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A STABLE FINITE ELEMENT FOR THE STOKES EQUATIONS

D. N. ArnoLp () - F. Brezzi (®) - M. ForTIN (})

ABSTRACT - We present in this paper a new velocity-pressure finite element for the compu-
tation of Stokes flow. We discretize the velocity field with continuous piecewise linear
functions enriched by bubble functions, and the pressure by piecewise linear
functions. We show that this element satisfies the usual inf-sup condition and converges
with first order for both velocities and pressure. Finally we relate this element to families
of higer order elements and to the popular Taylor-Hood element.

1. Introduction.

We consider approximations of the Stokes problem for a viscous incom-
pressible flow. In its simplest form we have to solve

— Au-+gradp={ in &,
(1.1 divu=0 in 2,
=0 on 0f2.

~

It is well known that the variational formulation of this problem

2
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is equivalent to a saddle-point problem

—él— /E(Q)]de—fqdivgdx—/’l‘-gdx
Q" Q n

(1.3) inf sup
v g

and that the approximation of this problem is studied in the framework of mixed
methods. (Here &; (1) denotes (0: u; +9;u:)/2). If we look for a discretization

by finite elements of (1.2), that is, if we determine us, pr in finite dimensional

subspaces Vi, Qi of (Ho' (2))* and L? (£2) respectively from the equations

i, j=1
Q

2
E/Sij(Eh)&j(g)di—fphdiv”l\)’d’{: i’ﬂdf MveV,
Q Q

(1.4)
fq div px dic,:O Y qeQy

Q

then we have to choose V, and Q; properly so that the inf-sup condition of the
theory of mixed methods is satisfied, that is, so that

qn div vy dx

1.5 inf 11— - N
(1:3) weon menn Jolhllglhe S

Condition (1.5) expresses a compatibility between V;, and Q and can be verified
only for quite special choices. Many popular finite element methods use discon-
tinuous approximation of the pressure, i.c., Qx¢ C° (£2), (see, e. g., Crouzeix-Raviart
[4] Fortin [6]). However one of the most popular approximation schemes,
introduced by Taylor and Hood, uses piecewise quadratic velocities and piecewise
continuous pressures. Bercovier and Pironneau [1] have shown the convergence
of this approximation, although not with optimal order. Verfiirth [9] has
recently completed the proof to show that optimal order convergence indeed
holds. However this line of analysis is quite intricate and cannot be easily
extended to other elements.

We show here how it is possible to build elements satisfying (1.5) by a
very simple strategy, whenever the pressure field is continuous.
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2. The mini element.

Since we know that the continuous problem satisfies the inf-sup condition

fqdivvdx

2.1) inf sup

2 2k>0,
geL® v H) ”71”1 “qHD/R

condition (1.5) can be verified by constructing an operator IIx: (Ho' (2))>—=> Vs
such that

22) [andiv g —p) di=0 Vagc0r Voe@s:
a

and

(2.3) vl =c ol Mve (Ho')

with ¢ independent of A (cf. Fortin [5]).
If the pressure g is continuous, we may integrate (2.2) by parts to get

24) /@——th).g’rvad gndx=0 “qr€Qu
Q2

Hence, if gx is a polynomial of degree k, on each element T, (2.4) follows from
the more general condition

2.5) [@-mo)-geax=0 ¥ge®r @y VT
T

It is possible to insure (2.5) by including in the velocity space, as necessary,
internal degrees of freedom in each element, i e., so called bubble shape functions;
The simplest example is the following, which we call MINI.

For the sake of simplicity we suppose that {2 is a convex polygon and we
consider a partition C» of £ into triangular elements with the usual minimum
angle condition. We define for k=1

Mot (Tn)={v | veC* (), wvre Pr(T) VTeTw},
(2.6)
Mok(rCh) =M* (Tp) N Hy' (£2)
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and for k=3,

@.7) B* (Tw={v|vire P T)NH (T) MTeTh).

(For k=3, the functions of B* are those of the form a (T) A, A2 As=:a (T) ¢r° on
each triangle, T, where A; are the barycentric coordinates on T and « (T)eR).
The MINI finite element uses the finite element spaces

2.8) Vi=(MolY'® (B
2.9) Qu=M,.

In this case condition (2.5) becomes
(2.10) [ @—Hh ) dx=0 MT, Mve(H).
T
For this choice of spaces we now construct I7,: (He')> V), and verify the conditions
(2.3) and (2.10) which imply (1.5). First let T (Ho'Y2— (1\0401)2 satisfy
2.11) Z h | Mv—o|fr=C 9|10 (hr=diam T), r=0,1.
pa i o
Such an operator is constructed for example by Clement [3]. (For smooth 2, i v

is close to the piecewise linear interpolant @', but is defined via local averages

o
rather then point values, which are not defined for general we (H')?. To ensure

(2.10) we perturb 1) by the appropriate multiple of the bubble function on
each triangle. More precisely we set

(2.12) Myw=Iv+a (T)¢:" on T,

with a (T) given by:

2.13) & (0= dx= [ Bnp-v) ax
T 7

We now verify (2.3). Clearly

(2.14) 1121 91112 =1 2117+ | (T) 62°]u7.

By a simple scaling argument we obtain
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(2.15) ”g (T) ¢|ir=c| a ()]
(2.16) |la (D] Zchr™|| Tav—2]lo.r.

Using (2.14)-(2.16), summing over T, and using (2.11) we obtain (2.3). We
have therefore proved that the MINI element (2.8), (2.9) satisfies the inf-sup
condition (1.5). Hence by well-known arguments we have [2].

(2.17) ||lu—uslli+|p+ pallor = Cinf { [|u—|li+ [|[p—gllom} = CP [[fllo

where the infimum extends over v€ V), and g€ Qs, and the constant C is indepen-
dent of 4, and we have used the H? regularity for the Stokes problem [8]. Moreover
applying the usual Aubin-Nitsche duality argument one can easily prove

llu—wnllo+ llp—pall-1m = Ch (||t~ uslls + [l — pallom) = CH? [ f]lo.

3. Possible extensions and remarks.

The element of the previous section can obviously be embedded in a whole
family of elements. For instance we may choose, for k=1.

G.1) V=Mo" (THY@D B (T))?
(3.2) Qr=M¢* (Th)

The second element (k=2) of the family would use P, elements entriched by
3 Psbubbles for velocities and P, continuous pressure. It must be remarked that
the choice of Q. is richer than necessary as far the order of convergence is
concerned. We could then consider another family of elements

(3.3) Vi=(My* (TP @B (TH)?
(3.4) Qn=Mg*~* (Thr)

this time for k=2. The first member of this family can be seen as an enriched
version of the Taylor Hood element. It must be noted that proving convergence
is now much simpler than in the standard Taylor Hood.

Using continuous field can, in practice, be seen as an advantage, the
number of degrees of freedom being smaller than for discontinuous pressure
elements. For instance in the MINI element we have 3 d.o.f. per vertex plus 2
internal nodes in each element; these last nodes can easily be eliminated by the
classical process of static condensation.
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On the other hand, discontinuous pressures are apparently more adapted
for the use of penalty methods. In such methods, problem (1.4) is usually
perturbed for ¢>0 small, into the following system

2
(3.5) Z' feii (Zh") Eij (3) df,_ [ph" divg dJ'cV: ,szdﬁ V’ILG Va,
e Q Q
(3.6) fqh div un’ dx—i—a[ph" gndx=0 MqreQn.
Q Q

For discontinuous pressures, the inverse of the «mass» matrix arising from the

term | pi® gn dx is local and p;, can be eliminated from the system. For continuous
2

pressures, this inverse is in general a full matrix and this elimination is virtually
impossible. It must however be noted that one may replace (3.6) by

3.7 f qn div l’\l’h" df—l—o‘ (pr°, qn)n=0 queQy
Q

where (-,-) is any scalar product on Q; in particular this scalar product could
be associated with a diagonal matrix so that the elimination of p,° can be
performed. It is easy to show that if the scalar product (-,-)s is «properly scaled»,
that is if

(3.8 (ga', gdn =c||gilllo lgiflle V4., g2 Qn
(3.9) (1,1)»=c, c independent of A,

then we have

(3.10 l|lun—us’||+ ||pn—pr°llom = co, ¢ independent of k.

Indeed, comparing (1.4) with (3.5), (3.7) and using the stability of the solution
of (1.4) we get

G.11) llun—us’||u+ || pr—prllor=c o sup (Gn, P

ameQ ”»"]hHO éco‘”ph"”o;

we may now write p.° as

(3.12) p’=p°no+7y1 with yeR and f Pho df:O.
Q
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Equation (3.7) with g»=1 yields then
(3.13) o (Protvl, D=0
so that, using (3.8) and (3.9) in (3.13) we obtain
(3.14) 7] =@ Da/ A, Di| = ||pnollo
which joined to (3.12) gives
(5.15) Ipelo=e llpeom.
Hence (3.11) becomes
(3.16) ”}ih",ﬁh””l“*‘ llpe—prllom=c o ||p|lom
Note now that (3.16) implies
(3.17) co ||psllom = pa—prllome Z||pwllom— P4l lom
and hence, for o small enough:
(3.18) ||ps?|lor=c || pallom = const
which joined with (3.16) gives the result (3.10).

REMARK. If the scalar product (-,-)s is such that
(3.19) (g, D=0 Mg ’€Qur

then it comes from (3.14) that y=0, and then p’wo=ps’: hence ps° itself will
have zero mean value and the previous proof can be simplified. In its turn (3.19)
will be satisfied, for instance, if (-, )x corresponds to a quadrature formula which
is exact for functions of Q. This is the case with Pi-continuous pressure if the

3
areaS(T) 2 pu(@) gu (@) where a

=1

scalar product [ pn gn dx is approximated by
T
are the vertices of T.

REMARK. A disadvantage of the continuous pressure field is that, after the
elimination of p» in (3.5), (3.7), the resulting matrix in the u, unknowns has
a larger bandwidth. However we think that in the MINI element the total number
of degrees of freedom is so small that this drawback is not serious. Suitable
algorithms for numerical treatment of this type of discretizations can be found

in [7].
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