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SUPERCONVERGENCE OF THE GALERKIN APPROXIMATION
OF A QUASILINEAR PARABOLIC EQUATION
IN A SINGLE SPACE VARIABLE ()

D. N. Arnorp - J. DoucLas, Jr. ()

ABSTRACT - The asymptotic expansion of the Galerkin solution of a parabolic equation by
means of a sequence of elliptic projections that was introduced by Douglas, Dupont,
and Wheeder is carried out for a quasilinear equation. This quasi-projection can be
applied to establish knot superconvergence in the case of a single space variable.
In addition, an optimal order error estimate in L= (L~) is derived for a single space
variable.

1. Introduction.

The main result of the paper is the establishment of knot superconvergence
of the semidiscrete Galerkin approximation to the solution of a quasilinear
perabolic problem in one space variable. The methods used are a direct gener-
alization of those of Douglas-Dupont-Wheeler [31, and the results obtained
here are essentially the same as they obtained in the linear case. In particular,
the basic tool is the quasi-projection, a sequence of elliptic projections (here
with respect to a linearized operator), which approximates the Galerkin solution
to high order and furnishes the recipe for initializing the Galerkin procedure.

The quasi-projection is defined in § 4, in arbitrary dimension, and its con-
vergence properties are explored. In §5, these results are used to establish
superconvergence in the single space variable setting. Specifically, we show
that when the finite element space consists of continuous, piecewise-polynomial
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functions of degree r subordinate to a quasi-uniform mesh of grid size h, the error
at the knots is 0 (h*), instead of 0 (h"*!), the optimal rate in L? or L~.

Because of the nonlinearity of the operator, certain quadratic remainder
terms are introduced. To bound these, we require optimal order global L~
estimates. Such estimates are established, along with the more usual L?
estimates, in § 6.

2. Preliminaires.

The problem to be considered is given by

c(xt, u)gti —V-la(x,t, ) Vu+b (x, t, )] +{ (x, £, u)=0, on X/,

@D 4w n=0, on 92X/,

u (x, 0)=up (x), — on .

Here 2 is a smoothly bounded domain in R, J=1{0, T}, and a, b=(by, b3, ... , ba),
¢ and f are bounded, smooth functions on 2XJXR. We assume that a and ¢
are strictly positive and that f is non-decreasing in u, the last being a condition
obtainable without loss of generality by a change of variables.

Much of our error analysis will take place in the usual Sobolev spaces,
We? (2), s a non-negative integer and 1<p=< oo, with H* (2) denoting W** (2).
We shall also use the normed dual of H*® (£2), denoted by H—*(2). The norm
Il g @y Will be abbreviated to ||-]|s, or if s=0 simply to [|-||. The notation
[|F|| 5., denotes the norm of ¢+ [|F (-, #)||x in L7 (J).

For each of a family of values of £ in (0,1] clustering at 0, let M =M, Ho'(R2)
be a finite-dimensional space. We assume the following approximation property:

For some positive integer r and any ge[1,r+1], there is a constant C
such that for all peHy' (2) N H? ()

2.2) inf Tllo—xl +#llo—xll1=C lgll, 4.
In addition we make the following inverse assumptions:

d
23)  |lxlli=cr||xl| and [|x]| jw=<Ch ™ * ||x]| for all xeM.
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Here and throughout, C denotes a generic constant. As we shall often wish to

call attention to the dependence of a constant on u, we adopt the following
i
for

ot

notation: C (¢, k) is a generic constant depending on ‘
/ Lo (Wi @)

j=0,1, ..., k, but on no higher derivatives of u.

3. The approximate solution.

The solution u of (2.1) satisfies
6 (e (u)gT”,v)Ha () Vut-b (@), Vo) +(f (0),9)=0, veHd ().

(The dependence of the coefficients on x and ¢ will frequently be suppressed
in the notation.) The approximate solution U=Ux: ] —» M is then defined by
the Galerkin method:

(3.2) (C ()] gtg s ‘v> +(a U) VU+b (), Vo) +(f (1), v)=0, veM.
The specification of U at the initial time =0 will be made later.

Let t=U—u. For each fixed x and ¢, we have

B _ 0L e,
(3.32) C(U)é-t— =c (W 37 +C(u)at +cu (u)at L+ Cat +Cuy; &,

(3.3b) a(U) VU=a @)Vu+a @) Vi+ a.w) {Vu+a. EVE+auw & Vi,
(3.3¢) b (U)=b ) +bu ) {+bu B,

(3.3d) FO)Y=F @ +Fu @ E+fuu &
1

1
Here the notations F.= f F. (u+78) dr and Gu= [ Guu (u+72) (1—7) d7 apply

] 0

for F=a ot ¢ and G=a, b, c or f. Of course, the subscript notation indicates
partial differentiation.

Set B (g, ¥)=(a ) Vo+ [a. (1) Vu+b. @] 0,V + . () o, o).
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The Dirichlet problem for the bilinear form B has a unique solution. In fact, if
p€eHY (2) and B (p, $)=0 for all YeH,' (), then

V{a @) Vo+ [a. @) Vu+b, ()] ¢}=F: () ;

thus, the uniqueness results for equations in divergence form ([1], [6]) imply
that @=0. It follows ([4]) that elliptic regularity holds in the following form:

if peHy' (2) and B (u, 9)=(u, ¢) for all peHd (),

llpllsa=C Iglls »

then

where C depends on [la (@)|| gs+15 » ||au @) Vu+bu W] goz5; » and || )| gaz 3
i. e.,, C=C(s+1,0). Note also that

B (@, )] =C (1,0 |loll: [I¢ll: for o, peHo' (R2)
and

1, '
B (9, 9) = (inf a) lloll2—C (1, 0) |lp|P for peH (2).
The same properties are possessed by the adjoint form B* (p, ¢)=B (¢, ). Let
_ ¢ = a_u 2
Rl——Cu §at +cuu at C +fuu CZ;
R, =;u CV€+;uu Vu C2+_buu Cz

Then substituting (3.3) into (3.2) and subtracting (3.1) results in the relation

(3.4) (c (u)gti,v)+ (c,, wie, o) +B (&, v)= —(Ri, v)—(Ra, V), vEM.

Let u=us: ] — M be the elliptic projection of u given by
(3.5) B (u—u, vy=0 for all veM.

It is standard that ¥ is uniquely determined for A small (compared to C (1, 0)).
Let n=u—u, §=;—U; so, {=n—E&. Then from (3.4) we see that
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of

(3.6) (c W%+ % §,v)+B & v)=

=< ¢ ) g—? @) 57 1+ Ry ») +(R;, V), veEM.

We shall need to know how B interacts with time differentiation when its stet
argument is time-dependent. For this, let @: J— He' (2), YeHo' (2). Then by
Leibnitz’s rule

60 Bsew=3 (L) ew|r EE.ve)+

O tw @ verb @) 52 v+ (G thwn G20 )=

_p(&e *3 Du(22
_B(atk ,¢)+ 2 Dik( ati—9¢)9

where for yeH,' (2)

Di (v, P)= (k) %( Z:kl, a(u)]\77+ La

S [ @) Vu+-b )] v, V¢)

(dt" — [ )] 7,¢>

—(* (¥, — dkk ~a W) VY| + kk ; [au (W) Vu+b )] -V + kk = fu @)
l dt dt dt

Hence,

-

C (1, k=i [lglls [1¢]}: »

3.8) D (0, )| < _
Cs+1, k—i) ||o]|-s [[gllesz, 5=0,1,2, ...

The following lemma will prove convenient.

LEMMA 1. Let there be given a linear functional F: H¢' (22) = R and numbers
M=M= ...=Mpy, 0<p=<r, with

[F (0)| <M, ||p||; for all peH* (2)NHd' (2), s=1,2,...,p+1.
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Suppose @€ Ho' (£2) satisfies

B (®, y)=F (y) for all yeM.
Then there exists e=C (1, 0)~'>>0 such that, for h<s,

18]]-=C (max (s, 0)+1,0) [(M+ inf [[®—2li0) b+ Myl
'

for s=—1,0,...,p—1.
Proor. First note that

B(®,9)= inﬂf[ [B(P,2—Xx)+F (x—P)+F (D)=
%€

s«KLm”¢W+M0miW—¢m+MH@W.
XE
Hence

(3.9) lolh=C 1,0 (o]l + inf [lx—2[|»+CM:.

Next, given ¢eH* (), 0<s<p-—1, define pe H*** (2) N Ho' () by

B (p, »)=(p, ¢) for all peHd' (£2);

thus,

lolls+2=<C (s+1,0) |- -
Then,
(3.10) (@,9)=B (P, 9)= in;fu [B@,0—x)+F (x—@)+F(@)]=

G

<C (s+1,0) [(|®]}1+My) B +Msi2] [|¢]s -

Taking s=0 and ¢=¢ yields the inequality
[lo|| <C (1,0 [(||®]i+M) b+ M.].

Substituting this result in (3.9) gives, for small A,

l®]ls =C (1,0) M1+ inf ||&—x]]),
reM

which is the desired estimate for s=—1.
Using this estimate in conjunction with (3.10) completes the proof.
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THEOREM 2. Let k=0 and 1<g=<r+1. There exists £>0 depending on
[i4]] goo (i, o0 @y Such that, if A<e, then

Proor. For yeM,

oty

a7 <C (max (g, s+1), k) i°*? for —1=<s=<r—1.

-8

b)),
When k=0, F,=0. Also,

inf [In—xll:= inf lu—x|lt=C (q, 0) *~".
Lemma 1 can be invoked to establish the theorem for k=0.

We proceed by induction on k. For k positive and for all pe H* (2) N Ho' (2),

k-1 ain I
IFe ()] <C (max (5,0 +1, 00 2 )5 lellsre=

<C (max (g, s+ 1), k) **||pl[s42, s=—1,0,...,7—1,

where (3.8) was used to obtain the first inequality and the inductive hypothesis
for the second. Also,

= inf
" yeM

ok
ak

inf 1
wed

k t
” P —x| =C@hm
1

Combining these results with Lemma 1 completes the proof.

4, The quasi-projection.
Set zo=7 and let z;=z;»: J—> M, j=1,2,..., be defined recursively by

921

ou
~af c. (u) % Zj-1, 'v) , TPEM.

@.1) B (zv)=— (c @)

The essential property of the z;’s is that they decrease geometrically in size.

THEOREM 3. Let j=0, k=0, and 1<g<r+1. There exists e=C (1, 0)-'>0
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such that

Nk
(4.2) gz

=<C (max (¢, max (s, 0)+2j+1), k+j) hete+¥

for ~1<s<r—1-2j and h<e.

Proor. The case j=0 is covered by Theorem 2. We proceed by induction
on j.
For j>0 and k=0, let

_ k—1 ¢’ z; 0z; 1
Fp)=- ioDik(dt, ,.0) dtkl W == +""(“)at zil] P)

for peHo' (2). Then

13
B(a % ) =F (y) for all yeM,

TR
and
k—1 i,
IF (o)] <gC(max(s 0+1,k) = %tf’ +
=0 —8

+C(s+2,k+ 1) Z

182]1{

~

e

- for s=—1,0, ... The inductive hypothesis implies that F fulfills the hypotheses
of Lemma 1 with p=r—2j, and
)

for s=—1,0,..,r—2j—1. Since the infimum appearing in the conclusion of

&z

M. =C (max (g, max (5, 0 +2+ 0, ke+p{ v 7 |88

=0

the lemma is zero for o= aa ~ » it follows that

‘aat;z' =C (max (g, max (s, 0)+21+1),k+1)(h‘+‘”2'+2 at h’+‘+
-8 =0
7 2a) )
+1'I=ZO ’ at’ "—a )

If k=0, the sums are trivial, and the claimed result holds. The theorem can then
be completed by a simple induction on k.
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To complete the description of our Galerkin method, we impose the follow-
ing initial condition on U:

4.3) U (0)=2 (0)+z1 (0) + ...+ 2 (0)

for some k< [%] . We shall see that the most useful value of k is [r_—_-_l .

2
Let Ox=£+zi-+...+ 2. Then for all veM

( C @) gﬂk

) (c @ gfk TIPS ) +(Ray V),

te (u) < 01,0 )+B 6e, v)=

0 (0)=0.
This is a direct consequence of (3.6) and the definition of the z;'s

THEOREM 4. If 2k<r—1 and 1<¢=<r+1 and if h<C (1,0)7! is sufficiently
small, then

4.5) 10Kl] oo oy + 1Ol 22 iy <
<C (max (g, 2k+2), k+1) he*mir@+tr=0 4 € (1, 1) (|[Ry|| ga g1y + [IRo| 12 za))-

ProoF. Choosing v=0; in (4.4) leads to the relation

‘%- (¢ (@) 0%, 0)+B (0r, )= —;—( L—gc W)

ou '
O, Or ) ~(Cu (v gﬂk, O ) +

+(c@ 4o, @2 21,00) + o 0+ R 700,

Thus,

L (e @) 1,00+ I012=C 1, 1) 47+

azk

K

rea (et | ) +CARIP+ IRIP.

The Gronwall inequality implies that
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”0"”L°°(L2)+ ”HkHIAH‘)S

oz ||

¥ |z2@-y

<C(, 1) (lzdl| g2 (g + }

+ [IRi]| g2 a1, + (IRl 22.22),

and (4.5) follows from (4.2).

THEOREM 5. If1<g=<r+1 and if h<C (1,0)! is sufficiently small, then

dr

(4.6) Hﬁk”Loo(Hi) + “ Tl

Iy

C (max (q, 2k+2), k+1)h***+C (1, 1) (||Ry]|zs s + 57" ||Re| 123z,
if 2k<r-—1,

=/
’C (max (q, 2k+2), k+2) h"”"“-{—C (1, 1) (||R1”m (I +h-1 ”Rz“ 12 (_Ln)),
\ if 2k<r-—2.

Proor. Note that

. h\_1 d 1(d
B(0n38)= 5 @@ V0, V00— 5 (5 la @] va.) +

o

+( 10 @ v+, @1 64 Vo) + (@ ek,g—fi) .

ct
Consequently, if the test function » in (4.4) is taken to be d6:/d¢, it follows that

4.7) (c () gti, -g—f—")+ -;—zl“? (@ () Vi, Vi) =

= (cu w & g,, % )
ot

1 (d
ET + = (Zl? [a (w)] Vs, Vak) -

2

00 00,
~{ [0 @ vut b @1 0, vy) - (fu @) s, aT)+

O, G WA (o W a6 _
+(C(u) at +Cu(u) at Zk, at)+(Rl, at >+(R2,Vat )—

=h+)4+..+]7.
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Let ¢= inf ¢ (x, ¢, z)/7. The following estimates are clear:

1] <e| 2
12 <C (0, 1) ||0:]2,
(4.8)
Jaf <e 5{% 11647,
Js| <e 25" f +C (0, 1)H| ]
|Jo| <e aakl +C||Ry[2

As a result of the inverse assumption (2.3),

39k| l
a || TFa

49) 7 < IR } l " L Ch ||R.

355

To bound the integral of J; with respect to time, first integrate by parts in time.

Thus,

t
(4.10) ‘fh dz
0

t
+/(Eat— [a. (@) Vu+b. (w)] Ok, VO )d‘H‘

0

= ( —([@u (@) Vu-+bu ()] 0, V) () +

/ ([a, @) Vu+b. W]+ g‘g" Voo dz | <

o
0

f
<2 Yo @lle+C A, D 6] o gty +

23
t

dr.

+C (1, 0) ||Bel sy +ef
0
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Combining (4.7)-(4.10), we obtain the bound

¢

96

(4.11) f” TR
0

2 3
dr-+ [0 OIIF=C (1, 1) (I6elfz0 ary + [106]] o0 1)) +

o)
La(L

+C- ([Ril| %z +57 (IRl 3 ) )-

Ozk

+C (0, 1)(”zk”v<m +5

The upper inequality of (4.6) follows from Theorems 3 and 4 and (4.11), where
2k<r-—1.

If 2k=<r—2, we obtain the improved estimate by integrating the time
integral of Js by parts before applying Theorems 3 and 4:

t
Jet
0
azk
—/[ c()at dt[ w3

t

fc(u) %tf" e )g;‘ gf" ,ok)dr

0

c (u)g—:-"—+cu (u)%:i Zk, ﬁk)(t)—

Zk, 0k ) dr—

=

mf a

16 D)2 +C (1, 2) ||0a]| 2o ar) +

2

Oz
ot

%z

E

I2

+C(, 1)(“zk”21;°°(H‘1) + IL°°(H‘1)) )

Lo HE=) )

5. The quasi-projection in a single space variable,

We now specialize to the case 2=(0,1) with the finite element spaces
being piecewise polynomial functions. Thus, for each & we suppose given a

partition 0=xo"<x1"<...<x§‘vh=1 such that - max (x*—x%_)=h and
=1,..., Np,
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max_ ((x/"—x"_1) (x—x"_1)'=C,
§=1, ..., Nh
i=1,..., Nh

with C independent of k. (This last condition is referred to as quasi-uniformity).
it is supposed that My is the space of continuous functions on I which restrict
to polynomials of degree at most r on each (x"j_i, x"). We remark that the di-
mension of M, can be decreased without affecting the arguments below by
requiring that the functions of M, have derivatives up to order p; for some
pi<r at certain knots x;*; however, at any knot at which superconvergence is
to take place the smoothness constraint on M; must reduce to continuity. The
hypotheses (2.2) and (2.3) hold for these choices for M.
The inequality (where {=U—u, as before)

(5.1) 1C1] poc (L°°)+H o

QQ

+h ¢ =

|
t ] LI (LY
<C (max (g, 2k 1), max (k, 1)) h*

for 1<q=<r+1 will be proved in § 6 in the case of a single space variable. Since
the initial condition U (0) depends on the choice of k, { depends on k. An
immediate corollary of (5.1) is the inequality

(5.2) [|Ry]| s @2y 4+ [|Re|| 12 2y, <

<C (max (g, 2k+1), max (k, 1)) b4, 1=<g=<r+1.

We now use the method of [3] to extract superconvergence results from
Theorem 5. Let x€(0, 1) be a knot in each of the partitions; i. e., for each h
there exists i (k) so that x=x"u,. Let

He={u: u|wz €H ((0,%), ul@neH* (x, 1))} XR,

and norm H* by

”l(": ‘B)mz: ”u“2 + ”u“ir' ((5,1))+'Bz'

H((0, =)
For the pair (4, f) and (v, v) of elements of H°, define the inner product

(@, B), (v, Y)]1=(u, v)+ 7.
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Finally, for zeH! (I) and s=0, let

I[lzl}]-s=" sup [(z,z(x‘)),w,ﬁ)].
11 (e, 831

Note that
(5.3) lz @) < |llzlll-s, s=0,1,2,...

THEOREM 6. Let 1<¢g=<r-1 and 0<s<r—2j—1. Then for A<C (1,0)!
sufficiently small and t€],

8"z,~ !

a* |-

54) “ <C (max (¢, s+2j+1), j+k) ho++4,

ProoF. If (¢, B)eH*, determine peHo! (I) for each te] by
—(@ @) @)+ [ @) ' +b, W] @' +fu W) p=¢ on I\{x},

a@) o l’”+° —B.

(Here we write ¢ for 3—¢) Then, B (z, 9)= [(u, u (%)), (&, §)] for all peHy' (D),

and
1@, @ G)|||s+2=C (s+1, 0) |||, Bl]s

(with constant independent of x). Also note that, if pe W+~ (I) and ueHo' (I),

(or’, ") =p (%) & (x) 9" (x—0)—p (X) 1z (x) ¢’ (x+0)—

x 1
- / u (o9’ dx— / u (pp’) dx.
J /

Thus,

(5.5) [ox’, 90| < (o)) =

1
& (x, u (%)
=C lledll-s [l ol »
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where the constant depends on ||p]};s+1,0 (but on no higher derivatives).
To prove the theorem, we proceed by an outer induction on j and an inner
induction on k. For j=0 and veM,

(5.6) \ Ka;t,?,aka’zk(x))(sb ﬁ)]—B( 9 v)+

=0 =0

k-1 ai 7 k—1 at
4+ X Dik(Tt{,(P—’v)— Z Du (dt' ,(0)
The assumption that the elements of M are continuous, but not necessarily

differentiable, at x implies that

injfl llo—2|:=C [||(@, @ ())|||s+2 A5+! for 0=s=<r—1;
v €

hence, by (5.5) and (5.6),

n

| 9¢%

h‘+1+ Z.' C(s+1,k—

=0

ol

o ||| =

fe—1

-+ Z C(s+1,k— l

I att

|
I -3

|
|

The case j=0 follows from Theorem 2 and the inductive hypothesis.
For j>O0 the proof is similar. For veM,

9z 8z 2
(B2, 229), g.p| =552 0—0)+

k k—1 { .,
(dt"[ ()az’" +cu (u)at Zj_ l],¢ 'v>+ 2 Da (%;—’,qa—v>—

=0

d* azl_1 re—1 o z; }
- (dt"[ @ “(”)at Z ]’q’)_ 2z, D (at' ’q’)
Consequently,

o¢ Zj

ot*

ak Z;j

otk

<C(s+1,0) +

-3

68 | h5+‘+C(s+1,k+1)( ?ﬁ:‘—'
| 1 | ot

| hs+l+
I

of

k-1
+ ”Z,..1”_1) hs+l+ 2 C(S+1,k—1
=0
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k+1 i, i —1 i
+Cet k) & || Lzt + 7 st ki) 9 |
i=0 “ at —3—2 =0 at I —g

Then Theorem 6 follows from (5.8) and Theorem 3 by induction.
Inequalities (5.3) and (5.4) imply that

(5.9) |z; (x, )] <C (max (g, s+2j+1), j) h#+**¥, j=0,1, ...,

for 0<s<r—2j—1, 1<q=<r+1, and h small. Now, write u—U in the form

(5.10) w—w&m=w&w3§a&a
=)

Since |0k (x, )] < || (-.B)||1, (4.13) and (5.2) show that
_ sC (max (q, 2k+2), k+1) (h***+p*-2), if 2k<r—1,

(5.11) [0 (x, D] <

|C (max (g, 2k+2), k+2) (h9+¥+ 4 B2, if 2k<r—2,

again for 1<g=<r+1. Thus, (5.9), (5.10) and (5.11) imply the following theorem.

THEOREM 7. Let 1<q=<r+1 and osks[% r—1 l Then for k< C (1,0)!
sufficiently small, '

_ C (max (q, 2k+2), k+1) (h2+*-h2-2),  if 2k<r—2,
(6.12) |@=U) @&, 1] <

C (max (q, 2k+2), k+2) (he+?*+1 L p2a-2y if 2k<r—1,

where U (x, 0) =u (x,0) 42z (x, ‘O)+...+zk (x, 0) and ;=x,-(;,) is a knot at which

the smoothness of M;, reduces to continuity. If k= [% (r—1)

and g=r+1, then

‘C (r+ 1, %(r+ 1)) k7, r odd,
(5.13) [w—U) (x, )] <
(C(r+1,—é—r+1)h2', r even.

Theorem 7, the principal objective of this paper, is a direct generalization
of Theorem 6.1 of [3]; the constants in (5.12) and (5.13) depend on the same
derivatives of the solution u as did the constants for the linear parabolic equation
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with time-independent coefficients treated in [3]. Naturally, the dependence of
the constants on these derivatives is less precisely defined in the nonlinear case.
Notice that the dependence is balanced with respect to differentiation with
respect to space and time for odd r and for even r is as near so as can be obtained
without consideration of fractional order differentiation in time.

For the linear problem treated in [3] Thomée [5] has recently obtained the
0 (4™)-convergence rate at (x, t) for £=8>0 with the initial values U (x, 0) being
the L%projection of uy .

6. Global estimates.

The main goal of this section is the proof of (5.1). Along the way we shall
demonstrate most of the commonly encountered L? and L= estimates for
parabolic problems. For the L estimates we rely on the estimates for the
two-point boundary value problem found in [2]; consequently, we shall work
mostly in one space dimension. However, the L? estimates work equally well
in higher dimensions, and we begin by working under the assumptions set out
in the first paragraph of § 2.

Following Wheeler ([7], [8]), we separate U—u into two parts, one
representing the difference between U and an appropriate elliptic projection of
v and the other representing the error in the elliptic projection. Define the

projection u: J—>M by
6.1) @wv (a—u), Vo)=0 for all veM.

Note that the projection (6.1) differs from that of (3.5). Let

(6.2) u=&—u, ¢=z:—-U,

where U remains defined by (3.2) and (4.3). It is easily seen by subtracting (3.5)
from (6.1), setting the test function equal to &—Z, and using (3.10) that

(6.3) le~ull:=C (1,0) |[u—uj] <C(q,0) b

for te] and 1<q<r+1. Since ¢ (0)=(u—u) (0)—z (0)—..—z (0), it follows
from (4.2) and (6.3) that

(6.4) |6 ©)||:=<C (max (g, 2k+1), k) h¢, 1Sg=<r+1.
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It is standard that
65)  |lul|l-s=<C (s+1,0) |lujle h**, te], 1=g=r+1, —1=s=r—1.

Since differentiation of (6.1) with respect to ¢ leads to the relation
,u d
(6.6) a (u) V , Vo —;a(u) Vu, Ve |, v€M, te],

it follows from (6.5) that

u_

6.7) { = | ou

lull+ || 5] {he

=C, 1
1

for te] and 1<g=<r+1. If feH’ () with 0=<s<r—1 and o€ Ho' (2) N Hs+ (2)
is determined by (a (¥) Vv, Va)=(v, f) for veHg (), it can be deduced from
the relation

(3.5} (v o) [ e v

(v ([Faw]|va)),

which holds for all yeM, that, for te],

|
|

(6.8) 'l o + {lullq

14 du |
I3t ||- a1 llg

Next, we shall derive some estimates for ¢. Since

hets, 1<q=<r+1.

<CG+1,1)

(c@,0)+@wvith @, vor+y @, v=(cwgfv)
for ve€M, subtracting (3.2) from this relation produces

6.9) ( c¥, v) +(a (U) Vg, Vo) =
= (c (u)gT”,'v)H[a U)—a )] Vu+b (U)—b (1), Vo) +

+ ([c (U)~c(u)]g—;‘ +f(U)—-f(u>,v), veEM.
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Recall [7] that

610 (e 0L, 4)=

L4 L4
d A d
= Efjfc wu—7)rdr dx—ff [Ei—tc (u-—z')]z'dr dx.
Q2 0 20
Thus, if v is taken to be the function ¢ in (6.9),

L'4
(6.11) dit /fc(ﬁ—r)rdtdx+(a U) Ve, V) <
Q0

1. ou |12 A || 9u
< E(mfa) ||V¢||Z+C“ 5—” +C(”u”W1.oov| F7a

— 2
o lu=UlP+

i u 2
+o{ & L)

Integrating (6.11) in time leads to the inequality

(6'12) ||¢”L°°(L’;+ ”‘ﬁ”Ll(Hl) =
: du | (e
SC(Hu“Loo(Wl,oo), ’ 2t |L°°(L°°)) \ 3 L'(L1)+ ”.U“L’(_L')-l“ Hﬂb (0)”)5
A du
<C (max (q, 2k+1), k) C(”u”Lw(leW): W LM(LOO)) a

for 1<g<r+1, where (6.4), (6.5), (6.8), the inequality lu—Ull < &l + llell,
and the equivalence of ||¢|* and the double integral of the first term of (6.11)
have been used; the equivalence follows from the boundedness of ¢ (x, ¢, 2)

above and below by positive numbers.
Now choose v=0¢/d¢ in (6.9). A calculation leads to the inequality -

6.13) (c (%)) a—‘b, éﬁé)_,_%dit(a Q) v, v =

)+

o)l fl+
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890
[a (U)—a @)] Va+b O)~b ),V 22 |+
1/ aUu
+ —Z—(au O) 5~ V. 79).

By the inverse hypothesis (2.3),

Sl 5] ) e

ot

-+

LW

(6.14) (% (a,, (U)%thgb, ng)!sc- (

Lo & ve (8] paeesione),
Next, by integration by parts in time,
(6.15) f[a U)—a w)] Va, Vg—tgé)dr=11+lz+13+l4,
)
where
(6.16) Li=([a (U)—a @)] Vu,V)ih<

1 . At
= (inf @) |[v¢ P+ [I¢ (O)[24C (]l oo (1, 00) leel] %o @yt (1 (3>
(6.17) L= —f (& () —a: ()] Va, V) dr<
0

=< 1001z € 12 g0 1, oo el s+ (1011 20 20,

]
(6.18) I3= —j [( au (U)g"tg—au (u)g_l: VI:, V(p)d‘[:
[]

t

=—f(§ a @ 2G84 10, ) - @12 i V¢)
0
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Lo 2L o (2] :
< 3 (inf ¢) E L’(L’)+ ‘ Y M(L?)+C(0, D |zl 2@y +
+C (0, 1) [[2]] %00 (1,00 11| 3oy »
and
t a A
(6.19) L= —f( [a (U)—a (w)] Vﬁ-;i, ng) dt=<

0

o

S| o ) Clll Bzt 3z

< il + €

L°°(W]‘°°

The term in (6.13) involving the coefficient b can be handled similarly. Thus,

3
oy
(6.20) ” ——l
of ot

=C(, 1)C(H£I|Loo(ww,s i

2
dz+ |l[¢ ®ll¢=

o |
ot |

) 16 @1+ 41+ 1 B

e (WI' oo

du

|3
2
+ llgman+ | 5 | 084 i e
0

By Gronwall,
oy | 2
621) 1321, ot 1sm iy =

<C (1, 1) C ([t 1, 00 @y ) €xD LCH |20z}

| -
(10 O+ 1o+ 10+ Tl i+ |

.

I®(L)

Let q271 d. Then, (6.12) implies that the exponential term is bounded. Apply
(6.4), (6.5), (6.8), and (6.12) to (6.21); thus,
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a3y

6.22) ‘ 3t

+ ”€[’||L°°(Hl) =

L3 (L#)
<C (max (g, 2k-+1), K C ([[u]] 1. o0 ey ) #°

for —;—dSqu+1.

In order to obtain L=-estimates we return to the case 2=I=(0, 1), and we
also readopt the additional assumptions on M, made at the outset of § 5. The
following result combines Lemmas 3.2 and 4.2 of [2].

LemMA 8. Let zeHo! (I) satisfy

(@@ z',v)=0, veM.
Then,

Izl pre=<C (1,00 inf |lz— x|l 1,0
e M
An immediate consequence of Lemma 8 and (6.1) is that
(6.23) llall w1, 0=C (1,0) inf lu—x|] 1,00 <C (g, 0) B*~*
G
for 1<g=<r+1. In particular, this implies that
(6.24) ”uHLoo (Wl,m)sc(l, 0).

Next, let p: ] — Ho' (I) be determined by

@@y, v)= —(dgt(u) w,v ) veHq' (I).

An easy calculation shows that

Iip” W[‘DOSC (0, 1) ”ﬂ” VV"°°’ tE].
Then (6.6) and another application of Lemma 8 with zzg—‘;‘——p lead to the
inequality

(6.25) ;g—t”“mmsmq, 1) he1, te], 1<g=<r+1.
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For g=1,

ou
i <C(,1.

6.26
( ) o (wh oo

The following theorem states the complete set of L-estimates for p and du/at;
the L= (W'~)-estimates appear above in (6.23) and (6.25).

THEOREM 9. Let 1<g=<r+1. Then,

(6.27) ”ﬂ”Loo(Loo) +h ”.u” Loo(Wl, oo ..<_C (q, 0) hq

and

(6.28) | ‘ 2 <C(g, 1) o
| at |L°°(L°°) at e ‘WI.OO)

Proor. A duality argument that is valid in the single space variable case
will be employed. Let geL' (I) and let G: | — W2 (I) satisfy

—(a (W) GY=g, xel,
G=0, xedl.
Since dim (=1,
Gl w22 =C(1,0) |lgll g » t€].
Then, for yeM,
@, =Wy, G'—Xx),
and

a2l 1o =<C (1,0 [lul} 1, o0 B, " tE].

Thus, (6.27) has been proved.
Similarly,

aﬂ _ aﬂ ! ’ ’ d ’ ’ ’
(2,6)=(a (%) .o-r)+ (grewr w.e—x)+

+ (p. Fe G))
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|
ot |

=C(, 1)3 h H g—t!f

o Fr el ot (]l zof <C g, D A5

L® wh
as was to be shown.
Finally, the inequality (5.1) can be proved.

THgorEM 10. Let £=U—u, where u is the solution of (2.1) and U is the
solution of (3.2) and (4.3) for some k such that 0<2k=r-—1. Then, for
1<q=<r+1,

0
6.0 [—

+h ”C”LOO(HI)S

LY (I?)
<C (max (g, 2k+1), max (k, 1)) h%.

ProoF. Note that =p—¢. It follows from (6.22) and (6.26) that

|34 |

(6.29) 5t |

+ |[¢]] yoo (g, <C (max (g, 2k +1), max (k, 1)) A°.

L3y

Hence, (5.1) follows from Theorem 9 and (6.29).
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