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The amplitude of localized quantum states in random or disordered media may exhibit long-range
exponential decay. We present here a theory that unveils the existence of an effective potential which finely
governs the confinement of these states. In this picture, the boundaries of the localization subregions for
low energy eigenfunctions correspond to the barriers of this effective potential, and the long-range
exponential decay characteristic of Anderson localization is explained as the consequence of multiple
tunneling in the dense network of barriers created by this effective potential. Finally, we show that Weyl’s
formula based on this potential turns out to be a remarkable approximation of the density of states for a
large variety of one-dimensional systems, periodic or random.
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Despite more than 50 years of research, many questions
on the exact mechanism of Anderson localization still
remain open [1–4]. One of the most puzzling aspects of this
phenomenon is the strong spatial confinement of the one-
particle quantum states, i.e., the exponential decay of the
wave amplitude at long range in the absence of any
confining potential [5–8]. In the interpretation due to
Anderson, this decay comes from the destructive interfer-
ences between waves traveling from an initial source along
different propagation pathways in the disordered potential
[9,10]. At distances from the origin much larger than the
correlation length, the waves statistically almost cancel
each other out, leading to an exponential decay of the
amplitude. However, this statistical result says nothing
about the detailed nature of the decay. Does it occur
smoothly, in a continuous way, when the distance goes
to infinity? Or are there specific places where a transition
between constructive and destructive interference can be
observed?
A recent theory has shown that the precise spatial

location of such quantum states in a potential Vð~rÞ can
be predicted using the solution uð~rÞ of a simple associated
Dirichlet problem, called the localization landscape [11].
While quantum states and their energies are, respectively,
the eigenfunctions and the eigenvalues of the Hamiltonian
of the system defined as Ĥ ¼ −½ℏ2=ð2mÞ�Δþ V, the
landscape u is defined as the solution of

Ĥu ¼ −
ℏ2

2m
Δuþ Vu ¼ 1; ð1Þ

the boundary conditions being either Dirichlet, Neumann,
or periodic. In this theory, the localization subregions are
delimited by the valley lines of the graph of u. This property
directly derives from a fundamental inequality satisfied by

any eigenfunction ψ of Ĥ with eigenvalue E, normalized so
that its maximum amplitude is equal to 1:

jψð~rÞj ≤ Euð~rÞ: ð2Þ

In other words, the small values of u along its valley lines
constrain the amplitude of ψ to be small along the same
lines and, as a consequence, localize low energy eigen-
functions inside the regions enclosed by these lines [11].
We unveil here a different—and much more powerful—

role played by u, by showing that the functionW ≡ 1=u can
in fact be interpreted as a confining potential that is
responsible for the exponential decay of the Anderson
localized states even far from its main localization sub-
region. To that end, the original Schrödinger equation is
transformed by introducing an auxiliary function φ such
that ψ ≡ uφ. Expressing that ψ is an eigenvector of the
Hamiltonian leads to

�
−
ℏ2

2m
Δþ V

�
ðuφÞ ¼ Euφ: ð3Þ

Developing this equation and accounting for the definition
of u in Eq. (1) gives

−
ℏ2

2m
Δφ − 2

ℏ2

2m
∇u
u

· ∇φþ 1

u
φ ¼ Eφ: ð4Þ

The additional first order term proportional to ∇φ can be
inserted into the second order term, which finally yields

−
ℏ2

2m

�
1

u2
divðu2∇φÞ

�
þWφ ¼ Eφ: ð5Þ
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One can see that the auxiliary function φ ¼ ψ=u thus obeys
a Schrödinger-type equation in which the original potential
Vð~rÞ has disappeared. Instead, a new function Wð~rÞ now
plays the role of “effective confining potential.” One first
notices that, since u is a solution of Eq. (1), W is indeed
homogeneous to an energy. Moreover, the valleys of u
which are the boundaries of the localization subregions [11]
also correspond to the crest lines of this new potential.
These crest lines act as barriers for the auxiliary function φ.
The demonstration that W plays the role of an effective

potential derives from the following equality satisfied by
any quantum state jψi:

hψ jĤjψi ¼
�
up̂

�
ψ

u

�����up̂
�
ψ

u

��
þ hψ jŴjψi: ð6Þ

The detailed proof of this equality is given in the
Supplemental Material [12]. It not only shows that,
regardless of its kinetic energy, the energy E of a quantum
state jψi can never be less than the one it would have in a
potential Wð~rÞ, but also shows that the difference ðW − EÞ
can be used to build an Agmon distance ρEð ~r1; ~r2Þ that
controls the decay of ψð~rÞ in the regions where E < W, as
dictated by Agmon's inequality [13,14]. This distance is
defined as

ρEð ~r1; ~r2Þ ¼ min
γ

�Z
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWð~rÞ − EÞþ

q
ds

�
; ð7Þ

where the minimum is computed on all paths γ going
from ~r1 to ~r2. The control on the amplitude ψð~rÞ of an
eigenfunction centered in ~r0 of energy E is expressed
through the inequality

jψð~rÞj ≲ e−ρEð ~r0;~rÞ: ð8Þ

This exponential decay can be observed in Fig. 1, which
displays the localization of quantum states in a random
potential with periodic boundary conditions. The potential
is piecewise constant on intervals of length 1, with values
following a uniform law between 0 and Vmax ¼ 8, where
units of ℏ2=2m are considered [see Fig. 1(a)]. The domain
length L ¼ 64 thus corresponds to the total number of such
intervals. Figure 1(b) displays the effective confining
potential W ¼ 1=u computed from solving Eq. (1). This
effective potential (the dashed line) is superimposed in
Fig. 1(c) with the logarithmic plot of the third excited state
(ψ3). In a log scale, an exponential decay of the state
amplitude translates into a linear drop. The wells of W for
ψ3 are the locations whereW < E3, and they are outlined in
grey. One can observe that the decay of ψ3 occurs exactly at
the barriers of W and stops across the wells. Figure 1(d)
presents a comparison between the amplitudes of ψ0, ψ1,
and ψ3 (the solid lines) and the estimates obtained using the
Agmon distance build from W (dashed lines). We find that

the amplitudes and their estimates are almost identical, and
this result is robust for higher energies and for many
realizations of the random potential.
The confining properties of 1=u are even more interest-

ing in two dimensions. In the case of a 2D random potential
where no clear localization region can be outlined, it has
already been observed that the localization landscape u
exhibits marked valleys that determine the localization
subregions [15]. Here, we show that 1=u exponentially
controls the confinement of the quantum states in the entire
domain through the heights and widths of its barriers. This
is of particular interest in cases where the semiclassical
approach fails, as, for instance, for a Boolean-type potential
(a random potential that can take only two values).
Figure 2(a) displays a realization of a 2D Boolean potential,
i.e., a potential that can take only two values, Vmin ¼ 0 or
Vmax ¼ 4. In the present computation, the domain is
divided into 40 × 40 small unit squares, and the potential
is piecewise constant on each of these unit squares,
taking the value Vmin with probability p0 ¼ 0.6 and the
value Vmax with probability p ¼ 0.4, so that the V ¼ 0
region has a large chance to percolate throughout the
domain, as happens for the specific realization.

FIG. 1. (a) Random piecewise constant potential. (b) Effective
confining potential W computed by solving Eq. (1), then taking
the reciprocal of u. (c) Probability amplitude of the fourth state
jψ3i of energy E3 ¼ 1.88 in a logarithmic scale superimposed on
the effective potentialW (the dashed line). The wells ofW for this
state are defined by the intersections with the horizontal line
W ¼ E3 and are outlined in grey. One can see that the decay of
the eigenfunction occurs mostly outside these wells, i.e., in the
barriers of W, and stops inside these wells. (d) Amplitudes of
three different quantum states (ψ0, ψ1, and ψ3) in a logarithmic
scale, superimposed with the estimates obtained using the Agmon
distance (the dashed lines). These estimates are equal to the right-
hand side of Eq. (8). The Agmon estimates follow in detail the
decay of the actual amplitudes down to values smaller than 10−7.
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Consequently, a classical particle would never be confined
by such a potential, independent of its energy.
Both the effective potential W and the fundamental

quantum state ψ0 are obtained using 320 000 triangular
Lagrange finite elements of degree 3, with a code based on
the FEniCS finite element software environment [16].
Figure 2(b) displays a color representation of W, and its
crest lines are computed using a watershed algorithm.
Figure 2(c) presents the amplitude of ψ0 overlapped with
the same lines. One can notice how the decay of the
amplitude closely follows the subregions delimited by
these lines.
In order to examine in detail the long-range decay of this

quantum state, the quantity j∇ logðjψ jÞj, which can be
interpreted as the inverse of the local length of decay of
the wave function, is plotted in Fig. 2(d). Superimposing the
level sets of this quantitywith the crest lines of1=u (which are
also the valleys of the landscape u) reveals a very strong
correlation: the local length ofdecay increases substantially in
the vicinity of the barriers ofW. The long-range exponential
decay in Anderson localization does not occur uniformly but
rather appears as the consequence of successive and cumu-
lative decays across the dense network of barriers generated

by W. This behavior can be observed consistently in many
trials and for all localized eigenfunctions.
In summary, the decay of the original eigenfunction

ψ ¼ uφ away from its maximum thus originates from two
concurring contributions: (a) First, u is small near the
valleys surrounding the maximum of ψ , reducing accord-
ingly the amplitude of ψ wherever Euð~rÞ < 1 (see
Ref. [11]). (b) Second, φ decays through the barriers of
W, which can be interpreted as “quantum tunneling” of the
auxiliary function when W is larger than E. So, not only
does the amplitude of the quantum state ψ decrease in the
vicinity of the valleys of the landscape u, but it also decays
when crossing the faraway valleys, as long as the value of
W is larger than the energy E. This decay is directly
governed by the exponential of the Agmon distance build
from W.
One can therefore conclude that the complicated inter-

ferential pattern of wave localization in V is translated into
the picture of a classical confinement, observed through the
glass of the wells and the barriers of the new effective
potential W. It is thus possible to graphically identify the
localization subregions at energy E just by flooding the
effective potential W up to the height E, and by then
observing the extent of the flooded basins. Each basin can
be considered a local oscillator, the entire system then
appearing as a set of oscillators, each independent at low
energy and weakly coupled by quantum tunneling through
the boundaries of the basins. One has to underline that, for
energies higher than the maximum of W, there is no more
classical confinement byW, and the state localization in 1D
or 2D comes from the randomness present in the effective
potential.
It is interesting to note thatW can also be interpreted as a

regularized version of the original potential V. This can be
seen by rewriting Eq. (1) as

V −W ¼ ℏ2

2m
Δu
u

: ð9Þ

However, unlike in a classical smoothing procedure, the
smoothing scale here is not constant but varies spatially
depending on the value of u, and hence of V. The smoothed
effective potential W resulting from this nonlinear oper-
ation favors the emergence of well-formed wells sur-
rounded by barriers, even in situations where none are
visible in the original potential. In that sense, the behavior
ofW is much closer to that of a classical confining potential
than V.
The emergence of localized states triggered by the

quenched disorder may also strongly perturb the one-
electron density of states [17–19]. In some cases, it may
shift the energy of the fundamental state, leading to an
enhancement of the already existing gap in crystalline
semiconductors [20] or amorphous semiconductors [21] or
the creation of a pseudogap in superconducting materials.

FIG. 2. (a) Boolean potential V. The black region corresponds
to V ¼ Vmax ¼ 4. The white region, corresponding to V ¼ 0,
occupies about 60% of the domain and percolates from the center
to the outer boundary of the domain. (b) Color representation of
W ≡ 1=u, the effective potential as defined in Eq. (5), super-
imposed by the crest lines of this potential computed using a
watershed algorithm. (c) Color representation of log10½ψ0ð~rÞ�,
with ψ0 being the fundamental eigenfunction of energy
E0 ¼ 0.503, superimposed with the crest lines of W. (d) The
logarithmic gradient of ψ0, thresholded so that values > 1 are in
black, and superimposed with the crest lines of W. The clear
match indicates that the exponential decay of ψ occurs exactly at
the boundaries of the localization subregions determined by the
effective potential W.
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Very generally, Weyl’s law states that the integrated density
of states (IDOS) NðEÞ at a given energy E can be
approximated by the volume (properly normalized) in
the phase space ð~x; ~kÞ that can be explored by a classical
particle of mechanical energy smaller than E:

NðEÞ ≈ ð2πÞ−n
Z Z

Hð~x;~kÞ≤E
dnxdnk

¼ ð2πÞ−n
Z Z

ℏ2k2
2m þVð~xÞ≤E

dnxdnk; ð10Þ

where n is the spatial dimension. For example, in the local
band structure theory of semiconductors, the local density
of states is obtained by assigning to V the value Ecð~xÞ, the
bottom edge of the conduction band. However, Weyl’s
formula is only valid in the asymptotic limit E → þ∞ and
can be very inaccurate at low energies.
It follows immediately from Eq. (10) that Weyl’s formula

in one dimension writes NðEÞ ≈ NVðEÞ, where

NVðEÞ ¼
1

2π

Z Z
ℏ2k2
2m þVðxÞ≤E

dxdk

¼ 1

2π

Z �Z
ℏ2k2
2m ≤E−VðxÞ

dk

�
dx

¼
ffiffiffiffiffiffiffi
2m

p

πℏ

Z
VðxÞ<E

½E − VðxÞ�1=2dx: ð11Þ

Because of the analogy with classical mechanics that is
implicitly behind Weyl’s law, one can easily understand
why this approximation is poor in quantum systems where
wave interference plays a major role. This can be seen in
Fig. 3, where the density of states for three typical cases of
one-dimensional potential are examined: (a) random with
uniform law, (c) random Boolean, and (e) periodic. For
each type of potential represented on the left, both the true
counting function NðEÞ (the stepwise solid line) and the
approximation NVðEÞ (the dotted red curve, obtained from
Weyl’s approximation) are represented. One can see that in
all three cases, these two curves differ significantly, as
expected.
We now compute a new approximation of the counting

function, this time based on the potential W deduced from
u. The reason for doing so lies in the fact that W has been
shown to behave as an effective potential energy [see
Eq. (6)] with identifiable wells and barriers, in the spirit of a
classical mechanical system. In all three of the frames (b),
(d), and (f), the smooth curve (the dotted red line) is the
approximation NWðEÞ obtained by inserting the effective
potential W into Eq. (11). One can immediately notice the
remarkable agreement between the original counting func-
tion and NWðEÞ, whereas the standard approximation NV
using the original potential totally fails to predict the
density of states. In particular, NWðEÞ detects precisely
the shift of the lower edge of the conduction band induced
either by disorder [see Fig. 3(b)] or by the periodicity of the
potential [see Fig. 3(f)]. This lower bound to all energy
values corresponds to an added gap in the IDOS that is
reminiscent of the missing density of states at lower energy
in Anderson localization [22]. At higher energy, all three
curves catch up, as they asymptotically follow Weyl’s law
without potential, which is proportional to E1=2.
In summary, a new conceptual tool has been introduced

for understanding the localization properties of quantum
states. This object is the reciprocal of the localization
landscape introduced in Ref. [11] and can be interpreted as
an effective potential. We have shown that this effective
potential not only determines the boundaries of the locali-
zation regions but also controls the long-range decay of the
quantum states through an Agmon metric. In particular, the
exponential decay observed in Anderson localization has
been shown not to occur uniformly, but rather to be
concentrated across the barriers of this effective potential.
Therefore, the transport between adjacent basins of
the effective potential involves an “effective quantum

FIG. 3. (Left panels) Three different types of potentials:
(a) random with uniform law on [0 1], (c) random Boolean (0
or 1), and (e) periodic with 256 periods, V ¼ 0 on the first half of
the period, V ¼ 1 on the second half. (Right panels) For each
potential, the counting function N (the solid black line) is
represented, together with NV (the blue dash-dotted line), Weyl’s
approximation using the original potential V [as defined in
Eq. (11)], and NW (the red dotted line), the same with W. Notice
in all cases the remarkable agreement between N and NW .
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tunneling.” In short, one can say that the effective potential
captures the interference pattern created by waves in the
original potential and converts it into a semiclassical picture
of confining potential. Finally, this property enables us to
build an approximation of the integrated density of states
based on Weyl’s law. Applied to various types of 1D
potentials, either random or deterministic, this approxima-
tion showed a remarkable agreement with the actual IDOS,
far more accurate than what can be obtained using Weyl’s
law, with or without the original potential.
Because it captures the deep localization properties of a

complex or random potential, the effective confining
potential is a very promising tool for understanding the
features of quantum waves in disordered media. Indeed, our
procedure reveals the system as a partition of weakly
coupled oscillators, and it thus efficiently realizes an
approximate diagonalization of the Hamiltonian for the
portion of the spectrum spanned by localized eigenfunc-
tions. With this information at hand, we can calculate the
carrier distribution in random alloys such as, for instance,
the active layers of GaN-based Quantum-well light-emit-
ting diodes [23]. Finally, our approach brings a new
perspective to such open questions as the nature of the
transition from localized to delocalized states in three
dimensions (the mobility edge) and the onset of localization
in many body systems.
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