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Principles for the selection of a finite element method for a particular problem are discussed. These 

principles are stated in terms of the notion of approximability, optimality, and stability. Several examples 
are discussed in detail as illustrations. Conclusions regarding the selection of finite element methods are 

summarized in the final section of the paper. 

1. Introduction 

Larger and larger classes of finite element methods are becoming available for the 
approximate solution of engineering problems and the selection of a method for a particular 
problem is an increasingly important question. It is the purpose of this paper to discuss some 

principles for the selection of finite element methods. 
A finite element method or, more generally, a variational method is a discretization of a 

variational (weak) formulation of the problem under consideration. More specifically, it 
consists of several items. 

(1) Selection of a variational (weak) formulation of the original problem. There are, in fact, 
many such formulations and their choice can significantly affect the resulting finite element 
method. The choice of a variational formulation leads to the choice of a bilinear form. 

(2) Selection of a trial space. The trial space consists of those elements (shape functions) 
with which the solution will be approximated. It is thus chosen so as to provide good 
approximation properties. The choice of trial space depends, of course, on the set of possible 
exact solutions under consideration. 

(3) Selection of a test space. This space is chosen so that the approximate solution is easily 
computed and so that the error is comparable with the error in the best possible ap- 
proximation achievable by elements in the trial space. 

(4) Selection of the norm. The selection of the norm relates to the measure of acceptability 
of the approximate solution and thus depends on the goals of the computation. 

(5) Selection of the extension procedure. This procedure describes the manner in which the 
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trial and test spaces (and possibly the variational formulation) are changed uhcn the dc\ired 

accuracy is not achieved and the approximate solution has to be improved. 
The selection of a method for a specific problem depends on the goals of the c~~I~l~~llt~iti(~l~. 

implementational questions and other practical circumstances. Selection and comparison of 

methods is not a simple task and in order to find ‘optimal’ methods it is important to clarify as 
much as possible the basic notion of a variational method and criteria by lvhich ditferent 

methods can be compared. It is necessary to emphasize that selection of methods depends on 
many factors and will always have a relative character. The influence of computer technology 
on the selection process could be especially important. 

Let us turn now to a brief outline of the paper. The paper is partially expositor! in nature, 
with the mathematical results having primarily an illustrative as opposed to a practical 
importance. 

Section 2 deals with the principle ideas of a variational method. Section 2.1 introduces the 
notions of simple variational, variational, directed variational and computatiof~~~l ~ariiiti~~Il~~1 
methods, concepts we view as important for the discussion of the multiplicity of methods 
considered today in theory and practice. Section 2 2 discusses approximabiiity and optimality. 
Approximabiiity refers to the quality of best approximation achievable by the trial space (see 
(2) above) and optimaiity refers to the comparison of the approximation yielded by the finite 
element solution and the best possible approximation achievable by elements in the trial space 
(see (3) above). In Section 2.3 optimaiity is elaborated on and related to stability. We 
introduce the stability constant which is often relatively easy to estimate and in terms of which 
one can estimate the optimaiity constant. The ideas introduced in Section 2 are illustrated by a 
series of examples. 

In Section 3 we consider further examples of finite element methods which illustrate several 
of the ideas introduced in Section 2. 

In Section 4 we summarize those conclusions regarding the selection of finite element 
methods that can be drawn from the discussion in Sections 2 and 3. 

Throughout the paper we will use certain function spaces. For an interval 1 = (a, p). 

L,(I) = Lp = 
, 1 sp<x. 

p=x. 

On &,(I) we use the norm 

(i, ~ulpdx)i'P, I ~p<x, 

ess sup lu(x)l, p = x . 
XEI 

Elk(I) = Hk is the usual Soboiev space of functions whose first k derivatives are in L,(f). On 
this space we use the norm 
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By C’(T) we denote the space of functions whose first I, derivatives are continuous on 
r = [a, p] with the norm 

(ul c~tij = 2 max lu”‘(x)l . 

j=tl xei 

(IL,)* will denote the spaces of pairs of functions in L,. 

2. Variational methods 

2.1. Fundamental ideas 

Throughout this paper we suppose we are interested in approximating the unique solution 
u. of some problem by a variational method of discretization. (It is not necessary to give a 
precise statement of the problem here.) In this section we shall formulate some important 
ideas which will allow us to discuss variational methods of discretization. 

A simple variational method is specified by a linear vector space R, a finite dimensional 
subspace S C X called the trial space, a second finite dimensional space V of the same 
dimension as S called the test space, and a bilinear form B defined on BY x V. We assume that 
B(s, v) is regular on S x V, i.e., we assume that for every 0 # s E S there is a v E V such that 
B(s, v) # 0. This condition is referred to as regularity since, if {cpi}~v=1 and {I++}E* are bases for S 
and V, respectively, then B(s, v) is regular if and only if the matrix B(qj, $i) is regular (or 
invertible). We will denote the simple variational method by the four-tuple M = (2, S, V, B). 

M is used to determine an approximate solution uo(M)E S, called the M-approximate 
solution, to the exact solution uo, which is assumed to lie in X, by requiring that 

B(uo(M), u) = B(uo, 4 (2.1.1) 

holds for all v E V. Using the bases {qi} and {$i} an d writing uo(M) = xE=1 cjqj, we see that 
(2.1.1) is equivalent to the system of equations 

~B(rp,,~~)c,=B(uo,~i), i=l,...,N. 
j=l 

Since the matrix of this system is regular, the coefficients cj and hence the approximate 
solution uo(M) is uniquely determined. In this way we associate with each u E 2 the 
M-approximate solution u(M) which is also denoted by Pu or P(M)u. Note that Ps = s for 
any s E S and therefore that P is a projection. We thus see that with any simple variational 
method we uniquely associate the projection P = P(M) of X onto S. Often we will write 
M(S, V) instead of M to underline the dependence on S and V, especially if the X and B 
under consideration are clear from the context. Likewise, instead of P(M) and u(M) we write 
P(S, V) and u(S, V), respectively. 

The space 2 must be known, a priori, to contain the exact solution uo. Furthermore, the 
bilinear form B must be such that B(uo, v) is computable from the data that determine the 
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exact solution uo, without knowing u. explicitly. Let us note that in this section we are not 
discussing the question of how well the M-approximate solution u,,(M) approximates the exact 
solution uo. This is addressed in the next section. Since the exact solution could, a priori, be 

any element in 2 we will often denote it by u. 
We now formulate some typical examples; these will be elaborated in the remaining 

sections. 

EXAMPLE 2.1. Let 

A = 

i 
a,,(x) a&> 
&l(X) a*2w i 

(2.1.2) 

be a matrix defined in I = (-IT, n), where a,, E L,(I), and A is regular (invertible) with 

,,-I = 

i 
‘*l(‘) ‘4’) 
c21(x) > c22(x) * 

where c, E L,(I). We then consider the problem of finding u(x) = (u”~(x), ut2’(x))f such that 

WMx) = f(x) (2.1.3) 

for a given f(x) = (r”(x), ft”(~))~, where f E (15~)‘. 
A simple variational method M = (Z, S, V, B) is determined by the choices 

sf = w2m2 , 

S = V = 

1 

(SI’I, .y(‘l): .ytkl = 2 cikl sin ix +  i dJkl &six, 

j=l ,=o 

cLkl and drkl real k = 1 J I 3 

B(u, v) = In utAu dx . 

-Tr 
(2.1.4) 

S and V have the same dimension, namely N = 4n + 2. We will later show that B is regular on 

S x V under certain additional assumptions. 
For any f~ (L,(I))*, the exact solution u of (2.1.3) lies in (Lz(1))2 and B(u, u) is computable 

in terms of f without knowing u since we have 

B(u, u) = j-1 u'f dx . 

(We note that we could also take 5Y = (L,(I))* and allow f E (J!L~(I))~, which by our definition 
would mean a different simple variational method.) 

EXAMPLE 2.2. Consider the problem of determining u(x) so that 
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-u”(X) = f(X), x E z = (- 1, 1) ) 

u(- 1) = U(l) = 0 

61 

(2.1.5) 

where f E L2(Z). 
(a) Let 

2 = Xl = iii= {u(x): u E H’(Z), u(- 1) = U(1) = O} ) 

S = V = {s(x): s is a polynomial of degree II, ~(-1) = s(l) = 0). 

For f E L,(Z), the exact solution u of (2.1.5) lies in 2,. The dimension of S and V is n - 1. 
Finally we take 

B(u,v)=- f uv” dx . 

-1 

It is easy to see that Z3 is bilinear on X, x V, is regular on S x V, and that 

B(u, v) = / fv dx 
-1 

for any v E V, where u is the exact solution of (2.1.5). 
(b) We can also take X = X2 = L*(Z). Z3( u v is still defined bilinear in Xz X V. This choice , ) 

for %’ is important if f is, for example, a dipole, i.e., the derivative of the Dirac function. In 
this situation u will be in X2 but not in X9,. Thus the choice 2 = X2 allows us to treat (2.1.5) 
with f a dipole. Note that computationally .the methods are identical, but according to our 
definition we are dealing with two different simple variational methods, namely (X,, S, V, B) 
and (X,, S, V, B). 

EXAMPLE 2.3. Consider the problem of finding u(x) such that 

u’(x) = f(x), x E z = (0,l) ) 
(2.1.6) 

u(0) = 0 . 

Let A = (0 = x0 < x1 < - . . <x,, = l}, where Xj = j/n, be a uniform mesh on Z and set Zj = 
(Xi-l, Xi), hj = Xj - X,-l= l/n and h = l/n. Then let 

x = oH’ = {u: u E H’(Z), u(0) = 0) ) 

S = S, = {s(x): s is continuous on Z, s is linear in each 4, s(O) = 0). 
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For the test spaces we will consider two choices: 

(a) v= v, = V,.,) = {u(X): u x is continuous on 1, u is linear on each 1,, v(l) = 0). ( ) 

(b) V = V, = VZ,,, = {L’(S): u(x) is constant on each I,}. 

In both cases we consider the bilinear form 

It is easy to see that B(m, v) is regular on S x V in both cases. 
If fE Lz(Z), then the solution 14 of (2.1.6) belongs to Z and for any 1’ E C’. 

B(u, u)= fc dx. 
J I 

It often occurs that the approximate solution produced by a simple variational method M, is 
judged to be insufficiently accurate and then another method M, is chosen which will give 
better accuracy. If necessary. a third method M, is chosen, and so forth. Although only finitely 
many computations can be performed in practice, if a procedure is given for determining the 
new simple method from the previous ones, one is led to an infinite sequence or family of 
simple variational methods, chosen to produce an approximate solution with acceptable 
accuracy by considering sufficiently many of the simple methods in the family. The methods 
M,, are often chosen so as to share the same bilinear form B. 

We thus suppose we are given a pair of vector spaces 2 and ?-, a bilinear form B on P x l ‘. 
and consider a family 3 of pairs (S, V) of subspaces S C 2Y and V C -I’ so that dim S = 
dim V < x and B is regular on S x V. The family of simple methods M(S, V) = (3, S, V. B) 

for (S, V) E 9 will be denoted by ./zz = (2, ?“, 5, B) and will be called a uariational method. A 
simple method M E (2, ‘2; 9, I?) is completely characterized by the pair (S, V) E 3. 

In connection with such families of simple methods it is useful to speak of error (absolute 

and relative), convergence, and other asymptotic concepts, because the final aim is to obtain an 
M-approximate solution which approximates the exact solution sufficiently well. Suppose 
X > %? is a Banach space with norm 1. lx; we define the absolute error in the approximate 
solution to be 1~ - u(S, V)\,. L e CY be a function associating to every pair (S. V) E 3 a real t 
positive number CY(S, V); a(S, V) will be called the discretization parameter associated with the 
pair (S, V). We say u(S, V) converges to 14 in X as cy(S, V)+O. written 

lim u(S, V) = u, 
a(S. v+o 

if for each F there is a S > 0 such that 

I@, V)- 4x <& 

for any (S, V) E 9 satisfying a(S, V)< 6. We will often consider i” to be equipped with the 
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norm 1. Ix. The family (Z’, X, V, 9, B) together with the discretization parameter (Y will be 
called a directed variational method. For such directed variational methods we will use the 
notation Ju = (x, X, Y’“, 9, B, a). The use of Ju for both the family of simple methods and the 
directed method will not cause confusion. 

When implementing a variation method we select a sequence (S,, Vn) E 9, defining the 
simple methods M,, = M(S,, V,), and compute the M,-approximate solutions u, = u(& Vn) 
with increasing n until an acceptable result has been attained. The process of selecting 

(S,+ L, V,+,) from (Si, Vi), i = 1, . . . , n, and possibly from u(S”, V,,) and other available in- 
formation will be called an extension procedure. The sequence {M,,} will be called a com- 
putational variational method. Usually our acceptance criterion will be quantified in terms of a 
norm, as described above. 

Let us return now to our examples. We will elaborate the examples introduced earlier. 

EXAMPLE 2.1*. Let 9 be the family of pairs (S, V), where S = V is the space of trig- 
nometric polynomials of arbitrary degree n. Further we select 2’ = 2 = (L2(1))*. By this 
selection we have characterized a variational method JU = (Z’, V, 9, B). 

Choosing X = L*(1), 1 . 1 = 1 . IL2 and (Y(S, V) = l/ n, where n is the degree of the polynomials 
in S (dim S = 4n + 2) we define the directed variational method JH = (Z, X, W: 9, B, a). 

Selecting (S,, Vn) E 9, S, = V, being the space of trignometric polynomial of degree n, the 
extension procedure consists of increasing the polynomial degree by one. The sequence of 
simple methods {M,,}, M,, = (Z’, S”, V,,, B), is a computational variational method. A different 
extension procedure and computational method will be achieved if, for example, the degree of 
the polynomials is increased in a different way, say by 2. 

EXAMPLE 2.2*. Quite analogously to the first example, we select for 9 the family of pairs 
(S,, V,,), S,, = V,, being the space of the algebraic polynomials of degree n with zero values at 
x = 0, x = 1. In case (a) we choose “1’ = &, X = H’ and in case (b) V = H*, X = L*(I). We 
further choose (Y(&, V,,) = l/n, where n - 1 = dim S,. The extension procedure would consist 
now in some specific manner of increasing the degree of the polynomials. The notions of a 
variational, directed-variational, and computational variational method are now obvious. 

EXAMPLE 2.3*. In case (a) we obviously select for ‘V” the space of all continuous, piecewise 
linear functions subordinate to any uniform mesh which vanish at 1. In case (b) we let ‘V be 
the space of all piecewise constant functions subordinate to any uniform mesh. We choose the 
discretization parameter (Y(S, V) = h = l/n and in both cases we consider X = H’. Note that 
in Examples 2.1* and 2.2* we have S C s, V C v whenever CZ(S, V) 2 (Y(S, v) but that this is 
not the case in Example 2.3”. 

In Example 2.3*, instead of X = H’ we could select X = L2, etc. We could also choose 
JY = Hk f~ OHI, k 2 2, instead of %’ = OH’. 

2.2. Approximubility and optimulity 

Consider a simple variational method M = (%, S, V, B) E 4, where J! = (2, X, W; 9, B, a) 
is a directed variational method. The purpose of a variational method is to obtain an 
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M-approximate solution u(M) such that the error (say relative) is smaller than a given 

tolerance T. This means that we wish to select M so that 

lu(M)- l&q s T/& (2.2.1) 

where u is the exact solution of our problem. Thus for a given problem the fundamental goal 

is as follows: given X and ‘-r, we wish to choose M = (,%T. S, V, B) E .1d so that (2.2. I) is satisfied 
in the most effective way. The word ‘effective’ must of course be understood in a manner 
appropriate to the particular situation. 

To achieve (2.2.1) it is certainly necessary that 

Z(U, S, X) = infsEs /u - slx/lulx G 7. (3 3 7 _.-._ 1 

The quantity Z(u, S, X) measures the relative error in the best possible approximation of 14 by 
elements of S with respect to the chosen norm 1. lx, i.e., it measures the approximability of 14 
by S with respect to X and is called the approximability constant of S on U with respect to X or. 
more briefly, the approximability constant. 

That the trial functions are able to approximate the solution well, i.e., that Z(U. S. X) is 
small, does not alone insure that the M-approximate solution u(M) is close to the exact 
solution U. We therefore introduce the ratio of the relative error in u(M) to the relative error 
in the best approximation. For any u E 2 with Iulx > 0, define C(u, M. X) 3 1 by 

lu(M)- c&/l& = C(n, M, X)Z(u. S, X). (22.3) 

If Z(u, S, X) = 0, we set C(U, M, X) = 1. The quantity C(u, M, X) measures the optimality of 
the approximate solution chosen by M and is called the optimality constant of M on u with 
respect to X or, more briefly, the optimality constant. When C(u, M, X) is near I the 
approximate solution u(M) is nearly as good as the best possible approximation using the trial 
space S. We emphasize that, while Z(u, S, X) is independent of the form B and the test space 
V, the optimality constant C(u, M, X) depends on S, V, B, X and U. The acceptance criterion 
(2.2.1) is thus simply that the product of C(u, M, X) and Z(u, S, X) does not exceed 7. 

Although the exact solution u is unknown in any practical problem, we often know some 
properties of u, namely that it belongs to % or to H, where H is a subset of 2. We define the 
approximability constant of the space S on H with respect to X as the number 

Z(H, S, X) = sup Z(u, S, X) 
UEH 

and the optimality constant of M on H with respect to X as 

C(H, M, X) = sup C(u, M, X) . 
UEH 

We extend the notion of optimality constant to the directed variational method ..I? = 
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(%, X, 2’, 9, B, a) by defining 
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C(H, A, X) = sup C(H, M, X) = sup C(H, M(S, V), X) . 
ME”44 6% WE9 

The directed variational method Jt is called quasi-optimal on H with respect to X if 
C(H, A, X) is finite. 

The set H C X can be arbitrary. E.g., in Example 2.2 (2.2*) in case (a) we have chosen 
H = I?, but we could select for example H = Hk rl I?‘, k > 1. We also can select 

H = {u E H*(I) r-I fi’: U”(X) > &I H*on(o,rl),whereIW-rlI=(Y*}r ayl,~:!>O, 

etc. Note that 2 and C are homogeneous with respect to u, i.e., Z(cu, S, X) = Z(u, S, X) and 
C(cu, M, X) = C(u, M, X), and so we can restrict our interest to functions u lying on the unit 
sphere. 

The main use of the optimality constant C(u, M, X) and C(H, M, X) is to provide an 
estimate for the absolute error Iu - u(M)/ x in terms of the error of best approximation 
inf,ESIu - six. From (2.2.3) we have 

Iu - u(M)Ix d C(u, M, X)Z(u, S, X)l& = C(u, M, X) inf Iu - six, 
SES 

which holds for any u E %!. For any u E H we have 

Iu - u(M& d C(H, M, X) inf Iu - six. 
SES 

As we have seen above, the effectiveness of a simple variational method is influenced by 
two factors: approximability, which depends on the selection of the trial space S, and 
optimality, which depends on the selection of S, V and B. Given X, we thus want to choose M 
so that C(u, M, X) and Z(u, S, X) are as small as possible. Let us now turn to a more detailed 
discussion of C(u, M, X). As indicated above we want C(u, M, X) to be not much larger than 
1. Now it is known that C(u, M, X) can depend strongly on u (this will be illustrated later by 
examples). In order to make precise and quantify this notion we say that the solution u is 
K-perfect or K-perfect with respect to the method M if C(u, M, X) s K. We will say u is perfect 
if it is K-perfect with a small K, otherwise we will call it imperfect. A computational 
variational method {Mi} will be said to be {Ki}-perfect if C(u, Mi, X) d Ki. In practice we 
usually want {Ki} to be bounded by a fairly small number or to be increasing slowly. We note 
that even if C(U, Mi, X)+ X, u(Mi) may still converge to u, for this particular u, since the 
product C(U, Mi, X)Z(u, Si, X) may still approach zero. 

Since the method M is defined for all u E 2, for a given K it is natural to attempt to 
characterize the set H of all u E 2 for which C(u, M, X) G K, i.e., to characterize the largest 
set H satisfying C(H, M, X) s K. Usually it is not easy to describe the set in such a way that 
one could in practice decide whether the exact solution belongs to it, except when H = 2%’ = X. 

The observation that C(u, M, X) may depend strongly on u is very important. It is common 
practice to attempt to draw conclusions about the performance of a method M from 
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experimental computations. These conclusions could be misleading since the computations 

may have been made for a solution u which is K-perfect with a small K, and for which 
Z(u, S, X) is small. These conclusions could then be false when some other solutions arc 
considered. 

This situation is related to the notion of robustness. A simple method M or a directed 
method .& is said to be robust if it performs well in relatively general circumstances. It may be 
that a less robust method performs better in certain situations. There are. in fact, methods 
which perform well in certain situations but which fail to converge in others: this is the 
extreme in nonrobustness. The importance of robustness has to be seen in connection with the 
observation that computational cost is becoming a smaller and smaller part of the total cost of 
engineering analysis. 

In summary, we would like to have, as much as possible, a directed method .M which is 
quasi-optimal on H = 2 (usually % = X) with the constant C(H, M, X) not too large. 

Next we make some simple observations connecting approximability. optimality, con- 
vergence and rate of convergence of a directed variational method. A directed variational 

method is called convergent on H if 

lim /u - u(S, V)~,Y = 0 (32.4) 
rr(S. V)-0 

for all u E H. If r is a function defined on 9 satisfying lim,,, “)_,, r(X, V) = 0, then the method 
is convergent with rate r on H if 

sup sup 124 - u(S. V)j,Jr(S, V) < x . 
UEH (S. V)El- 

(3.33) 

We can also define the rate of convergence of a computational variational method {Mi}. {Mi} is 
said to converge with rate r if 

SUP Sup jU - U(S,, V,)lxIr(Si. V() < x 
uEH I 

(2.2.6) 

We note that if a directed variational method is quasi-optimal, then (2.2.3) (22.5) (2.2.6). 
respectively, hold if and only if 

lim Z(U, S. X) = 0, 
a (S. VF4) 

sup sup Z(u, S, X)IuI.dr(S, V) < x , 
uEH (S. V)t.+ 

sup sup Z(u, S,. X)l&lr(S,, V,) < x , 
utH I 

respectively, hold. 
We now return to our examples. 

EXAMPLE 2.3. We consider the problem introduced in Examples 2. I and 2.1:” with the 
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matrix A(x) chosen as 
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A(x) = (AIs;;;x “’ ’ > , 
A - cos x 

with A real, A # +l, 0. In the discussion of this problem it will be convenient to use complex 
notation rather than vector notation. Thus regarding u and f as complex valued functions we 
can write Au = f as 

(A-e’“)u=f, 

where we are using complex 

S=S,= v= v,= 

(2.2.7) 

multiplication. For test and trial space we now take 

U: u = i Cjeij”, 
j=-n 

The bilinear form will now be 

B(u, v) = In u(A - eix)v dx. 
--71 

It is easy to see that the bilinear form is regular on S x V under the assumptions on A 
imposed above. We let %’ = “tr = L,(I) and X = L,(I), where here L,(I) is the complex L2 
space, i.e., the space of square integrable complex valued functions with the norm 

with IuI being the absolute value of u. 
If u(S,, Vn) = u, = xy_. cj(n)dix is the approximate solution, then Cj(n) are determined by 

I +n (A - eix)u,e’j”& = (A - eix)ueijxdx, ljl d n . 
-7r 

Writing the exact solution in the form 
r 

u = C Cjeijx , 
j=-m 

we get 

lU1$=27F 2 (Cj/* * 
j--cc 

It follows immediately from (2.2.8) that the coefficients Cj(n) must satisfy 

(2.2.8) 

(2.2.9) 

(2.2.10) 

k,(n) = AC-, - c_,-~, 

ACj(n)- Cj-l(n) = ACj - Cj_1, j = --it + 1, . . . , ~1. 
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Letting Zj(n) = cj(n) - cj, these equations can be written as 

AZ-,, = -Cm,_] , 

AZj = 2,-I, j=-n+ l,...,~. 

If A # 0, this system is uniquely solvable and we obtain 

z- nt, = -A-‘-‘c-,.,. j = 0, 1. . . , 2n. 

It follows from (2.2.0) and (2.2.10) that 

Z(U, SF,, X)’ = 23( C IC,)")/ul~' 

Ill .‘?a 

and from (2.2.9k(2.2.11) that 

and therefore that 

C(u. M,, X) = 1 + 
1~_,42A-~((l - A-4n-341 _ A-‘)) 

(2.2.11) 

(2.2.12) 

We will now analyze separately the cases IAl > 1 and 1 Al < 1. 
(a) First we assume IAl > 1. Then from (2.2.12) we see that 

C(u, &I,,, X) s K = (1 + l/(A’- 1))“2 

for all u E L2(1) and for all n, and thus 

C(~,.&,X)SK. 

The method is therefore quasi-optimal on 3V 
(b) Now assume IAl < 1. Then we see that 

with respect to X and all solutions are perfect. 

c(%, M,, X) = 1 + A-2(1 - A-‘“-‘),(, - A-2) 

and the optimality constant deteriorates very quickly with n and we have 

C(X, JH, X) = +a. 
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Let now Hi C St’, i = 1,2, be defined by 

and 

Hl = u E L,(I): lc_“_,(2 2 a2 ,,zn ICjl* for all n}, 0 < a < 1 , 

H2 = {U E L,(1): C-k-1 = 0, k > 0)) 

where cj are coefficients of the exact solution in (2.2.9). Then obviously 

C(u, M(S,, V”), X) 3 IA I-2n-1ck! 

for all u E HI and we see that all solutions belonging to HI are very imperfect for large II. On 
the other hand it is easy to check that all solutions in Hz are perfect and JU is quasi-optimal on 
H2 (C(H2, .M, X) = 1). Assume now that the extension procedure is such that only (S2k, v2k), 
k 2 1. are used. If 

f-b = {u E L,(I): cm1 = 0,1 a 1 odd}, 

then the method is once more quasi-optimal on H3. (If another extension procedure would be 
used then these solutions could be very imperfect.) 

Consider now the subset H4 of HI defined by 

then for u E H4 we have 

\Uli Z(U, S,, X)” < 27rlh12(“+1)r ,,z” ICj121hl-2KV’ s lA12(“+1)“I(ull 

and so 
Iu - u,lx < Cllull jh\-2”-2/Al(“+1)K =Cllull lAl(“+1)(-2+K). 

Hence we see that the method converges for u E H4, since K > 2, in spite of the fact that the 
solution is very imperfect. (Nevertheless, we can expect computational difficulties caused by 
round off errors.) Using discretization parameter cr(S,, Vn) = II-‘, we see that we have, in the 
above mentioned case, the rate of convergence r = IAl(n+1X-2+r) (i.e., exponential rate of 
convergence) which of course is lower that the error achievable by S,, and characterized by 
Z(u, S”, X). 

(c) Let us now consider the trial space S,, as before but change V, to v” defined by 

1 
n+l 

V = vn = ?I: V = C Cjdj”, Cj complex . 

j=-n+l I 

Now the cl(n) are determined by (2.2.8) with j = --)t + 1, . . . , n + 1. Repeating now the 
analysis we easily see that for IAl < 1 the method is quasi-optimal on L,(I), but it faces 
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difficulties for Ih/ > 1 which are analogous to those faced in the case /Al < 1 when (S,, V,,) was 
used. 

Let us now summarize some main points we have seen in this example. 
(1) If we select S,, V,, for the test and trial space, then in the case IAl > 1 all solutions 

u E L2(1) are perfect and the method is quasi-optimal. In the case jhl < 1 there are solutions 
which are very imperfect but there exists a large class of solutions which are perfect. 

(2) Although a solution can be very imperfect, the method still can converge. 
(3) The optimality constant C(u, M,, X) could deteriorate exponentially with y1 and numerical 

experiments will most likely indicate this very quickly, because it is unlikely that only perfect 

solutions will be used in the experiments. 
(4) Changing the test space from V, to p” significantly changed the performance of the 

method. The case Ihl > 1 has a symmetric ‘major’ part while the case Ih I < 1 has a nonsym- 
metric ‘main’ part. If the symmetric part is the ‘major’ one, then usually (as in this case) it is 
desirable to select the same trial and test spaces, while if the nonsymmetric part in the main 
one ([hi< l), then different trial and test space are usually recommended. 

EXAMPLE Z-5. Consider the problem and the method introduced in Examples 2.2 and 2.2’:. 

(a) Consider first the choice J?Y = x1 = &, X = Xi = H’. For any u E %, we easily see that 

the equations defining u, = u(M,), namely, 

B(u,, v) = B(u, U) for u E V,, 

are equivalent to 

U” E S”, 

I 
1 

u:u’ dx = 
-1 I 

I 

u’u’ dx for u E V,, , 
-I 

i.e., u, is the orthogonal projection of u into S, with respect to the inner product (u. v) = 
s!I u’u’ dx on x1. It follows immediately from this that 

Thus all u E %I are K-perfect with K = d/2. 
(b) Now we turn to the second choice of space considered in Examples 2.2 and 2.2*. namely 

2 = xz = L,(I) and X = X, = L,(I). 
For any u E X, we can write 

cc 

U = C b&Ii (2.2.13) 
i=O 

where the pi are the Legendre polynomials and 
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bi = $(2i + 1) (2.2.14) 

We note that 

Formally u can also be written as 

u = 2 diqi 
i=l 

(2.2.15) 

where vi = pi+1 - pi-1 and 

d1= -bo, dz= -bl, 
(2.2.16) 

di-,- di+l = bi, i = 2, 3, . . . . 

We will derive the formula for C?(U, S”, X2) in the special case when u(x) is even with 
respect to 0. In this case bi = 0 for i odd and di = 0 for i even. At first we assume u is a 
polynomial which satisfies the boundary conditions u(+l) = 0. Then both series expansions 
(2.2.13) and (2.2.15) terminate after a finite number of terms. 

Clearly, 

q-4 S”, X2) = Ju - &*/I Ul& 

where s^ is the projection of u 

s^ E s, ) 

into S, in the space X,, i.e., where s^ is characterized by 

for 2, E S, . 

From the basic properties of Legendre polynomials we see that the degree of (Pi is i + 1 and 
qi(*l) = 0. Thus ~1, . . . ) qPn_l E S, and, moreover, it is easy to see that (pl, . . . , (P”_~ form a basis 
for S,. We write s^ in the form 

n-l 
s^ = C (di + zi)qi 

i=l 

and attempt to find the Zi. Since u is even we have di = Zi = 0 for i even. For II = 2k even, 
21, 22,. . . , znpl are easily seen to satisfy the equations 

(2+921-&=o, 

-321+($+$)23-$25=o, 
(2.2.17) 

2 -- 
4k - 3 z2k-3+ 2d 22k-‘=-4k+1 Zk+l, 
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which can be explicitly solved to obtain 

where 
C = -d2k+,/(2k2 -t- 3k + 1). 

Now we write 

n-1 

u - s^ = - 5 zi(pi+* - pill) i” 2 d&i+, - Pi-d = P + 5. 

i=n 

With this notation we have 

Now 

Using the defining equations for zl, . . . , z.+1 we thus have 

Writing u in the form 

cr = 2 dj(pi+l - pi-,) = -dmipx + ,-$ btk+2j~2k+2j 3 

j=2k 

we see that 

Finally we see that 

i 

1 2 
-1 

pa dx = m .&-l&+l = -IPl’xz. 

Thus, combining (2.2.20)-(2.2.23), we get 

:k+lk(2k - 1) 
= - (4k2: 1)(2k2 + 3k + l)+ 4k: 1 d22k+1 

+22; b?L+, 
j=, 4k + 4j + 1 

2&c+t +2% bIk+2j 

=2k2+3k+1 +4k +4j+ 1’ 

(2.2.18) 

(2.2.19) 

(22.20) 

(2.2.2 1) 

(2.2.22) 

(2.2.23) 

(2.2.24) 
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Next we calculate [U - ~“1~~. In terms of the di and vi we can give a simple formula for u,, 
namely, 

n-l 
U" = C diqi s (2.2.25) 

i=l 

To see this observe that 

cc m 
di (2i + l)pi , u’= c ,jicp:= c, 

i=l i=l 

n-l 

u:, = C di(2i + l)pi 
i=l 

and hence 

I_‘, (u’ - u&y; dx = - I_: (U - u,)cp’i’ dx = 0, j = 1, . . . , n - 1 . 

From (2.2.13, (2.2.22) and (2.2.25) we get 

Finally, combining (2.2.24) and (2.2.26) we have 

CT@, AL, X2) = Iu - U"Is& - s^lE 

2d&+1/(4k + 1) + 2 xTzl b$c+zj/(4k + 4j + 1) 
= 

2dZk+,/(2k2 f 3k + 1) + 2 EYE, b:k+,/(4k + 4j + 1) 

&,+1/(4k + 1) + AZK+I 
= d&+J(2k2 + 3k + 1) + A,,,, 

where 

A at1 = c bL+,/(4k + 4j + 1) 
j=l 

and II = 2k. We have established (2.2.27) for any even polynomial satisfying 
conditions. A simple limiting argument establishes it for any even u E L,(I). 

It is immediate from (2.2.27) that 

(2.2.26) 

(2.2.27) 

the boundary 

(2.2.28) 
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and so 
C(X,, Jtt, X,) = +x . 

From (2.2.27) we also see that if u is such that 

&+J(4k + I)< KAzk+,, for all k, 

then u is V’IS + l-perfect. For the particular choice u = 6 = I, we get bj = (1, j > 1, and we see 
that 

C(ii, M,, X2) = (2k’4tk 7,’ ‘)“* = C-\/i. (2.2.29) 

By comparing (2.2.28) and (2.2.29) we see that ii belongs to the set of most imperfect 
solutions. It is easy to see that 

Z(ii, S,, X2)liilx, s C/n 

and hence 

Thus the method converges for ii although C(ii, S,, XZ) t 00. 
If we define u by u = CT=“=, bipj where bi = i-’ for i even, with 0 < E < 4, then we see that 

/u_U”,b~~~?;i;_2tbo+b;n+;;.+b.)Z 

2 (I + 2-s + 4-” + * * ’ + n-q2 

2n + 1 

a2@J =,,;;:‘I, ?a. 

This illustrates the fact that the method could diverge even though Z(u, S,, X)--+0. Although 
the method is not robust, we see that the optimality constant grows relatively slowly with it 
(C - 6). 

Let us now summarize some main points we have seen in this example. 
(1) The method A1 = (al, H’, 9, B,(Y) is quasi-optimal but the method JHZ = 

(&I, LZ, 9, B, a) is not quasi-optimal, although computationally the methods are identical. 
(2) The set of perfect solutions for the method & is relatively large and very likely the 

method would work well. The performance, in fact, would be good unless the solution under 
consideration were one of the relatively rare imperfect solutions. The performance can be 
good also if the solution is imperfect since for reasonably smooth solutions u satisfying the 
boundary conditions, Z(u, S,, L2)+ 0 more rapidly than t/n + M. (Recall that v/n gives the 
growth of the optimality constant.) 
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2.3. Stability and the stability condition 

We have seen that the optimality constants C(u, M, X), C(H, M, X) and C(H, A, X) play 
essential roles in understanding variational methods. The notion of K-perfect solutions is, in 
fact, defined in terms of C(u, M, X). We have also seen in Examples 2.4 and 2.5 that the 
calculation or estimation of optimality constants can be rather subtle. It is important to be able 
to estimate these constants for wide classes of problems. Toward this end we introduce the 
notion of the stability constant which is often easier to estimate and in terms of which we can 
estimate the optimality constants. 

Let M = (%, S, V, B) be a simple variational method and let XC X. For u E %? define 

and 

(2.3.1) 

D(H, M, X) = sup D(u, M, X) . 
u&H 

(2.3.2) 

D(u, M, X) is called the stability constant of M on u with respect to X and D(H, M, X) is called 
the stability constant of M on H with respect to X. For a directed variational method A we 
define D(H, A, X) = SUP,,,~& D(H, M, X). D(H, A%, X) is called the stabili~ constant of A% on 
H with respect to X. We say .A is stable on H with respect to X if D(H, A, X) is finite. We now 
show the relation between the stability and optimality constants. 

THEOREM 2.6. The stability and opti~ality constant satisfy 

and 
D(u, M, X) - 1 s C(u, M, X) G D(u, M X) + 1, (2.3.3) 

D(H,M,X)-l~C(H,M,X)~D(H,M,X)+l. (2.3.4) 

PROOF. We easily see that 

Il.4 - Pulx = I(u - s)- P(u - s)lx < ju - SIX + IP(u - s)lx 

d [l+ D(u, M, X)]lu - six 

for any s E S, which proves the second inequality in (2.3.3). For any s E S we have 

JP(u + s)lx ~ j(u + s) - P(u + s)lx + Iu + SIX 
Iu + six Iu + SIX 

s If /u - Pz&/lu + six 

s 1 + IU - Pulx/inf /U - s/ = 1+ C(u, M, X) , 
SES 

which proves the first inequality in (2.3.3). Now (2.3.4) follows immediately from (2.3.3). 

We see that a directed variational method is quasi-optimal if and only if it is stable. 
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Let us now turn to a further discussion of stability. Suppose 2 is closed in X. We easily see 
that D(%‘, M, X) = IIPI[, the operator norm of P. In Section 2.1 we introduced the idea of a 
computational variational method as a sequence of simple variational methods M,, = 
(2, S,, V,, B) selected from a directed variational method ,4! = (x, X. ‘V, 5, B, cz). Assume we 
are given such a sequence and suppose 

D(k#‘, M,, X) = I(P(M,))I-+ x as n --f x: . (23.5) 

We will now show that this implies that there is a z E %! such that the method does not 

converge to z. 

THEOREM 2.7. Suppose (23.5) holds and suppose Z is closed in X. Then there is a z E 2 
such that P(M,)z+ z. 

PROOF. Suppose the method converges for all u E 2, i.e., IP(M,,)u - ulx -+(I as y1 -+x for all 
11 E 5Y. This implies P(M,)u is bounded for each u. The uniform boundedness principle 

[6, p. 1901 then implies that /jP(M,))) IS b ounded in n. This would contradict the hypothesis 

(23.5). 

Theorems 2.6 and 2.7 show that methods which are not quasi-optimal are not robust in the 
sense that there exists solutions for which the methods do not converge. It should be noted. 

however, that the solution z in Theorem 2.7 could be very ‘wild’ or ‘irregular’ and the 
computational variational method might still converge for a large class of zl in 2. 

Let us note a further significance of D. Suppose u E R and s E S satisfies Z(u, S, X) = 
(u - six. Set 5 = PM - s. We easily see that 

I$ = IPu - sl,y = iP(u - s)lx s D(u, M, X)[u - s/x. 

Thus D is a magnification factor relating ([(x and lu - six. Usually we replace D(u, M, X) by 
D(R, M, X). It should be noted that this replacement could lead to a rather pessimistic 
estimate. 

We noted earlier that the stability constants are often easier to estimate than the optimality 
constants. We will now show how the stability constants can be estimated in terms of the 
bilinear form B. 

THEOREM 2.8. Suppose the space V is furnished with a norm 1~1”. Assume 
(1) for any u E #T there is a constant C(u) such that 

and 
IB(U + s, u)l s C(U)~U + slxlulv for all s E S and u E V (23.6) 

(2.3.7) 
(2) inf sup IB(s, u)l E y(S, V) >(I. 

SES VEV 
I&=1 Ivlc=l 



D.N. Arnold et al., FEh4: principles for selection 77 

(2.3.8) 

PROOF: From (2.3.6) and (2,3.7) we have 

rts Yetu + 4x d sup /B(P(u + s), u)i = sup l&u + s, u)l 
VEV VEV 

IuIv= 1 Ivlv=l 

6 C(u)(u + sl* 

for all s E S, from which (2.3.8) folfows. 

REMARK 2.9. If (2.3.6) holds for all u E X with C(U) replaced by C(%‘), then (2.3.8) holds 
for all u E Z with C(U) replaced by C(X), i.e., 

We can also estimate D(%‘, M, X) below by liy(S, V), provided certain additional 
assumptions are made. Suppose %’ and “Ir, furnished with the norms 1’ Ix and 1. Iv, respectively, 
are a pair of Hilbert spaces or reflexive Banach spaces, B is a bilinear form on %’ x V; and 
S C 2, V C w” are a pair of finite dimensional subspaces. For v E V we set lviv = jujqr. Now 
assume 

JB(u, v)l d CIUl~lu(gr for u E 2, u E “Ir, (2.3.9) 

and 

inf sup jB(u, v)l = w > 0 
i&z VEgC 
lulx=i /+=i 

supIB(u,u)l>O forOfvE”Ir. 
UEX 

(2.3.10) 

(2.3.11) 

We note that in the presence of (2.3.9), (2.3.10) and (2.3.11) are necessary and sufficient for the 
variational problem 

UEX, 
B(u, U) = F(v) for u E “Ir 

to be uniquely solvable for each bounded linear functional F on ‘V. In this situation we also 
have 

14x s w-l $f$y = w-‘Ipq . 

This result is proved in [l, p. 1121. 
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THEOREM 2.10. Suppose (2.3.9)-(2.3.11) hold. Let ii E S and set 

(2.3.12) 

Then there exists a u E Z such that P(M)u = U and 

D(u. M, X) 2 o/Q(ii) . (2.3.13) 

PROOF. Obviously F(u) = B(ii, v), u E V, defines a bounded linear functional on V. It is 
possible to show F(u) can be extended to a bounded linear functional on “b‘ with 

sup IW)l= sup IF( = O(ti)li&. 
VET’ VEV 

lull = 1 Iu/9.= 1 

This is the content of the Hahn-Banach Theorem [6. p. 1341. 
As noted above, from (2.3.9)-(2.3.11) it follows there is a u E X satisfying 

and 
B(u, u) = F(v) for all u E Y”, 

I& =z O(U>lUlX/W~ (2.3.14) 

It follows immediately from the definition of F that P(M)u = ii. Using (2.3.14) and the 
definition of D(u, M, X) we thus have 

D(u,M,X)++=/+& 
ux ux u . 

This completes the proof. 

THEOREM 2.11. Suppose (2.3.7), (2.3.9)-(2.3.11) hold. Then 

D(X, M, X) 2 w/y@, v) . (2.3.15) 

PROOF. This result follows immediately from Theorem 2.10 and the definitions of 
D(X, M, X> and r(S, v). 

Let us now elaborate Theorem 2.10. It shows that functions u with D(u, M, X) large should 
be sought among functions whose projection ii = P(M)u have small Q(zi). Of course not 
every u E X satisfying P(M)u = ff leads to large D(u, M, X), as shown by the fact that for 
ii E S, I% = ii and D(r%, M, X) = 1. If we define 

R(G) = {w E x9: P(M)w = ii}, (2.3.16) 
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then for u E R(E), D(u, M, X) will be largest for that u with smallest Iulx. Thus if we define 

W(E)= inf Iwlx, 
war 

we see immediately that there is a w E %? such that 

D(w, M, X) 3 Ii&/ W(a). 

Obviously every choice of ti E S and u E R(ii) leads to a lower bound for D(R, M, V): 

This gives a practical tool for estimating D(%‘, M, X) from below. 
Condition (2.3.7) is easily seen to imply the regularity of the bilinear form B on S X V. 
A directed variational method Ju = (%, X, ‘Y, 9, B, a) is said to satisfy the stability condition 

if 

Y(S, v)=Y>o (2.3.17) 

for all (S, V) E 9. This condition is sometimes also called the inf-sup condition, or the LBB or 
BB condition.’ Theorems 2.6 and 2.8 show that when (2.3.17) holds, then D(%‘, M, X) is finite 
and the method is stable. 

An especially important situation occurs when ,3? = “Ir, 9 is the family of pairs (S, V) with 
S = V and 

B(u, u) 2 YlUl’x> Y ‘0 (2.3.18) 

for any u E S, (S, S) E 9. Then y(S, S) 2 y. In this case we say that the form is coercive. 
Suppose M, = M(S,, V,), (S”, Vn) E 9, is a computational variational method for which 

y(S., Vn) --f 0 as y1+ 03. In addition suppose M,, satisfies the hypotheses of Theorem 2.10 for 
each II. Then Theorem 2.10 shows that there is a sequence u, E FZ such that 

Wu,, Mm X)--f ~0 . 

Theorem 2.10 does not show the existence of a u E k% such that u[M,)% u. This, however, 
follows from Theorem 2.7. 

Combining this observation with Theorem 2.8 we see that the stability condition (2.3.17) is 
necessary and sufficient for quasi-optimality of the directed variational method J! = 
(2, X, v, $, B, a). The condition is necessary in the sense that if it fails then there will exist at 
least one u E 2 for which the method fails. As we have noted above, however, the method 
may still perform well for all solutions of major practical interest. Various statements in the 

1 This terminology relates to [l, 51 where this condition was first introduced in connection with the analysis of the 
finite element methods. 



x0 D.N. Arnold et al.. FEM: principles for selection 

literature that certain mixed methods work well inspite of the fact that the LBB (BB) 
condition is violated have to be understood in light of this observation. 

Let us return now to the problem and methods introduced in our previous examples and 
apply the results discussed in this section. 

EXAMPLE 2.12. (Cf. Examples 2.1, 2.1” and 2.4). Suppose A(x) in (2.1.3) is of the form 

A(x) = A,, + B(x) 

where A, is a constant invertible matrix satisfying 

where II.11 denotes the matrix norm associated with the Euclidean vector norm. Take 
x = 2 = (L?(1))* and let Y^ = (L,(1))’ as before. 

It is immediate that 

with C = 2 maxi,jllaij(X)II~,(I). Given u E 2, let ZJ = (A;')u. We easily see that 

and 

B(u,u)= In uA,'(A,,+B)u dx = /n u(l+ A,'B)u dx 

4&(1-q) 
-TI 

I&* s Qlulx 

where Q = ll(A;‘>‘ll, from which we obtain (2.3.10) with 

w=(l-q)/Q>O. 

Thus conditions (2.3.9) and (2.3.10) hold for this example. Condition (2.3.11) is also easily seen 
to hold. (Note that the assumption that A, is a constant matrix was not used.) 

Our main goal is to show that (2.3.7) holds. In Section 2.2 we have proved the infinite 
dimensional analogue. The proof of (2.3.7) is similar but we use now the fact that Aa is a 
constant matrix. For u E S, let v = (A;')'u. Then v E V since A0 is a constant matrix. The 
above estimate thus shows that 

y(S, vp(l-q)/Q>O. 

Therefore we see that the assumptions in Theorem 2.8 are satisfied and, moreover, the 
stability condition (2.3.17) is satisfied with y(S, V) 2 (1 - 4)/Q. Although the quasi-optimality 
of the method under our assumptions could be proven by the approach shown in Section 2.2, 
obviously the approach used here is much simpler and can be used in many situations. 
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EXAMPLE 2.13. (Cf. Exam,ples 2.2, 2.2* and 2.5) Consider the problem introduced in 
Example 2.2. Let X = X9, = H’, X = X, = H’ and “Y = ii1 with the H’-norm as in case (a). We 
obviously have 

B(u, u)a2-“*1ulzX for u E XI, 

i.e., B is coercive, and we thus see that the assumptions of Theorem 2.8 are satisfied and hence 
the quasi-optimality of this method has again been established. As we have seen in Example 
2.5 a similar analysis would fail in case (b). 

EXAMPLE 2.14. (Cf. Examples 2.3 and 2.3*.) Let X = OH’, H = H’, and 7” = L,. 
(a) First let us consider the space S, and V *,” introduced in case (b) in Example 2.3. Then 

(2.3.6) and (2.3.7) are satisfied and as before we conclude that the method is quasi-optimal and 
stable. 

(b) Now consider the case of test spaces V I.” introduced in case (a). Our goal is to show 
that 

%,n G D(%, M,, X) s Z2n (2.3.19) 

where WI, Z2 > 0, independent of n, and with M, = M(S,, VI,,). 
We will prove the left-hand side of (2.3.19) by applying Theorem 2.10. To this end we 

construct a particular ii, and estimate Q(&), as defined in (2.3.12). Let ii, E S,, be defined by 

fi#)=(-lYu-$)ln, xi_,<x<xi,j=1,2 ,..., n; 

the graph of ZIP is shown in Fig. 1. 
Note that 

Now let &,, . . . , I)_~ E VI,, denote the basis functions defined by 

tii(X) = 0 for IX - Xi1 > l/n, i = 0, . . . , n - 1 , 

&(x) = 1 - nx, 0 < x C x1 , 

*i(X)= (~",,~~:',, z$:::ifi: i= 1 
I , . . * 7 n-1. 

r 

(2.3.20) 

(2.3.21) 

Fig. 1. Graph of the function 0’. 
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Then we have 

(23.22) 

Any $ E VI,, can be written in the form 

n-l 

rlr = C ci*i 

i=O 

and we easily see that 

j$ic;+c:+.. + cf_*] . 
Therefore, 

JB(ii,, $)I= /z CiB(Un* lf!Jj)i = 1 [~lo(-l)‘-‘-fc”jn~‘l 

i =(I ,=I 

c n-‘l+l, . 

Thus 
Q(J”) d CC1 . (2.3.23) 

Since (2.3.10) holds with o = l/-\/z, we see from Theorem 2.10 that D b Cn. This proves the 

left-hand side of (2.3.19). 
Before turning to the proof of the right-hand side we will construct a particular w E I?(&) 

which will play the role of u in Theorem 2.10. We begin by constructing to(x), . . . . &1(x) so 

that 

t,(x) = 0 for Ix - x,1 > l/n. 

I,- I 

I, x , [i$jdx = y 6,). i,j=o...., II - 1. not both 0, (2.3.24) 

I 
.r I 

0 

Sotb,odx = 2 . 
where 

We will take the 5i to be linear on each subinterval. so (2.3.24) determines them uniquely. 
Specifically we choose &(--1>1-’ as shown in Fig. 2. 

Then we define 

P(x)=ggw 
I =I, 

(2.325) 
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and 

It is easy to see that 

Fig. 2. The graph of the function &. 

(2.326) 

(2.327) 

From (2.3.22) (2.3.24) and the definition of w we have 

B(i&, t,bi) = J51 iiL$idx = I,’ w’#idx = B(W, Jii), i = 0, . . . , n - 1 ) 

which shows that P,w = ii,. Using (2.3.20) and (2.3.26) we thus have 

Pdw)lx - p?/s 3 cn 
lwlx wx ’ 

which was our goal. 
Let us remark that ii, is not unique. It is essential, however, that it is what we referred to 

earlier as a wild or irregular function. It is also of interest to note that the function 6, E S, 
defined by 

G;(X) = (-l)j, Xj_1 < X C Xj 3 

will not lead to the desired result since we could only prove Q(fi,) & CA&. 
We will now prove the right-hand side of (2.3.19) by applying Theorem 2.8. Let u E S, and 

set 

Wi = U’(Xi - 1/2?2), i = 1,2, . . . , n . 

Then select v E V,,,, so that 

V(Xi) = Vi , 
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Ui = Wi + Wi+l* i= l,...,n-1, 

uo= Wl, u,=O. 

We easily see that 

B(u, u) = $ (w,, . . . , w,) 

I2 1 

1 2 1 
. * . 

. * 
‘I 1 I 

2 1 
1 1 I 

Consider the auxiliary (2n - 1) x (2~ - 1) matrix 

7- 

-t I 

and the associated quadratic form 

@(z) = (21,. . . , Z2”_,)A(Z,, . . . * Z&J. 

The eigenfunctions afe sin ~~~/(2~), k = 1, . . . , 2n - 1, and thus it is easily seen that the least 
eigenvalue AI(n) of A satisfies 

h,(n) 3 cn-2. 
Thus 2n-1 

@p(z) 3 cn-2 c zt . (2.3.28) 
i=l 

Setting 
f = (WI, *I). , iv,-1, w,, Wry-l*. * * . WI>’ 3 

we see that 

and therefore from (2.3.28) we obtain 

(2.3.29) 
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We also see that 

(2.3.30) 

Combining (2.3.29) and (2.3.30) we obtain 

from which we get 

Since 

y(S,, V,,,) = inf sup IB(u, v)l3 Cn-’ . 

UES” UE Vl,” 
l&=1 IVJy=l 

IB(u, v>l s Mrl4qr for uE%!, vE”lr, 

thus from Theorem 2.8 we have 

D(u, M,, X) < Cn, for u E %?. 

This proves the right-hand side of (2.3.19). 
Next we show that, although D(%‘, M,, X) is large, the method still works well for smooth 

solutions. Specifically, we will prove that 

lu - U”lX s Chlulc?(r,, (2.3.31) 

for u E C3(I), where u, = P(S,, V,.,)u and h = l/n. Let Ui = Un(Xi). It is easy to see that the 
finite element equations reduce to 

uo = 0, tk- uo)= \x’f$odx, 
JXO 

I 
xi+, 

$!(Ui+l - Ui-1) = fh dx, i = 1, . . . , II - 1 xi_, 

where $o, . . . , I,L~ are the basis functions for VI,, introduced earlier. 
Since u E C3(F), fE c(f) and we can write 

(2.3.32) 

(2.3.33) 
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where 

Now, using (2.3.32) 

and so, setting 5 = ui - U(xi), (2.3.32) implies 

From (2.3.34) and (2.3.35) we obtain 

Using (2.3.32) and (2.3.33) again we have 

with C independent of n. 
Letting 4;,u denote the S,-interpolant of u. we have 

(2.3.34) 

(2.3.35) 

(2.3.36) 

We further see that 

From this we get 

and thus, using the fact that j.sjX B GI~s],_~ for s E S,, (the so-called inverse assumptions for S”), 
we have 
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Combining (2.3.36) and (2.3.37) we have 

Ju - U,IX s Chl&%). 

This is the desired result. 
Define now 

H={u: Ir&+@)<W, u(O)=O, u”(X)~c+~&r) 

or U”(X) Q--(Y11UICS(r)on(o,rl)withlo-?11=a3, 

cy1,(Y*>o. 

Consider now the method using (S,, VI,,). Then we easily see that 

87 

where K 

C(H, M,, H’) d K (2.3.38) 

depends on cyl, a2 but is independent of yt. In fact it is easy to see that for u E H, 

and (2.3.38) is obtained by combining this estimate with (2.3.31). 
Let us summarize some main points shown in case (b). 
(1) The method is not quasi-optimal on X = ‘HI; nevertheless, the 

strong. The analysis has been based on results relating to Theorem 2.8. 
(2) The method is quasi-optimal on the set H, i.e., all functions 

K-perfect. We note that H is not closed in “H’. 
(3) The result that H is a set of perfect solutions cannot be directly 

2.7, 2.8, 2.10 and 2.11. A special analysis is necessary. 

3. Further examples of finite element methods 

3.1. rntroduction 

In this section we examine three different finite element methods for the approximate 
solution of a simple model problem, namely that of a longitudinally loaded bar on an elastic 
support. The classical displacement formulation of this problem is 

instability is not too 

belonging to H are 

proven by Theorems 

Lt.4 = -(E(x)F(x)u’(x))’ + b(x)u(x) = p(x), 0 < x < 1 ) 
(3.1.1) 

u(0) = u(1) = 0. 

Here u(x), 0 < x < 1, denotes the longitudinal displacement and E(x) denotes the modulus of 
elasticity, F(x) the cross-sectional area, b(x) the spring constant of the elastic support and p(x) 
the longitudinal load. We will let a(x) = E(x)F(x) and assume 

o<p,-qxpq32, O=a(x)q32, (3.1.2) 
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but otherwise allow a and b to be rather general functions. They could be, for example. 
constant functions (corresponding to a bar with uniform cross-section and elastic properties 
and a uniform elastic support) or step functions with many steps (arising in the study of 
composite materials, for example). 

We now cast this problem in variational form. Let 

qu, u) = i,,’ ( au’u’+ buu) dx. 

Then we easily see that (3.1.1) can be formulated as 

UEfi’={U: uEH’, u(O)=u(l)=O}, 

B(u, u) = jO’ pu dx for all v E 8*. 

(3. I .3) 

(3. I *4) 

B is defined in 9t’ x “v; where %’ = “Ir = i?. 

To complete the specification of a directed variational method, in addition to the biiinear 
form we must select a family 9 of trial and test spaces S and V, the space X and the 
discretization parameter a. We will present three choices for S and V in Sections 3.2 and 3.3. 

3.2. 172e standard finite element method 

Let A =(O=X~<X~<~~~<X~~~~= 11, n(A) 3 2, be an arbitrary mesh on [O, l] and set 
lj = A(A) =L: (Xj-1, Xi), hj I= h,(A) = Xj - xi-1 and h = h(A) = maXo,j,,(d) h,(A). Then set 

s=s,=v=v, 
G {S(X): S(X) is continuous on [0, 11, s(x) is linear on each 4 and s(0) = s(l) = 0) . 

(3.2.1) 

Let %‘= “Ir = Z%l, 9 = {(&, VA): A any mesh}, X = H’ and cy(&, Vd) = h(A). We can now 
discuss the directed variational method 

The optimality of this method is given in the following theorem. 

THEOREM 3.1. The methad & is quasi-optimal on I%’ with respect to HI, i.e., 

c@, A, H’) s c, (3.2.2) 

with C depending only on ,& and & but independent of A. Thus, 

(3.2.3) 
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PROOF. This standard result is proved by showing (2.3.18) and using Theorems 2.8 and 2.6. 
In fact, for all u E A1 we have 

B(U, u) = Jl: ((au’)* + bu*)dx 

As stated in Theorem 3.1, the optimality constant C(&, Ju, H’) is finite and is bounded 
uniformly with respect to the class of coefficients a and b satisfying (3.1.2). Regarding 
approximability let us state the standard result for the elements under consideration: 

inf Iu - SJH~~ Ch(ULf2, (3.2.4) 
SESA 

where C is independent of A. Thus for any u E &’ fl H*, 

Z(u, Sd, H’) s ChIu(&&~ . (3.2.5) 

If our solution u lies in H*, then from (3.2.3) and (3.2.4) we have the error estimate 

We note that if a’(x) and b(x) are bounded, then we can prove that 

I&f2s Clpl, * 

From this and (3.2.5) we obtain 

IU - P(S& Vd)UlH’ s Ch lPlL2 * (3.2.6) 

C here depends on the maximum of a’ and b; (3.2.6) is not, however, valid for problems with 
rough coefficients (coefficients which are step functions, for example). 

Next, let us consider the same family of simple methods but choose X = L2. We present a 
result showing the resulting method is not quasi-optimal. 

THEOREM 3.2. Suppose u(x) = 1 and b(x) = 0. Then for any constant C > 0 and any A there 

is a u E I? such that 

IU - P(S,, Vd)IL2 > C inf (u - sIL2. 
SE.% 

Thus, 

C(Z%l, M(&, V,), L2) = +m for any A . 
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PROOF. Suppose A = (0,:. 1) and let u be as shown in Fig. 3 with u(i) = 1. It is easily shown 
that, since P(&, Vd)u is the So-interpolant of u, as shown in Fig. 3 by the dashed curve, 
/u - P(&, Vd)u/Lz is nearly as large as ]P(S,, V3)& = l/V? and inf,,s,ju - s/~:, which is 
djujL,, is nearly as small as zero. This completes the proof for this simple mesh. The proof for 
a general mesh is similar. 

It is interesting to compare Theorems 3.1 and 3.2 with Example 2.5. In that example we 
treated the same boundary value problems but based our approximation on polynomials 
instead of piecewise linear functions. In Example 2.5 we obtained C(&‘, M(S,, V,), t2) s C’\‘n 
in contrast to the result C(L%‘, M(S,, V,), LJ = +=G obtained above. 

THEOREM 3.3. Suppose a’(x) and b(x) are bounded. Then for any u E H2 we have 

where C is independent of u and A but depends on a and b. If 

H = {u : u E H’ IT fi’, u”(x) Z= a.,IuIHz or 

u”(x) G - cu,jul,~ on (0, q) where /w - ~71/ = (Y*) 

with CY~, a2 > 0, then any u E H is K-perfect with K depending on aI, cy2, a and b. Thus, 

PROOF: The first part of the result is standard (see e.g. [2]) and the second part follows from 
the fact that 

Z(u, s,, L,) 2 v. 
‘LZ 

We consider now one more choice for X, namely X = L,. Then the following result is 
proved in [3]. 

THEOREM 3.4. Suppose that a, b are su~c~e~tiy smooth. Then there is a constant C such that 
for any u E L,, 

It.4 - P(&, V,)ul, d C inf Iu - s/k - 

SESJ 

/ < PfS& ,VA )u 

/ \ &_l’L / \ 
/ u \ 

/ \ 

0 f/2 f 

Fig. 3. The graph of function u. 
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with C independent of u and A but depending on PI, p2 and the maximum of the first 
derivatives of a and b. Thus, 

C(iP, At, L,) =s c. 

It is interesting to compare Theorems 3.1, 3.2 and 3.4. The computationally identical 
method is quasi-optimal on & with respect to H’ and L, but is not with respect to L2. 

3.3. A second method for solving (3.1.4) 

In this subsection we suppose b(x) = 0. Here we choose 

= {s(x): s is continuous on [0, 11, s(x) is a solution of (as’)’ = 0 on each 4, 
s(0) = s(1) = 0). (3.3.1) 

We again let %’ = ‘V = a’, X = H’, 4 = {(&, VA): A any mesh} and (Y(S~, Va) = h(A). We will 
discuss the directed variational method 

.A = (I%, H1, I?, .$, B, a). 

Exactly as in Theorem 3.1 we see that this method is quasi-optimal on 5Y with respect to H’. 
The methods differ, however, in regard to the approximation properties of the trial spaces 
employed. The approximation properties of the trial space introduced in (3.3.1) is given in the 
following theorem, proved in [4]. 

THEOREM 3.5. There is a constant C depending only on PI and p2 such that 

inf ]u - &IS ChlLujL, = ChIpI,. (3.3.2) 

PROOF. See [4]. 

Combining this result with the above mentioned quasi-optimality we obtain 

(3.3.3) 

This estimate should be compared with (3.2.6). They differ in that while (3.3.3) holds for all 
a(x) and b(x) satisfying (3.1.2) (3.2.6) holds only for smooth a and b. Thus we see that the 
method JU considered in this section is very accurate. Because of the unusual test and trial space 
it is, however, not easily implemented. The method introduced in Section 3.4 will be as 
accurate as the method discussed here while being as easily implemented as the standard finite 
element method discussed in Section 3.2. 
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3.4. A third method fur solving (3.1.4) 

As underlined in Section 2.2, the trial and test spaces play very different roles. The trial 
space is chosen for its approximation properties and the test space is chosen so that the 
method is optimal or nearly optimal and so that the method is easily implemented. The standard 
method, which uses piecewise linear functions for both trial and test spaces is optimal and is 
easily implemented. The trial space has poor approximation properties for problems with 
rough coefficients, however. The method discussed in Section 3.3 is optimal and has good 
approximation properties while not being easily implemented because of the way the load 
enters in the computation. The method discussed in this section will use the trial space $ used 
in the second method and use the test space V, used in the standard method. This choice will 
simplify the implementation, making it virtually of the same complexity as the standard 
method, while preserving the advantage! of the second method. 

Suppose as above that b(x) = 0. Let ,s3 be as defined in (3.3.1)nand let V, be as defined in 
(3.2.1). We let 2 = fi’, X = H’, S“= H’, g= {(Sb, VA)} and a(SJ, VA) = h(J), and consider 
the directed variational method ,.a = (2, H’, 7”. 9, B. ty) , 

THEOREM 3.6. There is a positive constant y depending only on J3, and /3? such that 

PROOF. For s E $, let S E V, be defined by 

Set 
S(Xj) = S(Xj), j = 0% 1, . . . 3 yt I 

cii = [II, C’dxr’hj. (3.4.2) 

Then we easily see that 

Using this relation we have 

(3.4.1) 

(S’)2dx = 2 c j- (us’/~~)2d~ 
j 4 
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Hence 

Combining Theorem 3.6 with Theorems 2.6 and 2.8, we see that the optimality constant 
C(&, A, H’) is bounded uniformly over an entire class of coefficients satisfying (3.1.2). In 
addition, from Theorem 3.5 we see that we have good approximation properties. Thus, 

with C depending only on p1 and &. Although estimates (3.2.6) and (3.4.3) are similar, the 
values of the constants C in (3.2.6) and C in (3.4.3) could be very different if a(x) is not 
smooth (C 4 C). 

One further point needs to be considered. We are using the bilinear form B(s, U) = 
so’ US’V’ dx, as in Section 3.2, but we are now using different trial and test spaces and the trial 
space consists of less simple elements. However, it is easily seen that the-stiffness matrix is 
symmetric and is as easily computed as the stiffness matrix for the standard method. 

THEOREM 3.7. Let (PI,. . . , (Pnml be the standard basis for SA and VA and (pl, . . . , (P”_~ be the 

standard bases for S[qi(xj) = a,]. Then 

(3.4.4) 

PROOF. Again we use the relation 

US’lQ = hj.S’lIj 

for any s E Sd, (3.4.4) follows immediately from this. 

It should be noted that the stiffness matrix for the standard finite element method discussed 
in Section 3.2 is 

I 
1 

UjSpiq i dx 
0 

(3.4.5) 

where 

(3.4.6) 

Since the load vector (the right-hand side in the discretized problem) is the same in the 
standard method as in the method discussed in this section, we see that the methods differ only 
in the occurrence of aj or aj, defined in (3.4.2) and (3.4.6), respectively, in the stiffness 
matrices, defined in (3.4.4) and (3.4.5), respectively. Obviously kj and aj are very close when 
a(x) is nearly constant but they can be very different when a(x) is rapidly changing. This 
shows that the results obtained by the standard method and the third method could be very 
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different, the third method performing equally well for problems with smooth coefficients and 
strikingly better for problems with rough coefficients. The analysis here has been for the H’ 
norm. We remark that similar results hold for the Lz-norm. Let us also remark that the third 
method can be extended to equations with b+O so as to preserve its good properties. For 
further results see [4]. 

4. Conclusions regarding the selection of finite element methods 

3. t . Introduction 

As we have stated in Section 1 and have shown in the previous sections, there are many 
finite element methods which can be considered for any specific problem. In this section we 
discuss the application of the ideas elaborated on above to the rational selection or design of 
effective methods. 

3.2. Definitions of the various types of variational methods 

It is essential to clarify as much as possible the aim of an engineering computation, the set 
of possible solutions, the environment in which the computations are to be made, and the 
various types of computational procedures actually in use in computational engineering. 
Toward this end we have introduced the notions of simple variational, variational, directed 
variational and computational variational methods. Nearly all of the computational procedures 
used in practice fall within this framework. We mention here the h-version and the p-version 
of the finite element method, displacement and mixed methods, various adaptive approaches. 
etc. The examples discussed in Sections 2 and 3 show that the same computational procedure 
can be viewed as different directed variational or computational variational methods, the 
difference being related to the use of different norms with which to measure the error. We 
have seen that the different methods have significantly different behavior. It appears that 
without precise definitions of the various types of variational methods, a careful discussion of 
finite element methods leading to a rational choice of a method for a specific problem would 
not be possible. 

4.3. Approxirvability and optimalit? 

The notions of approx~mability and optimality are two central ideas to be considered in the 
comparison of finite element methods. Clearly the trial space should be tailored as well as 
possible to the class of possible solutions. The approximability constant Z(U, S, X) is a 
measure of how well this has been done. The trial spaces introduced in Sections 3.3 and 3.4 are 
obviously preferable to the standard polynomial spaces. 

The test space should be selected so as to lead to a small optimality constant C(cc, M, X) 
and so as to lead to computational simplicity. The optimality constant is a measure of how well 
the approximate solution performs in comparison with the best possible approximation. In 
Example 2.5 with X = X, = i_, we have seen that for the so_lution fi, C(ii, M,, X2) - v’% and 
Z(ii, S”, X,) - l/ ~1. Thus the error satisfies Iii - u,Ix,- l/g\/n, i.e., the good approximability 
properties of S, are partially eroded because of the large optimality constant. We have also 
seen that ii leads to the largest optimality constant. The method does, however. converge. 
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The second and third methods treated in Section 3 both have small optimality constants, but 
the third method is much easier to implement than the second. 

The selection of the test spaces heavily influences the set of solutions which are perfect, i.e., 
the set of solutions for which the method works well, assuming good approximability. 
Sometimes all ‘reasonable’ solutions are perfect, while the imperfect solutions are ‘wild’. 
Example 2.14 is an illustration of this. In other problems reasonable solutions could be very 
imperfect. Example 2.4 is an illustration of this. That example also clearly shows the effect of 
the choice of the test space on the class of perfect solutions. In any case, the method which is 
perfect for the largest class of solutions is preferable. 

If a large class of solutions are imperfect and the optimality constant --, SC= as n -+ +a (n 
being the number of degrees of freedom, say), then a method with a smaller C is preferable to 
one with a large C’. The standard finite element method (cf. the discussion in Section 3.2 in the 
constant coefficient case) and the method discussed in Example 2.5, when considered in 
connection with X = Lz, can be compared in @is way. In the first case we get C(&, Md, L2) = 
= while in the second case C(&, M,, L,) - v’n. 

In many situations, rigorous estimates of the optimality constant are not available and 
judgments concerning choice of methods must be based on computational experience. In these 
situations, one must attempt to gain insight on the class of perfect solutions from the 
computational experience. Nevertheless, we have to be aware that there is a possibility that 
only perfect solutions will be tested and the conclusions could be misleading. 

Approximability and optimality together influence the performance of the method. A method 
could have a deteriorating optimality constant and still give reasonably good accuracy if the 
approximability is sufficiently good to offset the lack of optimality. Thus we are interested in 
the set of solutions for which the method converges as well as the set of perfect solutions. 

Examples 2.4 and 2.14 clearly illustrate the influence of the choice of trial and test space on 
optimality. If the ‘major part’ of the bilinear form B is symmetric (cf. Example 2.4 for IAl > l), 
then using the same space for the trial and test space is often advisable. If the ‘major part’ of B 
is nonsymmetric (cf. Example 2.4 for \A/ < 1 and Example 2.14), then it is often useful to 
consider different trial and test spaces. 

4.4. stability and the stability condition 

The stability constant should be viewed as a tool to be used in the analysis of optimality. 
C(u, M, X) and D(u, M, X), and also C(H, M, X) and D(H, M, X), are closely related, as 
shown in Theorem 2.6. The constant r(S, V) is in turn used to estimate the stability constant, 
as shown in Theorem 2.8. We note that y(S, V) does not depend on the exact solution u and 
thus that an analysis of stability or optimality based on an estimate for y(S, V) must 
concentrate on ‘worst’ possible cases. The stability condition (2.3.17) is necessary in the sense 
that if it is violated, then the method must diverge for at least one solution, as shown by 
Theorems 2.7 and 2.11. Nevertheless, a method can violate this condition and still perform 
well for a large class of solutions. 

Recently there have been statements in the literature to the effect that certain methods 
perform well computationally even though the stability condition (also sometimes called the 
inf-sup, LBB, or BB conditions) is violated. This occurrence can be explained by noting that 
in the computations only perfect solutions were considered. These particular solutions may 
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have been considered partly on the basis of physical insight, but partly by accident. Thus we 
see that a detailed analysis of the structure of the set of perfect solutions is highly desirable. 
Certainly formal insistance that the stability condition is satisfied is inappropriate. 

We see from Theorem 2.6, that the method discussed in Example 2.5, when considered in 
connection with the Lz-norm (case (b)), does not satisfy the stability condition, since the 
optimality constant + = as y1+ x. Still, on the basis of experimental evidence, it is likely that 
the method would perform well because only ‘reasonable’ solutions would be considered. A 
similar situation occurs when we consider the performance of the standard finite element 
method in the &-norm or when considering the second choice of spaces in Example 2.14. In 
contrast, it is very likely that experimentally one would generally see that the method 
discussed in the Example 2.4 has a serious deficiency when lhl < 1. 
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