CONTINUOUS DEPENDENCE ON THE ELASTIC COEFFICIENTS
FOR A CLASS OF ANISOTROPIC MATERIALS

Douglas N. Arnold Richard S. Falk

Department of Mathematics Department of Mathematics

University of Maryland Rutgers University

College Park, MD 20742 New Brunswick, NJ 08903
Abstract

We prove apriori estimates and continuous dependence on the clasiic moduli for the
equations of homogeneous orthotropic elasticity. These results are uniform with respect to
the three Potsson ratios, Young’s moduli, and shear moduli of the material for certain
" ranges of these constants. These ranges snclude the possibility that the compliance tensor s

singular such as occurs for tncompressible materials.

1980 Mathematics Subject Classification: 73C30, 73C35
Key words and phrases: orthotropic. elasticity, incompressible, constrained material

The first author was supported by NSF Grant MCS-8313247 and the second author by
NSF Grant DMS-8402616.







1. Introduction

The equations of anisotropic elasticity are

Ag = ¢y ingQ, (11)

div ¢=f infl (1.2)
where ¢ = (ow) is 8 3x3 symmetric tensor of unknown stresses, Ag¢ is the tensor
2,", 820k o is 8 3 vector of unknown displacements, and f is & given 3 vector of forces,

all defined on a smoothly bounded domain 2 € R3. We also use the notations

‘i;(,'!.) = (aui/azj + 3u,/82,)/2
and
3 3 3
div g = (Z d0,,/0z,, Z 304;/0z;, Z 903,/0z; )

=1 =1 =1 :
(where o* denotes the transpose of y). Further notations used in this introduction and

throughout the paper are collected in the next section.
The given coefficients a,;, are constants satisfying
Gig = Ouij = 65, 1< 4,5,k1< 8.

The tensor of these coefficients is called the compliance tensor. Note that the compliance

tensor is determined by specifying 21 of the coefficients.
We shall consider in this paper the mixed displacement and traction boundary
conditions:
u = b on rl,
on =g, onTl, (1r.3)

Here I', and TI', are open subsets of 90 with l:,ul_‘z = 80. For now we assume that T,

and T, are nonempty. The case of unmixed boundary conditions is considered in Section 4.

‘We consider a particular class of anisotropic materials, those admitting three
orthogonal planes of symmetry, which are termed orthotropic. Included in this class are

hexagonal and cubic crystalline structures [14, page 31]. Orthotropic materials are also




used to model woods, plywood and other composites [14, pages 59-60], and some biological

substances, such as the basilar membrane of the inner ear [10]. Orthotropic materials are

characterized by a compliance matrix of the following form:

6 = 1/E;, i=128,

855 = -ui’-/E,-, 1<i<y<s,

6% =0, =123, 1<j<k<s,

8,5 = 1/Gy, where {k}={1,2,8}\{i,5}, 1<i<j<3,
g =0, 1<i<j<8, 1<k<l<8, (i,j) # (k).

Here the E; are the Young’s moduli of the material, the G, are the shear moduli of the

material, and the y;; are the Poisson ratios. The relation

is satisfied, so an orthotropic material is defined by nine independent constants.

The Young’s modulus E; is the ratio of tension to extension when the body is in a
state of pure tension in the ith coordinate direction. The shear modulus G, is the ratio of
shear stress to shear strain when the body is in a state of pure shear orthogonal to the ith
coordinate direction. .It is thus physically evident that E; > 0 and G; > 0, as we shall
henceforth assume. The Poisson ratio »;; is the ratio of compression in the ith direction to
extension in the jth direction for a material in a state of pure tension in the jth direction.
Thus it seems physically plausible that »; > 0, as we shall assume (although apparently

there are materials violating this condition [8]).

We  introduce  the symmetrized Poisson ratios »; = (v, u,,j)l/ 2, where

{5,k} = {1,2,3)\{s}, s = 1,2,8, and the 8 x 8 symmetric matrices:

EYV: o 0
D=| o E,”12 o

0 0 E,;"V?




1 -v3 -V,
M= -y 1 -y ,
—¥y —v 1
1/G, 0 0
G = 0 1/G, 0 )
0 0 1/G4

and set B = DMD. Then the constitutive law (1.1) for an orthotropic material may be

written
Bdiag g = diag ¢ ),

Gofidg = offd ¢[ ), (14)

where

H t t
diags = (01),02,033)° and offde = (023,03 012)"

It is often assumed that the compliance tensor is positive definite. In this case, ¢ can
be eliminated and the existence, uniqueness, and continuous dependence of the resulting
boundary value problem is well known. Our interest is in the uniform -continuous
“dependence of the solution including cases where the compliance tensor is only semidefinite.
When the compliance tensor is singular, the displacement automatically satisfies a linear
constraint [17] and we shall speak of a constrained material. As discussed below, this
includes the important case of incompressible orthotropic materials which frequently appear
in the engineering literature (e.g., [21],[7],(19], and [11]).  Existence and uniqueness
theorems for certain boundary value problems for incompressible anisotropic materials have
been ‘established by Debognie {5]. However, he does not consider constraints other than

incompressibility nor continuous dependence of the solution on the moduli.

We shall therefore assume that the compliance tensor is positive semidefinite, i.e., that

Ar:r > 0 for all e R,
R i

T:
N R

where g. denotes the space of 3 x 8 symmetric tensors and




In light of (1.4) and the positivity of the G;, this is clearly equivalent to the assumption

that the matrix B is positive semidefinite. Now

detB = (E1E2E3)-l detM

and

det M = 1-2vvv3 — v12 - vzz - u32.

Hence necessarily, v = (v,,v,, ;)" belongs to
Pi={yv:vy; 2 0, i=1,2,3, 1=-2unuws—12 -2 -v? > 0}. (1.5)

Note that in particular, »; < 1 for all i. Moreover, given that »;, > 0, it is easily verified

that M is a positive semidefinite matrix if and only if v € P.

In this paper we shall consider the questions of existence, uniqueness, apriori
estimates, and continuous dependence of solutions to the system (1.1), (1.2), (1.3) in the
orthotropic case. Before stating our main theorem, we recall the known results in the

much simpler case of an isotropic material. This is the special case in which

El = E2 = E3 :=E,

Vl = V2 = V3 =V,

In this case the constitutive law (1.1) reduces to

[(140)/E) g, ~ (+/E) tr(g) &= () (o)

where tr(g) denotes the trace of g and 3 is the 3 x3 identity matrix. The Young’s
modulus E satisfies 0 < E< oo and the positive semidefiniteness condition » € P reduces to
0<wv< 1/2. The compliance tensor is positive definite in this case except when » = 1/2,
which corresponds to an incompressible isotropic material. Hence, if 0 < v < 1/2, the

constitutive law (1.6) may be inverted and the resulting expression for g substituted in



(1.2) and (1.3). The resulting system, with unknown u, is coercive and standard
variational arguments give existence and uniqueness of the solution and a apriori bound for
= in H'(Q) which is uniform for v € [0,1/2). Unfortunately, this method cannot be used to
imply the existence of a solution for v = 1/2, nor to obtain a uniform apriori bound on g.

However, using other methods, the following theorem may be proved.

Theorem 1.1: Let E and v be real numbers satisfying
E>0 0<wv<1/2

Then for all sufficiently smooth data f, ¢,, and g, there exists a unique pair (g, u)
€ y(ﬂ) x HY(0) satisfying the system of isotropic elasticity (1.6), (1.2), and (1.3).

Moreover,

lollo + el € €Ly + 191 lyar, + 122 1-3/2r)

where C is a constant depending only on 2 and positive upper and lower bounds for E,
and the solution (g, u) depends continuously on E, v, [, g¢;, and g, (The norms

appearing in the apriori estimate will be defined in the following section.)

We shall prove a result analogous to Theorem 1.1 for orthotropic elasticity. The set

P of possible values of the Poisson ratios, defined in (1.5), is pictured in Figure (1.1).

Figure 1.1

The set P of possible values of the Poisson ratios.

Limiting values of the v = (vy,v,, v3)', that is, values for which the compliance tensor
ceases to be positive definite (or det B = 0) are those points on the curved boundary of P.
We shall refer to this curved portion of the boundary of P, a curvilinear triangle, as the
constraint surface. For » not on the constraint surface, one can again invert the
constitutive equation and so it is relatively straightforward to prove that there exists a
unique solution to the equations and establish a uniform apriori estimate on the

displacement. We shall show that for y on the constraint surface, with the exception of




the three corner points, one also gets existence and uniqueness, and we establish uniform
estimates and continuous dependence for both displacement and stress. The three corner
points on the constraint surface, where two of the Poisson ratios vanish and the third is
equal to unity, must be excluded - as we discuss in Section 6, the elasticity problem
degenerates as v approaches one of these points. Our continuous dependence results will be
valid for v € Py := P\{(1,0,0)}, (0,1,0)}, (0,0, 1)"}.

Our analysis applies in particular to incompressible orthotropic materials. An
anisotropic material is called incompressible if for every (g, u) satisfying (1.1),
div v =0

This bolds if and only if A§ = 0. From (1.4) we see that an orthotropic incompressible

material is characterized by the condition
M (El—l/z’ Ez-x/z’ E3—1/2)t = 0. (1.7)

In particular, det M = 0, so v lies on the constraint surface. Moreover, it is easy to check
that (1.7) precludes the possibility that v is one of the three corner points. Conversely, if
v is any noncorner point on the constraint surface, we show below that M admits a null
vector with strictly positive components (Lemma 3.6) and hence the »; are the Poisson

ratios for some incompressible material.
The main aim of this paper is to establish the following theorem.
Theorem 1.2: Let E; > 0, G, > 0, and v € P,

i) For all fe y(ﬂ), g € HY(1,), and g; € L}(T;), there exists a unique pair
(g,8) € gz(ﬂ) x H'(Q) satisfying the boundary value problem (1.4), (1.2), and (1.3).

ii) The solution satisfies the apriori estimate

"g”o + ",‘5,”1 < ¢ ”!,”-I,D + |g;|1/2,r1 + |g;|_1/2,1‘2)

where C is a constant depending only on 1, positive upper and lower bounds for E; and

G;, and a positive lower bound for the distance of v from the three corners of P.

iii) The solution depends continuously on the elastic moduli E, G, v, and on the data

f, g5, and g,.



The question of continuous dependence on the elastic moduli near an elastic constraint
is of great importance. Without such continuous dependence results, the use of constrained
models, which represent an idealization of nearly constrained materials, would be unjustified.
Nonetheless this question remains largely unresolved. Theorem 1.2 apparently provides the
first proof of convergence of unconstrained materials to a constrained material outside of
the simplest case, that of an isotropic incompressible material. The isotropic case was
examined by Bramble and Payne [3] who proved continuous dependence results for the pure
displacement and traction problems and, in particular, showed that as the Poisson ratio
tends to 1/2 the displacement and all of its derivatives converge at interior points to the
corresponding quantity for the incompressible problem. Results of the same sort have since
been derived by Mikhlin [16], Kobel’kov [12], Lazarev [13], and Rostamian [18]. For
nonlinear elastic materials asymptotic expansions have been devised which support the
convergence of an almost constrained material to a constrained one. Of course these do
not provide proofs of convergence. See Spencer [20] for the constraint of incompressibility

of elastic solid and Antman [2] for that of inextensibility of an elastica.

Rostamian [18] has derived abstract conditions on the compliance tensor of an
anisotropic linearly elastic material which insure continuous dependence of the solution on
the elastic moduli. He applied his theory only to the known case of isotropic elasticity,
regaining the results of Bramble and Payne [3] and showing also convergence of the
stresses. It seems likely that our analysis could be modified to provide a verification of
Rostamian’s conditions, although we have preferred to argue more directly. Note, however,
that Rostamian’s theorem is closely related to the more general theorem of Brezzi on which

we have relied.

An outline of the paper is as follows. Section 2 contains additional notation used in
the paper along with the statement of a theorem due to Brezzi [4] dealing with abstract
saddle point problems. This theorem will play a major role in our subsequent analysis.
The proof of Theorem 1.2 is given in Section 3. In Section 4 we consider the cases of
pure traction and pure displacement boundary conditions and in Section 5 apply the
analysis of Section 3 to prove ellipticity of the elastic system uniformly with respect to the
elastic moduli. In Section 6, we illucidate the nature of the exceptional cases when v is a
corner point of the constraint surface. Finally, in Section 7, we use the ideas previously
devel.oped to derive two alternate formulations of the elasticity equations which may be
more convenient for some computational and analytic purposes. In the first of these

formulations the stress g is eliminated and a new scalar variable p is introduced. In the



case of an isotropic incompressible material these equations are equivalent to the stationary
Stokes equations. Related formulations have been previously introduced by Herrmann [9]
for isotropic materials; by Taylor, Pfister, and Herrmann [21] and Key [11] for orthotropic
materials; and by Debongie [5] for incompressible anisotropic materials. The second
formulation is a further simplification possible in the two dimensional constrained case and
results in a single fourth order equation, analogous to reduction of the Stokes system to

the biharmonic problem via the introduction of a stream function.




2. Notation and Preliminary Results

We underscore 3 x3 symmetric tensors by = and 3-vectors by ~. For vector
s = (uj,up,u3)f, we write wue HYQ) i o €H(@Q) for =123 and set
e ll, = (Z?zl || u; ”3)1/2_ For 3 x 8 symmetric tensors g = (045, we write g€ g"(ﬂ) if
0;; € L*(@) for i,5=1,2,3 and set |lall, = (Z; ., lle;;3)"/%

We shall require some function spaces defined on a smoothly bounded open subset I'
of I. By H'Y?('") we denote the usual Sobolev space [15, Ch.1,Sec.7]. The subspace
consisting of functions whose extension to T by zero lies in HY/*() is denoted by HA*(T).
The norm is taken as the graph norm of the extemsion by zero, which induces a strictly
finer topology than the gllz(l") norm, unless T = T, in which case HA*(’) = gl/z(f")
(15, Ch.1,Sec.11]. By H~Y*I’) we mean the normed dual of H3*T’). The norms in
HY*r’) and H Y3’} are denoted by |-lij2,;* and |-|_y/, 1" respectively, with the
subscript being dropped in case I'" = T.

We further define
H@) = {ye H(@): gr = 0},
and
Hp@) = {ve H(@): gr, = 0},
and denote by |{fIl_;, and ||/l p the norms in the dual spaces of gé (2) and g}) ),

respectively.

It is convenient to describe all the bounds we require on the elastic moduli in terms
of a single constant a. We shall make reference to the following hypotheses which are to

hold for some a € (0,1/4]:

a < E,;

 <el, a<G; <0l 0<y<1-@a i=123

§ -
1 - 2uyavy — 12 — w2 — w3 > 0. (2.1)
Many of the results in this paper will be derived using a theorem of F. Brezzi [4]
dealing with saddle point problems of the following type:

Find (c,u) € W x V  such that:
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a(o,r) + b(r,u) = <g,r> for all re W, (2.2)

b(o,v) = <fv> for all v €V, (2.3)

where W and V are real Hilbert spaces, a(-,:) and b(-,-) are continuous bilinear forms on
W x W and W x V respectively, and ¢ and f are given functions in w" and V' (the duals
of W and V respectively).

Let Z = {re W : b(r,v) =0 for all v € V}. Then one version of Brezzi’s theorem is

the following:

Theorem 2.1: Suppose there is a constant 7 > 0 such that
a) a(r,7) 2 1q nr"fv for all r€ Z

and

. b(f’”)
b) inf T T 27
otvev o#rew | 7ly llvily

Then for all (f,g) € V' x W', there is a unique solution (s,u) € W x V of Problem (2.2) -
(2.3). Moreover,

Nellw + Nully < Clgly* + 171"

where C depends only on 4 and bounds for the bilinear forms a and b.

We will be applying Brezzi’s Theorem in the case

a(g, 1) = /Q Ag:rdz, br,y) = —fn (y):rdz. (2.4)
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8. Proof of the Main Theorem

As usual, we impose the Dirichlet condition by setting u!' = § g)) with

£: HV/Y(T)) — H'(Q) a continuous extension operator, and seek a pair (g,gz) such that

»

29

- u?) = u),
= Z”

<
a%

=

on I, (s.1)

b4
|
(=]

gn = ¢ on I';.

We then take u = u'+ u?, so that the problem (1.1)-(1.3) is satisfied. In terms of the

bilinear forms (2.4), a weak form of (3.1) is
Find ¢ € y(ﬂ), w? € H}(Q) such that

afg, 1) + b(z,u?) = -b(z,u') for all € L*(@),

blo,v) = ./;_2 [J-gd{-—/rz g,- v ds for all ye Hy, (@) (3.2)

To prove parts (i) and (ii) of Theorem 1.2, it suffices to prove that (3.2) admits a unique

solution and establish the estimate

helo + N2l < CUE) o + NLI_yp + 1g213/2r) (3.3)

where C is a constant depending only on 2 and « in (2.1) .

To prove part (iii) of Theorem 1.2, we show continuous dependence at (g,g), the
solution of (1.1)-(1.3) with A4, f, 915 and g, replaced by A Z, g and 72 respectively.

Setting u = gl+ Qz as above, it follows easily that

(g—g,gz- i%) € L}0) x Hp (@)  satisfies:
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- — 1_ =1 A— A) 5 2
= —b(r,u g)+/ﬂ(.4 A)g:1dg for all 1 € LY(0), (3.4)

b(g—g,!) - /;1 (L'Z)"idi_ /89 (!2" })-gda for all » € ~H;,(ﬂ).

Suppose we prove the following lemma.

Lemma 8.1: Let A be the compliance tensor for an orthotropic material whose elastic
moduli satisfy (2.1). Let Ge ‘Igz(ﬂ)', Fe g}_, (2)". Then there exist unique functions
gE y(ﬂ) and z € HL(Q) such that

afg,1) + blr,2) = <G> for all L€ gz(ﬂ),

b(é)gj = <F,v> forall ve g}, Q).
Moreover

lglle + Izl < CUIGH, + HEN_; p)

where C depends only on I and a.

With this lemma, existence and uniqueness for problem (3.2) and the estimate (3.3)

follow easily, giving parts (i) and (ii) of Theorem 1.2. From (3.4), the definition of ¢

and @, and the lemma, we get

lo-3lo + Hu-&l,

= C‘”L‘i"-w + =By, + 192-%lyper, * ”(’—f‘ = A) Zllp)-
Now

1A -A)gl, < K |4 - 4]

where | - | is any tensor norm and the constant K depends only on Z, g I and o.

This implies the continuous dependence result of Theorem 1.2.

It remains to prove Lemma 3.1. We apply Brezzi’s theorem (Theorem 2.1) to reduce

Lemma 3.1 to the verification of the following two lemmas.
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Lemma 8.2: There exists a constant 4 > 0 depending only on a and © such that
. 2
/n Ag:gdz > qlglly forallgeZ

where Z = {gey(ﬂ) : -/Q g:¢(y) dz = 0 for all ye Hp, (@)}

Lemma 8.8: There exists 71 > 0 depending only on 0 such that

| CHET
inf sup ———
0% ve Hp@) ozzer’@ el Izl
The proof of Lemma 3.3 is immediate: given p, we take r=¢y and apply Korn’s
inequality. Since the tensor A is only positive semidefinite, Lemma 3.2 is not obvious. To

prove it, we show that only one eigenvalue of the matrix B can be small and analyze the

associated eigenspace. This is the content of Lemmas 3.4-3.6.

Lemma 8.4: Let A; > A, > ); denote the eigenvalues of B. Then for all y € P and E;
satisfying 0 <a < E; < o7},

A, > a¥s.

Proof: Expanding the characteristic polynomial of B, we have that the ecigenvalues X; of B

satisfy

p(A) = —A3+RAZ-8S2+T =0

where
5= E,E, * E,E, * E B3
and

T = (1-2urs ~ )" — v — v5%) /(B B By)-

Since B is positive semidefinite for ¥y € P, A; > 3, > A; 2 0. Now p’(A) = -3A?+2Rx - S
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which vanishes for A = [R+ (R*-35)'/2]/s. I A, > A,, we get from Rolle’s theorem that
there exists a A" satisfying A, > A*> 2, such that p’(A°) =o0. Hence
Ay 2 [R- (R*-38)1/2|/3. If A, = A,, then p’(A;) = 0 and the same conclusion holds. Now

[R— (R*-38)}/?)/s = S/|R+(R*-35)"? > $/(2R).
Since

R = 1/E, + 1/E, + 1/E; < $/a
and

E\E;, E\E;  EjE;

> (1-v?) + (1-17) + (1-1?)]

S =

> a(2+2vpyp5) > 2a?

'

for v € P, we obtain that A, > o%/s.

Lemma 8.5: Suppose the hypotheses of Lemma 3.4 hold. Then

E1E2E3A2A3 S 3/0.
Proof: Using the expansion of the characteristic polynomial introduced in the proof of

Lemma 3.4, we have

1-v32  1-12 11—

E1E2 * EIES N E2E3.

The result follows by multiplying through by E,E,E; and observing that 1; > 0 and

1-y? <1
Lemma 8.6: Let w denote a unit eigenvector of B with eigenvalue A; and first nonzero
component positive. Suppose that a« < E; < o™}, i = 1,2,3, and that y € P satisfies

1-v; 2 a, 7=123

and .
vy + vy + vy — max (v, vy, ¥3) — min (v,, v9, v3) > a.

Then w; > /3, ;=1,2,3.
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Proof: Let
l—-ul2 vivetry  vvaty,
N = (N;j) = | vinptus 1-v,? Vvt
vivztyy  vovzti, 1—1/32

Then NM = (detM)I. If u' are the eigenvectors of B corresponding to eigenvalues ),
normalized as in the statement of the lemma, then DMDy' = \u' and so
(det M) &' = X; DIND 1yl If detM # 0, this implies that u' is an eigenvector of
D-IND~! with eigenvalue det M/); = E\E;E;A;A;23/);. Hence E\E;E3A;); is the largest
eigenvalue of D"'ND~! with corresponding eigenvector w = w!. By continuity, this result

also holds for det M = 0. Hence in all cases
1

3
= — EVEIIN. w.
“ E\E;E3d)i; E I A A

Using the hypotheses on v, we see that

1-v2 = (1-y)(1+») > a

while
vivjty, 2 o for {i,jk} = {1,2,3}

since at least two of v, v;, v; exceed a. Hence N;; 2 a’ and E‘-‘/zEjl/ N; > a3. By the

Perron-Frobenius theorem, it follows that w; > 0 for y = 1,2,8, whence we obtain

3 3

> Y w, 2 —————— S A—
! E\EyE3)q25 pus ! EyEyE3)3)3 f_‘__‘:’ E\EE3A325

2 _

The result follows from the previous lemma.

The final ingredient in the proof of Lemma 3.2 is the following lemma which is well

known in the isotropic case.

Lemma 8.7: Let z € R® be a unit vector satisfying z; > ap > 0, i = 1,2,3 and let 14 be
a diagonal tensor with diagrg = z For 7 a symmetric $ x 3 tensor, define 17 = (r:19) 79

and :'eD =1-1p Then all 1 € y(ﬂ) satisfying
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/ngg):;d,g = 0 forall ve g},(n)

also satisfy |r7[, < C |lzpll, with C depending only on 2 and ay.

Proof: There exists p € H} (R) such that

divp = r:rg and |[pl, < Clz:1olly

where C depends only on 2. Let ¢ = Lo—l p. Since z; > ay > 0,

”1”1 <cC "L:LO “0/00‘

Now

e
5,
?l
ol >
"
2.
<
b
I
2=
2
°

go:g;ad g =

So
ligold = [ (ot oged iz go) 42
= ot gz = [ oot g1 o) ax - fy ) 2o 4

- - [ 400 4

since ¢ € Hp,(0) and 1 satisfies (3.5). Thus

lizol2 < Ngly frolle < € lizizollo Nrpllg/ag

and the lemma follows easily.

(3.5)

Proof of Lemma 3.2: Let w be as in Lemma 3.6 and let ¢, be the diagonal tensor with

diagg o = w. Define

gr = (g:¢0)

a and op = 06 -¢

Then
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ofid g7 = 0, diager = (g:g0)w, and digggp-w = 0.

Therefore

Ag:g = Aopiop + 2A9r:0p + AgrigrT
= Bdiaggp-diagep + Gofldg p-offdg
+ 2Bdiaggr-diage p + Bdiager-dieger

= Bdiagg p-diaggp + A diago p-diaggr + Goffdg p-offdg p.

e,

Let w' form an orthonormal basis of eigenvectors of B with w'= w. Then since

diaggp- w =0,

Bdiagg p-disgep = X (dizggp- w’)* + A;(dizggp- ¥°)’

2 A diage p-diggg p-

Hence

v

2 2 : 2
Alerl® + ajofidg p|* + A;|digge p|

2
e

> Mlgrls + min(a/2, A;)|gp "
Now ), > o®/8 by Lemma 3.4 and 1/4 > a > 0 implies that

. 2 3 2
Agig 2 Migrl + o lgpl/s. (s0)

We now distinguish two cases. To simplify the presentation, we assume (without loss

of generality) that v; > vy > v,
Case 1: v; < a.

Since by hypothesis (2.1), 1-v; > a and 0 < a < 1/4,
det M = 1- V12 - V22 - V32 - 2V1V2V3

> 1-a’-a’~(1-a)?-2a%*(1-0) > (1-2a)(2-a)e > 7a/8.

But

by Lemma 3.5, so A; > 7a?/24, which clearly exceeds o3/3. Hence (3.6) gives
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. 3 2 2 — 3 2
Ag:g 2 o (lgr]® + |gpl’)/3 = o|g]*/3

and the proof is completed in this case by integrating over 2 and taking 7 = a3/s.
Case 2: vy 2 «.

In this case the hypotheses of Lemma 3.6 are satisfied. Hence w; > al/s, j=1,2,8. We
can now apply Lemma 3.7 with z= w and ag = a*/3. Then 1o =ggo 50 the lemma
implies that e pllo 2 K lierlly where K > 0 depends only on 2 and a. Combining this
result with (3.6), we obtain

A
K

—_— 2 2y . 2
2 3K+ 1) (lepllg + Herly) = 7 1lgle

b S

1
. 3 2 — 2
gigdz 2 @ lgpll/s = &z lgold + o Ngold)/s

K+1

Hence the lemma is proved.
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4. Pure Traction and Pure Displacement Boundary Conditions

In this section we briefly indicate the changes necessary to analyze the system of
orthotropic elasticity, (1.4), (1.2), when the mixed boundary conditions (1.3) are replaced
by either the displacement boundary condition

v = g onl = 41, (4.1)
or the traction boundary condition
gn = g onT. (4.2)

The latter case is entirely straightforward and we dispose of it immediately. A necessary

and sufficient condition for the existence of a solution is the compatibility condition

A‘g. ’Lda = _/;‘1.{‘2‘1'{ for all ge RLM’ (4'3)

where

RM = {ge L’):g=¢+Qz c€ R, QeR Q+Q =0}

12 1]

is the space of rigid motions. When (4.3) holds, the solution is determined up to the
addition of a rigid motion and uniqueness may be obtained by requiring u € gll (Q), the
orthogonal complement of RM in H(02).

A weak formulation of the traction problem seeks g€ y(ﬂ), % € yi () such that

a(g,7) + b(ryx) = 0 for all 1€ L*(@),

b(g,g = /ﬂi "Ld'%_/l‘g. vds for all v € gi_(ﬂ)

Note that the latter equation actually holds for all v € H'(Q?) when the compatibility
condition (4.3) is satisfied, so this weak formulation is justified. Proceeding as in Section
3, we may apply Brezzi’s Theorem to the analysis of this formulation to obtain the direct

analogue of Theorem 1.2.

The case of displacement boundary conditions is considerably more complicated, due

to the existence of a compatibility condition only for constrained materials, the condition
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depending moreover, on the compliance tensor. As remarked earlier, for v bounded away
from the constraint surface, the constitutive equation can be inverted and existence,
uniqueness, apriori estimates, and continuous dependence easily established by standard
variational arguements. We therefore henceforth restrict our attention to » in a
neighborhood of the constraint surface excluding a small region about each cormer. By
Lemmas 3.4 and 3.6 we may choose this neighborhood so that if hypothesis (2.1) is
satisfied then

the least eigenvalue A, of B is simple, (4.4)
and

the least eigenvector w (normalized to be of unit length with first non-zero (4.5)
component positive) has all components bounded stricly above zero.

We shall use the notation ¢ ol4) to denote the diagonal tensor with diagonal equal to w.

For a constrained material there is a compatibility condition which is necessary for
the existence of a solution to the displacement boundary value problem. From (1.1), (4.1)
and the fact that the material is homogeneous (specifically that go = go(4) is independent
of z € 1), we see that

= /QAg:god':g = /ng(g):god;g (4.6)

= .—‘/ﬂ u-div godz + /I‘ u-gonds = ‘/I',g-go nds.

When A is singular, A, = 0, implying the necessary condition

_/p!.'%O(A) nds = 0. (4.7)

When (4.7) does hold, uniqueness fails in that (O,go(A)) satisfies the homogeneous system.

Uniqueness is restored by adding the side condition
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A)g:go(A)d,{ = 0. (4.8)

Note that for A, # 0, (4.8) follows from (4.7) by (4.6).

We remark that the only constrained isotropic materials (with finite positive Young’s
modulus) are incompressible, so have Poisson ratio 1/2. In this case 9o = §, the identity

tensor. Thus the compatibility condition (4.7) reduces to

-nds = 0
foe

and the side condition (4.8) to

/‘;tr(g')d;g = 0.

We now establish the analogues of parts (i) and (ii) of Theorem 1.2 for displacement

boundary conditions. For a weak formulation of the problem, we define the space

g,A = {g’eéz(ﬂ):./‘]g;:go(A)d'{:O.

The proof of the following lemma, which differs only slightly from that of Lemma 3.1, will
be discussed at the end of the section.

Lemma 4.1: Let Ge g’;, Fe H )" Then there is a unique pair
(g,2) € Wy x g(‘) () such that
a(g’,g + b(gi) = <G,> for all reW, (4.9)
gy = <Fyp> forall ye Hy@)
Moreover
lglo+ Izl < CUIG Iy, + 1 £y
where C depends only on 0 and a in (2.1). Note that if

<G, o(4)> = 0, (4.10)
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which will be the case for a Dirichlet problem with compatible data, then the solution of
(4.9) satisfies the first equation also for 7= ¢(4) and hence for all e y(ﬂ), not just
1€ Wy Therefore (4.9) is a valid weak formulation of the Dirichlet problem.

First we suppose that the displacement boundary data ¢ satisfies (4.7). Then the
solution to the boundary value problem (1.1), (1.2), (4.1) may be writen as (g, ul 4+ o}
where u! = £(g) with ¢£: HY*T) — H'(2) a bounded extension operator, and the pair
(2252) satisfies (4.8) with <F,v> = fﬂ [-vdz, <G> = —b(égl). The compatibility
condition (4.7) insures (4.10), and so Lemma 4.1 implies first, that the displacement

problem admits a unique solution (aN, u); and second, that

lelo+ Hely £ CUN LI 0+ 1 gliy2) (4.11)

with C depending only on 1 and a.

If the displacement boundary data violates (4.7) both these conclusions are false.
Existence and uniqueness do mnot hold for a constrained material. Even for an
unconstrained material the apriori estimate (4.11) does not hold uniformly. More precisely,
Iﬂ g:¢ o{A)dz cannot be bounded independently of the material constants. However we
can derive a uniform apriori bound on u and on the orthogonal projection Q, of ¢ on the
complement of the one dimensional space spanned by 90 =¢ ol4). To this end we

decompose the solution as
(@0 = &Y+ 68
where

¥ = 0g0/Mp, b = 6o z,

~ U~

-0 o nds [ measure(fl).
[ 880 s /measure(n)

Then 2, is indeed the projection of 4 orthogonal to g¢ as follows from (4.6) and the pair
(8, @) solves the boundary value problem

A8 = ¢8) ing,
div £ = f ing,
§ = g—ﬂgog on 41.

The boundary data for this problem is compatible since



23

= _/nlg,olzdi = measure(f}).

Thus Lemma 4.1 implies

1ello + N8I, < ULl o+ 12-020202)
< U LNy + | ghyo)
Clearly also || ¥ I, +181 < | glyz 50
180+ Bely < €U Ll_yo + | glisa) (412)

which gives the desired apriori bound.

Finally we consider the continuous dependence of the solution on the elastic moduli.
Thus we fix a value A of the compliance tensor and data Z and g, and denote by (Z, u)
the corresponding solution. We wish to show that if (4, f,¢) is sufficiently close to (2, ;,i)

then the solution (g’, u) determined by (4, {,g) is arbitrarily near (Z, u), i.e. that
im (g,8) = (7,8 in L*@)x H(Q). (4.13)

Of course the elastic moduli for both 4 and A are assumed to satisfy (2.1). Moreover we
may assume that the limiting material is constrained, i.e., that A is singular, since

otherwise the result is obvious. Now for A singular we must suppose that

/Pgl-go nds = 0, (4.14)

where 7, = go(:ﬁ), in order that the solution (g,g) exist and (4.13) make sense. This
condition is not, however, sufficient to make sense of (4.13) since even if (4.14) holds there
may exist singular tensors A arbitrarily near A for which g is not compatible and hence for
which (g, u) is undefined. We may circumvent this difficulty in two ways. First, we may
consider only ¢ = 0. In this case there is no problem of incompatibility and (4.13) follows
from. (4.11) by a straightforward argument, similar to that at the beginning of Section 3.
Second, to derive a result valid for nonzero ¢ satisfying (4.14), we consider the singular

compliance tensor A as the limit of positive definite tensors 4, i.e., we restrict 4 in (4.13)
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to be nonsingular. Even with this restriction, however, it is not hard to see that (4.13) is
not valid, as g may have a large component in the direction given by go(A) which may

become unbounded as A tends to A However we shall show that
lim (|le-7 IIg(n)/go(A) + lu-%l) =0 (4.15)
where the quotient seminorm in (4.15) is defined by

e l2@yg o = infy llg+ego(4) @)

and the limit is taken as (A, l,!) tends to (_A, Z,i) with A nonsingular. Note that this
seminorm depends on A, but for all A exceeds the quotient seminorm on g"(ﬂ) induced by

the three dimensional subspace of constant diagonal tensors.

To prove (4.15) we note that
a(g—g,g + by - u) = /n(A-A)Z:;dg for all re W,

bg-7,19) = A({-—Z)-gdz for all vy € H1(Q).

Now let e denote the projection of g-g on the orthogonal complement of g o(4) in y(ﬂ),

and let z= u— &~ (g~ g). Then (g,2) € W, x Hy(0) and

~

a(g,7) + bz = /()(Z—A)g:;dg

= b5 g~ g) for all 1 W,

sge) = [ (1~ ] edz for al ge B3@)

By Lemma 4.1
lellp+ Nzl < CUA-AINZ o+ I &g—g) I+ I L= L1_50)

< ClA-Al+ | g—ghpr + 1 £- 1110

Further
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" 8- E "1 < " z ”1 + Cl g- !ll/Z,F

and

le-¢ ”g’(ﬂ)/g o) = lgllg

and so (4.15) is established.

We close this section with a brief discussion of the proof of Lemma 4.1. The proof
follows very closely that of Lemma 3.1 and differs significantly in only one detail. In the
statement of Lemma 3.7, which was used in the proof of Lemma 3.1, we must of course
replace the space H} (?) with H}(2). We must also ré’place the space y(ﬂ) with
(ge L'@): g

Q=

irgdz = 0}. Only when 4 lies in this space does the differential equation
divp = Ii1g

have a solution in g; (), and so the proof of Lemma 3.7 can be carried out as before.
The additional hypothesis that r be orthogonal to To causes no problem, since in the
application to the proof of Lemma 4.1 this hypothesis follows from the membership of £ in
2
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5. Ellipticity

The system (1.1)-(1.2) of anisotropic elasticity is elliptic in the sense of Agmon,
Douglis, and Nirenberg [1], at least when the compliance tensor is positive definite. In this
section we show ellipticity of the system for any orthotropic material whose compliances
- satisfy (2.1), and, more importantly, that the ellipticity is uniform with respect to the
compliances in the sense that the symbolic determinant whose nonvanishing defines
ellipticity may be bounded above and below by positive constants depending only on the
constant a in (2.1).

The property of ellipticity has numerous consequences. For example, it implies
interior regularity estimates on the solution of the equations, and the uniformity of the
bounds on the symbolic determinant imply uniformity of the interior estimates [‘]
Ellipticity of the differential equations is also a fundamental condition for regularity of
solutions up to the boundary, but for this it is not sufficient. To derive uniform regularity
results valid up to the boundary one must also verify the complementing condition [1] for
the boundary conditions of interest and uniformly bound the ‘“minor constant” appearing

therein. This appears to be a quite formidable task.

For the verification of ellipticity we write the system (1.4),(1.2) in the form:

B 0 -R(V) diag g 0
0 26 ~5(Y) | | offdg |=| © (5.1)
-R(Y) -S(V) 0 L -

~

where B and G are the 8x3 omatrices defined in the introduction,
V = (8/82,,8/32,,8/3z5)", and for any ¢ = (6,,65,0;5)', R(§) is a 3x3 diagonal matrix
with diagR(8) = 6, and S(¢) is a 3x3 symmetric matrix with O diagonal and
ofid S(¢) = 6. Note that for any ¢ € R,,

R(¢)diagg + S(Q)offdg = ¢ &

Let I(V) denote the 9x9 matrix given in (5.1). Defining o = -1, ¢; =1 for
1<i<6, and s, =0,¢, =2, for 7<i<9, we have that deg I; < s;+1;, with equality
when [;; # 0. The following theorem asserts the uniform ellipticity of the system (5.1) in

the sense of [1], [6].
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Theorem 5.1: Suppose that (2.1) is satisfied for some positive constant a. Then there

exists a positive constant g depending only on a such that

Bl 8> < det(i(g)) < B71|6|* for all vectors § € R. (5.2)

Since detl(§) =0 when 6 =0 and since detl(¢) is a homogeneous polynomial of
degree 2 in 6, (5.2) is equivalent to the condition

B < det(l(8)) < B! for all unit vectors § € R. (5.3)

The asserted upper bound is obvious, and we discuss only the lower bound. Let I71(§)
denote the inverse of the matrix I(§) = [I,{6)]. We shall bound the spectral norm
li2(8)~|| by a constant C depending only on a. This will imply that the eigenvalues of
I(8) are all bounded below by 1/C, so that det!(§) > 1/C° as desired.

To prove the invertibility of I(§) and establish the uniform bound on I(8)~!, we apply
Brezzi’s Theorem (Theorem 2.1) to the finite dimensional problem:
Given (G, F) € R, x R, find (g, ) € R, x R such that
Bdiago-diagr + 2Goffdo-offd7 — u-70 = G:7 forallre R, (5.4)
~T R ~E R ~ORS ~R ~oRY NN R~ 1]
and
98-y = F-yg forall yge R. (5.5)
It is easily checked that (g,u) solves this problem if and only if
diags\ (diagC
I(9) oi:fvdg = ong
% £

Hence it suffices to show that this problem has a unique solution and that
gl + lxl < €G]+ 1 ED
By Brezzi’s Theorem, it suffices to prove that there exists v > 0 such that
. . . . 2
Bdiagg-diagg + 2Goffdg-ofidg > 7|¢| (5.8}
for all ¢ € R, satisfying ¢ § = 0,

and
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gf-v
f > .
o7 'Se R 0FGER, el el = 1 (5.7)

The proof of (5.7) is direct. If ¢ = VI UR(U v)U, where U is an orthogonal matrix
chosen so that \/EUQ= (1,1,1), then lel < Cl gl and ¢6 = o

The proof of (5.6) is analogous to that of Lemma 3.2. In place of Lemma 3.7 we use

the following result.

Lemma 5.1: Let z,6 € R be unit vectors and suppose that z; > ay > 0, i = 1,2,3. Let 1,4

be a diagonal tensor with diagrg = 2 and define 77 = (r:70) 79 and 1p=71-17p 1€ R,
Then

|&T| < l;DI/ao for all Lsatisfying 18=0

Proof: Since

e -lg = (- e -lg = .-
rrfore 8 = (Ligolie o &= Li70

and
tpf = (-0l =-116
Izl = lrirol = l1p 857" 4l
< lip 8l o 81 < lrpl/es

The estimate (5.6) follows easily from Lemmas 3.4-3.6 and Lemma 5.1.
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6. The Case of a Symmetrized Poisson Ratio Equal to Unity

If one of the symmetrized Poisson ratios v; is equal to unity, then the condition of
semidefiniteness of the compliance tensor requires that the other two symmetrized Poisson '
ratios vanish. Thus » is a corner point of the constraint surface, a case we have
systematically excluded from consideration. In fact, we shall show in this section that the
elasticity system is not elliptic in this case, and that the Dirichlet problem admits no

solution unless the boundary data satisfies infinitely many independent constraints.

Without loss of generality we consider the case v; = v; =0, »3=1. It is easy to
verify that the determinant of the matrix I(§) defined in the previous section vanishes for
6 = v. In fact the first two rows are linearly dependent. Thus the system is not elliptic

in this case.

To achieve an understanding of the nature of the degeneracy in this case we consider
the internal constraint implied by the constitutive equation. The vector (VE,,VE,,0) is a

null vector of the matrix B, so (1.4) implies that

for every possible displacement of the material. If we integrate the equation over the

cross-section 2, = 2n{z:z; = ¢} we find that

[

where 801, is the boundary of @, in the plane z; = ¢ and (n,%n,%0) is its unit normal
there. Equation (6.2) is a constraint that the boundary values of s must satisfy. By
varying ¢ we achieve an infinite family of such constraints. Note moreover that the planes
z; = ¢ are characteristic surfaces for the equation (6.1), and so u can not be specified
arbitrarily on an open subset of such a plane. The case E, = E, admits a particularly
clear interpretation. Then (6.1) is a plane incompressibility constraint, and the material

may be viewed as a composite of plane incompressible lamina.

“The special nature of the present case is also clearly indicated by the classification of
constraints in linearly elastic materials due to Pipkin [17]. A constrained material admits a

nonzero tensor 1 € 5 which is in the null space of the compliance tensor. Pipkin defines
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the dimension of the constraint to be the rank of L The simplest constraints, as he points
out, are the three dimensional constraints, which admit no characteristic surfaces [17].
From Lemma 3.6 it follows that if » lies on the curved boundary of P but is not a corner
point, the constraint is three dimensional. However when v is a corner point the

constraint is two dimensional.
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7. The Displacement - Pressure Formulation of Orthotropic Elasticity

The system (1.1), (1.2) of three dimensional elasticity involves nine independent scalar
unknowns. This is often considered too many for computational purposes and other
formulations are preferred. When the compliance tensor is invertible, the simplest
possibility is to solve (1.1) for ¢ and substitute in (1.2) to obtain the displacement
equations of elasticity, which involve only the three displacements as unknowns. However,
when the compliance tensor is singular this procedure is not possible and when it is nearly
singular it is usually not advisable. For isotropic materials, incompressible or not, another
formulation, which involves only the displacement and one stress quantity (a pressure) as

unknowns, is widely used. In the incompressible limit, this formulation reduces to the

Stokes equations.

For orthotropic elasticity, there is an analogous formulation which may be simply
derived in light of the preceding considerations. Taylor, Pfister, and Herrmann [21] and
Key [11] have also presented formulations of orthotropic elasticity involving fewer unknowns

than (1.1), (1.2). Key’s formulation in particular is very close to the one we consider here.

The idea of our derivation is as follows. The constitutive equations
B dlggg‘ = dlggg(g),

G ofj;dg = ongg),

may not be solvable for 4 since B may vanish on a one dimensional space spanned by w,
an eigenvector of B with least eigenvalue. Thus we decompose di,ggg as pw plus a vector
orthogonal to w and take as fundamental unknowns u and p. The above constitutive

equations may then be solved for 4 in terms of u and p and the result substituted into the

equilibrium equation (1.2).

Before proceeding, we introduce some notation. For any vector-valued function u,

define vector-valued functions L v and K v with components

L.

1

y = 9v;/d1,
Kiv = (0v;/02) + v /dz))/2, {i,5,k} = {1,2,8}.

Thus




32

Ly = disgfy) and Ky = ofldgy)

In this notation the system of orthotropic elasticity reads

Bdiags = Ly, (7.1)
Goffde = K u, (7.2)
e £y
L(diage) + 2K (offdg) = [. (7.3)
Now recall that A; > A, > A, denote the eigenvalues of B and u'= w, w?, wd associated

unit eigenvectors. Assuming the hypotheses of Lemma 3.3, we have that A;, A3 > 0, and

hence we may define

F o= 70w (07 + 2570 o (2)

Now
; diagg = z+puw (7.4)
where
z = Z [(diggg) v'| v
1=2
and
p = w-diago. (7.5)

Applying FB to (7.4) and using (7.1), we get z = F L u, and so

diggg = FLyu + puy (1.6)

Inverting (7.2) and substituting the result together with (7.6) in (7.3) yields

LFLy) +2K(G Ky + Llpw = [ (1.7)

Next multiply (7.5) by A, and use the symmetry of B together with (7.1) to get

w-Ly - hp =0 (7.8)

Equations (7.7) and (7.8) give the desired formulation of the equations of orthotropic

elasticity.

For a two dimensional constrained orthotropic material it is possible to reduce the
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elastic system further, to a fourth order elliptic equation for a single scalar unknown. In

the incompressible isotropic case this is the biharmonic equation.

The equations of plane strain orthotropic elasticity are derived by assuming that

™

and s are independent of z; and that u; = 0. Then ¢;3(u) =0, i = 1,2,3, and from (1.4)

we obtain the constitutive equations

H (ﬂu) - (‘11(,‘5)), 012/Cs = €1al w),

032 €22( u)
where
H = ( (1-3)/E, (~ v3 — vyvp) /(B B)'/? )
(= v3 — vypa)/(Ey Ep)' /2 (1-4)/E,

I the material is constrained, then the eigenvalues of H are A; = 0 and A, = tr(})

with corresponding unit eigenvectors w! = (8, )" and w? = (7,-B)!, where

~

B = |Hp/te(H)/? and 7 = |Hy/tx(H)V/2

Defining
F = Hjte(H)? and p = w'-(oy,03)",

the analogue of (7.6) in this case is

(a) = o) ++ ()
Since oy, = 05, = G3¢€p5(u), and e,3 = 6,5 = 0, the analogue of (7.7) with unknowns
u;, ¥y, and p is easily obtained by using the above identities to eliminate 4 from the first
two equations comprising (1.2). In this case, equation (7.8) becomes div(Bu;,7u;) = 0.
Hence, there is a scalar ¢ such that fu, = 9¢/0z, and yu, = ~8¢/dz,. Applying
78/8z, to the analogue of the first coordinate equation of (7.7), f8/8z; to the second,

and subtracting we find

L¢ = [BGs/(27))8*¢/0 z,* + |1G3/(28)) 3%4/8 z,*

— (G3+1/Hy;) 8%4/8 2,28 2,°

= 78f,/0z,— B3 fr/01,

It is easy to show that Lisa uniformly coercive operator in the sense that
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feneiz>cien

for all ¢ € H3(R), with C > 0 depending only on @ and a in (2.1).
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