be shown that for
any t, this trace operator maps V (t) boundedly onto V. This follows from
Lions and Magenes,10 Chapter 4, §15.5. We denote by SΓ, VΓ, V (t)

Γ the
subspaces of functions in S, V , and V (t), respectively, which vanish on Γ,
i.e., which are in the kernel of the trace operator.

We continue to denote by Ω a smoothly bounded region in R3 with
boundary Γ. We shall simultaneously consider the Dirichlet problems for
the heat equation in Ω and in the exterior domain R3 \ Ω̄. Thus, given
functions f on R3 × (0, T ) and g on Γ× (0, T ), we wish to find a function
u on R3 × [0, T ] which satisfies

∂u

∂t
−∆u = f on (R3 \ Γ)× (0, T ), (15)

u = g on Γ× (0, T ), (16)

u = 0 on R3 × {0}. (17)



We first consider the case of zero Dirichlet data. As above we can show
the well-posedness of two distinct formulations of the problem.

Theorem 5. For all f ∈ S∗Γ there exists a unique u ∈ V such that

∂u

∂t
−∆u = f on (R3 \ Γ)× (0, T ),

u = 0 on Γ× (0, T ),

u = 0 on R3 × {0}.

Moreover, there exists a constant C such that

‖u‖(0)
V ≤ C‖f‖S∗Γ

.

The proof is entirely analogous to that of Theorem 3. In this case
Lemma 2 is applied with H = SΓ, Φ = V

(T )
Γ .

Arguing as in the proof of Theorem 4 we can also prove well-posedness
of a weaker formulation of the Dirichlet problem.

Theorem 6. For all f ∈ V (T )∗
Γ there exists a unique u ∈ SΓ such that∫ T

0

∫
R3

(−u∂v
∂t

+∇u∇ v) dxdt = 〈f, v〉 for all v ∈ V (T )
Γ .

Moreover, there exists a constant C such that

‖u‖S ≤ C‖f‖
V

(T )∗
Γ

.

It is an easy matter to extend this result to inhomogeneous Dirichlet
data. Given g ∈ V we may find u1 ∈ V (0) such that u1 = g on Γ. Defining
u2 as the unique solution of the heat equation

∂u2

∂t
−∆u2 = f − ∂u1

∂t
+ ∆u1

with homogeneous Dirichlet boundary conditions and homogeneous initial
condition, we have a solution u = u1 + u2 ∈ V to Equations (15)–(17).
That this solution is unique follows immediately from Theorem 5. In
a similar way we may extend Theorem 6 to the case of inhomogeneous
Dirichlet data. These two results are stated in the following theorems.



Theorem 7. For all f ∈ S∗Γ, g ∈ V there exists a unique u ∈ V such

that Equations (15)–(17) hold. Moreover, there exists a constant C such

that

‖u‖V ≤ C(‖f‖S∗Γ
+ ‖g‖V). (18)

Theorem 8. For all f ∈ V
(T )∗
Γ , g ∈ S, there exists a unique u ∈ S

such that the Dirichlet condition (16) is satisfied and∫ T

0

∫
R3

(−u∂v
∂t

+∇u∇ v) dxdt = 〈f, v〉 for all v ∈ V (T )
Γ .

Moreover, there exists a constant C such that

‖u‖S ≤ C(‖f‖
V

(T )∗
Γ

+ ‖g‖S).

As in the case of the initial value problem, we may regard Theorem 7
as a regularity theorem for the weak solution guaranteed by Theorem 6.

Theorem 9. If f ∈ S∗Γ and g ∈ V, then the function u of Theorem 8

belongs to V and satisfies Equations (15)–(17) and the inequality (18).

THE SINGLE LAYER HEAT POTENTIAL

Let

uq(x, t) =
∫ t

0

∫
Γ

q(y, s)K(x− y, t− s) dσydt, x ∈ R3, t > 0,

denote the single layer heat potential with density q. (Recall that K
denotes the fundamental solution, given explicitly in Equation (1)). We
define the boundary integral operator

Lq(x, t) =
∫ t

0

∫
Γ

K(x− y, t− s)q(y, s) dσydt, x ∈ Γ, t ∈ (0, T ). (19)

Thus Lq is just the restriction of uq to Γ × [0, T ]. In this section we will
show that the boundary integral equation

Lq(x, t) = g(x, t) for all x ∈ Γ, t ∈ (0, T )

admits a unique solution for a wide class of functions g. More precisely,
we shall prove the following theorem, which is the analogue of Theorem 1
for the single layer heat potential, and which constitutes the main result
of this paper.



Theorem 10. The single layer heat potential operator L defined in

Equation (19) extends to a bounded linear operator which maps S∗ iso-

morphically onto V and V∗ isomorphically onto S. Moreover, there is a

constant ε > 0 such that

〈q, Lq〉 ≥ ε‖q‖2
V∗ for all q ∈ S∗. (20)

Now the distributions in V∗ are not necessarily functions, and the
integral in Equation (19) need not make sense. So our first task is to give
a sense to Lq for q ∈ V∗. Now when q is smooth, uq satisfies the heat
equation on Ω and vanishes for t = 0. Therefore for any smooth function
v on R3 × [0, T ],

0 =
∫ T

0

∫
Ω

(
∂uq

∂t
−∆u)v dxdt =

∫ T

0

∫
Ω

(−uq
∂v

∂t
+∇uq ∇ v) dxdt

+
∫

Ω

u(x, T )v(x, T ) dx−
∫ T

0

∫
Γ

∂uq

∂n−
v dσxdt. (21)

Here ∂uq/∂n− denotes the outward normal derivative of uq|Ω. Supposing
that v has compact support, or at least decays sufficiently rapidly near
infinity, we may perform a similar integration by parts on the complemen-
tary domain Ωc = R3 \ Ω̄ to get

0 =
∫ T

0

∫
Ωc

(
∂uq

∂t
−∆u)v dxdt =

∫ T

0

∫
Ωc

(−uq
∂v

∂t
+∇uq ∇ v) dxdt

+
∫

Ωc

u(x, T )v(x, T ) dx+
∫ T

0

∫
Γ

∂uq

∂n+
v dσxdt, (22)

where ∂uq/∂n+ denotes the outward normal derivative of uq|Ωc . Now,
from Equation (4),

q = [∂u/∂n] =
∂uq

∂n−
− ∂uq

∂n+
.

Thus, adding Equations (21) and (22), we see that∫ T

0

∫
R3

(−uq
∂v

∂t
+∇uq ∇ v) dxdt =

∫ T

0

∫
Γ

qv dσxdt−
∫

R3
u(x, T )v(x, T ) dx

If we further assume that v vanishes for t = T we have∫ T

0

∫
R3

(−uq
∂v

∂t
+∇uq ∇ v) dxdt =

∫ T

0

∫
Γ

qv dσxdt. (23)



Although we have derived Equation (23) under the assumption that v is
smooth and vanishes when t = T , it is not hard to show that it holds for
all v ∈ V (T ).

Now suppose only that q ∈ V∗ and define δq ∈ V (T )∗ by 〈δq, v〉 =
〈q, γv〉 where γ : V → V is the trace operator. Then C−1‖δq‖V (T )∗ ≤
‖q‖V∗ ≤ C‖δq‖V (T )∗ , for some constant C depending only on Γ and T .
We define uq ∈ S by

∫ T

0

∫
R3

(−uq
∂v

∂t
+∇uq ∇ v) dxdt = 〈δq, v〉 for all v ∈ V (T ). (24)

By Theorem 4, uq is uniquely determined. Moreover C−1‖uq‖S ≤ ‖q‖V∗ ≤
C‖uq‖S . Note that Equation (24) agrees with Equation (23) if q is smooth.
Thus we set Lq = γuq. By construction L defines a bounded linear oper-
ator from V∗ to S. Note that if q ∈ S∗ ⊂ V∗, then δq ∈ S∗, uq ∈ V (0), and
Lq ∈ V. In this case∫ T

0

∫
R3

(
∂uq

∂t
v +∇uq ∇ v) dxdt = 〈δq, v〉 for all v ∈ S,

and, taking v = uq we get

〈q, Lq〉 =
∫ T

0

∫
R3

(
∂uq

∂t
uq + |∇uq|2) dxdt

=
1
2
‖uq(·, T )‖2

L2(R3) + ‖uq‖2
S ≥ C−1‖q‖2

V∗ ,

i.e., the inequality (20) holds. We summarize these considerations in the
following theorem.

Theorem 11. The single layer heat potential operator defined by

Equation (19) for smooth q extends to a bounded linear operator L : V∗ →
S which also maps S∗ boundedly into V. Moreover there is a constant ε > 0
such that the inequality (20) holds.

We may now apply Lemma 2 with H = V∗, Φ = S∗, and Λ = L. In
light of Theorem 11, the hypotheses of the lemma are fulfilled. We deduce
that for all g ∈ V there exists p ∈ V∗ such that

〈p, Lq〉 = 〈g, q〉 for all q ∈ S∗.



We require the analogous result for the adjoint operator also. Namely, for
p ∈ V∗ we define L′p ∈ S as follows. Define vp ∈ S by the equation∫ T

0

∫
R3

(
∂u

∂t
vp +∇u∇ vp) dxdt = 〈u, δp〉 for all u ∈ V (0),

and set L′p = γvp. If p ∈ S∗ then vp ∈ V (T ), L′p ∈ V, and∫ T

0

∫
R3

(−u∂vp

∂t
+∇u∇ vp) dxdt = 〈u, δp〉 for all u ∈ S. (25)

Thus, like L, L′ defines a bounded linear operator from V∗ to S which
maps S∗ into V. Applying Lemma 2 as before we conclude that for all
h ∈ V there exists q ∈ V∗ such that

〈L′p, q〉 = 〈p, h〉 for all p ∈ S∗. (26)

Now the operators L : V∗ → S and L′ : S∗ → V are indeed adjoint to each
other. In fact, if q ∈ V∗ and p ∈ S∗, then

〈Lq, p〉 = 〈γuq, p〉 (definition of Lq)

= 〈uq, δp〉 (definition of δp)

=
∫ T

0

∫
R3

(−uq
∂vp

∂t
+∇uq ∇ vp) dxdt (by Equation (25))

= 〈δq, vp〉 (by Equation (24))

= 〈q, L′p〉. (definition of L′p)

We may therefore reinterpret Equation (26) as saying that for all h ∈ V

there exists q ∈ V∗ such that 〈p, Lq − h〉 = 0 for all p ∈ S∗. Since S∗ is a
dense subspace of V∗ this means that Lq = h. This shows that the range,
L(V∗), of L contains all of V. In fact, L even maps the smaller space S∗

onto V.

Theorem 12. If q ∈ V∗ and Lq ∈ V, then q ∈ S∗ and ‖q‖S∗ ≤
C‖Lq‖V.

Proof. Let q ∈ V∗ and suppose that Lq ∈ V. Recalling that V (T )
Γ

denotes the subspace of functions in V (T ) which vanish on Γ× [0, T ], it it
follows immediately from Equation (24) that∫ T

0

∫
R3

(−uq
∂v

∂t
+∇uq ∇ v) dxdt = 0 for all v ∈ V (T )

Γ .



Thus uq coincides with the function u given in Theorem 8 (with f = 0,
g = Lq), and from Theorem 9 we know that uq ∈ V and that the a priori
estimate

‖uq‖V ≤ C‖Lq‖V (27)

holds. Now let v be a nonzero smooth function on Γ×[0, T ] which vanishes
on Γ× T . Then

|〈q, γv〉|
‖v‖S

=
1

‖v‖S

∫ T

0

∫
R3

(−uq
∂v

∂t
+∇uq ∇ v) dxdt

=
1

‖v‖S

∫ T

0

∫
R3

(
∂uq

∂t
v +∇uq ∇ v) dxdt

≤ C‖uq‖V .

Taking the supremum over v, and noting that V (T ) is dense in S, we infer
that in fact q ∈ S∗ and

‖q‖S∗ ≤ C‖uq‖V .

Together with the estimate (27) this proves the theorem.

It is now a simple matter to complete the proof of Theorem 10. The
coercivity inequality (20) has already been shown in Theorem 11. More-
over, we have shown that L(V∗) ⊃ V. In view of Theorem 12, we conclude
that L(S∗) ⊃ V. Thus L maps S∗ onto V. From the inequality (20) we
see that L is an injection. Thus L is a continuous, one-to-one linear op-
erator from S∗ onto V. Now Banach’s theorem tells us that under these
conditions, the inverse L−1 is also continuous. Thus L is an isomorphism
of S∗ onto V. Finally, we may reverse the roles of L and L′ and then take
adjoints to deduce that L maps V∗ isomorphically onto S as well.

NOTATION

Basic notations

R3 three dimensional space
N(x) the fundamental solution of the Laplace equation in R3

K(x, t) the fundamental solution of the heat equation in R3

Ω the spatial domain in R3

Γ the boundary of Ω
[0, T ] finite time interval
X∗ for any space X, its dual space



Spaces of functions depending on the space variable alone

C∞0 infinitely differentiable functions with compact support
L2 square integrable functions
Hs the Sobolev spaces of order s
W the closure of C∞0 (R3) in the norm

∫
R3 |∇φ|2

Spaces of functions depending on space and time

S L2(0, T ;W )
V {u ∈ S : ∂u/∂t ∈W ∗ }
V (t) {u ∈ V : u(x, t) = 0 ∀x }
SΓ {u ∈ S : u(x, t) = 0 ∀x ∈ Γ, ∀t }
VΓ {u ∈ V : u(x, t) = 0 ∀x ∈ Γ, ∀t }
S the set of traces on Γ× [0, T ] of functions in S
V the set of traces on Γ× [0, T ] of functions in V
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