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A mixed finite element procedure for plane elasticity is int. ,duced and analyzed. The symmetry of 
the stress tensor is enforced through the introduction of a Lagrange multiplier. An additional 
Lagrange multiplier is introduced to simplify the linear algebraic system. Applications are made 
to incompressible elastic problems and to plasticity problems. 
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1. Introduction 

In this paper we develop a new mixed finite element method for plane elasticity 
problems. A mixed formulation of the elasticity problem characterizes the solution as 
a saddle point of a Lagrangian functional involving both displacements and stresses, 
in contrast to a displacement formulation in which the solution is characterized as a 
minimum of a Lagrangian functional of the displacements alone. It is well known 
that finite elements for discretization of a mixed formulation must be chosen carefully 
if accurate results are to be achieved, and an objection to such methods is that 
acceptable elements often involve many degrees of freedom. A second objection is 
that mixed methods often lead to the solution of indefinite linear algebraic systems, 
while displacement methods generally require the solution of a positive definite 
system. Nonetheless, there are important practical problems for which a mixed 
method appears preferable. One such is the modelling of nearly incompressible or 
incompressible materials, for which standard displacement methods furnish no- 
toriously inaccurate results. A second is the modelling of plastic materials. Generally, 
the elimination of the stresses from the equilibrium and constitutive equations of a 
material exhibiting plastic behaviour is difficult; consequently, only a mixed for- 
mulation is feasible. 

Our goal here is to develop a mixed finite element for plane elasticity that 
involves a relatively small number of degrees of freedom, is stable and accurate in a 
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mathematically demonstrable sense, and is applicable to incompressible and plastic 
problems. The element we propose does not have any vertex degrees of freedom for 
the stress; as we show in section 5, it can be implemented in such a way as to lead to a 
positive definite matrix problem. 

In developing the element, we had in mind finding an appropriate analogue of 
the lowest order triangular mixed finite element in the family of elements proposed by 
Raviart and Thomas for the Laplace equation [18]. This element approximates the 
solution to Laplace's equation by a piecewise constant function and its gradient field 
by a restricted piecewise linear ¡ which is determined by the value of its normal 
component at the midpoint of each element edge. Thus the element involves only a 
small number of degrees of freedom and moreover it possesses a number of desirable 
properties which permita simple and convincing mathematical analysis [8, 9, 11, 18]. 
A natural idea for the elasticity problem is to approximate the two components of the 
displacement vector with a pair of piecewise constant functions and the four 
components of the stress tensor with the Cartesian product of the Raviart-Thomas 
gradient space with itself. However, this choice of elements violates the symmetry of 
the stress tensor and cannot be used without modification. In the present element we 
start from such a Cartesian product element, but then we impose a weakened 
symmetry condition through the use of a Lagrange multiplier, which enters the 
system asa new variable which can be interpreted as the rotation of the displacement 
¡ The requirement of mathematical stability leads us further to augment the space 
of approximate stresses. The resulting element, which we call PEERS (Plane 
Elasticity Element with Reduced Symmetry), is described in detail below. Note that 
we have attacked the problem of developing an element with a small number of 
degrees of freedom in a rather curious fashion, namely by introducing two additional 
variables to the ¡ original variables of the elasticity system, a fourth independent 
stress component and the rotation. Nonetheless, PEERS is to our knowledge the 
smallest stable mixed elasticity element. In an appropriate implementation and after 
elimination of the degrees of freedom internal to a triangle PEERS has two degrees of 
freedom located at the midpoint of each element edge (namely the value of the 
displacement vector) and one located at each vertex (the value of the rotation). 

Other mixed elements have been proposed for elasticity. In [17] Johnson and 
Mercier present two elements, one composite triangular and one composite rec- 
tangular, with rather similar applications in mind. Their element is of higher order 
than ours, but ir involves significantly more degrees of freedom and moreover lacks 
some of the properties which PEERS shares with the Raviart-Thomas element and 
which allow a particularly simple and complete mathematical analysis (see the 
discussion of this point in [3]). Arnold, Douglas, and Gupta [3] have presented a 
family of mixed elasticity elements which do possess these properties, but their main 
goal was high order approximation, and so the elements have many more degrees of 
freedom. 

The approximate imposition of symmetry through a Lagrange multiplier was 
suggested by Fraeijs de Veubeke [13]. A family of elements based on this idea, 
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including an element of Fraeijs de Veubeke, has been presented by Amara and 
Thomas [1]. They consider dual hybrid equilibrium methods, so a comparison with 
our method is difficult. It appears that all the elements to which their analysis applies 
are more complex than PEERS. An essential difference between their approach and 
ours is that they consider approximation of the rotation by discontinuous piecewise 
polynomials while we approximate it by a continuous piecewise linear function. 

The remainder of the paper is organized as follows. After a preliminary section 
we construct PEERS in section 3 and establish some basic properties which enable 
the asymptotic error analysis to be carried out in, section 4. The main results of this 
analysis a r e a  quasioptimai estimate in an appropriate norm for the triple consisting 
of  the stress tensor, the displacement vector, and the rotation, first order L2-estimates 
for the errors in the displacement and the stress, and second order H-~-estirnates for 
the same quantities. We also derive a simple L ~ estimate for the displacement. In 
section 5 we discuss the implementation of the method and in particular sketch the 
application of the idea of [2] to give an improved implementation which, at the same 
time, gives a new approximation to the displacement field with higher order accuracy. 
Finally, in two short concluding paragraphs we discuss the application to problems 
of incompressible materials and to plasticity problems. 

2. Notations and PreHminaries 

For convenience we shall consider the elasticity problem to be posed on a convex 
polygonal domain f2. For Ta  subdomain of g2 we denote by HS(T), s=0 ,  1, 2, �9 �9 the 
usual Sobolev space with norm 

,,~l,s,T=(a+~<s (~~+'B~O 2 / 1 / 2  
(~X~t ~y/~ L2(T)/ " 

For T=f�91 we write simply H s and II" II~. The subspace of H x consisting of functions 
vanishing on 00 is denoted by/-IX. 

For any space X we denote by X [respectively, ~] the space of 2-vectors [2 x 2- 
tensors] with components in X. Note that we do not restrict to symmetric tensors. If  X 
is normed, associated norms are defined by 

Ilvllx-- Ilvill~ , II~llx = II*,jll~c �9 
~ i=1 i= j=  

We use the same notation II" II~,r (or  I I 'L)  to  denote the norms in H~(T), I-P(T), and 
/-P(T). We also use the wavy underline to distinguish between scalars, vectors, and 
tensors. 

For functions ~/, ~, and z on f2 we define the differential operators 

rot r/= O(~y c%/) 
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/ Ovl av1 
~x ay 

gradv= ~vz Ovz 
t~  ay 
avl + av2 rot~=-~y ~S' 

avl 1 I'Ovz avl'~'~ 

~~)= ~/av~ av,'~ av~ i 

/alll a'�91 2 a l21 a'�91 ~ divl--k-~;+ ay'ax ~~-y) 
We also define two constant tensors 

and associate with any tensor �9 its trace and asymmetry: 
Ii: 

tr(p---~ : 6,  a s ( p = i  : ~,  

where the colon indicates the scalar product of  tensors given by 

2 2 
T: ~= ~ Z TiJ~ij" 

i=lj=l 

We now formulate the elasticity problem. For  simplicity of  exposition we restrict 
ourselves to a homogene0us isotropic body in a state of  plane strain fixed at the 
boundary. The classical theory of  linear elasticity then requires that 

(2.la) a =  2#e(u) + 2 tr (~(u))6 on f2, 

(2.1b) div a = f  on f2, 

(2.1c) u = 0  on aO.  

Here u and a de¡ the desired displacements and stresses,fthe imposed load, and # 

and 2 the positive Lato~ constants. Inverting the stress-strain law (2. la), setting 7 = 
(rotu)/2, and noting that 

we see that 

1 2 

(2.2a) 2p a 4p(#x+ 2) 

e(u) = grad u -  yg,  

- -  tr (a)6 - grad u + y~ = 0 on f2. 
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(2.3a) 

(2.3b) 

(2.3c) 

where 

We supplement this equation with the equilibrium condition (2. lb), the condition of 
symmetry o f ~  [implied by (2. la)], and the fixed boundary condition (2.1c): 

(2.2b) div ~ = f  on t2, 

(2.2c) as(~) =0  on t i ,  

(2.2d) u = 0  on 9t2. 

The systems (2.1) and (2.2) are equivalent in the sense that the triple (~, u, 7) solves 
(2.2) if and only if y = (rot u)q and the pair (~, u) sones (2.1). The following theorem 
can be deduced from the method of analysis employed by C. Kenig in some recent, as 
yet unpublished, work on regularity for the solution of (2.1) on Lipschitz domains. 

THEOREM 2.1. Let  0 < ~ < p t ,  #e[#o,#l],  2~[0, ~) ,  a n d f E L  2. Then, there 

exists a unique triple (a, u, 7) E H z x ( H  z n ~ 1 )  x H 1 satisfying (2.2). Moreover,  there 

exists a constant C depending only on 12, #o and #1 such that 

II~lh + Ilulh + I1~111-< fil  f i lo �9 

Note that the constant C in the above theorern is independent of 2. The case of 2 
very large corresponds to a nearly incornpressible material. For a proof of  this aspect 
of the theorern see [3, 19]. 

To define a weak formulation of the problem, we introduce the Hilbert space 

II~ll~=(ll~ll£ IIdiv ~112) 1/2 �9 

The weak formulation of (2.2) is to find a triple (a, u, 7) e H x H ~ x H ~ such that 
(with u. v denoting the scalar product of the vectors u and v) 

a(~, ~)+~u.div~dx+~r as(pdx=O, ~eH,,~ 
~~v ~.~dx=fS.~Sx, ~~Ho 
J as (~)~ldx = O,  11 ~ H ~  

;E~ ~ tr,~)tr,,)],x (2.4) a(~, S) = a : T - 4p.(p + 2) ' 

and the integrals are over ~. This problern has a unique solution, narnely the solution 
to (2.2). 

3. Definition of PEERS 

Let 3- be a triangulation of f2 with angle bound 0; i.e., 3- is a set of closed 
triangles with union f2 such that any two nondisjoint elernents of o~" rneet in a 
cornrnon vertex or edge, and 0 > 0 is a lower bound for all angles of the triangulation. 
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For  T e ~ "  set h r = d i a m ( T ) ,  and put h = s u p  {hrl T e ~ } .  
Let ~ ,  denote the space of polynomials in two variables of  total degree at most r, 

and let ~ c ~1 be the space of polynomial vector fields of the form (a + bx, c + by), 
where a, b, c e R. We set 

M ' = { 9 e H  ~ I g l re~ , ,  Te~J "} , 

s={~e/-/~ I ~lTe~, Te3-~, 
M£ = M ' n H 1 , 

So-- s ~ n(div),  

So = {~l (~,, ziz) e S o, i =  1, 2}. 

Here H(div) denotes the space of u e H ~ with div u e H ~ The space So is one of the 

spaces constructed by Raviart and Thomas [18]; it can be defined equivalently as the 
set of vectors in S having continuous normal eomponents across interelement 
boundaries. We also define for each Te  5 the bubble function br. This is the unique 
cubic polynomial on T vanishing on OT and normalized by 

TbTdX = 1. 

We consider bT to be extended by zero, so that it is an element of  Mo 3. Define B to be 
the span of  {rot br: T e  f f}  and B = {~ [ (Ti1, ~i2) e B, i=  1, 2}. 

The PEERS space for the approximation of  the stress is given by 

V=So+B. 
The displacement and rotation will be approximated in M o and M A, respectively. 

Hence we define PEERS by the relation 

PEERS = V• M o • M A . 

Thus, the discrete solution is defined as the triple (~h, uh, 7h)e PEERS such tlaat 

(3.la) a(~h, ,,z)+fuh'divTdx+fYh-~ ~ ,, _ as(~)dx=O, .re.V' 

(3.1b) ~ d i v ~ h ' v d x = f f ' v d x ,  v e  M ~ , 

(3.1c) ~ as(gDnax=o, f l e M a .  

The error analysis of  the method of  Raviart and Thomas associated with their 
lowest order element is greatly simplified [12] by the existence of a linear operator 
H :  H t ~ S  o satisfying the orthogonality relation 

(3.2) ~d iv ( v - l - l v ) odx= O,  v e H  ~ , o e M  ~  

and the approximation property 

(3.3) IIv.-HE[Io<Chllvll ~ , ~ e H  x , 
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where C depends only on I2 and 0 (the angle bound for #-). We define/ / :  H 1 -- ,Sc V 

as the Cartesian product of  this operator and infer directly from (3.2) and (3.3) that 

(3 4) ~ d i v ( z - H z ) ' v d x = O ,  ~e H 1 r e M  ~ 

(3.5) IIz- lITIIo <_ Chll~lla ~z e H 1 

Note, moreover, that div B = 0, so that div V =  div S O = M o. Consequently, letting 

P: H ~  ~ denote the orthogonal projection, we have the relation 
~ _ ~  

(3.6) l d i v z . ( v - P v ) d x = O ,  z e V ,  v e H  ~ . 

It then follOws from (3.4) that 

(3.7) d i v / / ~ = P  divz ,  Te/_/x. 

From the approximation property (with I1"11-1 indicating the norm in H I ( ~ )  ') 

(3.8) IIv-Pvll_~<CIIvll,h "+~, v e H ' ,  r, se{O, 1} 

we see also that 

(3.9) Ildiv(~-/-/T)ll _~ <C[Idivzll,h "+~ r e H  "+~ r, se{0, 1} 

4. Error Analysis 

Recall that t2 is a convex polygon, 0 is an angle bound for 3-, and #1 and ~ are 
positive upper and lower bounds for the Lam› coefficient ti. Henceforth the symbol C 
denotes a generic constant which may depend only on t2, 0, ~ ,  and #1. 

For the analysis it is useful to notice that the approximate solution can be 
defined equivalently through a variant of (3.1). For X c  H ~ let 

~ = { z e X I l t r ( Q d x = O } .  

Then V rnay be decomposed as the direct sum of 17" and R6, and the choice z = 6 in 

(3.la) implies that ~he~.  Hence, the approxirnate solution can be defined as the 

triple (a h, uh, 7h)e~•  M O x Mo 1 such that 

(4.1) a(ah , ~.z)+[u¡ h o ~  ~ ~ as(z)dx=0,  .~ze ~.l?' 

holds along with (3.1b) and (3.1c). Note that an analogous reinterpretation of the 
continuous problem is valid and, in particular, a e H.~, 

We begin by proving a quasioptimal estimate for PEERS. Again we emphasize 
that the constant in this estimate, as in all the estimates below, depends on the 
positive upper and lower bounds /~1 and ~ for the Lam› constant /~ but is 
independent of 2 e [0, oo). 

THEOREM 4.1. There exists a unique element (~h, uh, Y¡ satisfying 
(3.1). Moreover, there exists a constant C such that 
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II~-~hll~+ Ilu-uhllo + II~-~hllo 

~ Cinf{ll~-~ll~+ Ilu-~llo+ I1~-~11o I (~~ ~, ~/)ePEERS}. 

COROLLARY 4.2. Suppose f e H  ~. Then, 

I1~- ~~11~ + Ilu- uhllo + II~,- yhlto -< Chllf I1~. 
ProofofCorol lary 4.2. We take ~=/-/~, v=Pu ,  and ~/=Rv, R denoting the L ~ 

projection into Mo ~, in Theorem 4.1. From (3.5) and (3.9) we have 

and 

Clearly, 

I1~-~11o~ Chll~ll~ 

II div~ (a  - ~)li o - < Ch ]] div~ ~ I1~ = Ch II f~ []~. 

and 

Ilu-~]lo~ Chllulll 

112~ - r/]lo ~ Chl[y[[x ~ Chl[ull2. 

Since 11 ~ H t + [[ u [12 <- C[[ f [1o by Theorem 2.1, the corollary follows. 

The proof of Theorem 4.1 will be based on the abstract stability theory for mixed 
methods of [5] applied to the alternate characterization of the discrete solution using 
(4.1). It suffices to prove the following two lemmas. 

LEMMA 4.3. There exists a constant C such that Ca(~, z) >_ I]z]]~ for all z e Z ~ =  

{ a e V I j ~ div a. vdx + = ~ as(~)rldx=0, ve~ M ~ ~q In fact, the inequality hold~ for 

all divergence-free ~_ e I~I. 

LEMMA 4.4. There exists a constant C such that, for  all pairs (v, rl)e M ~ x M A, 
there exists a nonzero z e li  such that 

C{ ~div ~. vdx + ~ as(~)t/dx} >_ [[ ~[[~(LI V l[o + [Ir/L[o). 

Moreover, z= can be chosen so that div ~=v  and 

~ (as(z=)- ~/)0~dx = 0,  ~ e M o  1 . 

Before proving these two lemmas, let us note that Lemma 4.3 establishes one of 
the two conditions of [5] when ~ is considered in place of ~. The second conditions of 

[5] follows from Lemma 4.4, so that the error estimate of Theorem 4.1 is valid, except 
that the range of �9 in the infimum must be restricted to 17". Since a e/~, 

Ÿ ~ 

inf []a-~]]~= inf ]l=a-~]]~, 

and Theorem 4.1 thus follows from the two lemmas. 



A New Mixed Finite Element for Plane Elasticity 355 

ProofofLemma 4.3. For ~~ff, d iv~eM~ hence, the condition ~div~.vdx=O 
for v e M o implies that 

~ ~ 

(4.2) div �9 = 0.  

Consequently, it suffices to demonstrate the inequality for divergence-free tensors in 
/• i.e., ~ �9 H sucia that 

(4.3) div �9 = 0 and .[ tr (~)dx = O. 

Take ~ � 9  such that div~=tr(~)  and Ilvllr_<C(~)lltr(T)llo; this is possible in 

light of (4.3) and the assumption that f2 is convex [4]. Now, setting ~= ~ -  tr (z)~q 
the deviatoric of ~, we have 

Iltr (~)11£ = ~ tr (z)~: grad ~dx 

= -2  ~(~" gradv+divz.v)dx 

= - 2 ~ f :  g~dvdx<211~llo IIvlh, 

so that 

(4.4) 

Further, 

Iltr (~)[Io ~ C(a) ll~llo. 

II TII~ = H~ll£ = ii~iio2 +1 iltr (~)[1£ < C(~2)II~II£ �9 

Finally, by the definition of the form a, 

a(~, O= 1 ~ 1 -'-" 2~, II-~Jl~ rltr(~)II£176 II_~li~, 

completing the pr£ of the lemma. 

t'roof of Lemma 4.4. Given (v, ,) ~. MO • MA, take p e_H 1 such that div p = v 

and II~ll,-< CIfvllo. Let ~' =/-/p; then by (3.7) and (3.5), 

divxl=v,~ = ~ II~~ll~<Cllvllo �9 

Set s equal to the mean value of r / - a s (~  ~) on f2; so, Isl<C(ll~lilo+llrtllo)< 

C(llvllo+ IIr/llo), and f l=r / -as (~=l ) - s  has mean value zero. Thus, we can find q e ~  1 
such that 

(4.5) d i v q = f l ,  IIqlh<Cll~llo<C(l[Vllo+llq[Io). 

By standard interpolation results [6] we can approximate q by qh e MA n ~1 such 
that 

(4.6) II qhlh -< CII qllt, 
(4.7) ~ h~ ~ IIq-qhllo2,r-<CIIqll~ z. 

T e , 9 - h  
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Set 

and note that 

(4.8) 
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a r = f r  (~q --~qh)dx e R 2 , Te J - ,  

lar l<Chrl lq-qhl lo  r .  

Next, recall that br denotes the normalized bubble functions on T and set 

SO, 

o 

r = ~ h +  ~ a r b r e H X ;  
T ~  ..5" 

(4.9) f r rdx=; r ,hdX+ar : f rqdx , 

Since I[grad brllo T < C~ ~2, it fo l lows  from (4.8) that 

and, by (4.7), 

(4.10) 

Thus, the bound 
(4.5). Now, set 

Te~--.  

II grad (arbr)I[o T < Ch • 1 IIq- qh Iio, r 

2 

grad ~ arbr = ~ ]lgrad (arb r) II £ -< Cl[q II 12. 
T ]lO T ~ ~ ~ 

Ilrlh-<C[Ig~drllo<C(ll~llo+ IIr/llo) results from (4.6), (4.10), and 

z2 l /'rot rl"~ s 
= = ~ + rot ~,_ + 5 -  ~,~)  ~. 

One easily verifies that T 2 e V and that 

I1~ 2110-< C(ll~'llo+ Ilrlh +q C(llEIIo+ I1'1[Io). 
Moreover, 

and, for ~t e M i, 

(4.11) 

divz2=divzX=v 

j" as (z2)adx = ~ (as (~') + divr  + s)adx 

= S (rl- fl)~tdx-S r .  grad o~dx . 

But, g ~ d  0reM ~ so that (4.9) and (4.5) imply that 

S r ' g ~ d  otdx = S q - g ~ d  ~dx = - ~ div q~dx = - ~fl~tdx. 

Combining this equation with (4.11) gives 

~as(:2)~tdx=~qctdx, ~ e M ~ .  
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Finally, let t be the mean value of tr(z 2) and set *-=*-2-(t/2)~e~. Then, 

II*-IIo -< 11 ~~ IIo -< C(ll Vilo + li n IIo), div*- = div _z 2 = v, and as (z) = as (C). We thus have 

~ ~ v  *-.vdx + I as(*-)tq = li Vilo 2 + II ~ Ii£ -> c -  x li,q ~11o + I1,1110), 

and the proof of Lemma 4.4 has been accomplished. 

The H ~ error estimates for the stress and displacement do not require the extra 
regularity f e H  1, as we now show. At the same time we demonstrate higher order 

estimates in the space (H ~)' (the dual space of H ~, with the dual norm denoted I1" II- x) 
and also certain supercloseness of u h to the H~ Pu. 

THEOREM 4.5. For f e H ~ 

Ila,--~hllo + I[u--u¡ § II~'--~hllo<--Chllfllo �9 

I f  f ~ H ' ,  then also " 

and, for  g > O, 

Ilu-uhl1-1 + I[Pu- uhllo ~ Ch2 Ilfl[1 

Ira,-a,hl1-1 ~ C~h2-'llflll �9 

Proof  Recall that we have defined the orthogonal projections R: H ~  
and P:  H ~  ~ as well as the operator H:  HI-~ V. Define the error quantities 

d=/-/'of- O'h E V, 

d = P u -  uh ~ M ~ , 
~ 

From (2.3) and (3.1) we have 

(4.12a) 

d = R) , -  7h ~ M~.  

a(a, ~)+ j'a. div rax + Idas(*-)dx 
-- a (n ~ -  a,, *-)+ ~ (e~-u).  dLv *-ax + I(R~-~) as(*-)ax 
=a( l la , -a , ,  ~)+ I (RT-v )as (* - )dx ,  *-~ ~ ,  

(4.12b) Idivd.vdx=Idiv(Ha-a).vdx=O,~ = ~ ~ = ~ ~ve ~M O , 

(4.12c) 5as (=d)~ldx = 5as ( H a -  a,)tldx, tl e M~ , 

where we have used (3.6) and (3.7) to simplify (4.12a) and (4.12b), respectively. 
Note that (4.12b) and (3.7) imply that 

(4.13) div d =  0,  div a,h = div Ha  = P f .  

Now let t be the mean value of tr (Ha,-a,) on 12 and set d=,~ d-,, (t/2)6=. Clearly, 

(4.14) [Idllo --- Lldllo + CllI-la,- a,llo �9 
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Moreover, the choice ~=,,6 in (4.12a) shows that t is equal to the mean value of tr (~  

in t2, so that de  f'. Also, 

a(d, ~ = a(d, ~ ,  div ~=div  d = 0 ,  as(~ = a s ( ~ .  

Therefore, applying Lemma 4.3 with T = ~e 17, and then using (4.12a) and (4.12c), we 
see that 

II~l[£ Ca(~, ~ = C a ( f  ~) 

=C[-  ~as(17Z-z)ddx +a(l-I~- z, ~ +  ~(Rr-y) as(~dx] 

< C[II / /~-  ~[Io I[dllo + ([IH=a- ~l[o +/[RT-- Y//o)/l~/[o] �9 

Combining this bound with (4.14), we can then deduce that 

(4.15) IIdll£ < C([I H g -  gll 2 + lIRa,- vll£ II / /g-f l lo Ildllo) �9 

To estimate d we apply Lemma 4.4 with v = 0 and r/= d to get a nonzero, divergence- 
free z e V such that 

C ~das (z)dx > tldllo II~llo . 

Substituting this Tinto (4.12a) gives the inequality 

(4.16) Lldll o < C(Itdllo + Ila - / - /~  Ito + li W - Rr rio). 

From (4.15), (4.16), and Theorem 2.1, we then deduce the estimates 

Ildllo_< C([l~-H~llo + Hv-Rvllo)<-Chllf[Io, 

I[dllo < Chllfl[o �9 

Hence, 

(4.17) [ l~ -  ~h IIo + II ~ - ~h IIo ~ II dllo + li ~ - / / ~  I[o + ]ldllo + Li ~ - R~ IIo ~ eh li f IIo. 

This establishes the desired H ~ estimates 'for the stress and rot u. We now estimate 
the/ar o and H -  1 error in the displacement. It suffices to prove that 

(4.18) lfdllo<ChS+lllfIPs, s = 0  or 1, 

for (3.8) and (4.18) can be combined to show that 

IlU-Uh[[_,<Ch~+l[[fl[s , s = 0  or 1, 

as  desired. Note that, for s=  1, (4.18) gives the desired bound on IIPu-uhllo. 
To prove (4.18) we use a duality argument. Define the pair ve/-/2 and 

~e {~ e ~1:r  = r as the solution of the elasticity system 

~= 2#~(v) + 2 tr (~(9)6 on o ,  

d i v t = d  on I2, 

v=O on O0, 
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and set q=(rotv)q We know from Theorem 2.1 that I1~1[i + Ilvll2+ IIr/Ih-<Clldllo. 
N o w ,  

I1�91 ~ d i v  ~.ddx=~ d i v  llz.ddx 
= a(ah. - ..a' m )  + S(~h - ~) as (m)dx... 

=a(a+¡ z)+a(~h--a+, 1-1 i -  ~)+ ~(T¡ dx 

=:I1+I2+I3, 
where we have used (3.4), (4.12a), and the symmetry of ~. Applying (3.5) and (4.17), 
we get 

I121+1131-< C(ll~- =ahllo + IlT- ~'hllo)hll~lh < Ch21lfllo Ildllo �9 

To bound 11 we use the de¡ equations for t, v, and ~/and those for a and ir h to 
compute 

I1 =S(~h--~) : e(v)dx= ~div ( a -  ah).vdx +~as ( ~ -  ah)rq 

=I (f-- Pf).(v- PDdx + ~as ( ~ -  ~h)(q- ROdx , 

so that 

II11-< C(h I I f - P  fi lo + h2 Ilfllo) Ildll0 �9 

Combining, we have 

Ildilo < C(h2 ]1 filo + hi ] f -  P filo), 

from which (4.18) follows. 
To complete the proof of Theorem 4.5 we must prove the H -1 estimate 

-1_C~ Ilflll Ilell-c =ll~-~hll < h2-' _ 

for the stress. We shall use the decomposition 

1 6 1 e = e a  +eB+eC:=[e  - 1  as (~)~- ~- tr {~)�91 ] +-~- 1 as (~)~ +-~- tr (~)~. 

Hence, it suffices to show that 

(4.19a) [le a II-1 < Ch2 I [ f lh ,  

(4.19b) I[as (e)II-x <-ChZl[flll, 
(4.19c) [[tr (e)[I -x < C~ h2-el[f[[x. 
Since e~ is symmetric, there exists a symmetric tensor ~ ~ H t such that 

--  e A �9 IIfll-l-I. ~dx LI~LI,--1 
Moreover, since tr (e a) = 0, it follows that tr (~)= 0. (For, were this not so, then the 
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tensor ~ -  tr(~)c~q being the H '  orthogonal projection of ~ onto the subspace of 

trace-free tensors, would have H 1 norm strictly smaller than unity. But this cannot 

be, as the H ~ inner product of this tensor with e Ais the same as that for ~ with e a, 

namely [redil-a.) Since ~b is symmetric and trace-free, the de¡ of  the bilinear 
f o r m a  a¡ the equatlons (2.3a) and (3.la) show that 

i2. fJe~fJ - i = ~ : ~dx=a~, r 

= ; I  1 + I 2 + I  3 . 

Now, by (4.17) and (3.5), 

I~1 I_< cire lto IJ~-n~ifo-< ch2Jlfllo ; 

,~2 ,=, ~~v n~ �91 i_< ,l~,ll ildrlo-< Ch~ll�91 
by (3.7) and (4.18); and 

[ 131= I S as ( H f  - f)(~, - vh)dxl< II f -- / - / f  IIo 11 r - Yh IIo -< Ch211 f I[o, 

by (3.5), (4.17), and the symmetry of ~. This establishes (4.19a). 

The estimate (4.19b) follows easily from (2.3c) and (3. l c): for cp ~ H 1, II cplh--1, 

li" as (e) ~pdx I = I ~ as (e)(~p- R cp)dx I < Eh [le I[o II ~P Ih -< Eh211 f Iio. 

Finally, we estimate the H-1 norm of tr (e). Choose r e H ~ such that 1[ r II~= 1 

and ~ tr (e)cpdx = li tr (e)li -1. By taking ~ = ~ in (2.3a) and (3. la), we have ~ tr (e)dx = O, 

and it follows that ~ ~pdx = 0. Hence, there exists v ~ ~~ ca ffi~ - '  with 

div v = - 2cp, 

and I1~112-~ < C~ll ~P II x _-< C~. (This regularity estimate is proved in [4]; in general, there 
is no such v in /q  unless cp satisfies a boundary constraint.) Then, 

II tr (~)II -1 = - ~-- tr (~)~ : grad= ~vdx 

= A+ :g radvdx+ ive 

<(lleall-1 +~+ ]leBl]-1 +~)l]v]lz-~ + II f - P  filo rJv-Pvllo 

<Ch2-~llf[ll , 

using interpolation between (4.17) and (4.19a) and (4.19b). This completes the proof 
of Theorem 4.5. 

The higher order H -1 convergence proved above is often associated with 
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superconvergence phenomena.  For  example, it follows easily that on the average 

- =a h and u - u h  converge to zero with second order (modulo, perhaps, a factor of  

h-~ for a - t r , ) .  

The estimate on II P u - u h  II0 given in the theorem has various applications. In [7], 
Douglas and Milner use an analogous result to obtain interior and superconvergence 
estimates. Also, Arnold and Brezzi [2] use such an estimate in deriving a higher order 
correct approximation to the scalar variable in a Raviar t -Thomas mixed method. 
Here we apply it to derive a simple optimal order estimate on the displacement error 
in L ~, which is analogous to an earlier result of  Douglas and Roberts [9]. For  this 
result (only) we require a quasiuniform mesh, so that  the inverse property 

(4.20) IlvllL~ <_ Coh-k , r e M  ~ , 

is valid. Here L ~ is the space of (essentially) bounded vectors on I2, Wt~ the subspace 
thereof of  vectors with bounded gradient. 

THEOREM 4.6. I f  f e H ~, u e W ~ ,  and the inverse property (4.20) holds, then 

I lu-  u, LI L~_< CCoh(llfllx + Ilullw0 �9 

Proof. From (4.20) and Theorem 4.5, 

IIPu- UhlIL~ < Coh -~ I I P u -  uhllo-< CCohllfll~, 

while it is easy to see that  

I lu-  PullL~ ~ Chllullw~ . 

5. Implementation via Multipliers and Higher Order Correct Approximation of the 
Displacements 

We now discuss the implementation of PEERS. Let 8 denote the set of  edges of  
triangles in f and ~ the set of  vertices. We set 

8o={eed~le r  } . 

For  each T e  5- let n r denote the outward unit normal to T (constant on each edge of 
T), and for each e e o ~ l e t m  e denote the midpoint o f  e and n e one of the unit vectors 
normal to e. As is well-known, an element E e S o is uniquely determined by taking as 
degrees of  freedom the values of  v.n e at m e, e e ~. Thus, we can define nodal basis 
functions ~e e So by the equations 

f e " ne(me) = 1,  

~e "no(mo) = O, g e e \{e} .  

A basis for Vis then given by tl~e tensors 
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rot b r 

The spaces M O and Mi  have familiar nodal bases. We can reduce (3.1) to a sparse 

linear system for the coefficients of (ah, Uh, Yh) with respect to these bases in the usual 

way. The resulting matrix is symmetric but indefinite. 
However, PEERS can be implemented in another fashion which leads to a 

positive definite linear system, resembling that of a displacement method. The 
essential idea is to remove the constraint of interelement continuity of the normal 
components of elements of V and reimpose this continuity viaa Lagrange multiplier 

on each interelement edge. In this implementation each degree of freedom associated 
with the approximate stress field is internal to a single element, and so it can be 
eliminated inexpensively. The smaller linear system which results is positive definite. 
It can be reduced further by elimination of the displacement field, which also has only 
intemal degrees of freedom. 

The Lagrange multiplier introduced to enforce interelement continuity can be 
interpreted as another approximation to the displacement. Moreover, it tums out 
that this approximation is of second order accuracy in L 2, in contrast to uh, which 
affords only first order accuracy. 

Ah analogous implementation can be used with many mixed methods (essen- 
tially those for which the first variable--the stress field in the present case---is subject 
to interelement continuity constraints only across interelement edges and not at 
vertices). This concept is discussed in detail by Arnold and Brezzi [2], who also 
demonstrate an analogous higher order convergence associated with the new 
multipliers for two widely used mixed methods. Here we sketch briefly the application 
to PEERS. For more details as well as the techniques required for proof of the claims 
made here see [2]. 

Let V(T) be the space of vector functions on T which are restrictions of 

functions in ~ + R r o t b  r, and set ff(T)={z [ (z,, "[i2)eV(T), i=1, 2}. Note that 

dim V(T)=8, Set 

We enforce no interelement continuity on elements of V*. Considering the eiements 
z 

of V(T) to be extended to ~ by zero, we have V ( T ) c ~  ana a basis for V* can be 

taken as the union of the bases of the V(T), T e J .  Define also the space h~~ as the 

nonconforming piecewise lineffr approximation to Dt; i.e., the subset of M ~ 
consisting of functions continuous at m~, e ~ r and v• at m,, e ~ �91 A set of 

~ 1 degrees of freedom for a function in MN is given by its values at m~, e ~ r Finally, 
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for T e ~  7" define ar :  =/-/~176 by restricting the integral in (2.4) to T. 
Consider the following problem: 
Find (=a h, Uh, )'h, 2h) ~ V* x M O x Mo 1 x A~/~ such that 

(5.la) ar(ah'~'=z) + 3r ~ ' ~ f  divr'UhdX + 3r f as (~)?hdx-- f~r (~nr)'~2hds=0' 

(5.1b) 

(5.1c) 

(5.Id) 

T~V(T) ,  

f T d i V a h ' v d x = f r f ' v d x ,  V~~o ,  .~ ~ ~ ~ . 

f a s  (~h)qdx = O, q ~ M~ , 

- ( ~ ~ ~ r ) ' # x = O ,  ~eu 

T e 3 - ,  

This problem has a unique solution and, as suggested by the notation, the first three 
components of the solution coincide with the solution to (3.1). (The fourth 
component, 2 h, may be reasonably viewed as another approximation to u, as can be 
seen by mult~plying (2.2a) by ~eV(T) and integrating over T.) In partic~lar, the =a h 

determined by (5.1), a priori only to be in V*, in fact belongs to 1/"; i.e., it has 

continuous interelement normal components. To see this note that for each ~~ V(T), 

z nr is constant on each edge of  T. (This is clearly true for ~ e ~ ,  while (rot b r ) ' n r  is 

the tangential derivative of  bT on ~3 T and hence vanishes.) Now, fix an edge e Ego and 
take/~ in (5. Id) to be zero at the midpoints of  all other edges and successively to be 
(1, 0) and (0, 1) at me. The resulting equations show that the jump of ahn_ across e 
vanishes. Consequently, (5.. 1) reduces to (3.1) when the test function ~ in (5.la) is 
restricted to V and the relations of (5.la) are summed over T ~ ~ .  

Although the system in (5.1) is larger than that of  (3.1), its structure allows for a 
more efficient solution process. For each T E ~ ,  (5.la) reduces to a system of eight 
equations for the eight unknown coeffic]ents of  =ahl r. Inverting an 8 x 8 positive 

definite matrix gives =a¡ r in terms of  Uh[r, 7h, and 2 h. Substituting this into (5. lb) gives 

a 2 x 2 system for the coefficients ofuhlr in terms ofvh, 2h, and the data f ;  inverting the 
corresponding 2 x 2 matrix and substituting the results into the previously derived 
expression for =ahlr leads to a linear expression for =ahlr in terms of Vh, _2h,f Finally, this 
expression can be substituted into (5. le) and (5. Id) to obtain a linear system for Vh 
and 2 h. This final linear system can be viewed a s a  sparse linear system for the 
unknown coefficients of  these functions with one linear equation associated with each 
vertex v e ~ and two with each edge e e g. Its sp• structure is indicated in Figure 
1. Moreover, the matrix of the final system is positive definite, as can be seen as 
follows. If  2~ denotes the vector of parameters representing ~h and ~ the vector 
representing u, Vh, and 2 h, then (5.1) takes the matricial form 
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The degrees of freedom entering the equations 
associated with the vertex v 

The d~grees of freedom entering the equations 
associated with the edge e 

--I-q--: Value of ~'h at a vertex. 
- , - e -  : Value of "~.;h at the midpoint of an edge. 

Fig. 1. 

[:. £ �9 
where A is positive definite. Thus, the matrix X*A- ~X is positive definite, as it is both 
semi-definite and nonsingular. Then the block elimination of the uh-parameters gives 
a positive definite matrix for the remaining parameters, which define 7h and �91 

Having computed 7¡ and 2¡ ~¡ and u h can be recovered element by element, 
using the element stiffness matrices already calculated. Hence the introduction of 2 h 
can be regarded a s a  computational device to render more efficient the computation 
of  the original variables Eh , u¡ and 7h. However, as shown for other mixed methods in 
[2], 2 ¡ actually provides asymptotically better approximation to u than does u ¡ The 
proof  is a slight modification of Theorem 2.1 of  [2]. The result is as follows. 

THEOREM 5.1. There exists a constant C such that 

I lu-  2nl[o < Ch2[Ifllx . 

6. The IncompressibleCase 

I fwe set 2 = + ~ in the weak formulation of the elasticity problem (2.3), we get a 
weak formulation of  the equations of incompressible elasticity. The solution of  this 
system is not uniquely determined, since a constant multiple of  6 can be added to a. A 
unique solution holds under the additional condition that 

(6.1) S tr (~)dx = O, 

which is valid automatically for 2 < ~ .  See [3] for details. 
Since our error estimates are independent of  2 �9 [0, oo), one way to approximate 

the incompressible problem with PEERS is to set 2 to some very lar, ge but ¡ 
value and solve the resulting problem. The additional error so introduced will be 
proportional to 1/2. 
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Alternatively, one can attack the incompressible problem directly, setting 
2=  + ~ in (3.7) and, in analogy with (6.1), imposing the additional condition 

j'tr (~h)dx= 0.  

It is not difficult to see that the resulting system has a unique solution and that all the 
error estimates of section 4' remain valid in this case. Such a program is carried out in 
more detail for another element in [3]. 

7. Plasticity Problems 

As mentioned in the introduction, the treatment of  plasticity problems was one 
of our chief motivations in developing PEERS. We sketch here how PEERS can be 
applied to a model plasticity problem. The essential ideas are well-known; however, 
we include this discussion to clarify their applicability to PEERS especially for those 
readers less familiar with plasticity. 

We consideran incremental plasticity problemas formulated in [14] and [15]. Let 
K denote a closed convex set in R which is symmetric with respect to its (1, 2)- and 

(2, 1)-entries, and for T c  12 set ~ ( T )  = {z E H~ [z(x) ~ Ka.e. in 7"}. Then ~ = z((~2) 

is the convex set of plastically admissible stress fields. Using a simple time discre- 
tization, we have to solve at each virtual time step a stationary problem of the 
following structure. 

Find an~/15 ~ ~~ff and une H ~ such that 

(7.la) k - l a ( ~ n - ~  n-l, ~ -  ~n) +~div (~ -  ~n)" undx > 0 ,  ~ ~ H  s ̀  ~~ff, 

(7.1b) ~div~".vdx=~f .vdx, veH ~ . 

Here k > 0 denotes the virtual timestep and H$ is the symmetric subspace of H, and 
a"-  1 are known. f a n d  

We discretize this problem by PEERS using the formulation (5.1). The use of 
this formulation is essential, because it pe~nits the condition of plastic admissibility 
of the stresses to be discretized in a local fashion, as will be seen below. Denoting by 
a h and u h the approximations of a n and u n (to be calculated) and by ~ the 
~pproximation of a ~-1 (known), we ~rrive at ' the following discrete problem: = 

Find (Eh, Uh, 7h, 2h) E (V* c~ ~(12)) • M O x M~ x ~t~ such that 

(7.2a) k-  la T(~h -- ~, Z -- ~h) + fr div (~-  ~h)" uhdx 

+ f as(~-e~),~ax- f~~~~.- .or  . _ _ 

~~V*(T)c~,~f'(T), T~J-,  
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(7.2c) f a s  (ah)qdx = O, rl e M~ ,  

(7.2d) - ~ ~Or(zhnT)" u lx=O , ~~ ~ ~ . 

Using self-explanatory notation, we write (7.2) more compactly as 

(7.3a) k-la(ah--O, ~-- ah) +b(z--crh, Uh)+C(~--~~, ~h)+d(~--Oh, 2 0 > 0  

zE V* n3 f f  , 

(7.3b) b(ah , v )=~f .odx ,  v~ M ~ , 

(7.3c) c(~h, q) = 0 ,  r/e M 1 , 

(7.3d) d(~h, ~) = 0 ,  ~ e ~ ~ .  

This system can be solved iteratively by using a form of Uzawa's algorithm, as 
we now explain. First, initial approximations u ~ 7 ~ �91 are chosen (for instance, as 

(Tr  r r , ~ r  the solution from the previous virtual step). Then for r = l, 2, �9  = h, u h, ~ h, and ~ h 
are computed from U r-~h 1, 7hr-l, and 2"-1~h in the following manner: a~ e V*c~ Ar is 
the solution of  

(7.4a) a ( o ~ - ~ ,  ~ -  ~[)+b(z=- ~~, u ~ - l ) + c ( ~ - o [ ,  ~~-1) 

2h ) > 0 ,  ~~ V* n o,'f'; +d(z_a,h, r-1 

U[ e M o~ is the solution of  

(7.4b) t r ,-1 V)Mo=p[b(oh ' v)__Sf, vdx] v e n  o. , u h - - u h  , _  . . . .  , ~ - , 

r 1 Yn cM0 is the solution of  

( 7 . 4 C )  r r - 1  t " (~h--~'h , tl)Mo = pc(a~, q), ~l~M~, 

and 2~ ~ A~/~ is the solution of  

(7.4d) [ ] r  ] r - I  o 1 ,Zh--Zh ,~)~~ =pa(~~,#), ~eM~. 
~ 1 Here (., ")M denotes a scalar product in M ( M = M  ~ M~, or MN). Usually for 

convenience one selects the scalar product in R *, s = dim M, multiplied by a scaling 
factor. The discretization parameter p is  a ¡ positive real number; it is allowed to 
depend on r. (The Arrow-Hurwitz generalization of  the Uzawa algorithm can also be 
applied.) 

The continuous problem (7.1) need not have a solution. However, it can be 
shown that, if the origin lies in the interior of  AC and IIf4[o is sufficiently small, then 

both (7. l) and its discretization (7.2) have a solution and the stress ¡ ~ and o h are 
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uniquely determined (see [14] and [16] for details). It is also easy to show that, if (7.2) 
has a solution, then the iterates determined by the Uzawa algorith m (7.4) converge to 
a solution as r tends to infinity when the parameter p is suf¡ small--how small 
depends on the choice of the scalar products in (7.4b-d). See [15] for a discussion in a 
similar situation and [10] for the general theory. 

In (7.4) only the first step (7.4a) involves solving a nonlinear problem and 
presents computational difficulty. It consists in minimizing a quadratic functional 
over the set V*(T) n ~~ff(T), a convex set in an eight dimensional linear space, for each 
element T, and can be resolved by various algorithms [10]. Note that these 
computations can be performed independently in each element (and in parallel if 
desired), while a discretization based directly on the formulation (3.1) would involve 
a minimization over a convex set of  much larger dimension. 
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