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Summary. Most boundary element methods for two-dimensional boundary 
value problems are based on point collocation on the boundary and the use 
of splines as trial functions. Here we present a unified asymptotic error 
analysis for even as well as for odd degree splines subordinate to uniform 
or smoothly graded meshes and prove asymptotic convergence of optimal 
order. The equations are collocated at the breakpoints for odd degree and 
the internodal midpoints for even degree splines. The crucial assumption 
for the generalized boundary integral and integro-differential operators is 
strong ellipticity. Our analysis is based on simple Fourier expansions. In 
particular, we extend results by J. Saranen and W.L. Wendland from con- 
stant to variable coefficient equations. Our results include the first con- 
vergence proof of midpoint collocation with piecewise constant functions, 
i.e., the panel method for solving systems of Cauchy singular integral 
equations. 

Subject Classifications: AMS(MOS): 65R20, 65N99, 65N30, 65E05, 30C30, 
73K30, 65N35; CR: G. 1.9. 

1. Introduction 

Spline collocation methods are extensively employed for the numerical solution 
of a variety of integral, differential, and integro-differential equations (or, more 
generally, pseudodifferential equations [47, 48]) posed on plane curves. In fact, 
collocation is the most widely used numerical technique for solving the bound- 
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ary integral equations arising from exterior or interior boundary value prob- 
lems of elasticity, fluid dynamics, electromagnetics, acoustics, and other 
engineering applications with the boundary element technique. See, for exam- 
ple, the books and conference proceedings on the boundary element method 
[6, 7, 9-13, 15, 19, 27], and the discussion of the boundary integral equations 
arising in applications in [3]. Despite their prevalance, however, no general 
approach to the error analysis of spline collocation methods was known until 
recently. Convergence had been shown only in special cases - the most impor- 
tant being the case of Fredholm integral equations of the second kind (see, e.g. 
[4, 5, 14, 20, 31, 32] - and the methods of analysis generally depended quite 
strongly on the particular form of the equation considered. 

Quite recently two more general techniques of analysis have been in- 
troduced, the first in the case of collocation by odd degree splines at the nodal 
points, the second in the case of collocation by even degree splines at the 
internodal midpoints. The first method is due to Arnold and Wendland [3]. It 
is based on equivalence of the collocation method with a mesh dependent 
Galerkin-Bubnov method 1 and is quite general, yielding optimal asymptotic 
rates of convergence in the whole range of Sobolev spaces H s for which they 
hold. This method applies as long as the equation is strongly elliptic, a 
condition which is also known to be necessary for convergence in most cases 
[36, 37, 43]. The combination of the equivalence mentioned above and strong 
ellipticity permits an error analysis analogous to that for a standard Galerkin 
method. Unfortunately, it does not appear possible to extend this method of 
analysis to the even degree case. Therefore Saranen and Wendland [39] use 
another approach to obtain results similar to those of [3]. Although they show 
the equivalence of the collocation equations with certain Galerkin-Petrov 
equations, the heart of their analysis is not this equivalence but rather simple 
Fourier analysis techniques. Consequently, this second method entails two 
significant restrictions. First, the operator, in addition to being strongly elliptic, 
must have a principal part with constant coefficients. Second, the spacing of the 
knots of the splines is required to be uniform, in contrast to the analysis of [3] 
in the odd degree case, for which no restriction on mesh spacing was needed. 

For  the special case of piecewise linear spline collocation on Cauchy 
singular integral equations with smooth coefficients, a different method has 
been developed by Pr/Sssdorf and Schmidt in [36, 37] which has been extended 
to piecewise continuous coefficients by Pr6ssdorf and Rathsfeld in [34, 35]. 

Since the appearance of [3] and [39], G. Schmidt has extended these 
analyses in various ways. In [41] he analyzes nodal collocation by even order 
splines for a different sort of (non strongly elliptic) singular integral operators 
and for the corresponding pseudodifferential operators in [43]. In a recent 
paper [42] he considers spline collocation on a uniform mesh for operators 
with constant coefficients using collocation points which are displaced from the 
nodes or internodal midpoints. 

In this paper we present an analysis which treats the odd and even degree 
cases together by exploiting the Fourier series expansions of the splines and 

By a Galerkin-Bubnov method we mean a Galerkin method with equal test and trial spaces, 
while a Galerkin-Petrov method permits distinct spaces 
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the equations (an approach which for the identity operator goes back to Quade 
and Collatz [-51]). For odd degree splines the results improve only slightly on 
those of [3] (e.g., estimates are given for a less regular solution than permitted 
in [3]). Moreover the knot spacing permitted is restricted, so in this respect the 
results are inferior to those of [-3]. In the even order case, however, we remove 
the requirement from [39] that the principal part has constant coefficients, 
allowing instead any sufficiently smooth coefficients. This is our principal new 
result. It shows that collocation by even degree splines at the midpoints 
converges with optimal order for the same class of equations as the ordinary 
spline Galerkin-Bubnov method and odd degree spline collocation (namely, for 
strongly elliptic equations). We have had less success in removing the restric- 
tion of uniform knot spacing. However we at least relax this requirement to 
allow smoothly graded partitions, i.e., partitions which are mapped onto uni- 
form partitions by a smooth diffeomorphism. Also the present results are more 
general than heretofore known in one other respect. In both [3] and [-39] it is 
assumed that the degree of the splines exceeds the order of the equation. Since 
this condition is equivalent to the requirement that the image of every spline 
under the operator be continuous, and since the collocation method requires 
that the point values at the collocation points of these images be defined, this 
appears to be a natural condition. However the discontinuity in the image of a 
spline can occur only at the knots, and these coincide with the collocation 
points only in the odd degree case. In the even degree case we show that this 
condition can be relaxed to allow splines with degree exceeding f l - 1 / 2  where fl 
is the order of the equation. Consequently the present analysis applies to 
situations excluded previously. In particular the present work provides the first 
convergence proof of the panel method, i.e., midpoint collocation with piece- 
wise constant functions, for solving Cauchy singular integral equations. This 
method is widely used, [-8, 9, 16, 28, 38, 49], as well as collocation with higher 
degree splines. 

In order to state our results more precisely we now introduce some no- 
tation. We shall consider the numerical solution of the equation L u  = F where 
F is a given continuous 1-periodic function and u is a 1-periodic function 
which we seek. (It is only for simplicity of notation that we consider a single 
equation. As in [3] our results easily extend to systems of equations. Via 
parametric representations of the curves as in [3] a system of equations on one 
or more simple closed curves is thus covered.) Each periodic distribution u has 
a Fourier expansion 

u(x)= ~ f i (k)e 2~ikx 
k~Z 

where the Fourier coefficients are given by the formula 

1 
~(k) = ~ u(x)  e -  2~ik, d x  

0 

in case u is locally integrable. For s E R define the inner product 

(u, v)~---~(O)~(O)+ ~ 12rck12~fi(k)~(k). 
kr 
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The Sobolev space H s (all function spaces are supposed, without  special no- 
tation, to be complex valued and periodic) consists of all periodic distributions 

u for which the no rm IIulls.'=l/~, u)s is finite. For  f l ~ l t  we define opera tors  
Q~+ and Q~_ by 

Q~+ u(x)= ~ [kla O(k)e 2=ikx, 
k er 

Q~_ u(x) = }-" sign (k)Ikl a 0(k) e 2=ikx. 
k:~0 

For  all s ~ R ,  Q~ maps  H ~ boundedly  into H ~-p. For  f l=0 ,  Q~ and 
QO u + fi(0) is the Hi lber t  t ransform of u. 

The opera tors  considered here are of the form 

L u (x) = b + (x) O~+ u (x) + b _ (x) QP_ u (x) + K u (x) (1.1) 

where f l ~ l  is the order of the operator ,  b+ and b_ are functions in C~ 
and for all r ~ R ,  K maps  H r boundedly  into H r-a+~ for some 6 > 0 .  (We 
actually require this p roper ty  of K only for a limited range of r, and require 
only finitely many  derivatives of b_+. The exact requirements  can be ascertained 
by a close examinat ion of the arguments  in Sects. 3-5.) We say that  L is 
strongly elliptic if there exists a smooth  periodic function 0 such that  

7:=infmin{ReO(x)[b+(x)+b_(x)], ReO(x)[b+(x)-b_(x)]}>O. (1.2) 

In this case L: Hs--*H ̀ -a is a Fredholm opera to r  of index zero for all s ~ R ,  
and if L is injective for some s it is in fact bijective for all s. We shall assume 
that  L is injective. (In the case of a system of Eqs. (1.1) and (1.2) must  be 
modified as follows. In (1.1) u represents a vector  of functions, i.e., an element 
of the Cartesian product  (HS) p with p > l ,  Q~ is unders tood to act  on each 
component ,  and b+ and b_ are p • p matrices of functions. The  strong elliptici- 
ty condit ion is then 

7" = inf min { Re [~ T 0 (X) (b + (x) + b_ (x)) (-], Re [fiT 0 (X) (b + (x) - b_ (x)) C] } > 0, 

where now 0 is matr ix  valued and the inf imum is over  x e N  and unit vectors 

Let d be a nonnegat ive  integer, n a natural  number ,  h=l/n.  Set A 
={jh l jeZ} ,  

A, d odd, 
Z =  {U+l /2)hl jeTZ},  d even. 

Let 6eha denote the space of smooth  splines of  degree d on the uniform mesh N. 
Thus 6e~ consists of periodic C a .  ~ piecewise polynomials  of degree d and has 
dimension n. The  collocation me thod  determines an approx imate  solution 
u h e 5eh a to the opera to r  equat ion 

L u = F  on I /  (1.3) 

by the equat ions 

LUh-=F o n  A. (1.4) 
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Once a basis for 5ehd is chosen, (1.4) is easily reduced to an n x n linear system 
for the unknown coefficients of u h. 

We can now state our main result in the case of uniform knot spacing. 

Theorem 1.1. Let fl be a real number and L a strongly elliptic, injective operator 
of  order fl having the form (1.1). Let d be either a positive odd integer exceeding 
fl or a nonnegative even integer exceeding f l -1 /2 .  Then there exists h0>0 such 
that for 0 < h < h  0 and any continuous function F the collocation equations (1.4) 
are uniquely solvable for u h ~ 5"~h a. Moreover, if s, t ~ ~,. satisfy 

f l<_s<t<_d+l,  s < d + l / 2 ,  f l + l / 2 < t ,  (1.5) 

and the solution u to (1.3) is in H z, then there holds the optimal error estimate 

]lu-uhll~<_- C h  '-~ Ilull,, (1.6) 

Here and in the following C denotes a generic constant independent of h 
and u. In (1.6) C may depend on an upper bound for the magnitudes of the 
coefficients and their derivatives, a lower bound for the strong ellipticity 
constant 7, and on fl, d, s, and t. 

Let us comment on the hypotheses of the theorem. The strong ellipticity 
condition (1.2) is essential, as remarked above. In [26, p. 205] an example is 
given of an elliptic, but not strongly elliptic, singular integral equation for 
which nodal collocation with piecewise linear splines diverges. 

The hypotheses (1.5) on s and t are essentially as weak as possible. The 
condition s < t < d +  1 is clearly required from approximation theory and the 
condition s < d + l / 2  is required so that the left hand side of (1.6) makes sense. 
The collocation does not converge with optimal order in H s for s < fl, as it can 
be shown that the error is no smaller than O(h ~+ 1-o) in any Sobolev space, cf. [3]. 
Finally we cannot allow t < f l +  1/2 since then for a general u e H  t, F = L u  will 
be discontinuous and so we cannot sensibly collocate. 

Operators of the form (1.1), although they may appear to be rather special, 
form a rather general class, including all pseudo-differential operators on the 
circle [1] (and so, via parametrization, on closed curves). Many important 
examples of strongly elliptic operators of this form arise from boundary in- 
tegral methods, e.g., singular integral equations and hypersingular equations 
arising from acoustics, fluid dynamics, elasticity, and quantum field theory. 
(For further details and numerous other applications see [3, 25, 50].) Another 
example is Symm's integral equation of conformal mapping. Our Analysis 
provides error estimates for the numerical methods for this equation presented 
in [21] and [46]. Recent numerical experiments by Hoidn [24] show excellent 
agreement with the theoretical convergence rates for this equation. 

The remainder of the paper proceeds as follows. In the next section we 
prove Theorem 1.1 under the additional assumption that L has constant coef- 
ficients, K has a special form, and the meshes are uniform. We use an explicit 
Fourier analysis as in [39] but our proof is more direct and elementary, gives 
somewhat sharper results, and enables us to consider odd and even degree 
splines at the same time. In Sect. 3 we remove the assumption of constant 
coefficients for L by locally freezing coefficients and using perturbation tech- 
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niques familiar from the existence theory for partial differential equations 
(Korn's trick). (Independently PriSssdorf [33] recently applied a localization 
principle for spline approximations of pseudodifferential equations which is 
closely related to our technique.) All necessary analysis is presented by using 
only Fourier expansions. 

In Sect. 4 we extend our analysis to smoothly graded partitions. Here, 
however, we need one special property of pseudo-differential operators, Theo- 
rem 4.2, for which we have not been able to find an elementary proof. Finally 
Sect. 5 collects proofs and references for various elementary lemmas. 

2. Convergence of the Collocation Method for Operators 
with Constant Coefficients 

We now prove Theorem 1.1 under the additional restriction that L has the 
form 

Lo = b + Q~+ + b_ Q~_ + J, 

1 

where J u : = I u d x  and b+,b_ are complex constants satisfying the strong 
0 

ellipticity condition 

?, =min {Re(b+ +b_) ,  Re(b+ - b ) }  >0.  (2.1) 
Note that 

f(b + + sign (m) b_)Iml ~ ~(m), m # 0, Coo (2.2) "*(u ( o ) ,  m = o .  

It follows easily from (2.2), Parseval's identity, the definition of the norm in 
H s+p, and (2.1) that 

min (1, y/(21t) ~) [1 vtls+ ~ --<_ 1[Lo vlls =<max (1, ([b + q+ Ib_ D/(2n) ~) IIvl[s+~- (2.3) 

We shall analyze the collocation method using Fourier series. To this end 
we first reformulate the collocation equations in terms of the Fourier coef- 
ficients. The key result is given in the following lemma. We use the notation = 

to indicate congruence modulon, and set A ,=  p e Z  -~<p=<_ , a set of 

l 

coset representatives modulo n. The notation ~, denotes lim ~ and 
I m l ~ o 3  m = - - l  m=-P 

denotes lira ~ . 
1-*o0 mE-- I  

m==_p 

Lemma 2.1. Let ~b e L t and suppose that (o is H61der continuous in some neigh- 
borhood of A. Then ~ q~(m)<oo for all p. Moreover 

m==.p 

)-' ~(m)=0 for all p e A ,  
m=_p 
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if and only if 
~p=0 on A. 

Proof. The hypotheses imply that the Fourier series for ~b converges to q~(q/n) 
at x = q/n : 

q~(q/n) = ~ 6(m) e 2~''q/". 
m 

Hence 

2~t ip  /n 1 1 Z ~b(q/n)e- q = -  Z Z ~ ( m )  e2"'~-p~qjn 
n q E A n  n q ~ A n  m 

m q E A n  m=--p 

Since the Vandermonde matrix ~,,-2~i,q/n~ is nonsingular, the lemma fol- \ ~  I p ,  q ~ A n  

lows. 
As a corollary we get the following proposition. 

Proposition 2.2. Let u E H t for some t > fl + 1/2 and let Uh e ~ '~ where d is either a 
positive odd integer exceeding fl or a nonnegative even integer exceeding f l -1 /2 .  
Then the collocation equations 

L o Uh(X ) = L o u (x), x ~ A, (2.4) 

are satisfied if and only if 

Lou(m)= ~, LoUh(m), peA~. (2.5) 
m=--p m ~ p  

Since L o u s H  t-a and t - f l > l / 2 ,  the Sobolev embedding theorem implies 
that L0u is H~lder continuous. Moreover O~h~H~ for all s < d +  1/2 so the 
hypotheses imply that Lou h is H61der continuous if d is odd and in any case 
Louh~L 2. When d is even u h is smooth in a neighborhood of A, whence Lou h 
is HiAlder continuous in a neighborhood of 3 (see Lemma 3.2c). Hence the 
sums appearing in (2.5) converge and the result follows by applying the lemma 
with ~p = LoU h - L o u .  

In order to apply Proposition 2.2 we employ (2.2) to observe that for any u 
with L 0 u integrable and H~lder continuous in a neighborhood of A, 

Lo'AU(m)=bo(P)fi(p)+ ~ [b+ +sign(k)b_]ip+knlP~(p+kn) ,  peA , ,  (2.6) 
m=_ p k c~*  

where 
b~ +sign(p)b-]lP[~' p=0.P4:0' 

(The asterisk appended to a set of integers denotes the complement of zero in 
the set. Thus 7.* =Z\{0} . )  

For the right hand side of (2.5) we combine (2.6) with the recursion relation 
for the Fourier coefficients of a spline function: 

~(p+kn)(p+kn)d+l=(--1)k~d+l)q~(p)p n+l, p, k~7~, C~EAah ~. (2.7) 
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(For a proof of the recursion relation see, e.g.,(41) in [51] and [2].) Thus, for 
uh e Sa~, p e A  h, 

LoJ"uh(m)=bo(P)~h(p)+p d+l ~ (b + +sign(k)b_) 
m=-p keZ* 

. ( _ 1)ktd+ 1) sign (k) a+l IP + knl a-a-1 uh(P) 

= {bo(P)+sign(p) a+a Ip[ B 12p/n[ d+a-p ~ (b+ +sign(k)b ) 
k ~ '  

" ( - -  1)  k ( a +  1) sign (k) a+a 1(2p/n) + 2 kl p-n-  a} Uh(P). (2.8) 

Defining for y e [ - 1 ,  1] 

f ( y )=s ign(y )  d+~ ly[ a+a-a ~ ( -1 )  u~a+~) sign(k) ~+1 ly+ 2kla -a-~, 
k EZ* (2.9) 

g(y) = -s ign  (y)a lyld+ 1 -~ ~ ( _ 1)ktd+ 1) sign (k) d lY + 2 kl a-a - ~, 
keZ* 

we may write (2.8) more compactly as 

~... , , ([pf{b +[l + f(2p/n)]+sign(p)b_[1-g(2p/n)]}f ih(p) , peA*, 
2 LoUhtm)=~ . . . .  

~, _~ p luh tuJ, p = O. 
(2.10) 

In the following lemma we summarize the elementary properties of f and g 
which we shall require. They are verified in Sect. 5. 

Lemma 2.3. Suppose that fl < d for d odd and fl < d + 1 for d even. Then f and g 
defined by (2.9) are continuous, even, nonnegative functions on [ - 1 ,  1] and are 
strictly increasing on [0, 1]. Moreover g(1)=l  and there exists constant C 
depending only on fl and d so that 

[ f ( y ) l+ lg (y ) l<Cly l  n+l-~, y e [ - 1 ,  1]. 

We now proceed with the proof of Theorem 1.1 for the operator L o. Set 

D ( y ) = [ l + f ( y ) ] b +  +s ign (y ) [1 -g (y ) ]b  , y e [ - 1 , 1 ] .  

Let s, t be as in Theorem 1.1 and u e H  t. In light of Proposition 2.2 and (2.10), 
Lou h collocates Lou (i.e., (2.4) holds) if and only if 

IPfD(2p/n)fih(P)= Z ~oU(m), peA* ,  (2.11a) 
ra~p 

an(0)= ~, Lou(m ). (2.11b) 
m ~ 0  

Note that since 

O<=l-g(y)<=l<=l+f(y)<oo,  y e [ - 1 ,  1], 

by Lemma 2.3, it follows from the strong ellipticity condition (2.1) that 

Re D(y)>y>0,  y e [ - 1 , 1 ] .  (2.12) 
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In particular the coefficient of 0h(p) in (2.1ta) does not vanish�9 Hence the 
Fourier coefficients fib(P), P e Ah, are uniquely determined by (2�9 namely 

fin(P) = D (2 p/n)- 1 I PL- ~ 

�9 {bo(P)fi(p)+ ~ [b+ +sign(k)b_] Ip+knlPa(p+kn)}, peA*, (2.13a) 
keZ* 

Oh(0)=0(0)+ ~ [b+ +sign(k)b_] [knlO~(kn). (2.13b) 
k~Z* 

Since by (2�9 these coefficients determine u h uniquely, we have proven that 
there exists a unique solution to the collocation equations (2.4). 

It remains to prove the error estimate 

Ilu-uhlls_- < C n  ~- '  Ilull,. (2.14) 

Clearly it suffices to bound each of the four following terms by Cn z~-2t Ilulr~: 

T, = Ifi(0) --  l~h(0)l 2, 

T2= ~ Ifi(m)[21m[ z~, 
m E Z \  An  

T3= ~ luh(m)12 [rn[ 2s, 
m E Z  \ A n 

Z4= Y, 1O(P)-ah(p)12lpl z~. 
p e A *  

We remark that the generic constant C in this section depends only on 
fl, d, s, t, an upper bound for Ib+l+lb_l, and a positive lower bound for 7. 

Recall the hypotheses on s and t, namely 

s>fl ,  (2.15a) 

s<d+ 1/2, (2.15b) 

s<t ,  (2.15c) 

t>f l+ 1/2, (2.15d) 

t<=d+ 1. (2.15e) 

We shall frequently use the fact that 

10+2klr<C(r), r < - l ,  0 ~ [ - 1 ,  1]. (2.16) 
keZ* 

To bound T 1 we use (2.13b), the Schwarz inequality, (2.16) with r=2( f l - t )  
(so r <  - 1  by (2.15d)), and (2.15a): 

T, < C [ ~ Iknl a la(kn)l] 2 
k EZ* 

< Cn2(# -') ~ IJl 2(#-~ ~ la(kn)[ 2 Iknl 2' 
jeZ* keZ* 

= < C n 2 ~ - 2 '  Ilult, ~ 
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Next since re>n~2 for meZ\A , ,  

7"2= ~, Ir(m)12lml2tlml2S-zt<_Cn2S-2tl[u[]2. 
meZ\An 

To bound T 3 first apply (2.7) and (2.13a) to get 

1 
ifiho7+In)l= 2_~p n d+ ~ + 2 / - d - l i D ( 2 p / n )  -a {[b+ +sign(p)b ]rio7) 

(2.17) 

+qp[-~ ~ [b+ +sign(k)b_]ip+knfr(p+kn)}l, peA*, l~Z*. 
kel* 

Now, by (2.16) with r = 2 s - 2 d - 2 ,  which is less than - 1  by (2.15b) and 
(2.15e), 

2~ 2d+ 2 2 - -2d--2  

~ Ifi(p)l 2 ? + 2 1  [p+Inl z~ 
peA* 1~7" 

2s--2t 2 p  2 d + 2 - - 2 t  2 2s-- 2 d -  2 

peA~ le~t* 
< Cn2~-2t llul$~. (2.18) 

Also, by the S chwarz inequality, (2.16) with r = 2 s - 2 d - 2  < -  1, (2.16) with r 
= 2 ( f l -  t) < - i, and (2.15 d, e), we find 

2_~_Pn 2d+2 2Pn 2 1 - 2 d - 2  
~ + Ipl-2#{ ~ Ip+knflro7+kn)l}t2[p+lnl 2~ 

peA*n leZ* keZ* 

~_p-2a+2d+2 2p [2~-2a-2\ 

]r(p +kn)[ 2 ]p+kn[ 2t 
k e r  

<=CnZS-z' ~ ~ Ir(p+kn)lZtp+knt2t<CnZ~-z'llull2,. (2.19) 
peA* keZ* 

Since rh(In)=O for I~Z* by (2.7) we may collect (2.17)-(2.19) and use (2.12) to 
find that 

T3= E E Irh(p+In)lZ[P+ln[2s<CnZS-2tIlu[12' 
peA* leZ* 

as desired. 
It remains to bound T 4. From (2.13a), (2.6), and the definitions of b o and D 

we have for p ~ A* that 

to7) - rh(p ) = r(p) -D(Zp/n)- 1 IPl-t~ {bo (p) to7) 

+ ~ [b++sign(k)b ] ]p+knl#r (p+kn)}  
k ~Z* 

= D(2p/n)- 1 {[f(2p/n) b+ - s ign  O7) g(Zp/n) b_] riO7) 

-Ip[ -# ~ [b+ + sign (k) b_] Ip+knl'fi(p+kn)}. (2.20) 
keZ* 
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Now, by (2.12), Lemma 2.3, and (2.15a, e), 

[D (2 p/n)-  1 [ f  (2 p/n) b + - sign (p) g (2 pin) b_ ] t~ (p) l 2 I pl 2~ 
2p 2(d+ l-fl+s--t) 

< Cn2S 2t [~(p)l z Ipl2~< Cn 2s-2t Ifi(p)l 2 Ipl 2t. (2.21) 

For the remaining terms from (2.20) we have, 

{D(2p/n)-alpl  -a ~'. Eb+ +sign(k)b_] [p +knla[fi(p+kn)l} 2 IPl 2s 
keZ* 

~ 2(s-#) 2p .2~r 
~Cl'12s-2t j~z*~ ~ - + 2 j  • keZ*Z If i(p+kn)12[p+knl 2' 

<= Cn 2~-2' ~ I~(p+kn)] 2 [p+kn[ 2t, (2.22) 
k ~ 7* 

where we have used (2.12), the Schwarz inequality, (2.15a), (2.16) and (2.15d). 
From (2.20)-(2.22) we find that 

Y4 <= Cn2~-z'[lullZ. 

This completes the proof of (2.14) and so of Theorem 1.1 in the case L = L  o. 

3. Convergence of the Collocation Method 
for Operators with General Coefficients 

In this section we complete the proof of Theorem 1.1 by removing the restric- 
tion that the operators L have constant coefficients, which was in force in the 
previous section (but still assuming a uniform mesh). The heart of the proof is 
a localization technique which enables us to deduce the convergence of the 
collocation method for the general operator L from the convergence for certain 
constant coefficient operators derived from L by freezing the coefficients b+ of 
its principal part. This technique, which hinges on a known commutation 
property of spline projections and multiplication by a smooth function and on 
well-known properties of pseudodifferential operators, is analogous to the 
familiar procedure in the theory of partial differential equation sometimes 
referred to as Korn's trick. Recently Pr6ssdorf [33] has independently also 
applied this localization technique to the convergence theory for collocation 
methods. 

For reference we recall the form (1.1) of the operator L and its mapping 
properties: 
L is an isomorphism of H r onto H "-a for all r (3.1) 

Q~+ and Q~_ map H r boundedly into H r-p for all r (3.2) 

K maps H r boundedly into H r-p+~ for all r and some 6>0.  (3.3) 

Also we state two lemmas, the first collecting known properties of finite 
elements applied to the periodic spline spaces, the second collecting known 
properties of pseudodifferential operators applied in our situation. We give 
proofs and references in the final section. 
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Lemma 3.1. (a) (Approximation properties). Let  r < d +  1/2. Then there exists a 
family  o f  approximation operators Pha: Hr ~ ~ a  such that i f  s ~ r ~ t <_ d + 1 then 

Hu-phdull~<- fht-~HuHz, u ~ H  t, (3.4) 

where C does not depend on h or u. 

(b) The operators Ph d may be taken to have also the following additional 
property. I f  dp E C ~ then there exists  a constant C such that for  all v ~ 5~h a 

1149v--Phd(49v)[l<fh~Ilvllr, 6=min(1 ,  d +  l - r ) .  (3.5) 

(c) (Inverse properties). Let  s < t < d +  l/2. Then there exists a constant C 

such that 
)lvll~_ <- Ch ~-' ]lvlt~, v~ Sen d. (3.6) 

(d) Let  s < t  < ~ +  1/2. Then there exists  a constant C such that for  all u e H  t 
and v e 5eha 

][u -v i i ,<  C ( h ' - '  Hu -V[[s+ HUH,). (3.7) 

Lemma 3.2. (a) Let  fl, t e • ,  491C ~, v e i l  t. Then there exist  constants C and q 
such that 

P v P ~ < C (3.8) 1149(Q• )-O• 1149Hq Hvll,, v ~ H ' .  

Here Q~ may denote either of the operators QP+ or QP. 
(b) Let  t e R  and dp,~l, eCoo, and suppose that 49~=-0. Then there exists  a 

constant C such that for  all v e H t 

1149Q~ (O v)ll,_~ < c Ilvll,_~. (3.9) 

H € ~" ' for  some closed interval I o, then Q~ v e H~or (c) I f  v e H a and v e loc [10) 

(d) Let  ~, teR,  ~>0, b+, b e C | Then there exists  a C| o f  unity 
M Coo {49j}j=l, functions {Oj}f=l with Oj[~ppoj=l, points xjesupp49j, and a con- 

stant C such that for  all v ~ H t 

llOj[b• j = l  . . . . .  M. (3.10) 

We now turn to the proof of Theorem 1.1. We separate out some important 
estimates in the following two propositions. 

Proposition 3.3. Let  t, s e l l  satisfy fl <_s <_t < d  + 1/2, and let 49 ~ C% Then there 
exist positive constants C~ , C, and ~ such that i f  u ~ H ~ and u h ~ 6ehd then 

I149(u~-u)ll,_- < C~ h ~-' I149 L(uh -u)lls_a + C Ilull, + Ch~-'+~ I lu , -uL  

{ 0 s < : }  (3.11, 
+ C l l u h - - U l t ~ _ ~ ,  S =  " 

Moreover  the constant C 1 is independent o f  49. 

Proof. Let r = t  and define projection operator Ph a as in Lemma 3.1. One easily 
verifies the decomposition 
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c~(u h - u )  = ~(PhdU --U) + PhdL -1 ~ L(U h --PhdU) 

+(I --Phd) ~(Uh--Phdu) + Pha L-~ (Lc~ --~ L)(uh--Phdu). 

We show that each of the four terms on the right hand side of (3.12) may be 
bounded in the H t norm by the right hand side of (3.11). Clearly 

II~b(Phd u --U)II~_--< C 1lull,. 

For the second term we use the inverse property (3.6), the mapping properties 
of L (3.1), the triangle inequality, and the approximation property (3.4) to get 

IIPha L - x (a L(uh-- Pha u)l[t< C h s-t liE-1 d~ Z(u h - e~du)lls 

<= 61 h s - '  [Idp L(uh -u)lls_~ + C h s- '  Ilu -- Phdulls 

< C1 h s - '  114)L(Uh --u)ll~_~ + C Ilull,. 

By (3.5), (3.7), and (3.4) the third term may be bounded in H'  by 

C h ~ Hu h-Phdull,< C h ~-'+~ [[u h-u[[s + C Ilullt. 

Finally we apply (3.4), (3.1), (3.8), (3.3), and (3.7) to get 

IlPha L -1 (L4~ --~ g)(u h --Phau)llt 
f C h  ~-t+ minl~l't-s~ IlUh--ull~, s<t ,  

< C Iluh --phdull~_~, < C Ilull, + l C  
Iluh S = t .  

This completes the proof  of the proposition. 

Proposition 3.4. Let t, s e n  satisfy t=t=fl <_s<_t <d + 1/2. Then there exist positive 
constants C and 6 such that if ueH t and Uh~h d satisfy the collaction equations 

L u = L u  h on A, (3.13) 
then 

Iluh -ull~--- C h r Null,+ C h ~ Ilu~-ulls + ~ O' 
s < t .  

- (Cl lu~-ul l~_o ,  s = t .  

Proof. Again choose Ph d as in Lemma 3.1 with r = t  and choose {qSj, 0~, xj}f=l 
as in Lemma 3.2d with e to be specified below. Define 

Lj=b+(xj)QP++b_(xj)Q~_+c~J, j = l  . . . . .  M, 

with c~ = ~/(2 z)a/2. F rom (2.2) we have 

C2X[Ivll~+p<llL~vtls<CzllVlls+~, v ~ H  s, s e N ,  (3.14) 

with C z depending only on fl, b+ and b_. Moreover  if w e l l  t and WheS~, a 
satisfy 

Ljwh=Ljw  on A, 

then by the results of the previous section we have 

IIw-whll~ < C3 ht-s Iiwllt (3.15) 
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for f l < s < d + l / 2 ,  s < t < d + l ,  f l + l / 2 < t ,  with C 3 depending only on fl, b+, b_, 
s and t (but not on the choice of {q~j, 0r, x j} nor on j). 

Now let u and u h satisfy (3.13). Combining the identities 

Li P,a ~ j u, = Lj ~p i u + L2 b j(u h - u) + L~( Pa dp ~ u~ - ~ ~ u,) 
and 

L~ ~b~ (u h - u) = (L~ - L)  q~ (u h - u) + (L  ~ - ~ L ) (u  h - u) + c~ L(u  h - u) 

L~Phdqb~Uh=L~wj on A (3.16) 
where 

w j = (g j u + L~ 1 (Lj - L) ~ j(u h - u) (3.17) 

+ L~ 1 (L qb i - dpj L) (u h - -  U) + (Ph d - -  I) q~; u h (3.17) 
o r  

wj  = Ph d ~)j Id h -- L~ 1 q~ j L(Uh __ U). (3.18) 

Applying (3.15) with w = w j  and Wh=Phdq~Uh and using (3.18) we get 

]IL-~ 1 (~ j L ( t t  h --t/)lts ~ - C3 h t - s  Ilw j[[t, (3.19) 

We now estimate PIwjlI~, bounding each of the four terms on the right hand side 
of (3.17) separately. Clearly 

IIcbj ull~_-< c IiulL~. (3.20) 

By (3.14) and the triangle inequality 

Z.. = IIL~ l (Z j  - Z )  ~j(uh - u)ll, 

< C2 [tl t~;(L; -L)qS;(u h - u)ll,_a + [1(1 -~Fj)(Lj - L )  q~j(u h -u)ll ,_a] 

< C2[ll~(b+(xj)-b+)Q~+ ~(uh-u ) l l , _a  

+ II ~k~(b_ (x j) -b_)O~_ qbi(u h -u)ll ,_a] 

+ C[llUh-ukl,_o + I[(1 --~)(Lj--L)dR~(Uh--U)II,_p]. 

Using (3.10) and (3.9) we deduce from (3.21) that 

T < 2 Cze ]l(oj(u h -u)l]t + C I[u h -ul]t_ ~. 

Using Proposition 3.3 and (3.14) to bound the first term we get finally 

Z < 2 C t C2 eh s- '  Itt~ a q~ j L(Uh--U)l[~ + C [llull, + Iluh -ult ,_~ + h "- ' -~  Iluh -ull~]. 

By (3.14), (3.8) and (3.3), 

[tLTX(Ldpj--qSjL)(Uh--U)llt< C lluh-u[[t_~, 

and by (3.5), the triangle inequality, and (3.7), we find 

[](Ph a --I)~)jUhllt ~ Ch ~ I/uh]], < C(h ~-t+~ ]In h -uHs + h  ~ Ilu It,). 

with (3.13), we get 
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Collecting these estimates together with (3.19) gives 

II L~ 1 qbj L(u h - -  12)Ils ~ 2 C 1 C~ ~ II L~ ' d~j L(u h - -  u) lls 

+ C [h t-S IJuLl,+ h ' - s  Iluh -u t l t_a+h s Iluh - u I1~]. 

Selecting e = (4 C 1 C~)- ~ we get 

NL~ 1 (p jL(uh --U)]ls~ C [ ht-s Ilu ll, + h '-~ Iluh - u  ll,-o + h ~ [luh - u Ils]. 

Since {qSj} forms a part i t ion of unity and L is invertible, 

M 

I l u , - u l l s <  C [IZ(un-u)lls_a < C ~, IlOjL(uh--u)lls_ ~ 
j = l  

M 

< C ~ liLy1 ~iL(Uh--U)lls 
j = l  

~C[ht-Sllullt-4-ht-Sl[Uh-Ullt_~+h~llUh-U]ls-]. (3 .22 )  

In case s = t, this completes the proof  of the proposit ion.  If s < t, we decrease 6 
in (3.22) so that  O < 6 < s - t  and use (3.7) (with t replaced by t - f ) ,  to complete 
the proof. 

We now complete  the proof  of Theorem 1.1. Assume momentar i ly  that  
there exists u n ~  h satisfying (3.13) for some given u ~ H  ~. We shall prove that  
this implies the (s, t)-optimal convergence estimate 

Ilu -uhl ls_-  < Ch '-~ Ilull~ (3.23) 

at least for h<h  o, where h o depends only on L,s ,  and t. Note  that  (3.23) 
implies that  the homogeneous  collocation equations admit  only the trivial 
solution. Hence in general the solution u h to (3.13) exists and is uniquely 
determined. To  prove (3.23) we distinguish three cases. 

If f l < s < t < d + l / 2 ,  t > f l + l / 2 ,  then (3.23) follows directly f rom Proposi-  
tion 3.4, for h < h o, with h o sufficiently small. 

If  f l + l / 2 < s = t < d + l / 2 ,  we again use Proposi t ion3.4,  replacing 6 by 
min(6, s - f l )  so that  we may  assume from the outset that  6 < s - f t .  Now 
applying the result of  the previous paragraph  with s replaced by s - 6 ,  we get 

Ilu--uhll~_~ < C ha Ilul[~. (3.24) 

Substituting (3.24) in Proposi t ion 3.4 and choosing h o sufficiently small again 
gives (3.23) for h < h o. 

Finally we consider the case fl < s < d + 1/2 < t < d  + 1. Let  us denote by E h 

the error opera tor  uv--~u h - u .  Choose t o ~ Is, d + 1/2), t o >f l  + 1/2. Then using 
the previous cases and L e m m a  3.1a (with r =s),  we have 

I lEdu)Ns= inf IIE(u -X)][~ < Ch t~ inf []u-xll,o < Ch t-~ Ibull,, 
z~seg x ~  

completing the proof. 
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4. Collocation on Smoothly Graded Meshes 

We now generalize Theorem 1.1 to allow a smoothly graded family of meshes 
in place of a family of uniform meshes. That is, we permit the family of meshes 

4 , - 1 ( 5 ) =  {4,- l (x ) lx  e 5} .  

Throughout this section 4, denotes a strictly increasing function such that 

4,(x+ 1)=4,(x)+ 1 (4.1) 

(this condition insures that the mesh 4,-1(5) repeats itself periodically). More- 
over we assume that 4, is a smooth diffeomorphism and the constants in the 
error bounds we prove here may depend on bounds for the derivatives of 4, 
and 4,-1. At present, however, we could not remove the theory of pseudo- 
differential operators from the proof of Theorem 4.2 and therefore require C ~176 

Let 6ea(4,-1 (5)) denote the space of smooth splines of degree d on the mesh 
4,-1(5). The collocation problem is to find Uhe ~a(4,-1(5)) such that 

LUh=F on 4,-1(A). (4.2) 

The analogue of Theorem 1.1 regarding this method is 

Theorem 4.1. Let /3, L, d, and F be as in Theorem 1.1. Then there exists ho>0 
such that (4.2) is uniquely solvable for uhe ~a(4,-1(S)) if 0 < h < h  0. Moreover, if 
s, t e l l  satisfy (1.5) and u=L-I  (F)e H t, then the error estimate (1.6) holds. 

For the proof we require two lemmas. The first is essentially a case of the 
change of variable formula for pseudo-differential operators. The second states 
that the composition of a spline with a smooth function is itself almost a spline 
on the transformed mesh. It is analogous to Lemma 3.1b, which concerns the 
product of a spline with a smooth function. The proofs are postponed to the 
next section. 

Lemma 4.2. The operator 

w ~  [ Q ~  (w o 4')] o 4 '-1 _ (4', o 4 ' -  1)p Q~ w 

maps H t boundedly into H t-a+1 for all t e l l .  

Lemma 4.3. Let r <d + l/2. Then the operator Ph a of Lemma 3.1 may be taken so 
that for all v ~ 5ca(4'- 1 (5)) 

{Ivo4'-x-Phd(vo4'-1)l[,< Ch~[tvl[r, 6=min(1,  d+ l - r ) .  

Proof of Theorem 4.1. It suffices (as argued in the previous section), to prove 
that if u h ~ 5aa(4'- 1 (6)) satisfies 

Luh=Lu on 4'- I(A), (4.3) 

then (1.6) holds. Moreover if we prove (1.6) when ~ < s < t < d +  1/2, the argu- 
ment may be completed just as in the last paragraph of Sect. 3. 
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For  v in some H ", set ~=voq5 -~ and define L: H'~H ~-~ by 

L ~ = L v .  

By L e m m a  4.2, L is an opera tor  of the form (1.1), and clearly (4.3) implies 

L~h=Lu o n  A. 
Consequently,  

L(Phdfih)=L(Phd~h--~h+~) on A, 

where Ph d is given by L e m m a  4.3. 
Applying Theorem 1.1, we get 

Now 
I1~ -~h l l~  C h  ' - s  II Pha ~h - ~  + ~11,. 
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Ilu -uhlls~ c II~-~lls 
and 

I1~11,~ ClluLI,. 
Moreover,  by Lemma4 .3 ,  the triangle inequality, and L e m m a 3 . 1 d  (which 
holds) for any quasiuniform mesh family), 

II ~d~h --~hll,---- < C h  '~ Ilu~ll,_- < C h  ~' Ilull, + Ch T M  [lu -uhlb .  

Collecting these estimates and choosing h o sufficiently small proves (1.6) as 
desired. 

5. Proofs and References for Some Elementary Lemmas 

Proof of Lemma 2.3. First suppose that  d is odd. Then (2.9) may be writ ten as 

f(y)=lyla+l-~ ~ [ ( 2 k _ y ) ~ - a - 1  +(2k + y)p-a-1], 
k = l  

g(y) = sign (y) [y [d + a - ~ ~ [(2 k - y)r n- 1 _ (2 k + y)P- n- 1 ]. 
k = l  

Since f l < d  both  series converge absolutely and uniformly for y e [ - 1 , 1 ] .  
Moreover  both  functions are clearly even and bounded  by a constant  times 
ly] a+I -p  and f ( 0 ) = g ( 0 ) = 0 ,  g ( 1 ) = l .  Thus we need only show that  both  func- 
tions are strictly increasing on [0, 1]. Since both series may be differentiated 
termwise we easily calculate for y e (0, 1) that  

f'(y)=2(d+ 1 _fl)ya-r ~ k[(2k_y)tJ-n-2 +(2k + y)p-a-2] > 0 ,  
k = l  

g ' ( y ) = 2 ( d +  1 _fl)ye-~ ~ k[(2k_y)~-a-z_(2k + y)~-a-2 ] > 0 ,  
k = l  

proving the l emma for d odd. 
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If d is even (2.9) becomes 

f (y) = sign (y) [yl a + 1 - a ~ ( _ 1 )k + 1 [(2 k -- y)P - a -1 _ (2 k + y)r - d- I ], 
k = l  

g(Y)=lyl d+~-~ ~ ( -1 )  k+l [(2k-y)~ -~-~ +(2k+y)~-a-~] .  

Now since f l < d + l ,  the series ~ (--1)k+~(2k+y) ~-d-~ converges uniformly 

for ye [ - -1 ,  1] and may be differentiated termwise. Therefore f and g define 
continuous even functions on [ - 1 ,  1] which are O(lyl"+~-P), f(O)=g(O)=O, 
g(1) = 1, and for y e (0, 1), 

f'(y)=2(d+ 1 _fl)ya-a ~ ( _  1)k+* k[(2k _y)a-d-z _(2k+y)p-d-2]  
k = l  

2 

> 2(d + 1 _fl) yn-a ~ ( _ 1)k+l k[(2k _y)# -d -  2 - (2k  _y)# -d -  2] >0, 
k = l  

g' (y)=2(d+ 1 _fl)ya-p ~ (_ 1 ) k + l  k[(2k_y)a-d-2 +(2k + y)e-d-2] 
k = l  

2 

>_-2(d+l-fl)Y d-~ ~ (-1)k+lk[(2k-y)13-d-2+(2k+y)~-a-2]>O. 
k = l  

Thus f and g increase on [0, 1] and the lemma is proved. 

Proof of Lemma 3.1. The inverse property stated in part (c) is well-known and 
requires only a quasiuniform mesh family. A reference which allows the full 
range of noninteger and negative indices is [18]. 

The approximation properties stated in part (a) are also familiar. In the 
uniform mesh case Ph ~ may be given constructively independent of r (see [2]). 
Even on general meshes the result holds (see [18, 22]). Approximation proper- 
ties analogous to (3.5) have long been used in finite element analysis, cf., [29] 
Proposition 5, and [30] Hypothesis A.3. However to get this property in our 
periodic case involves a slight complication, so we outline the construction 
here. 

For a<b and q real numbers, let Hq(a, b) denote the nonperiodic Sobolev 
space, of index q on the interval (a, b). Also, for q a positive integer we define 
the (periodic) piecewise Sobolev space H~(~) consisting of those u~H q-1 such 
that ul~.xj_l.x)~Hq(xj_l,xj) where ~={xj}.  For u~Hq(~) we denote by 
u(q)~H U the'piecewise (not distributional) qtla derivative. Finally let XoeZ 
denote any nodal point. Since there is no distinction between periodic and 
nonperiodic splines of degree zero, we can find Ph0: H'-d(Xo, Xo+ 1)-~6gh0 such 
that if s<r-d<t< l 

I]u-Ph~ <Ch'-SJlull,, u~H'(xo, xo+l ). (5.l) 

Since Ph ~ reproduces constants we have in particular that 

[lu-Ph~ u~nl(xo, xo+l). (5.2) 
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Now if u~HI(E)  we can choose ~ k e ~  ~ such that  u+~k~Hl(xo,  xo+l) .  Then 
by (5.2) 

IlU--ehO ullr_d = H(U + O)--PhO(u + ~ ) L _ d  <--_ C hd+ a-r ll(U + ~')'llL2 

< Ch T M - "  IlumlIL2, (5.3) 

since ~b(1)=0. (The trick of adding ~p to cancel the discontinuities of u was used 
in [173.) 

In t roduce now the map  

O g = g' + g(0), (5.4) 

which defines an isometry of H q onto H q-1 for all q. Set 

Phd= O-a Ph~ D d. (5.5) 

Then for u e H  z it follows immediately f rom (5.1) that  for s < r < t < d +  1 

Ilu -Phd  u IIs = IlO-a(I -Ph~ u Ils = ]l(l --Ph~ 

< Ch '-~llDdult,_d<= Ch  t-S Ilu[It, 

verifying (3.4). Moreover  if u ~H(d§ then Dau ~Hm(E) so (5.3) implies that 

I l u -Ph%L = IbD-~(I--~~ I t ( / -  ~~ O~u If,-,  

< Ch e+l-* il(Ddu)mllL= = Ch a+l-r Ilu(d+I)][L2. 

We apply this estimate to prove (3.5). For  V~A~h d, ~ov~Hd+I(E), so 

IIq~v-P,~(4~ v)L_- < Chd+l-r II(q~ v)("+'ll L2. 

Now since v(d+l)=0, the Leibniz rule gives 

[l(q~v)r ~)11 _-< C Ilvll~ 

(where C depends on ~b). Applying an inverse assumption,  

[I vlld _-__ Chmin(r-d'~ 

and (3.5) follows. 
It remains to prove par t  (d) of the lemma. This is a simple consequence of 

part (a) (with r = t) and part  (c): 

Ilu -v i i ,  < Ilu -phdu II, + II V-- Ph% It, _-- < C Ilull, + C h  ~- '  IIV--phdulIs 

__< C Ilu lit + Ch~-t [ h'-~ Null, + II v -  ull~]. 

We now turn to the p roof  of L e m m a  3.2. The results are all quite well-known. 
In part icular  par t  a) is a special case of the c o m m u t a t o r  proper ty  of pseudodif- 
ferential opera tor  and parts b) and c) are weak forms of the pseudolocal  
property (see, e.g., [44, 47, 48]). Since we did not  find s ta tements  in the 
literature easily applicable to our  periodic case, we include brief e lementary 
proofs. 
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Proof of Lemma 3.2 
a) Set w=qb(Q~ v)-Q~(4)v). Then 

~(j)= ~ [a•177 6(j-k)~(k)-a• 
k*O, j  

where a+ (k)= I kl a, a_ (k)= sign (k)Ikl a, so 

j ~  7Z*, 

IlwtlLa+l= ~] [2nj[2(t-P+')l ~ [a•177 
j , o  k * O , j  

- ~ •  (j) 6(./)  ~(o)1 ~ + I,~(o)L ~ 

< 2  ~ [ ~ {la• (k)-cr• *-~+l Ik l - t l6 ( j -k) l}  Iki'l~(k)l 12 
jevO k:#O,j 

+ 2  [ ~] 12 rcjl 2~'-a+u Iq~(j)l 2] I~(0)12 + I~(0)12 . (5,6) 
j * 0  

We wish to bound the three terms on the right hand side on (5.6) by 
cEI411~ rlvll, ~. N o w  

]a•177 ]fll)lk-j[ max (Ikf -1, ] j f -  1), j, keT/*, (5.7) 

as follows from the mean value theorem, the triangle inequality, and - in the 
case of a_ - a separate consideration of the case kj < 0. Also 

Iq~(m)l < 12 nml-"  ll~bl{, m6Z*,  r ~ l l .  (5.8) 

We now bound the bracketed term on the right hand side of (5.6). Employing 
(5.7) and (5.8) and the elementary inequality (a variant of Peetre's inequality) 

Ijl r Ikl-r 
bj_klH < 2  Irl, r ~ ,  j ,  k~Z*,  j4:k, 

we get the bound CItc~llq/Ij-kl 2 for appropriate constants C and q depending 
only on fl and t. Now 

~ 1  ~, Ikl'l~(k)l/[j-ktZ[ 2 
jeFO k*O,j  

< F, [kl z' [~(k)l 2 < C Ilvl[, 2. 
l k:#O 

Consequently the first term on the right hand side is bounded by C I[~bH 2 Ilvll 2, 
as required. The second term may clearly be bounded similarly. Finally [ff(0)l 
= I~bQ~ vl < []~blla_t [Ivllr Combining, (3.8) follows. 

b) Since ~b~ = 0  we may apply (3.8) to get 

II 4~ (2~  ( 0  v) ll,_ ~ = II q~ Q~ (O v) - Q~ [~b (~ v)] lit- p < C II r v II,- 1 < C tl vii,_ 1. 
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c) We must show that if ~b ~ C ~ has support in I o (and its periodic trans- 
lates) then 4)Q~v~H 1. Since veHa+l(Io), then dpvEH ~+1, so Q~(q~v)e.H 1. 
Also since v6 H ~, (3.8) implies that c~Q~ v -Q~  ((ov)6 H 1. 

d) We require the following result: 
For each t ~ 1t there exist positive constants C and q such that 

114~vll, < [Iq~IIL~ IIvlI,+ C IlqSllq IIv[I,_ 1 (5.9) 

for all dp~C ~176 v~Ht; cf. [45]. To prove (5.9) set A 'v=(2z  t t v ) (2+ +e(0) so Ilvll, 
= [IA'vllo. Hence ll4~vll,< IIq~Z'vllo+ IlZ'(4~v)-4~a'vllo. N o w  

IIq~A'vllo_ -< IIq~IIL~ IIZ'vllo = Ibq~llL~ IIv/I, 

while (3.8) gives ILAt(dpv)-qS AtvHo < C ]ldpllq Ilvll,. 
To complete the proof of d) we choose the partition of unity {q~j} and 

functions ~kj so that II~'jlIL~ < 1 and the support of each 0j is small enough that 
Ib•177 whenever x, yEsupp~kj. Choosing any xj~supp~j  we have 

II ~'j [b_+ - b e  (x j)] IIL~ < ~, 

whence (3.10) follows from (5.9). 

Proof of Lemma 4.2. The proposition of Lemma4.2 is a special case of the 
symbol technique and asymptotic expansions in the theory of pseudo-differen- 
tial operators since the operators 

[Q~(wo~b)]oq5 -1 and (~b'o~b-1)~Q~ 

are pseudo-differential operators (see [40]) having the same principal symbols 
in each case j =  + ,  respectively (see Theorem 5.1 in [47]). Then the mapping 
properties in Lemma 4.2 correspond to those of pseudo-differential operators of 
order f l -1  in Sobolev spaces (Theorem 6.5 in [47]). The corresponding analy- 
sis rests on the fundamental and deep results on Fourier integral operators by 
H~Srmander [23], and up to now we have not been able to find a simplified 
proof by using solely Fourier series and Fourier coefficients. Therefore we 
indicate here how for j =  + our operators can be identified with the corre- 
sponding Fourier integral operators and follow closely the presentation in [47, 
pp. 48-49] referring the reader for the detailed proofs there. (For j = - o n e  
proceeds in the same manner.) 

First note that for any 1-periodic function u(x) the Fourier transform exists 
in the distributional sense taking the form 

F[u](s):= I u(x) e-2~'~dx= ~ a(k)fi(k-s) 
--0o k ~ Z  

with 6 the Dirac distribution and s~R.  Thus, for periodic u, 

Q~+ u(y)=~p+(~)  ~ ~(k)6(k-~)eE~'~Yd~ 
~. k E Z  

= ~ ~ (2~zt~a+ (())u(y)e2~i~(x-r) dyd~ 
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where %+ is a Coo-function with 

a~+(~)=S,~, p for ,~1>1 and 
/o for ~ near 0. 

This means 

Q~+ u=2rctr~+(D)u for every 1-periodic distribution u. (5.10) 

By definition. 2r~tra+(D) is a classical pseudo-differential operator having the 
symbol 2na~+(~)~Sa,,o [47, p. 37]. Now set 

t = ~ ( x )  = x  + # ~ ( x )  

where q~")(x) is 1-periodic due to (4.1), and 

x =  t/'(t):=4~-*(t), z=4~(Y), y =  '/'(~). 
Then 

[Oa+ (w o q~)] o gs(t) = SS 2 rc aa+ ({) w(4)(y)) e z=ir dy d~ 

= ~ ~ 2 ~ ~ + (~) w (~) e ~ ~ ~ ' " ~ - ~ ' ~  ~ '  (~) d ~ d ~. 

Since the transformations defined by q~ and ~, respectively, are supposed to be 
smooth and regular, we find that the functions 

~ ( t ) -  7'(z) 
�9 (t. z): and 1/~ 

t - - T  

are regular and positive for all t and z. Hence, {' = �9 { is for every t, z a regular 
transformation and 

with 

[Q~+ (w o ~b)] o gs(t) = ~ ~ a(t, z, ~') e 2~'~'-') w(z) d ~' dz + K w 

a(t, z, {')=2arT,+ ~ )  ~(---~, z ) . t l t - z [ ) ,  

K w = 5  5 2rt%+({)w(z) e2=ir gs'(*) " ( 1 - E ( I t - , J ) ) d  r a , ,  

where h e  C~~ with Zip)= 1 for all Ipl < 1. 
For the additional operator K we find - by integration by parts -, that it 

can be written as the integral operator 

Kw(t)=2rt 5 w(qS(y)) (1-E(lt--q~(y)l)) ,,<m v# + yER (--2rti(gt(t)--Y)) u ~ ~ (~)e2~i~'<~ d~dy 

with N > f l + 2  having a C~176 The first operator 

aw(t) ,=5 5 a(t, z, {')ea"'c~ dz 

is a Fourier integral operator being "properly supported" whose amplitude 
function a satisfies the estimates 
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ID~ D t Dr z, ~')l ~ ce~(1 + I~'1) p-~ 

for al l  ~, ~, 7~IN o a n d  all t, z, ~ ' ~ R .  H e n c e  a b e longs  to  H/Srmander ' s  class 
S~,0,0(R3),  [47, p. 43] and  A is a p seudo-d i f f e ren t i a l  o p e r a t o r  which  can  be 
wr i t t en  as 

A w( t )=a( t ,  t, O)w + ~ ~ b(t, z, ~')e2~i~'~t-~) w(z)d ~' dz  

where  b(t, z, ~'):=a(t,  z, ~ ' ) -a ( t ,  t, ~')~S~-ol, o . This  is the  decis ive  p r o p e r t y  
which  fol lows f rom H 6 r m a n d e r ' s  resul ts  [23]  (see T h e o r e m  3.8, p. 44 in [47]). 

a(t, t, D ) w = ~  ~ 2ntra+ (~' (9'(~(t)))w(r)e2~i~'"-~) d z d ~  ' 

=~cra+(~ '  �9 (9 '(~(t))  ~ ~(k ) f ( k -~ ' ) eE~ i~ ' t d~  ' 
1R k ~ i t  

=((9'  o (9-1)~ Q~+ w 

for every  1-per iod ic  func t ion  w. Since  K has  C~ a n d  beS~,ol, o, the  
p r o p o s i t i o n  of  L e m m a  4.2 fol lows f rom the  m a p p i n g  p rope r t i e s  of  the  F o u r i e r  
in tegra l  o p e r a t o r  wi th  a m p l i t u d e  b, see T h e o r e m  6.5 in [47].  

Proof  of  Lemma 4.3. W i t h  the s m o o t h n e s s  of  (9-1, the  m a p p i n g  D in (5.4), (5.5) 
and  wi th  the  cha in  ru le  we find 

IIv o (9-1 - P d ( v  o (9-1)11,= IlD-a(I --PhO)Dd(v o (9- 111 ' 

= I1(I -Ph~ v o (9- X)llr_ a 

< ch~+ 1 - ,  II(v ~ ,h -  l~a+ 1), - -  "ff ) II L 2 ( S )  

d 

<ch ~§ l - r  Y~ cj((9-1) iiv~J>llL2 
j=o 

<=cha+l-'[Iv[l~, 

since v~a+l)=O be tween  the b r e a k  points .  W i t h  an  inverse  a s s u m p t i o n s  as (3.6), 
L e m m a  4.3 fol lows.  
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