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CHAPTER 1

Approximation and Interpolation

1. Introduction and Preliminaries

The problem we deal with in this chapter is the approximation of a given function by
a simpler function. This has many possible uses. In the simplest case, we might want to
evaluate the given function at a number of points, and an algorithm for this, we construct
and evaluate the simpler function. More commonly the approximation problem is only the
first step towards developing an algorithm to solve some other problem. For example, an
algorithm to compute a definite integral of the given function might consist of first computing
the simpler approximate function, and then integrating that.

To be more concrete we must specify what sorts of functions we seek to approximate
(i.e., we must describe the space of possible inputs) and what sorts of simpler functions we
allow. For both purposes, we shall use a vector space of functions. For example, we might
use the vector space C(I), the space of all continuous functions on the closed unit interval
I = [0, 1], as the source of functions to approximate, and the space Pn(I), consisting of all
polynomial functions on I of degree at most n, as the space of simpler functions in which to
seek the approximation. Then, given f ∈ C(I), and a polynomial degree n, we wish to find
p ∈ Pn(I) which is close to f .

Of course, we need to describe in what sense the simpler functions is to approximate the
given function. This is very dependent on the application we have in mind. For example, if
we are concerned about the maximum error across the interval, the dashed line on the left of
Figure 1.1 shows the best cubic polynomial approximation to the function plotted with the
solid line. However if we are concerned about integrated quantities, the approximation on
the right of the figure may be more appropriate (it is the best approximation with respect
to the L2 or root–mean–square norm).

We shall always use a norm on the function space to measure the error. Recall that a
norm on a vector space V is mapping which associated to any f ∈ V a real number, often
denoted ‖f‖ which satisfies the homogeneity condition ‖cf‖ = |c|‖f‖ for c ∈ R and f ∈ V ,
the triangle inequality ‖f + g‖ ≤ ‖f‖ + ‖g‖, and which is strictly positive for all non-zero
f . If we relax the last condition to just ‖f‖ ≥ 0, we get a seminorm.

Now we consider some of the most important examples. We begin with the finite dimen-
sional vector space Rn, mostly as motivation for the case of function spaces.

(1) On Rn we may put the lp norm, 1 ≤ p ≤ ∞

‖x‖lp =
( n∑
i=1

|xi|p
)1/p

, ‖x‖l∞ = sup
1≤i≤n

|xi|.

1



2 1. APPROXIMATION AND INTERPOLATION

Figure 1.1. The best approximation depends on the norm in which we mea-
sure the error.

(The triangle inequality for the lp norm is called Minkowski’s inequality.) If wi > 0, i =
1, . . . , n, we can define the weighted lp norms

‖x‖w,p =
( n∑
i=1

wi|xi|p
)1/p

, ‖x‖w,∞ = sup
1≤i≤n

wi|xi|.

The various lp norms are equivalent in the sense that there is a positive constant C such that

‖x‖lp ≤ C‖x‖lq , ‖x‖lq ≤ C‖x‖lp , x ∈ Rn.

Indeed all norms on a finite dimensional space are equivalent. Note also that if we extend the
weighted lp norms to allow non-negative weighting functions which are not strictly positive,
we get a seminorm rather than a norm.

(2) Let I = [0, 1] be the closed unit interval. We define C(I) to be the space of continuous
functions on I with the L∞ norm,

‖f‖L∞(I) = sup
x∈I
|f(x)|.

Obviously we can generalize I to any compact interval, or in fact any compact subset of Rn

(or even more generally). Given a positive bounded weighting function w : I → (0,∞) we
may define the weighted norm

‖f‖w,∞ = sup
x∈I

[w(x)|f(x)|].

If we allow w to be zero on parts of I this still defines a seminorm. If we allow w to be
unbounded, we still get a norm (or perhaps a seminorm if w vanishes somewhere), but only
defined on a subspace of C(I).

(3) For 1 ≤ p < ∞ we can define the Lp(I) norm on C(I), or, given a positive weight
function, a weighted Lp(I) norm. Again the triangle inequality, which is not obvious, is
called Minkowski’s inequality. For p < q, we have ‖f‖Lp ≤ ‖f‖Lq , but these norms are
not equivalent. For p < ∞ this space is not complete in that there may exist a sequence
of functions fn in C(I) and a function f not in C(I) such that ‖fn − f‖Lp goes to zero.
Completing C(I) in the Lp(I) norm leads to function space Lp(I). It is essentially the space
of all functions for which ‖f‖p <∞, but there are some subtleties in defining it rigorously.
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(4) On Cn(I), n ∈ N the space on n times continuously differentiable functions, we have
the seminorm |f |Wn

∞ = ‖f (n)‖∞. The norm in Cn(I) is given by

‖f‖Wn
∞ = sup

0≤k≤n
|f |Wk

∞
.

(5) If n ∈ N, 1 ≤ p < ∞, we define the Sobolev seminorm |f |Wn
p

:= ‖f (n)‖Lp , and the
Sobolev norm by

‖f‖Wn
p

:= (
n∑
k=0

|f |p
Wk
p
)1/p.

We are interested in the approximaton of a given function f , defined, say on the unit
interval, by a “simpler” function, namely by a function belonging to some particular subspace
S of Cn which we choose. (In particular, we will be interested in the case S = Pn(I), the
vector space of polynomials of degree at most n restricted to I.) We shall be interested in
two sorts of questions:

• How good is the best approximation?
• How good are various computable approximation procedures?

In order for either of these questions to make sense, we need to know what we mean by
good. We shall always use a norm (or at least a seminorm) to specify the goodness of the
approximation. We shall take up the first question, the theory of best approximation, first.
Thus we want to know about infp∈P |f − p| for some specified norm.

Various questions come immediately to mind:

• Does there exist p ∈ P minimizing ‖f − p‖?
• Could there exist more than one minimizer?
• Can the (or a) minimizer be computed?
• What can we say about the error?

The answer to the first question is affirmative under quite weak hypotheses. To see this,
we first prove a simple lemma.

Lemma 1.1. Let there be given a normed vector space X and n+ 1 elements f0, . . . , fn
of X. Then the function φ : Rn → R given by φ(a) = ‖f0 −

∑n
i=1 aifi‖ is continuous.

Proof. We easily deduce from the triangle inequality that |‖f‖ − ‖g‖| ≤ ‖f − g‖.
Therefore

|φ(a)− φ(b)| ≤
∥∥∥∑(ai − bi)fi

∥∥∥ ≤∑|ai − bi|‖fi‖ ≤M
∑
|ai − bi|,

where M = max‖fi‖. �

Theorem 1.2. Let there be given a normed vector space X and a finite dimensional
vector subspace P . Then for any f ∈ X there exists p ∈ P minimizing ‖f − p‖.

Proof. Let f1, . . . , fn be a basis for P . The map a 7→ ‖
∑n

i=1 aifi‖ is then a norm on
Rn. Hence it is equivalent to any other norm, and so the set

S = {a ∈ Rn |
∥∥∥∑ aif

i
∥∥∥ ≤ 2‖f‖ },
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is closed and bounded. We wish to show that the function φ : Rn → R, φ(a) = ‖f −
∑
aifi‖

attains its minimum on Rn. By the lemma this is a continuous function, so it certainly
attains a minimum on S, say at a0. But if a ∈ Rn \ S, then

φ(a) ≥ ‖
∑

aifi‖ − ‖f‖ > ‖f‖ = φ(0) ≥ φ(a0).

This shows that a0 is a global minimizer. �

A norm is called strictly convex if its unit ball is strictly convex. That is, if ‖f‖ = ‖g‖ = 1,
f 6= g, and 0 < θ < 1 implies that ‖θf + (1− θ)g‖ < 1. The Lp norm is strictly convex for
1 < p <∞, but not for p = 1 or ∞.

Theorem 1.3. Let X be a strictly convex normed vector space, P a subspace, f ∈ X,
and suppose that p and q are both best approximations of f in P . Then p = q.

Proof. By hypothesis ‖f − p‖ = ‖f − q‖ = infr∈P‖f − r‖. By strict convexity, if p 6= q,
then

‖f − (p+ q)/2‖ = ‖(f − p)/2 + (f − q)/2‖ < inf
r∈P
‖f − r‖,

which is impossible. �

Exercise: a) Using the integral
∫

(‖f‖2g−‖g‖2f)2, prove the Cauchy-Schwarz inequality:

if f, g ∈ C(I) then
∫ 1

0
f(x)g(x) dx ≤ ‖f‖2‖g‖2 with equality if and only if f ≡ 0, g ≡ 0, or

f = cg for some constant c > 0. b) Use this to show that the triangle inequality is satisfied
by the 2-norm, and c) that the 2-norm is strictly convex.

2. Minimax Polynomial Approximation

2.1. The Weierstrass Approximation Theorem and the Bernstein polynomi-
als. We shall now focus on the case of best approximation by polynomials of degree at most
n measured in the L∞ norm (minimax approximation). Below we shall look at the case of
best approximation by polynomials measured in the L2 norm (least squares approximation).

We first show that arbitrarily good approximation is possible if the degree is high enough.

Theorem 1.4 (Weierstrass Approximation Theorem). Let f ∈ C(I) and ε > 0. Then
there exists a polynomial p such that ‖f − p‖∞ ≤ ε.

We shall give a constructive proof due to S. Bernstein. For f ∈ C(I), n = 1, 2, . . ., define
Bnf ∈ Pn(I) by

Bnf(x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

Now
n∑
k=0

(
n

k

)
xk(1− x)n−k = [x+ (1− x)]n = 1,

so for each x, Bnf(x) is a weighted average of the n+ 1 values f(0), f(1/n), . . . , f(1). For
example,

B2f(x) = f(0)(1− x)2 + 2f(1/2)x(x− 1) + f(1)x2.

The weighting functions
(
n
k

)
xk(1 − x)n−k entering the definition of Bnf are shown in Fig-

ure 1.2. Note that for x near k/n, the weighted average weighs f(k/n) more heavily than
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Figure 1.2. The Bernstein weighting functions for n = 5 and n = 10.
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other values. Notice also that B1f(x) = f(0)(1 − x) + f(1)x is just the linear polynomial
interpolating f at x = 0 and x = 1.

Now Bn is a linear map of C(I) into Pn. Moreover, it follows immediately from the
positivity of the Bernstein weights that Bn is a positive operator in the sense that Bnf ≥ 0
on I if f ≥ 0 on I. Now we wish to show that Bnf converges to f in C(I) for all f ∈ C(I).
Remarkably, just using the fact Bn is a positive linear operator, this follows from the much
more elementary fact that Bnf converges to f in C(I) for all f ∈ P2(I). This latter fact
we can verify by direct computation. Let fi(x) = xi, so we need to show that Bnfi → fi,
i = 0, 1, 2. (By linearity the result then extends to all f ∈ P2(I). We know that

n∑
k=0

(
n

k

)
akbn−k = (a+ b)n,

and by differentiating twice with respect to a we get also that
n∑
k=0

k

n

(
n

k

)
akbn−k = a(a+ b)n−1,

n∑
k=0

k(k − 1)

n(n− 1)

(
n

k

)
akbn−k = a2(a+ b)n−2.

Setting a = x, b = 1− x, expanding

k(k − 1)

n(n− 1)
=

n

n− 1

k2

n2
− 1

n− 1

k

n

in the last equation, and doing a little algebra we get that

Bnf0 = f0, Bnf1 = f1, Bnf2 =
n− 1

n
f2 +

1

n
f1,

for n = 1, 2, . . ..
Now we derive from this convergence for all continuous functions.

Theorem 1.5. Let B1, B2, . . . be any sequence of linear positive operators from C(I) into
itself such that Bnf converges uniformly to f for f ∈ P2. Then Bnf converges uniformly to
f for all f ∈ C(I).

Proof. The idea is that for any f ∈ C(I) and x0 ∈ I we can find a quadratic function
q that is everywhere greater than f , but for which q(x0) is close to f(x0). Then, for n
sufficiently large Bnq(x0) will be close to q(x0) and so close to f(x0). But Bnf must be less
than Bnq. Together these imply that Bnf(x0) can be at most a little bit larger than f(x0).
Similarly we can show it can be at most a little bit smaller than f(x0).
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Since f is continuous on a compact set it is uniformly continuous. Given ε > 0, choose
δ > 0 such that |f(x1)− f(x2)| ≤ ε if |x1 − x2| ≤ δ. For any x0, set

q(x) = f(x0) + ε+ 2‖f‖∞(x− x0)2/δ2.

Then, by checking the cases |x−x0| ≤ δ and |x−x0| ≥ δ separately, we see that q(x) ≥ f(x)
for all x ∈ I.

Writing q(x) = a+ bx+ cx2 we see that we can write |a|, |b|, |c| ≤M with M depending
on ‖f‖, ε, and δ, but not on x0. Now we can choose N sufficiently large that

‖fi −Bnfi‖ ≤
ε

M
, i = 0, 1, 2,

for n ≥ N , where fi = xi. Using the triangle inequality and the bounds on the coefficients
of q, we get ‖q −Bnq‖ ≤ 3ε. Therefore

Bnf(x0) ≤ Bnq(x0) ≤ q(x0) + 3ε = f(x0) + 4ε.

Thus we have shown: given f ∈ C(I) and ε > 0 there exists N > 0 such that Bnf(x0) ≤
f(x0) + 4ε for all n ≥ N and all x0 ∈ I.

The same reasoning, but using q(x) = f(x0) − ε − 2‖f‖∞(x − x0)2/δ2 implies that
Bnf(x0) ≥ f(x0)− 4ε, and together these complete the theorem. �

From a practical point of view the Bernstein polynomials yield an approximation proce-
dure which is very robust but very slow. By robust we refer to the fact that the procedure
convergence for any continuous function, no matter how bad (even, say, nowhere differ-
entiable). Moreover if the function is C1 then not only does Bnf converge uniformly to
f , but (Bnf)′ converges uniformly to f ′ (i.e., we have convergence of Bnf in C1(I), and
similarly if f admits more continuous derivatives. However, even for very nice functions
the convergence is rather slow. Even for as simple a function as f(x) = x2, we saw that
‖f − Bnf‖ = O(1/n). In fact, refining the argument of the proof, one can show that this
same linear rate of convergence holds for all C2 functions f :

‖f −Bnf‖ ≤
1

8n
‖f ′′‖, f ∈ C2(I).

this bound holds with equality for f(x) = x2, and so cannot be improved. This slow rate
of convergence makes the Bernstein polynomials impractical for most applications. See
Figure 1.3 where the linear rate of convergence is quite evident.

2.2. Jackson’s theorems for trigonometric polynomials. In the next sections we
address the question of how quickly a given continuous function can be approximated by a
sequence of polynomials of increasing degree. The results were mostly obtained by Dunham
Jackson in the first third of the twentieth century and are known collectively as Jackson’s
theorems. Essentially they say that if a function is in Ck then it can be approximated by a
sequence of polynomials of degree n in such a way that the error is at most C/nk as n→∞.
Thus the smoother a function is, the better the rate of convergence.

Jackson proved this sort of result both for approximation by polynomials and for ap-
proximation by trigonometric polynomials (finite Fourier series). The two sets of results
are intimately related, as we shall see, but it is easier to get started with the results for
trigonometric polynomials, as we do now.
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Figure 1.3. Approximation to the function sin x on the interval [0, 8] by
Bernstein polynomials of degrees 1, 2, 4, . . . , 32.
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Let C2π be the set of 2π-periodic continuous functions on the real line, and Ck
2π the set of

2π-periodic functions which belong to Ck(R). We shall investigate the rate of approximation
of such functions by trigonometric polynomials of degree n. By these we mean linear combi-
nations of the n+ 1 functions 1, cos kx, sin kx, k = 1, . . . , n, and we denote by Tn the space
of all trigonometric polynomials of degree n, i.e., the span of these of the 2n + 1 functions.
Using the relations sin x = (eix− e−ix)/(2i), cosx = (eix + e−ix)/2, we can equivalently write

Tn = {
n∑

k=−n

cke
ikx | ck ∈ C, c−k = c̄k }.

Our immediate goal is the Jackson Theorem for the approximation of functions in C1
2π

by trigonometric polynomials.

Theorem 1.6. If f ∈ C1
2π, then

inf
p∈Tn
‖f − p‖ ≤ π

2(n+ 1)
‖f ′‖.

(We are suppressing the subscript on the L∞ norm, since that is the only norm that
we’ll be using in this section.) The proof will be quite explicit. We start by writing f(x) as
an integral of f ′ times an appropriate kernel. Consider the integral

∫ π
−π yf

′(x + π + y) dy.
Integrating by parts and using the fact that f is 2π-periodic we get∫ π

−π
yf ′(x+ π + y) dy = −

∫ π

−π
f(x+ π + y) dx+ 2πf(x).

The integral on the right-hand side is just the integral of f over one period (and so indepen-
dent of x), and we can rearrange to get

f(x) = f̄ +
1

2π

∫ π

−π
yf ′(x+ π + y) dy,
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Figure 1.4. The interpolant qn ∈ Tn of the sawtooth function for n = 2 and
n = 10.
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where f̄ is the average value of f over any period. Now suppose we replace the function y
in the last integral with a trigonometric polynomial qn(y) =

∑n
k=−n cke

iky. This gives∫ π

−π
qn(y)f ′(x+ π + y) dy =

∫ π

−π
qn(y − π − x)f ′(y) dy =

n∑
k=−n

ck

∫ π

−π
eik(y−π)f ′(y) dy e−ikx,

which is a trigonometric polynomial of degree at most n in x. Thus

pn(x) := f̄ +
1

2π

∫ π

−π
qn(y)f ′(x+ π + y) dy ∈ Tn,

and pn(x) is close to f(x) if q(y) is close to y on [−π, π]. Specifically

(1.1) |f(x)− pn(x)| = 1

2π

∣∣∣∣∫ π

−π
[y − qn(y)]f ′(x+ π + y) dy

∣∣∣∣ ≤ 1

2π

∫ π

−π
|y − qn(y)| dy‖f ′‖.

Thus to obtain a bound on the error, we need only give a bound on the L1 error in trigono-
metric polynomial approximation to the function g(y) = y on [−π, π]. (Note that, since we
are working in the realm of 2π periodic functions, g is the sawtooth function.)

Lemma 1.7. There exists qn ∈ Tn such that∫ π

−π
|x− qn(x)| dx ≤ π2

n+ 1
.

This we shall prove quite explicitly, by exhibiting qn. Note that the Jackson theorem,
Theorem 1.6 follows directly from (1.1) and the lemma.

Proof. To prove the Lemma, we shall determine qn ∈ Tn by the 2n+ 1 equations

qn

(
πk

n+ 1

)
=

πk

n+ 1
, k = −n, . . . , n.

That, is, qn interpolates the saw tooth function at the n + 1 points with abscissas equal to
πk/(n+ 1). See Figure 1.4.

This defines qn uniquely. To see this it is enough to note that if a trigonometric polynomial
of degree n vanishes at 2n + 1 distinct points in [−π, π) it vanishes identically. This is



2. MINIMAX POLYNOMIAL APPROXIMATION 9

so because if
∑n

k=−n cke
ikx vanishes at xj, j = −n, . . . , n, then zn

∑n
k=−n ckz

k, which is a
polynomial of degree 2n, vanishes at the 2n+1 distinct complex numbers eixj , so is identically
zero, which implies that all the ck vanish.

Now qn is odd, since replacing qn(x) with −qn(−x) would give another solution, which
then must coincide with qn. Thus qn(x) =

∑n
k=1 bk sin kx.

To get a handle on the error x − qn(x) we first note that by construction this function
has 2n+1 zeros in (−π, π), namely at the points πk/(n+1). It can’t have any other zeros or
any double zeros in this interval, for if it did Rolle’s Theorem would imply that its derivative
1 − q′n ∈ Tn, would have 2n + 1 zeros in the interval, and, by the argument above, would
vanish identically, which is not possible (it has mean value 1). Thus qn changes sign exactly
at the points πk/(n+ 1).

Define the piecewise constant function

s(x) = (−1)k,
kπ

n+ 1
≤ x <

(k + 1)π

n+ 1
, k ∈ Z.

Then ∫ π

−π
|x− qn(x)| dx =

∫
[x− qn(x)]s(x) dx.

But, as we shall show in a moment,

(1.2)

∫
sin kx s(x) dx = 0, k = 1, . . . , n,

and it is easy to calculate
∫
xs(x) dx = π2/(n+ 1). Thus∫ π

−π
|x− qn(x)| dx =

π2

n+ 1
,

as claimed.
We complete the proof of the lemma by verifying (1.2). Let I denote the integral in

question. Then

I = −
∫
s(x+

π

n+ 1
) sin kx dx = −

∫
s(x) sin k(x− π

n+ 1
) dx

= − cos(
−kπ
n+ 1

)

∫
s(x) sin kx dx = − cos(

−kπ
n+ 1

)I.

Since | cos(−kπ
n+1

)| < 1, this implies that I = 0. �

Having proved a Jackson Theorem in C1
2π, we can use a bootstrap argument to show that

if f is smoother, then the rate of convergence of the best approximation is better. This is
the Jackson Theorem in Ck

2π.

Theorem 1.8. If f ∈ Ck
2π, some k > 0, then

inf
p∈Tn
‖f − p‖ ≤

[
π

2(n+ 1)

]k
‖f (k)‖.
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Proof. We shall use induction on k, the case k = 1 having been established. Assuming
the result, we must show it holds when k is replaced by k + 1. Now let q ∈ Tn be arbitrary.
Then

inf
p∈Tn
‖f − p‖ = inf

p∈Tn
‖f − q − p‖ ≤

[
π

2(n+ 1)

]k
‖(f − q)(k)‖,

by the inductive hypothesis. Since q is arbitrary and { p(k) | p ∈ Tn } = T̂n,

inf
p∈Tn
‖f − p‖ ≤

[
π

2(n+ 1)

]k
inf
r∈T̂n
‖f (k) − r‖ ≤

[
π

2(n+ 1)

]k
π

2(n+ 1)
‖f (k+1)‖.

�

2.3. Jackson theorems for algebraic polynomials. To obtain the Jackson theorems
for algebraic polynomials we use the following transformation. Given f : [−1, 1]→ R define
g : R→ R by g(θ) = f(cos θ). Then g is 2π-periodic and even. This transformation is a linear
isometry (‖g‖ = ‖f‖). Note that if f ∈ C1([−1, 1]) then g ∈ C1

2π and g′(θ) = −f ′(cos θ) sin θ,
so ‖g′‖ ≤ ‖f ′‖. Also if f(x) = xn, then g(θ) = [(eix + e−ix)/2]n which is a trigonometric
polynomial of degree at most n. Thus this transformation maps Pn([−1, 1]) to the T even

n ,
the subspace of even functions in Tn, or, equivalently, the span of cos kx, k = 0, . . . , n. Since
dim T even

n = dimPn([−1, 1]) = n+ 1, the transformation is in fact an isomorphism.
The Jackson theorem in C1([−1, 1]) follows immediately from that in C1

2π:

Theorem 1.9. If f ∈ C1([−1, 1]), then

inf
p∈Pn
‖f − p‖ ≤ π

2(n+ 1)
‖f ′‖.

Proof. Define g(θ) = f(cos θ) so g ∈ C1
2π. Since g is even, infq∈T even

n
‖g−q‖ = infq∈Tn‖g−

q‖. (If the second infimum is achieved by q(θ), then it is also achieved by q(−θ), then use
the triangle inequality to show it is also achieved by the even function [q(θ) + q(−θ)]/2.)
Thus

inf
p∈Pn
‖f − p‖ = inf

q∈Tn
‖g − q‖ ≤ π

2(n+ 1)
‖g′‖ ≤ π

2(n+ 1)
‖f ′‖.

�

You can’t derive the Jackson theorem in Ck([−1, 1]) from that in Ck
2π (since we can’t

bound ‖g(k)‖ by ‖f (k)‖ for k ≥ 2), but we can use a bootstrap argument directly. We know
that

inf
p∈Pn
‖f − p‖ = inf

q∈Pn
inf
p∈Pn
‖f − q − p‖ ≤ inf

q∈Pn

π

2(n+ 1)
‖f ′ − q′‖.

Assuming n ≥ 1, q′ is an arbitrary element of Pn−1 and so we have

inf
p∈Pn
‖f − p‖ ≤ inf

p∈Pn−1

π

2(n+ 1)
‖f ′ − p‖ ≤ π

2(n+ 1)

π

2n
‖f ′′‖.

But now we can apply the same argument to get

inf
p∈Pn
‖f − p‖ ≤ π

2(n+ 1)

π

2n

π

2(n− 1)
‖f ′′′‖,

as long as n ≥ 2. Continuing in this way we get

inf
p∈Pn
‖f − p‖ ≤ ck

(n+ 1)n(n− 1) . . . (n− k + 2)
‖f (k)‖
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if f ∈ Ck and n ≥ k − 1, with ck = (π/2)k. To state the result a little more compactly we
analyze the product M = (n + 1)n(n − 1) . . . (n − k + 2). Now if n ≥ 2(k − 2) then each
factor is at least n/2, so M ≥ nk/2k. Also

dk := max
k−1≤n≤2(k−2)

nk

(n+ 1)n(n− 1) . . . (n− k + 2)
<∞,

so, in all, nk ≤ ekM where ek = max(2k, dk). Thus we have arrived at the Jackson theorem
in Ck:

Theorem 1.10. Let k be a positive integer, n ≥ k − 1 an integer. Then there exists a
constant c depending only on k such that

inf
p∈Pn
‖f − p‖ ≤ c

nk
‖f (k)‖.

for all f ∈ Ck([−1, 1]).

2.4. Polynomial approximation of analytic functions. If a function is C∞ the
Jackson theorems show that the best polynomial approximation converges faster than any
power of n. If we go one step farther and assume that the function is analytic (i.e., its
power series converges at every point of the interval including the end points), we can prove
exponential convergence.

We will first do the periodic case and show that the Fourier series for an analytic periodic
function converges exponentially, and then use the Chebyshev transform to carry the result
over to the algebraic case.

A real function on an open interval is called real analytic if the function is C∞ and for
every point in the interval the Taylor series for the function about that point converges to
the function in some neighborhood of the point. A real function on a closed interval J is
real analytic if it is real analytic on some open interval containing J .

It is easy to see that a real function is real analytic on an interval if and only if it extends
to an analytic function on a neighborhood of the interval in the complex plane.

Suppose that g(z) is real analytic and 2π-periodic on R. Since g is smooth and periodic
its Fourier series,

g(x) =
∞∑

n=−∞

ane
inx, an =

1

2π

∫ π

−π
g(x)e−inx dx,

converges absolutely and uniformly on R. Since g is real analytic, it extends to an analytic
function on the strip Sδ := {x + iy |x, y ∈ R, |y| ≤ δ } for some δ > 0. Using analyticity
we see that we can shift the segment [−π, π] on which we integrate to define the Fourier
coefficients upward or downward a distance δ in the complex plane:

an =
1

2π

∫ π

−π
g(x± iδ)e−in(x±iδ) dx =

e±nδ

2π

∫ π

−π
g(x± iδ)e−inx dx.

Thus |an| ≤ ‖g‖L∞(Sδ)e
−δ|n| and we have shown that the Fourier coefficients of a real analytic

periodic function decay exponentially.
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Now consider the truncated Fourier series q(z) =
∑n

k=−n ake
ikz ∈ Tn. Then g(z)− q(z) =∑

|k|>n ake
ikz, so for any real z

|g(z)− q(z)| ≤
∑
|k|>n

|ak| ≤ 2‖g‖L∞(Sδ)

∞∑
k=n+1

e−δk =
2e−δ

1− e−δ
‖g‖L∞(Sδ)e

−δn.

Thus we have proven:

Theorem 1.11. Let g be 2π-periodic and real analytic. Then there exist positive constants
C and δ so that

inf
q∈Tn
‖g − q‖∞ ≤ Ce−δn.

The algebraic case follows immediately from the periodic one. If f is real analytic on
[−1, 1], then g(θ) = f(cos θ) is 2π-periodic and real analytic. Since infq∈Tn‖g − q‖∞ =
infq∈T even

n
‖g − q‖∞ = infp∈Pn‖f − p‖∞, we can apply the previous result to bound the latter

quantity by Ce−δn.

Theorem 1.12. Let f be real analytic on a closed interval. Then there exist positive
constants C and δ so that

inf
p∈Pn
‖f − p‖∞ ≤ Ce−δn.

2.5. Characterization of the minimax approximant. Having established the rate
of approximation afforded by the best polynomial approximation with respect to the L∞

norm, in this section we derive two conditions that characterize the best approximation.
We will use these results to show that the best approximation is unique (recall that our
uniqueness theorem in the first section only applied to strictly convex norms, and so excluded
the case of L∞ approximation). The results of this section can also be used to design iterative
algorithms which converge to the best approximation, but we shall not pursue that, because
there are approximations which yield nearly as good approximation in practice as the best
approximation but which are much easier to compute.

The first result applies very generally. Let J be an compact subset of Rn (or even of
a general Hausdorff topological space), and let P be any finite dimensional subspace of
C(J). For definiteness you can think of J as a closed interval and P as the space Pn(J) of
polynomials of degree at most n, but the result doesn’t require this.

Theorem 1.13 (Kolmogorov Characterization Theorem). Let f ∈ C(J), P a finite
dimensional subspace of C(J), p ∈ P . Then p is a best approximation to f in P if and only
if no element of P has the same sign as f − p on its extreme set.

Proof. First we note that p is a best approximation to f in P if and only if 0 is a best
approximation to g := f − p in P . So we need to show that 0 is a best approximation to g
if and only if no element q of P has the same sign as g on its extreme set.

First suppose that 0 is not a best approximation. Then there exists q ∈ P such that
‖g − q‖ < ‖g‖. Now let x be a point in the extreme set of g. Unless sign q(x) = sign g(x),
|g(x) − q(x)| ≥ |g(x)| = ‖g‖, which is impossible. Thus q has the same sign of as g on its
extreme set.

The converse direction is trickier, but the idea is simple. If q has the same sign of as
g on its extreme set and we subtract a sufficiently small positive multiple of q from g, the
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difference will be of strictly smaller magnitude than g near the extreme set. And if the
multiple that we subtract is small enough the difference will also stay below the extreme
value away from the extreme set. Thus g − εq will be smaller than g for ε small enough, so
that 0 is not the best approximation.

Since we may replace q by q/‖q‖ we can assume from the outset that ‖q‖ = 1. Let δ > 0
be the minimum of qg on the extreme set, and set S = {x ∈ J | q(x)g(x) > δ/2}, so that S
is an open set containing the extreme set. Let M = maxJ\S|g| < ‖g‖.

Now on S, qg > δ/2, so

|g − εq|2 = |g|2 − 2εqg + ε2|q|2 ≤ ‖g‖2 − εδ + ε2 = ‖g‖2 − ε(δ − ε),

and so if 0 < ε < δ then ‖g − εq‖∞,S < ‖g‖.
On J \ S, |g − εq| ≤M + |ε|, so if 0 < ε < ‖g‖ −M , ‖g − εq‖∞,J\S < ‖g‖. Thus for any

positive ε sufficiently small ‖g − εq‖ < ‖g‖ on J . �

While the above result applies to approximation by any finite dimensional subspace P ,
we now add the extra ingredient that P = Pn([a, b]) the space of polynomial functions of
degree at most n on a compact interval J = [a, b].

Theorem 1.14 (Chebyshev Alternation Theorem). Let f ∈ C([a, b]), p ∈ Pn. Then p
is a best approximation to f in Pn if and only if f − p achieves its maximum magnitude at
n+ 2 distinct points with alternating sign.

Proof. If f−p achieves its maximum magnitude at n+2 distinct points with alternating
sign, then certainly no function q ∈ Pn has the same sign as f − p on its extreme set (since
a nonzero element of Pn cannot have n+ 1 zeros). So p is a best approximation to f in Pn.

Conversely, suppose that f − p changes sign at most n+ 1 times on its extreme set. For
definiteness suppose that f − p is positive at its first extreme point. Then we can choose
n points x1 < x2 < · · · xn in [a, b] such that f − p is positive on extreme points less than
x1, negative on extreme points in on [x1, x2], positive on extreme points in [x2, x3], etc. The
function q(x) = (x1 − x) · · · (xn − x) ∈ Pn then has the same sign as f − p on its extreme
set, and so p is not a best approximation to f in Pn. �

The Chebyshev Alternation Theorem is illustrated in Figure 1.5.
We can now prove uniqueness of the best approximation.

Corollary 1.15. The best L∞ approximation to a continuous function by a function in
Pn is unique.

Proof. Suppose p, p∗ ∈ Pn are both best approximations to f . Let e = f−p, e∗ = f−p∗,
and say M = ‖e‖ = ‖e∗‖. Since (p + p∗)/2 is also a best approximation, |f − (p + p∗)/2|
achieves the value M at n+ 2 points, x0, . . . , xn+1. Thus

M = |[e(xi) + e∗(xi)]/2| ≤ |e(xi)|/2 + |e∗(xi)|/2 ≤M.

Thus equality holds throughout, and e(xi) = e∗(xi), so p(xi) = p∗(xi) at all n + 2 points,
which implies that p = p∗. �

Remarks. 1. The only properties we used of the space Pn are (1) that no non-zero
element has more than n zeros, and (2) given any n points there is an element with exactly
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Figure 1.5. A sinusoidal function and its minimax approximation of degrees
3 and 4. The error curves, on the right, achieve their maximal magnitudes at
the requisite 5 and 6 points, respectively.
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those points as the zeros. These two conditions together (which are equivalent to the exis-
tence and uniqueness of an interpolant at n+ 1 points, as discussed in the next section) are
referred to as the Haar property. Many other subspaces satisfy the Haar property, and so
we can obtain a Chebyshev Alternation Theorem for them as well.

2. The Chebyshev alternation characterization of the best approximation can be used
as the basis for a computational algorithm to approximate the best approximation, known
as the exchange algorithm or Remes algorithm. However in practice something like the
interpolant at the Chebyshev points, which, as we shall see, is easy to compute and usually
gives something quite near best approximation, is much more used.

3. Lagrange Interpolation

3.1. General results. Now we consider the problem of not just approximating, but
interpolating a function at given points by a polynomial. That is, we suppose given n + 1
distinct points x0 < x1 < · · · < xn and n + 1 values y0, y1, . . . , yn. We usually think of the
yi as the value f(xi) of some underlying function f , but this is not necessary. In any case,
there exists a unique polynomial p ∈ Pn such that p(xi) = yi. To prove this, we notice that if
we write p =

∑n
i=0 cix

i, then the interpolation problem is a system of n+ 1 linear equations
in the n + 1 unknowns ci. We wish to show that this system is non-singular. Were it not,
there would exists a non-zero polynomial in Pn vanishing at the xi, which is impossible, and
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Figure 1.6. The Lagrange basis functions for 6 equally space points and 4
unequally spaced points.
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the uniqueness and existence is established. (A more algebraic proof consists of writing out
the matrix of the linear system explicitly. It is a Vandermonde system, whose determinant
can be computed explicitly as

∏
i<j(xi − xj).)

The polynomial p is called the Lagrange interpolant of the values yi at the points xi. If
the yi = f(xi) for some function f , we call p the Lagrange interpolant of f at the xi.

While the proof of existence of a Lagrange interpolating polynomial just given was indi-
rect, it is also straightforward to derive a formula for the solution. Lagrange’s formula states
that

p(x) =
n∑
k=0

yk
∏

0≤m≤n
m6=k

x− xm
xk − xm

,

and is easily verified. Note that we have expressed the solution not as a linear combination
of the monomials xi, but rather as a linear combination of the Lagrange basis functions

lnk (x) =
∏

0≤m≤n
m 6=k

x− xm
xk − xm

,

plotted in Figure 1.6. We don’t have to solve a linear system to find the coefficients in this
basis: they are simply the yi. It is instructive to compare the Lagrange basis functions with
the Bernstein weighting functions plotted in Figure 1.2. In each case the sum of all the basis
functions is identically 1 (prove this for the Lagrange basis functions).

Our first result is a straightforward application of calculus to obtain an error formula for
Lagrange interpolation to a smooth function.

Theorem 1.16 (Error formula for Lagrange interpolation). Let xi, i = 0, . . . , n be distinct
points and let p ∈ Pn be the Lagrange interpolant of some function f at the points xi. Let
x ∈ R and suppose that f ∈ Cn+1(J) for some interval J containing the xi and x. Then
there exists a point ξ in the interior of J such that

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− x0) · · · (x− xn).

Proof. We may assume that x differs from all the xi, since the theorem is obvious
otherwise. Let ω(x) = (x − x0) · · · (x − xn) and set G(t) = [f(x) − p(x)]ω(t) − [f(t) −
p(t)]ω(x). Then G has n + 2 distinct zeros: the xi and x. By repeated application of
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Rolle’s theorem there exists a point ξ strictly between the largest and the smallest of the
zeros such that d(n+1)G/dt(n+1)(ξ) = 0. Since p(n+1) ≡ 0 and ω(n+1) ≡ (n + 1)!, this gives
[f(x)− p(x)](n+ 1)!− f (n+1)(ξ)ω(x) which is the desired result. �

Remark. If all the xi tend to the same point a, then p tends to the Taylor polynomial
of degree n at a, and the estimate tends to the standard remainder formula for the Taylor
polynomial: f(x)− p(x) = [1/(n+ 1)!]f (n+1)(ξ)(x− a)n+1 for some ξ between x and a.

An obvious corollary of the error formula is the estimate:

|f(x)− p(x)| ≤ 1

(n+ 1)!
‖f (n+1)‖∞,J |ω(x)|.

In particular

|f(x)− p(x)| ≤ 1

(n+ 1)!
‖f (n+1)‖∞,Jkn+1,

where k = max(|x− xi|, |xi − xj|). In particular if a ≤ minxi, b ≥ maxxi, then

(1.3) ‖f − p‖∞,[a,b] ≤
1

(n+ 1)!
‖f (n+1)‖∞,[a,b]|b− a|n+1,

no matter what the configuration of the points xi ∈ [a, b]. This gives a useful estimate if
we hold n fixed and let the points xi tend to the evaluation point x. It establishes a rate of
convergence of order n+ 1 with respect to the interval length for Lagrange interpolation at
n+ 1 points in the interval.

Another interesting question, closer to the approximation problem we have considered
heretofore, asks about the error on a fixed interval as we increase the number of interpolation
points and so the degree of the interpolating polynomial. At this point we won’t restrict the
configuration of the points, so we consider an arbitrary tableau of points

x0
0

x1
0 < x1

1

x2
0 < x2

1 < x2
2

...

all belonging to [a, b]. Then we let pn ∈ Pn interpolate f at xni , i = 0, . . . , n and inquire
about the convergence of pn to fn as n → ∞. Whether such convergence occurs, and how
fast, depends on the properties of the function f and on the particular arrangement of points.

One possibility is to make a very strong assumption on f , namely that f is real analytic
on [a, b]. Now if f is analytic on the closed disk B̄(ξ, R) of radius R about ξ, then, by
Cauchy’s estimate, |f (n+1)(ξ)| ≤ (n + 1)!‖f‖∞,B̄(ξ,R)/R

n+1. Let O(a, b, R) denote the oval⋃
ξ∈[a,b] B̄(ξ, R). We then have

Theorem 1.17. Let a < b and suppose that f extends analytically to the oval O(a, b, R)
for some R > 0. Let x0 < · · · < xn be any set of n + 1 distinct points in [a, b] and let p be
the Lagrange interpolating polynomial to f at the xi. Then

‖f − p‖∞,[a,b] ≤ ‖f‖∞,O(a,b,R)

(
|b− a|
R

)n+1

.
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Figure 1.7. If a function on the interval extends analytically to the oval in
the complex plane depicted here, then for any choice of interpolation points in
the interval, the interpolating polynomials will converge exponentially fast on
the interval.

This shows that if the domain of analyticity of f contains O(a, b, R) for some R > |b−a|,
then for any choice of interpolating tableau, the pn converge to f exponentially fast in
C([a, b]). See Figure 1.7 In particular if the function f is entire, this will occur.

However, even if f is real analytic on [a, b], the pn need not converge to f if a pole lies
nearby in the complex plane. A famous example using equally spaced interpolation points
was given by Runge: a = −5, b = 5, xni = −5 + 10i/n, f(x) = 1/(1 + x2). In this case he
proved the existence of a number κ ≈ 3.63338 such that limn→∞ pn(x) = f(x) if and only if
|x| < κ. Figure 1.8 contrasts the striking non-convergence of Lagrange interpolation using
equally spaced points in this case, with the convergence that partakes for the entire Gaussian
function f(x) = exp(2x2/5).

If the function is not smooth, the results may be even worse: in 1918 S. Bernstein proved
that equidistant interpolation to f(x) = |x| on [−1, 1] does not converge at any point except
x = −1, 0, and 1.

Fortunately, as we shall see in the next subsection, there exist much better choices of
interpolation points than equally spaced ones. But in 1914 Faber showed that no choice of
points works for all continuous functions.

Theorem 1.18 (Faber’s Theorem). Given a triangular array of points

x0
0

x1
0 x1

1

x2
0 x2

1 x2
2

...

in [a, b] and a continuous function f(x) on [a, b], let pn(x) be the polynomial of degree ≤ n
which interpolates f at the n+ 1 points xn0 , xn1 , . . . , xnn. Then no matter how the points are
chosen, there exists a continuous function f for which the pn do not converge uniformly to
f .



18 1. APPROXIMATION AND INTERPOLATION

Figure 1.8. Interpolation by polynomials of degree 16 using equally spaced
interpolation points. The first graph shows Runge’s example. In the second
graph, the function being interpolated is entire, and the graph of the interpo-
lating polynomial nearly coincides with that of the function.
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In 1931 Bernstein strengthened this negative theorem to show that there exists a con-
tinuous function f and a point c in [a, b] for which pn(c) does not converge to f(c). In 1980
Erdös and Vértesi showed that in fact there exists a continuous function f such that pn(c)
does not converge to f(c) for almost all c in [a, b].

However, as we shall now show, if the function f is required to have a little smoothness,
and if the interpolation points are chosen well, then convergence will be obtained.

3.2. The Lebesgue constant. Given n + 1 distinct interpolation points in [a, b] and
f ∈ C([a, b]), let Pnf ∈ Pn be the Lagrange interpolating polynomial. Then Pn is an operator
from C([a, b]) to itself, and we may consider its norm:

‖Pn‖ = sup
f∈C([a,b])
‖f‖∞≤1

‖Pnf‖∞.

Using this norm, it is easy to relate the error in interpolation to the error in best approxi-
mation:

‖f − Pnf‖ = inf
q∈Pn
‖f − q − Pn(f − q)‖ ≤ (1 + ‖Pn‖) inf

q∈Pn
‖f − q‖.

Note that the only properties of Pn we have used to get this estimate are linearity and the
fact that it preserves Pn.

Thus, if we can bound ‖Pn‖ we can obtain error estimates for interpolation from those
for best approximation (i.e., the Jackson theorems). Now let

lnk (x) =
∏

0≤m≤n
m 6=k

x− xm
xk − xm
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Figure 1.9. Lebesgue function for degree 8 interpolation at equally spaced points.
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denote the Lagrange basis functions. Recall that
∑n

k=0 l
n
k (x) = 1. Set

Ln(x) =
n∑
k=0

|lnk (x)|,

the Lebesgue function for this choice of interpolation points. Then

‖Pn‖ = sup
0≤x≤1

sup
|f |≤1

∣∣∣∣∣
n∑
k=0

f(xk)l
n
k (x)

∣∣∣∣∣ = sup
0≤x≤1

n∑
k=0

|lnk (x)| = ‖Ln‖∞.

Figure 1.9 shows the Lebesgue function for interpolation by a polynomial of degree 8 us-
ing equally spaced interpolation points plotted together with the Lagrange basis functions
entering into its definition.

The constant ‖Pn‖ = ‖Ln‖∞ is called the Lebesgue constant of the interpolation opera-
tor. Of course it depends on the point placement. However it only depends on the relative
configuration: if we linearly scale the points from the interval [a, b] to another interval, then
the constant doesn’t change. Table 1.1 shows the Lebesgue constants for equally spaced
interpolation points ranging from a to b. Note that the constant grows quickly with n re-
flecting the fact that the approximation afforded by the interpolant may be much worse than
the best approximation. The column labelled “Chebyshev” shows the Lebesgue constant if a
better choice of points, the Chebyshev points, is used. We study this in the next subsection.

It is not clear from the table whether the Lebesgue constant remains bounded for inter-
polation at the Chebyshev points, but we know it does not: otherwise the Chebyshev points
would give a counterexample to Faber’s theorem. In fact Erdös proved a rather precise lower
bound on growth rate.

Theorem 1.19. [Erdös 1961] For any triangular array of points, there is a constant c
such that corresponding Lebesgue constant satisfies

‖Pn‖ ≥
2

π
log n− c.

This result was known well earlier, but with a less precise constant. See, e.g., Rivlin’s
Introduction to the Approximation of Functions [5] for an elementary argument.
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Table 1.1. Lebesgue constants for interpolation into Pn at equally spaced
points and Chebyshev points (to three significant digits).

n Equal Chebyshev
2 1.25 1.67
4 2.21 1.99
6 4.55 2.20
8 11.0 2.36
10 29.9 2.49
12 89.3 2.60
14 283 2.69
16 935 2.77
18 3,170 2.84
20 11,000 2.90

3.3. The Chebyshev points. Returning to the error formula for Lagrange interpola-
tion we see that a way to reduce the error is to choose the interpolation points xi so as to
decrease ω(x) = (x− x0) . . . (x− xn). Assuming that we are interested in reducing the error
on all of [a, b], we are led to the problem of finding x0 < · · · < xn which minimize

(1.4) sup
a≤x≤b

|(x− x0) . . . (x− xn)|.

In fact, we can solve this problem in closed form. First consider the case [a, b] = [−1, 1].
Define Tn(x) = cos(n arccosx) ∈ Pn([−1, 1]), the polynomial which corresponds to cosnθ
under the Chebyshev transform. Tn is called the nth Chebyshev polynomial:

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, . . .

Using trigonometric identities for cos(n± 1)x, we get the recursion relation

Tn+1(x) = 2xTn(x)− Tn−1(x),

from which it easily follows that Tn(x) is a polynomial of exact degree n with leading coef-
ficient 2n−1.

Now let xni = cos[(2i + 1)π/(2n + 2)]. Then it is easy to see that 1 > xn0 > xn1 > · · · >
xnn > −1 and that these are precisely the n + 1 zeros of Tn+1. These are called the n + 1
Chebyshev points on [−1, 1]. The definition is illustrated for n = 8 in Figure 1.10. The next
theorem shows that the Chebyshev points minimize (1.4).

Theorem 1.20. For n ≥ 0, let x0, x1, . . . xn ∈ R and set ω(x) = (x − x0) . . . (x − xn).
Then

sup
a≤x≤b

|ω(x)| ≥ 2−n,

and if xi = cos[(2i+ 1)π/(2n+ 2)], then

sup
a≤x≤b

|ω(x)| = 2−n.

Proof. First assume that the xi are the n+1 Chebyshev points. Then ω and Tn+1 are two
polynomials of degree n+1 with the same roots. Comparing their leading coefficients we see
that ω(x) = 2−nTn+1(x) = 2−n cos(n arccosx). The second statement follows immediately.
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Figure 1.10. The Chebyshev points x8
i = cos[(2i+ 1)π/18].

Note also that for this choice of points, |ω(x)| achieves its maximum value of 2−n at n + 2
distinct points in [−1, 1], namely at cos[jπ/(n + 1)], j = 0, . . . , n + 1, and that the sign of
ω(x) alternates at these points.

Now suppose that some other points x̃i are given and set ω̃(x) = (x− x̃0) · · · (x− x̃n). If
|ω̃(x)| < 2−n on [−1, 1], then ω(x)− ω̃(x) alternates sign at the n+ 2 points cos[jπ/(n+ 1)]
and so has at least n+ 1 zeros. But it is a polynomial of degree at most n (since the leading
terms cancel), and so must vanish identically, a contradiction. �

Table 1.1 indicates the Lebesgue constant for Chebyshev interpolation grows rather slowly
with the degree (although it does not remain bounded). In fact the rate of growth is only
logarithmic and can be bounded very explicitly. See [6] for a proof.

Theorem 1.21. If Pn : C([a, b]) → Pn([a, b]) denotes interpolation at the Chebyshev
points, then

‖Pn‖ ≤
2

π
log(n+ 1) + 1, n = 0, 1, . . . .

Comparing with Theorem 1.19, we see that Chebyshev interpolation gives asymptotically
the best results possible. Combining this result with the Jackson theorems we see that Cheby-
shev interpolation converges for any function C1, and if f ∈ Ck, then ‖f−Pn‖ ≤ Cn−k log n,
so the rate of convergence as n→∞ is barely worse than for the best approximation. Using
the Jackson theorem for Hölder continuous functions (given in the exercises), we see that in-
deed Chebyshev interpolation converges for any Hölder continuous f . Of course, by Faber’s
theorem, there does exist a continuous function for which it doesn’t converge, but that func-
tion must be quite unsmooth. We can summarize this by saying that Chebyshev interpolation
is a robust approximation procedure (it converges for any “reasonable” continuous function)
and an accurate one (it converges quickly if the function is reasonably smooth). Compare
this with Bernstein polynomial approximation which is completely robust (it converges for
any continuous function), but not very accurate.

Figure 1.11 repeats the example of best approximation from Figure 1.5, but adds the
Chebyshev interpolant. We see that, indeed, on this example the Chebyshev interpolant is
not far from the best approximation and the error not much larger than the error in best
approximation.
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Figure 1.11. The sinusoidal function and its minimax approximation
(shown with a dotted line) of degrees 3 and 4 and the corresponding error
curves, as in Figure 1.5. The thin lines show the interpolant at the Chebyshev
points and the error curves for it.
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4. Least Squares Polynomial Approximation

4.1. Introduction and preliminaries. Now we consider best approximation in the
space L2([a, b]). The key property of the L2 norm which distinguishes it from the other Lp

norms, is that it is determined by an inner product, 〈u, v〉 =
∫ b
a
u(x)v(x) dx.

Definition. A normed vector space X is an inner product space if there exists a sym-
metric bilinear form 〈 · , · 〉 on X such that ‖x‖2 = 〈x, x〉.

Theorem 1.22. Let X be an inner product space, P be a finite dimensional subspace,
and f ∈ X. Then there exists a unique p ∈ P minimizing ‖f−p‖ over P . It is characterized
by the normal equations

〈p, q〉 = 〈f, q〉, q ∈ P.

Proof. We know that there exists a best approximation p. To obtain the character-
ization note that ‖f − p + εq‖2 = ‖f − p‖2 + 2ε〈f − p, q〉 + ε2‖q‖2 achieves its minimum
(as a quadratic polynomial in ε) at 0. If p and p∗ are both best approximation the normal
equations give 〈p− p∗, q〉 = 0 for q ∈ P . Taking q = p− p∗ shows p = p∗. (Alternative proof
of uniqueness: show that an inner product space is always strictly convex.) �
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In the course of the proof we showed that the normal equations admit a unique solution.
To obtain the solution, we select a basis φ1, . . . , φn of P , write p =

∑
j ajφj, and solve the

equations
n∑
j=1

〈φj, φi〉aj = 〈f, φi〉, i = 1, . . . , n.

This is a nonsingular matrix equation.
Consider as an example the case where X = L2([0, 1]) and P = Pn. If we use the

monomials as a basis for Pn, then the matrix elements are
∫ 1

0
xjxi dx = 1/(i + j + 1). In

other words the matrix is the Hilbert matrix, famous as an example of a badly conditioned
matrix. Thus this is not a good way to solve the normal equations.

Suppose we can find another basis for P which is orthogonal: 〈Pj, Pi〉 = 0 if i 6= j. In that
case the matrix system is diagonal and trivial to solve. But we may construct an orthogonal
basis {Pi} starting from any basis {φi} using the Gram-Schmidt process: P1 = φ1,

Pj = φj −
j−1∑
k=1

〈φj, Pk〉
‖Pk‖2

Pk, j = 2, . . . , n.

Note that for an orthogonal basis we have the simple formula

p =
n∑
j=1

cjPj, cj =
〈f, Pj〉
‖Pj‖2

.

If we normalize the Pj so that ‖Pj‖ = 1 the formula for cj simplifies to cj = 〈f, Pj〉

4.2. The Legendre polynomials. Consider now the case of X = L2([a, b]), P =
Pn([a, b]). Applying the Gram-Schmidt process to the monomial basis we get a sequence
of polynomials pn = xn + lower with pn ⊥ Pn−1. This is easily seen to characterize the pn
uniquely.

The Gram-Schmidt process simplifies for polynomials. For the interval [−1, 1] define

p0(x) = 1,

p1(x) = x,

pn(x) = xpn−1(x)− 〈xpn−1, pn−2〉
‖pn−2‖2

pn−2(x), n ≥ 2.

It is easy to check that these polynomials are monic and orthogonal. The numerator in the
last equation is equal to ‖pn−1‖2. These polynomials, or rather constant multiples of them,
are called the Legendre polynomials.

p0(x) = 1,

p1(x) = x,

p2(x) = x2 − 1/3,

p3(x) = x3 − 3x/5.

We can obtain the Legendre polynomials on an arbitrary interval by linear scaling.
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We normalized the Legendre polynomials by taking their leading coefficient as 1. More
commonly the Legendre polynomials are normalized to have value 1 at 1. Then it turns out
that the recursion can be written

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x),

starting with P0 = 1, P1(x) = x (see [5], Ch. 2.2 for details). Henceforth we shall use Pn
to denote the Legendre polynomials so normalized. Now we shall gather some properties of
them (see [5] Ch. 2, including the exercises, for details).

0) Pn(1) = 1, Pn(−1) = (−1)n, Pn is even or odd according to whether n is even or odd.
1) ‖Pn‖2 = 2/(2n+ 1).
2) The leading coefficient of Pn = (2n− 1)(2n− 3) · · · 1/n! = (2n)!/[2n(n!)2].
3) It is easy to check, by integration by parts, that the functions dn

dxn
[(x2 − 1)n] are

polynomials of degree n and are mutually orthogonal. Comparing leading coefficients we get
Rodrigues’s formula for Pn:

Pn =
1

2nn!

dn

dxn
[(x2 − 1)n].

4) Using Rodrigues’s formula one can show, with some tedious manipulations, that

d

dx

[
(x2 − 1)

dPn
dx

]
= n(n+ 1)Pn,

i.e., the Pn are the eigenfunctions of the given differential operator.
5) Using this equation one can prove that |Pn| ≤ 1 on [−1, 1] (see Isaacson & Keller,

Ch. 5, Sec. 3, problem 8).
6) Pn has n simple roots, all in (−1, 1). Indeed to prove this, it suffices to show that

Pn changes sign at n points in (−1, 1). If the points where Pn changes sign in (−1, 1) are
x1, . . . , xk, then Pn isn’t orthogonal to (x− x1) · · · (x− xk), so k ≥ n.

Using the Legendre polynomials to compute the least squares approximation has the
additional advantage that if we increase the degree the polynomial approximation changes
only by adding additional terms: the coefficients of the terms already present don’t change.

Now consider the error f −
∑
cjPj. We have

‖f −
n∑
j=0

cjPj‖2 = ‖f‖2 +
n∑
j=0

c2
j‖Pj‖2 − 2

n∑
j=0

cj〈f, Pj〉.

But 〈f, Pj〉 = cj‖Pj‖2, so

‖f −
∑

cjPj‖2 = ‖f‖2 −
n∑
j=0

c2
j‖Pj‖2

In particular, this shows that
∑n

j=0 c
2
j‖Pj‖2 is bounded above by ‖f‖2 for all n, so the limit∑∞

j=0 c
2
j‖Pj‖2 exists. In fact this limit must equal ‖f‖2, since if it were strictly less than ‖f‖2

we would have ‖f −
∑n

j=0 cjPj‖ ≥ δ for some δ > 0 and all n, i.e., infp∈Pn‖f −p‖2 ≥ δ for all

n. But, infp∈Pn‖f − p‖2
2 ≤ infp∈Pn‖f − p‖2

∞, and the latter tends to zero by the Weierstrass
Approximation Theorem.
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Theorem 1.23. Let f ∈ C([a, b]) and let Pn be the orthogonal polynomials on [a, b] (with
any normalization). Then the best approximation to f in Pn with respect to the L2 norm is
given by

(1.5) pn =
n∑
j=0

cjPj, cn =
〈f, Pj〉
‖Pj‖2

.

The L2 error is given by

‖f − pn‖2 = ‖f‖2 −
n∑
j=0

c2
j‖Pj‖2 = ‖f‖2 − ‖pn‖2

and this quantity tends to zero as n tends to infinity. In particular

‖f‖2 =
∞∑
j=0

c2
j‖Pj‖2.

The last equation is Parseval’s equality. It depended only on the orthogonality of the
Pn and on the completeness of the polynomials (any continuous function can be represented
arbitrarily closely in L2 by a polynomial).

4.3. Error analysis. We now consider the rate of convergence of pn, the best L2 approx-
imation of f , to f . An easy estimate follows from the fact that ‖f‖L2([−1,1] ≤

√
2‖f‖L∞([−1,1]):

inf
p∈Pn
‖f − p‖2 ≤

√
2 inf
p∈Pn
‖f − p‖∞.

The right-hand side can be bounded Jackson’s theorems, e.g., by ckn
−k‖f (k)‖∞.

Another interesting question is whether pn converges to f in L∞. For this we will compute
the Lebesgue constant for best L2 approximation. That is we shall find a number cn such
that ‖pn‖∞ ≤ cn‖f‖∞ whenever pn is the best L2 approximation of f in Pn. It then follows
that ‖f − pn‖∞ ≤ (1 + cn) infq∈Pn‖f − q‖∞, and again we can apply the Jackson theorems
to bound the right-hand side. Now we know that all norms on the finite dimensional space
Pn are equivalent, so there is a constant Kn such that ‖q‖∞ ≤ Kn‖q‖2 for all q ∈ Pn. Then

‖pn‖∞ ≤ Kn‖pn‖2 ≤ Kn‖f‖2 ≤
√

2Kn‖f‖∞,
and so the Lebesgue constant is bounded by

√
2Kn. To get a value for Kn, we write an arbi-

trary element of Pn as q =
∑n

k=0 akPk. Then ‖q‖∞ ≤
∑n

k=0 |ak|, and ‖q‖2
2 =

∑n
k=0 |ak|2

2
2k+1

.
Thus for the best choice for Kn,

K2
n = max

(
∑n

k=0 |ak|)2∑n
k=0 |ak|2

2
2k+1

.

We can find the maximum using the Cauchy-Schwarz inequality:

(
n∑
k=0

|ak|)2 = (
n∑
k=0

(|ak|
√

2

2k + 1
)

√
2k + 1

2
)2 ≤

(
n∑
k=0

|ak|2
2

2k + 1

)(
n∑
k=0

2k + 1

2

)
.

Thus K2
n ≤

∑n
k=0

2k+1
2

= (n+1)2

2
. We have thus shown that ‖q‖∞ ≤ (n + 1)/

√
2‖q‖2 for

q ∈ Pn, the Lebesgue constant of least squares approximation in Pn is bounded by n + 1
and, consequently, for any function f for which the best L∞ approximation converges faster
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than O(1/n), the best L2 approximation converges in L∞, with at most one lower rate of
convergence.

4.4. Weighted least squares. The theory of best approximation in L2 extends to best
approximation in the weighted norm

‖f‖w,2 :=

(∫ b

a

|f(x)|2w(x) dx

)1/2

,

where w : (a, b) → R+ is an integrable function. The point is, this norm arises from an
inner product, and hence most of theory developed above goes through (one thing that does
not go through, is that unless the interval is symmetric with respect to the origin and w is
even, it will not be the case that the orthogonal polynomials will alternate odd and even

parity). Writing 〈f, g〉 =
∫ b
a
f(x)g(x)w(x) dx for the inner product, we define orthogonal

polynomials by a modified Gram-Schmidt procedure as follows. Let Q0(x) ≡ 1. Define
Q1 = xQ0− a0Q0 where a0 is chosen so that 〈Q1, Q0〉 = 0, i.e., a0 = 〈xQ0, Q0〉/‖Q0‖2. Then
Q2 = xQ1 − a1Q1 − b1Q0 where a1 is chosen so that 〈Q2, Q1〉 = 0 (a1 = 〈xQ1, Q1〉/‖Q1‖2)
and b1 is chosen so that 〈Q2, Q0〉 = 0 (b1 = 〈(x − a1)Q1, Q0〉/‖Q0‖2. We then define
Q3 = xQ2− a2Q2− b2Q1, choosing a2 and b2 to get orthogonality to Q2 and Q1 respectively.
Each of the terms on the right-hand side is individually orthogonal to Q0, so this procedure
works, and can be continued. In summary:

Qn+1 = (x− an)Qn − bnQn−1, an =
〈xQn, Qn〉
‖Qn‖2

, bn =
〈(x− an)Qn, Qn−1〉

‖Qn−1‖2
.

Actually, 〈(x − an)Qn, Qn−1〉 = ‖Qn‖2, since Qn = (x − a)Qn−1 + · · · , so we can write
bn = ‖Qn‖2/‖Qn−1‖.

This gives the orthogonal polynomials for the weight w on [a, b] normalized so as to be
monic. As for the Legendre polynomials other normalizations may be more convenient.

Probably the most important case is w(x) = 1/
√

1− x2, in which case we get the Cheby-
shev polynomials Tn as orthogonal polynomials. To see that these are L2([−1, 1], w) orthog-
onal make the change of variables x = cos θ, 0 < θ < π to get∫ 1

−1

Tn(x)Tm(x)
1√

1− x2
dx =

∫ π

0

cosnθ cosmθ dθ.

The recurrence relation is, as we have already seen, is

Tn+1 = 2xTn − Tn−1, T0 = 1, T1 = x.

Other famous families of orthogonal polynomials are: Chebyshev of second kind (weight
of
√

1− x2 on [−1, 1]), Jacobi (weight of (1−x)α(1+x)β on [−1, 1]) which contains the three
preceding cases as special cases, Laguerre (weight of e−x on [0,∞), and Hermite (weight of

e−x
2

on R).

5. Piecewise polynomial approximation and interpolation

If we are given a set of distinct points on an interval and values to impose at those
points, we can compute the corresponding Lagrange interpolating polynomial. However we
know, e.g., from Runge’s example, that for more than a few points, this polynomial may
be highly oscillatory even when the values are taken from a smooth underlying function.
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Figure 1.12. Piecewise polynomials. In the first row are plotted typical
elements of M0(T ), M1(T ), and M2(T ). In the second are shown typical
elements of M1

0 (T ), M2
0 (T ), and M2

1 (T ). The mesh T consists of the same six
subintervals in all cases.

In this section we shall explore an alternative to the polynomials for interpolation, namely
piecewise polynomials. We shall see that piecewise polynomial give good approximation
to smooth functions. Unlike polynomials, they are not infinitely differentiable functions.
However we can choose the degree of smoothness (C0, C1, . . . ) according to our needs.

Given an interval [a, b], choose breakpoints a = x0 < x1 < · · · < xn = b and define the
subintervals Im := [xm−1, xm], m = 1, 2, . . . , n. Then the set T of these subintervals is a
partition of the interval [a, b]. We denote by Mk(T ) the space of functions on [a, b] which
restrict to polynomials of degree at most k on each of the subintervals (xi−1, xi). We don’t
insist that these piecewise polynomials are continuous so that their value at the breakpoints
xi may not be defined. The subspace of continuous functions in Mk(T ) will be denoted by
Mk

0 (T ). More generally for s = 0, 1, . . . we define

Mk
s (T ) = Mk(T ) ∩ Cs([a, b]).

Figure 1.12 shows typical elements of these spaces for various k and s.
Note that when s ≥ k, Mk

s (T ) = Pk(T ): there are no piecewise polynomials of degree k in
Ck except global polynomials. However, if s ≤ k−1, then the space Mk

s (T ) strictly contains
Pk(T ) (as long as the partition contains more than one subinterval), and its dimension
grows with the number of subintervals. To determine the dimension explicitly we note that
an element of p ∈ Mk

s (T ) can be specified as follows: first choose p1 = p|I1 as an arbitrary
element of Pk(I1); then choose p2 = p|I2 as an arbitrary element of Pk(I2) subject to the

constraint that p
(m)
2 (x1) = p

(m)
1 (x1), m = 0, 1, · · · , s; then choose p3 = u|I3 as an arbitrary

element of Pk(I2) subject to the constraint that p
(m)
3 (x2) = p

(m)
3 (x2), m = 0, 1, · · · , s; and so

forth. In this we we see that

dimMk
s (T ) = (k − s)n+ s+ 1
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Figure 1.13. Some Lagrange basis functions for M1
0 (T ) (first row) and

M2
0 (T ) (second row).

for 0 ≤ s ≤ k (and even for s = −1 if we interpret Mk
−1 as Mk). We get the same result if

we start with the dimension of Mk(T ), which is n(k + 1), and subtract (s + 1)(n − 1) for
the value and first s derivatives which need to be constrained at each of the n − 1 interior
breakpoints.

Since they are continuous, the functions p ∈ Mk
0 (T ) have a well-defined value p(x) at

each x ∈ [a, b], (including the possibility that x is a breakpoint). Consider the set S of
points in [a, b] consisting of the n+ 1 breakpoints and an additional k − 1 distinct points in
the interior of each subinterval. For definiteness, when k = 2 we use the midpoint of each
subinterval, when k = 3, we use the points 1/3 and 2/3 of the way across the interval, etc.
Thus S contains nk + 1 points, exactly as many as the dimension of Mk

0 (T ). An element
p ∈ Mk

0 (T ) is uniquely determined by its value at these nk + 1 points, since—according to
the uniqueness of Lagrange interpolation—it is uniquely determined on each subinterval by
its value at the k+1 points of S in the subinterval (the two end points of the subinterval and
k−1 points in the interior). Thus the interpolation problem of finding p ∈Mk

0 (T ) taking on
given values at each of the points in S has a unique solution. This observation leads us to a
useful set of basis of function for Mk

0 (T ), analogous to the Lagrange basis functions for Pn
discussed in § 3.1, which we shall call a Lagrange basis for Mk

0 (T ). Namely, for each s ∈ S
we define a basis function φs(x) as the element of Mk

0 (T ) which is equal to 1 at s and is zero
at all the other points of S. Figure 1.13 shows the first few basis functions for M1

0 (T ) and
M2

0 (T ). Notice that this is a local basis in the sense that all the basis functions have small
supports: they are zero outside one or two subintervals. This is in contrast to the Lagrange
basis functions for Pn, and is an advantage of piecewise polynomial spaces.

To approximate a given function f on [a, b] by a function in p ∈ Mk(T ) we may in-
dependently specify p in each subinterval, e.g., by giving k + 1 interpolation points in the
subinterval. In order to obtain a continuous approximation (p ∈ Mk

0 ) it suffices to include
the endpoints among the interpolation points. For example, we may determine a continuous
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Figure 1.14. Four piecewise polynomial interpolants of the same smooth
function. In the first row we see a piecewise constant interpolant determined
by interpolation at the interval midpoints, and a piecewise linear interpolant
determined by interpolation at points 1/3 and 2/3 of the way across each
subinterval. The bottow row shows a continuous piecewise linear interpolant
determined by using the breakpoints as interpolation points, and the a contin-
uous piecewise quadratic interpolant in which both the breakpoints and the
interval midpoints are taken as interpolation points.

piecewise linear approximation by interpolating f at the breakpoints. We may determine a
continuous piecewise quadratic approximation by interpolating at the breakpoints and the
midpoint of each subinterval. In terms of the basis functions described in the last paragraph,
the formula for the interpolant in Mk

0 (T ) is simple:

p(x) =
∑
s∈S

f(s)φs(x).

Because the basis functions have small support this sum is cheap to evaluate even when
there are many subintervals (because for any given x, only a few of the φs(x) are non-zero).
Figure 1.14 shows the interpolants of a smooth function using various piecewise polynomial
spaces.

It is easy to obtains error bounds for these interpolation procedures because on each
subinterval Ii we are simply performing Lagrange interpolation, and so we may apply the
estimate (1.3) to bound the L∞(Ii) error of the interpolant in terms of ‖f (k+1)‖L∞(Ii) and
hi = xi − xi−1. Taking the maximum over all the subintervals gives us an L∞ error bound
on the entire interval in terms of ‖f (k+1)‖L∞([a,b]) and the mesh size h := maxi hi. These
considerations are summarized in the following theorem.

Theorem 1.24. Let T be a mesh of [a, b], k a non-negative integer, and f a function
on [a, b]. Given k + 1 interpolation points in each subinterval of the mesh, there exists a
unique function p ∈ Mk(T ) interpolating f at all the interpolation points. Moreover, if
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Figure 1.15. As the interior mesh points tend to the endpoints, the Lagrange
cubic interpolant tends to the Hermite cubic interpolant.

f ∈ C(k+1)([a, b]), then

‖f − p‖L∞([a,b]) ≤
1

(k + 1)!
‖f (k+1)‖L∞([a,b])h

k+1

where h is the mesh size. Finally, if k > 0 and on each subinterval the interpolation points
include the endpoints, then p ∈Mk

0 (T ).

Remark. The constant 1/(k+1)! can be improved for particular choices of interpolation
points.

Interpolation by smoother piecewise polynomials (elements of Mk
s (T ) with s > 0) can

be trickier. For example, it is not evident what set of n + 2 interpolation points to use to
determine an interpolant in M2

1 (T ), nor how to bound the error. The situation for the space
M3

1 (T ), the space of C1 piecewise cubic polynomials is simpler. Given a C1 function f on
an interval [α, β], there is a unique element of p ∈ P3([α, β]) such that

p(α) = f(α), p(β) = f(β), p′(α) = f ′(α), p′(β) = f ′(β).

The cubic p is called the Hermite cubic interpolant to f on [α, β]. It may be obtained as the
limit as ε→ 0 of the Lagrange interpolant using interpolation points α, α + ε, β − ε, and β
(see Figure 1.15), and so satisfies

‖f − p‖L∞([α,β]) ≤
1

4!
‖f (4)‖L∞([α,β]).

Now if we are given the mesh T , then we may define the piecewise Hermite cubic inter-
polant p to a C1 function f by insisting that on each subinterval p be the Hermite cubic
interpolant to f . Then p is determined by the interpolation conditions

(1.6) p(xi) = f(xi), p′(xi) = f ′(xi), i = 0, 1, . . . , n.
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By construction p ∈M3
1 (T ). When f ∈ C4([a, b]) we obtain an O(h4) error estimate just as

for the piecewise Lagrange cubic interpolant. We can specify C1 interpolants of higher degree
and order, by supplementing the conditions (1.6) with additional interpolation conditions.
Thus to interpolate in Mk

1 (T ), k > 3, we insist that p satisfy (1.6) and as well interpolate f at
k− 3 points interior to each subinterval. It is possible to obtain even smoother interpolants
(C2, C3, . . . ) using the same idea. But to obtain an interpolant in Cs in this way it is
necessary that the degree k be at least 2s+ 1.

5.1. Cubic splines. The space M3
2 (T ) of cubic splines has dimension n + 3. It is

therefore reasonable to try to determine an element p of this space by interpolation at the
nodes, p(xi) = f(xi), and two additional conditions. There are a number of possible choices
for the additional conditions. If the values of f ′ are known at the end points a natural choice
is p′(a) = f ′(a) and p′(b) = f ′(b). We shall mostly consider such derivative end conditions
here. If the values of f ′ are not known, one possibility is approximate f ′(a) by r′(a) where
r ∈ P3 agrees with f at xi, i = 0, 1, 2, 3. Another popular possibility is to insist that p′′′

be continuous at x1 and xn−1. This means that p belongs to P3([x0, x2]) and P3([xn−2, xn]).
That is, x1 and xn−1 are not true breakpoints or knots. Thus these are called the not-a-knot
conditions.

We shall now proceed to proving that there exists a unique cubic spline interpolating f
at the breakpoints and f ′ at the end points. With derivative end conditions it is convenient
to define x−1 = x0 = a, xn+1 = xn = b and h0 = hn+1 = 0. This often saves us the trouble
of writing special formulas at the end points.

Lemma 1.25. Suppose that e is any function in C2([a, b]) for which e(xi) = e′(a) =
e′(b) = 0. Then e′′ ⊥M1

0 (T ) in L2([a, b]).

Proof. Let q ∈M1
0 (T ). Integrating by parts and using the vanishing of the derivatives

at the end points we have ∫ b

a

e′′q dx = −
∫ b

a

e′q′ dx.

But, on each subinterval [xi−1, xi], q
′ is constant and e vanishes at the end points. Thus∫ xi

xi−1

e′q′ dx = 0.

�

Theorem 1.26. Given breakpoints x0 < x1 < · · · < xn and values y0, . . . , yn, y
′
a, y
′
b there

exists a unique cubic spline p satisfying p(xi) = yi, p
′(a) = y′a, p

′(b) = y′b.

Proof. Since the space of cubic splines has dimension n + 3 and we are given n + 3
conditions, it suffices to show that if all the values vanish, then p must vanish. In that case,
we can take e = p in the lemma, and, since p′′ ∈M1

0 (T ) we find that p′′ is orthogonal to itself,
hence vanishes. Thus p ∈ P1([a, b]). Since it vanishes at a and b, it vanishes identically. �

The lemma also is the key to the error analysis of the cubic spline interpolant.

Theorem 1.27. Let f ∈ C2([a, b]) and let p be its cubic spline interpolant with derivative
end conditions. Then p′′ is the best least squares approximation to f ′′ in M1

0 (T ).
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If we write IM3
2
f for the cubic spline interpolant of f and ΠM1

0
g for the L2 projection

(best least squares approximation) of g in M1
0 , we may summarize the result as

(IM3
2
f)′′ = ΠM1

0
f ′′,

or by the commutative diagram

C2([a, b])
d2

dx2−−−→ C0([a, b])

I
M3

2

y yΠ
M1

0

M3
2 (T ) −−−→

d2

dx2

M1
0 (T )

Proof. We just have to show that the normal equations

〈f ′′ − p′′, q〉 = 0, q ∈M1
0 (T ),

are satisfied, where 〈 · , · 〉 is the L2([a, b]) inner product. This is exactly the result of the
lemma (with e = f − p). �

The theorem motivates a digression to study least squares approximation by piecewise
linears. We know that if g ∈ L2([a, b]) there is a unique best approximation p = ΠM1

0
g to g

in M1
0 (T ), namely the L2 projection of g onto M1

0 (T ), determined by the normal equations

〈g − p, q〉 = 0, q ∈M1
0 (T ).

We now bound the Lebesgue constant of this projection, that is the L∞ operator norm

‖ΠM1
0
‖∞ := sup

f∈C([a,b])
‖f‖∞≤1

‖ΠM1
0
f‖L∞ .

Theorem 1.28. ‖ΠM1
0
‖∞ ≤ 3.

Proof. Let φi ∈ M1
0 (T ) denote the nodal basis function at the breakpoint xi. Then

r = ΠM1
0
f =

∑
j αjφj where

n∑
j=0

αj〈φj, φi〉 = 〈f, φi〉, i = 0, . . . , n.

Now we can directly compute

〈φj, φj〉 =
hj + hj+1

3
,

〈φj−1, φj〉 =
hj
6
,

〈φj, φk〉 = 0, |j − k| ≥ 2,

(recall that by convention h0 = hn+1 = 0). Thus the ith normal equation in this basis is

hiαi−1 + 2(hi + hi+1)αi + hi+1αi+1 = 6〈f, φi〉,
where again we define h0 = hn+1 = 0. We remark in passing that the matrix representing
the normal equations in this basis is symmetric, tridiagonal, positive definite, and strictly
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diagonally dominant, so easy to solve. (Gaussian elimination without pivoting works in O(n)
operations.)

Let α = maxk |αk| = ‖r‖∞. Choose i such that |αi| = α and write the ith equation as

2(hi + hi+1)αi = 6〈f, φi〉 − hiαi−1 − hi+1αi+1.

Taking absolute values we get

2(hi + hi+1)‖r‖∞ ≤ 6|〈f, φi〉|+ hi‖r‖∞ + hi+1‖r‖∞.
Now |6〈f, φi〉| ≤ 6‖f‖∞〈1, φi〉 = 3(hi+1 + hi)‖f‖∞ and the result follows. �

It follows that ‖f − ΠM1
0
f‖∞ ≤ 4 infq∈M1

0
‖f − q‖∞, and, for f ∈ C2, ‖f − ΠM1

0
f‖∞ ≤

1
2
h2‖f ′′‖∞.

Returning now to the case of p the cubic spline interpolant of f ∈ C4, we know that
p′′ = ΠM1

0
f ′′, so

‖f ′′ − p′′‖∞ ≤
1

2
h2‖f (4)‖.

This gives a bound on the W 2
∞ seminorm. To move down to the L∞ norm, we note that

f − p vanishes at the breakpoints, and hence its piecewise linear interpolant is 0. Applying
the error estimate for piecewise linear interpolation gives

‖f − p‖∞ ≤
1

8
h2‖f ′′ − p′′‖∞.

Combining the last two estimates gives us an error bound for cubic spline interpolation:

‖f − p‖∞ ≤
1

16
h4‖f (4)‖.

The relation (IM3
2
f)′′ = ΠM1

0
f ′′ can be used to compute the cubic spline interpolant as

well. We know that

p′′(x) = αj−1
xj − x
hj

+ αj
x− xj−1

hj
, x ∈ [xj−1, xj],

where the αj are determined by the tridiagonal system

hjαj−1 + 2(hj + hj+1)αj + hj+1αj+1 = 6〈f ′′, φj〉.
Since integration by parts gives

〈f ′′, φj〉 = (hj + hj+1)f [xj−1, xj, xj+1],

the right-hand side of the tridiagonal system can be written in terms of the data f(xi), f
′(a),

f ′(b), so the αi can be computed.
Integrating twice we then get

p(x) = αj−1
(xj − x)3

6hj
+ αj

(x− xj−1)3

6hj
+ Aj

xj − x
hj

+Bj
x− xj−1

hj
, x ∈ [xj−1, xj].

Finally we may apply the interpolation conditions to find that

Aj = f(xj−1)− αj−1

h2
j

6
, Bj = f(xj)− αj

h2
j

6
,

and so we have an explicit formula for p on each subinterval [xj−1, xj].
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Figure 1.16. A Lagrange basis function for cubic spline interpolation. This
cubic spline is equal to 1 at the third breakpoint and to 0 at the others,
and satisfies zero derivative endpoint conditions. Notice that, although its
magnitude decreases quickly away from the third breakpoint, it is non-zero on
every subinterval.

While this procedure allows one to efficiently compute the cubic spline interpolant to
given data, it is more complicated than computing a merely continuous piecewise polynomial
interpolant or a Hermite cubic interpolant. This is because, through the linear system which
must be solved, the cubic spline on each subinterval depends on all the interpolation data,
not just the data on the subinterval. Otherwise put, if we define a cubic spline by setting its
value equal to one at one of the breakpoints, and its other values and end conditions equal
to zero (i.e., a Lagrange basis function for the space of cubic splines, see Figure 1.16), this
function will not vanish on any subinterval. (It does, however, tend to decrease quickly away
from the breakpoint where it is equal to one, as suggested by the figure.)

6. Piecewise polynomials in more than one dimension

Much of the theory of Lagrange interpolation and best L2 approximation does not extend
from one to more dimensions. However the theory of continuous piecewise polynomial ap-
proximation and interpolation extends rather directly and has many important applications.
One of the most important of these is the finite element method for the numerical solution
of partial differential equations which will be studied later in the course.

Here we will consider the case of a plane domain, that is, n = 2, although the extension
to n > 2 is quite similar. Let Ω be a polygon. By a triangulation of Ω we mean a set T of
closed triangles T with the properties that

(1)
⋃
T∈T T = Ω̄

(2) any two distinct elements T1, T2 ∈ T are either disjoint or meet in a common edge
or vertex

The second point means we exclude configurations such as shown in Figure 1.17 from trian-
gulations.

Figure 1.18 shows a triangulation of a polygonal domain.
As in one-dimension, we write Mk(T ) as the space of functions on Ω whose restriction to

T is a polynomial function of degree at most k. These functions may be discontinuous (and
for our purposes their values on the edges of the triangles are irrelevant). The space Pk(T )
of polynomial functions of degree at most k on T has dimension (k + 1)(k + 2)/2 when T is
a 2-dimensional domain. Therefore dimMk(T ) = NT(k + 1)(k + 2)/2 where NT where NT

is the number of triangles in the triangulation.
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Figure 1.17. Inadmissible configurations of triangles for a triangulation.

Figure 1.18. A triangulation and a continuous piecewise linear function.

Of more interest to us is the space

Mk
0 (T ) = Mk(T ) ∩ C(Ω),

of continuous piecewise polynomials of degree k with respect to the triangulation T . An
element of Mk

1 (T ) is plotted along with the mesh in Figure 1.18. Our first task will be to
determine the dimension of this space and exhibit a local basis. First, let k = 1. If we
associate to each vertex of the triangulation a value, then on each triangle we may uniquely
determine a linear polynomial taking the given values at the vertices. In this way we define a
piecewise linear function. The function is continuous. To show this we need only show that if
two triangles share a common edge, then the linear polynomials determined by interpolation
of the vertex values on the two triangles agree on the common edge. But the restriction
of these polynomials to the edge is a linear polynomial in one variable (say in the distance
along the edge from one of the vertices), and they agree at the two endpoints of the edge,
so they must agree on the entire edge. In this way we obtain a formula for the dimension of
the space of piecewise linears with respect to the given triangulation:

dimM1
0 (T ) = VT ,
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where VT is the number of vertices in the triangulation. We also obtain a Lagrange basis for
M1

0 (T ), a typical element of which is shown in Figure 1.19. For obvious reasons, these are
called hat functions. Notice that the basis is local: each basis function is zero outside the

Figure 1.19. A typical Lagrange basis function for the space M1
0 (T ).

union of triangles containing one vertex.
Similar considerations allow us to determine the dimension and a local basis for Mk

0 (T )
for k > 1. This time we assign values at the vertices and the midpoints of edges. Our first
claim is that for T a triangle we can determine p ∈ P2(T ) by giving the values at the vertices
of T and at the edge midpoints. There is something to prove here, since a priori there might
exist a non-zero quadratic polynomial vanishing at all six of these points. To see that this
doesn’t happen we notice that the restriction of the polynomial to each edge is a quadratic
function on the edge which vanishes at three points on the edge. This certainly implies that
the restriction to each edge vanishes identically. But if a polynomial vanishes on a line, then
it must be divisible by the linear polynomial defining the line. If the three lines through the
edges of the triangle are given by li(x) = 0, i = 1, 2, 3, which li ∈ P2(R2), we conclude that
the polynomial is divisible by the product l1l2l3. Since this product has degree 3 and the
polynomial in question has degree at most 2, the only possibility is that the polynomial is
identically 0.

Thus we can indeed determine an element of M2(T ) by giving arbitrary values at vertices
and edge midpoints. To see that the resulting function is in M2

0 (T ) we again observe that
on a common edge to two triangles, the restriction to the edge is fully determined by the
values at the endpoints and midpoint of the edge. We conclude that

dimM2
0 (T ) = VT + ET ,

with ET the number of edges of triangles. Figure 1.20 shows a typical basis element associated
with a vertex and another one associates with and edge midpoint.

Similar considerations apply to continuous piecewise polynomials of any degree. The
appropriate interpolation points for Pk on a single triangle T are shown for degrees 1 through
4 in Figure 1.21

6.1. The Bramble–Hilbert Lemma. Our next goals is to obtain error estimates for
piecewise polynomial interpolation in two dimensions. In this section we prove a lemma
which will be key to obtaining the estimates.
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Figure 1.20. Two Lagrange basis functions for the space M2
0 (T ).

Figure 1.21. Interpolation points for Pk(T ), k = 1, 2, 3, 4.

Theorem 1.29 (Bramble–Hilbert Lemma). Let Ω ⊂ RN be a bounded open convex set
and let n be a non-negative integer. Then there exists a constant C depending only on Ω and
n, such that for 1 ≤ p ≤ ∞,

inf
p∈Pn(Ω)

‖u− p‖Wn+1
p (Ω) ≤ C|u|Wn+1

p (Ω)

for all u ∈ Cn+1(Ω).

Here, we shall prove the Bramble–Hilbert Lemma in the case of plane domains (N = 2),
but essentially the same proof works in any number of dimensions.

We first introduce multi-index notation. Since we are working in R2 a multi-index is just a
pair α = (α1, α2) of non-negative integers. We write |α| for α1 +α2, Dαu for ∂|α|u/∂xα1

1 ∂x
α2
2 ,

xα for xα1
1 x

α2
2 , and α! for α1!α2!. With this notation we can state Taylor’s theorem with

remainder for functions of two variables as follows.

Theorem 1.30. Let u be n+1 times continuously differentiable on a neighborhood of the
line segment connecting two points x and y in R2. Then

(1.7) u(x) = T ny u(x) +R(x, y),

where

T ny u(x) =
∑
|α|≤n

1

α!
Dαu(y)(x− y)α

is the Taylor polynomial of degree n for u about y and

R(x, y) =
∑
|α|=n+1

n+ 1

α!

∫ 1

0

snDαu
(
x+ s(y − x)

)
(y − x)α ds.
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Proof. Let F (s) = u(y + s(x− y)). By Taylor’s theorem in one dimension,

F (t) =
n∑

m=0

1

m!
F (m)(0)tm +

1

n!

∫ t

0

(t− s)nF (n+1)(s) ds.

Taking t = 1 and substituting s 7→ 1− s in the last integral gives the result. �

Now we suppose that Ω is a bounded open convex set in R2 and proceed to the proof of
the Bramble–Hilbert lemma. Translating and dilating we can assume that Ω contains the
unit ball B.

Integrating (1.7) over y ∈ B and dividing by π (the area of B), we find that

u(x) = P nu(x) + E(x),

where

P nu(x) =
1

π

∫
B

T ny u(x) dy

is the averaged Taylor polynomial (note that P nu ∈ Pn(Ω)), and

E(x) =
∑
|α|=n+1

n+ 1

πα!

∫
R2

∫ 1

0

snDαu
(
x+ s(y − x)

)
χB(y)(y − x)α ds dy.

We have used the characteristic function χB of the unit ball to enable us to write the outer
integral over R2. Next we change variable in the double integral from (s, y) to (t, z) with
t = s and z = x+ s(y − x). This gives

E(x) =
∑
|α|=n+1

n+ 1

πα!

∫
R2

∫ 1

0

t−3Dαu(z)χB
(
x+ t−1(z − x)

)
(z − x)α dt dz

Now if z /∈ Ω, then also x + t−1(z − x) /∈ Ω, since z lies on the segment joining x to this
point. Thus χB

(
x+ t−1(z − x)

)
vanishes whenever z /∈ Ω, and so the outer integral may be

taken over Ω. Rearranging slightly we have

E(x) =
∑
|α|=n+1

∫
Ω

Dαu(z)

[
n+ 1

πα!
(z − x)α

∫ 1

0

t−3χB
(
x+ t−1(z − x)

)
dt

]
dz

=
∑
|α|=n+1

∫
Ω

Dαu(z)Kα(x, z) dz,

where Kα(x, z) is defined to be the term in brackets. We shall prove below:

Lemma 1.31. There exists a constant C depending only on Ω and n such that

Kα(x, z) ≤ C

|x− z|
, x, z ∈ Ω.

In particular, ∫
Ω

|Kα(x, z)| dx,
∫

Ω

|Kα(x, z)| dz ≤ C
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for all x, z ∈ Ω (with a possibly different constant C, but still just depending on Ω and n).
It follows1 that

‖E‖Lp(Ω) ≤ C
∑
|α|=n+1

‖Dαu‖Lp(Ω).

Thus (modulo the proof of Lemma 1.31) we have proven the following theorem, which is a
part of the Bramble–Hilbert theorem.

Theorem 1.32. Let Ω ⊂ RN be a bounded open convex set and let n be a non-negative
integer. Then there exists a constant C depending only on Ω and n, such that for 1 ≤ p ≤ ∞,

‖u− P nu‖Lp(Ω) ≤ C|u|Wn+1
p (Ω),

for all u ∈ Cn+1(Ω).

We now proceed to bound Dβ(u− P nu). For the Taylor polynomial

DβT ny u(x) = T n−|β|y Dβu(x)

for any multi-index β with |β| ≤ n. Averaging over y ∈ B we get

DβP nu(x) = P n−|β|Dβu(x).

Thus,

‖Dβ(u− P nu)‖Lp(Ω) = ‖Dβu− P n−|β|Dβu‖Lp(Ω) ≤ C|Dβu|
W
n−|β|+1
p (Ω)

≤ C|u|Wn+1
p (Ω),

where we have used Theorem 1.32 in the second step. If |β| = n+ 1, then

‖Dβ(u− P nu)‖Lp(Ω) = ‖Dβu‖Lp(Ω) ≤ |u|Wn+1
p (Ω).

Thus we have bounded ‖Dβ(u − P nu)‖Lp(Ω) by C|u|Wn+1
p (Ω) whenever |β| ≤ n + 1, which

establishes the Bramble–Hilbert Lemma.
It remains to prove Lemma 1.31. From its definition

|Kα(x, z)| ≤ C|z − x|n+1

∫ 1

0

t−3χB
(
x+ t−1(z − x)

)
dt,

and n ≥ 0, so it suffices to prove that∫ 1

0

t−3χB
(
x+ t−1(z − x)

)
dt ≤ C

|z − x|2
.

Now χB
(
x+ t−1(z−x)

)
vanishes if |x+ t−1(z−x)| ≥ 1 which happens if t < |z−x|/(1 + |x|)

and, a fortiori, if t ≤ |z − x|/(2d) where d = maxx∈Ω |x| ≥ 1. Therefore,∫ 1

0

t−3χB
(
x+ t−1(z − x)

)
dt ≤

∫ ∞
|z−x|/(2d)

t−3 dt = 2
d2

|z − x|2
.

1This uses the generalized Young inequality : if K is a function on Ω × Ω for which∫
Ω
|K(x, z)| dx,

∫
Ω
|K(x, z)| dz ≤ C and f ∈ Lp(Ω), then g(x) :=

∫
Ω
K(x, z)f(z) dz belongs to Lp(Ω) and

‖g‖Lp(Ω) ≤ C‖f‖Lp(Ω).
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Remarks. 1. We have given a constructive proof in that we have exhibited a particular
p ∈ Pn for which the bound holds. Using functional analysis it is possible to give a much
shorter, but non-constructive, proof. See, for example, [2], Theorem 3.1.1. The proof pre-
sented here is along the lines of that in [4]. 2. Usually the result is stated for all u ∈ W n+1

p (Ω)

rather than in Cn+1(Ω). That result follows from this one, using the density of the latter
space in the former. 3. This result became a key tool in approximation theory after the 1970
paper of J. Bramble and S. Hilbert [1]. However it can already be found in a much earlier
paper of Deny and Lions [3].

6.2. Error estimates for piecewise polynomial interpolation. Let T be a triangle
of diameter hT , and define the linear interpolant

IT : C(T )→ P1(T )

by ITf(v) = f(v) for each vertex v of T . We shall establish the following L∞ error estimate:

Theorem 1.33. There exists an absolute constant C such that

‖f − ITf‖L∞(T ) ≤ Ch2
T |f |W 2

∞(T ) for all f ∈ C2(T ).

The proof consists of two main steps. First we prove an estimate of the same form, except
without any indication of how the error depends on the triangle T . Namely:

Theorem 1.34. For each triangle T there exists a constant CT such that

‖f − ITf‖L∞(T ) ≤ CT |f |W 2
∞(T ) for all f ∈ C2(T ).

In the second step we shall apply Theorem 1.34 for one particular triangle T̂ and use an
affine map from an arbitrary T to T̂ deduce Theorem 1.33.

Proof of Theorem 1.34. If q ∈ P1(T ), then IT q = q, so f−ITf = (f−q)−IT (f−q).
Now clearly ‖ITg‖L∞ ≤ ‖g‖L∞ for all continuous functions g. Applying this with g = f − q
gives

‖f − ITf‖L∞ = ‖(f − q)− IT (f − q)‖L∞ ≤ 2‖f − q‖L∞ .
Since this is true for all q ∈ P1(T ), by the Bramble–Hilbert lemma (actually only the part
of it given in Theorem 1.32), we get

‖f − ITf‖L∞(T ) ≤ CT |f |W 2
∞(T ),

for some constant CT , as claimed. �

Notice the main ingredients of the proof: first the fact that IT preserve P1 (IT q = q for
q ∈ P1(T )); second, boundedness of the interpolant IT (‖ITg‖L∞ ≤ ‖g‖L∞ for all continuous
functions g); and finally the Bramble–Hilbert lemma.

To go from the estimate of Theorem 1.34, which does not specify dependence of the
constant on T , to that of Theorem 1.33, which shows a dependence of O(h2

T ), we shall apply
the former theorem only a single fixed reference triangle, and then use an affine map of the
reference triangle onto an arbitrary triangle to deduce the result.

Let T̂ be the reference triangle with vertices v̂0 = (0, 0), v̂1 = (1, 0), and v̂2 = (0, 1), and
let the vertices of T be denoted v0, v1, v2 ∈ R2. There is a unique affine map F taking v̂i to
vi, i = 0, 1, 2, and mapping T̂ one-to-one and onto T . Indeed

Fx̂ = v0 +Bx̂, B =
(
v1 − v0 | v2 − v0

)
,
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Figure 1.22. Mapping between the reference triangle and an arbitrary triangle.
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(the last notation means that B is the 2 × 2 matrix whose columns are the vectors v1 − v0

and v2 − v0). Since the columns of B are both vectors of length at most hT , certainly the
four components bij of B are bounded by hT . Now to any function f on T we may associate

the pulled-back function f̂ on T̂ where

f̂(x̂) = f(x) with x = Fx̂.

I.e., f̂ = f ◦ F . See Figure 1.22.
Now, the pull-back of the linear interpolant is the linear interpolant of the pull-back:

IT̂ f̂ = ÎTf . To verify this, it suffices to note that ÎTfu is a linear polynomial and it agrees

with f̂ at the vertices of T̂ . Moreover, the pull-back operation clearly doesn’t change the
L∞ norm. Thus

(1.8) ‖f − ITf‖L∞(T ) = ‖f̂ − IT̂ f̂‖L∞(T̂ ) ≤ CT̂ |f̂ |W 2
∞(T̂ ).

Since T̂ is a fixed triangle, CT̂ is an absolute constant: it doesn’t depend on T . To finish the
argument we need to show that

|f̂ |W 2
∞(T̂ ) ≤ Ch2

T |f |W 2
∞(T ).

This just comes from the chain rule for differentiation. We have

∂f̂

∂x̂i
(x̂) =

2∑
j=1

∂f

∂xj
(x)

∂xj

∂x̂i
=

2∑
j=1

bji
∂f

∂xj
(x).

Differentiating again,

∂2f̂

∂x̂i∂x̂k
(x̂) =

2∑
j=1

2∑
k=1

bji
∂2f

∂xj∂xl
(x)blk.

Thus

| ∂2f̂

∂x̂i∂x̂k
(x̂)| ≤ 4h2

T max
j,l
| ∂

2f

∂xj∂xl
(x)|

and

(1.9) |f̂ |W 2
∞(T̂ ) ≤ 4h2

T |f |W 2
∞(T ).

Combining (1.8) and (1.9) we complete the proof of Theorem 1.33.
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We may use the same sort of arguments to obtain estimates in other norms. First
consider the Lp norm. In order to obtain Theorem 1.34 we used the boundedness of the
interpolation operator with respect to the L∞ norm: ‖ITg‖L∞ ≤ ‖g‖L∞ . This result is not
true if we replace L∞ with Lp for p <∞. The difficulty is not with the norm on the left-hand
side. Indeed ITg lies in the 3-dimensional space P1(T ) and all norms are equivalent on a
finite dimensional space. The difficulty is that a continuous function on a triangle may have
arbitrarily large vertex values without having a large Lp norm. See Figure 1.23 for the idea in
one dimension. Fortunately we really only need boundedness of the interpolant with respect

Figure 1.23. A function with a small Lp norm (solid line), but large inter-
polant (dashed line).

to the W 2
p norm. That is we need the existence of a constant C such that ‖ITg‖ ≤ C‖g‖W 2

p

for all v ∈ C(T ). (Again, the norm on the left-hand side doesn’t matter in view of the
equivalence of norms on the space of polynomials.) Since the interpolant is given in terms
of the values of the function at the vertices (ITg(x) =

∑
g(vi)li(x) where the li are the hat

functions), the bound on the interpolant reduces to showing that ‖g‖L∞ ≤ C‖g‖W 2
p
. This is

a special case of the famous Sobolev embedding theorem.

Theorem 1.35 (Sobolev embedding). Let Ω be an n-dimensional domain, p ≥ 1, and m
an integer greater than n/p. Then there exists a constant C such that

‖g‖L∞ ≤ C‖g‖Wm
p

for all g ∈ Cm(Ω).

Thus from the Sobolev embedding theorem we know that, in two dimensions, if p > 1,
then ‖ITg‖L∞(T ) ≤ CT‖g‖W 2

p
, where the constant CT may depend on T , but not on g ∈

C2(T ). We may then argue just as in the proof of Theorem 1.34

‖f − ITf‖Lp = ‖(f − q)− IT (f − q)‖Lp ≤ CT‖f − q‖W 2
p
≤ C ′T |f |W 2

p
,

where we have used polynomial preservation, boundedness, and the Bramble–Hilbert lemmas,
respectively.

To obtain a useful Lp error estimate, we apply this result only for the reference triangle
T̂ and scale that estimate to an arbitrary triangle. Let |T | denote the area of T . Changing
variables from x̂ to x = Fx, we get∫

T

|(f − ITf)(x)|p dx =
|T |
2

∫
T̂

|(f̂ − IT̂ f̂)(x̂)|p dx̂ ≤ C
|T |
2

∑
|β|=2

∫
T̂

|Dβ f̂(x̂)|p dx̂,
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where Dβ ranges over the second partial derivatives. Using the chain rule we have

|Dβ f̂(x̂)| ≤ Ch2
T

∑
|γ|=2

|Dγf(x)|

for each β with |β| = 2. Thus∫
T

|(f − ITf)(x)|p dx ≤ Ch2p
T

|T |
2

∑
|γ|=2

∫
T̂

|Dγf(x)|p dx̂ = Ch2p
T

∑
|γ|=2

∫
T

|Dγf(x)|p dx.

In other words
‖f − ITf‖Lp ≤ Ch2

T |f |W 2
p (T ).

Note that the factor of |T |/2, which came from the change of variables x 7→ x̂ disappeared
when we changed back to the original variable.

Finally we consider estimates of the error in the first derivatives of the interpolants;
that is, we bound |f − ITf |W 1

p
. As we remarked above, in the boundedness result ‖ITg‖ ≤

CT‖g‖W 2
p

(which holds for any p > 1), it does not matter what norm we take on the left-hand
side. Consequently it is straightforward use the Bramble–Hilbert lemma and show that

(1.10) |f̂ − IT̂ f̂ |W 1
p (T̂ ) ≤ C|f̂ |W 2

p (T̂ ).

The next step is to use affine scaling to relate |f − ITf |W 1
p (T ) to |f̂ − IT̂ f̂ |W 1

p (T̂ ) and |f |W 2
p (T )

to |f̂ |W 2
p (T̂ ). We have already made the second relation:

(1.11) |f̂ |W 2
p (T̂ ) ≤ Ch2

T |T |−1/p|f |W 2
p (T ).

(The factor of h2
T comes from applying the chain rule to calculate the second derivatives,

and the factor of |T |−1/p comes from the change of variable in the integral.) To compute
|f − ITf |W 1

p (T ) we will again use the chain rule and a change of variables, but this time, since

f = f̂ ◦ F−1 with F−1x = −B−1v0 + B−1x, a factor of ‖B−1‖ will appear in our estimate
(rather than factors of ‖B‖. Just as we were able to bound ‖B‖ by a geometric quantity,
namely by hT = diam(T ), we can bound ‖F−1‖ by a geometric quantity. Let ρT denote
the diameter of the largest disk contained in T (the circumscribed disk). Then any vector
of length ρT is the vector connecting two points in the circumscribed disk, and this vector
is mapped by B−1 to the difference of two points in T̂ , i.e., to a vector of length at most√

2. Thus B−1 maps any vector of length ρT to a vector of length at most
√

2, which is the
equivalent to saying that ‖B−1‖ ≤

√
2/ρT . When we use this result together with the chain

rule and change of variable, we find that

|g|W 1
p (T ) ≤

C

ρT
|T |1/p|ĝ|W 1

p (T ).

In particular

(1.12) |f − ITf |W 1
p (T ) ≤

C

ρT
|T |1/p|f̂ − IT̂ f̂ |W 1

p (T̂ ).

Combining (1.12), (1.10), and (1.11), we obtain the estimate

|f − ITf |W 1
p (T ) ≤ C

h2
T

ρT
|f̂ |W 2

p (T̂ ).
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This argument is almost complete. I need to now define shape regularity and conclude
a first order estimate. Then state a theorem with all the estimates for piecewise linear
interpolation. Then remark on extension to higher order elements. Perhaps also remark on
case of zero Dirichlet boundary conditions. State final theorem in form to be used in section
on FEMs.

7. The Fast Fourier Transform

The discrete Fourier transform (DFT) is the linear operator FN : CN → CN given by

(Fny)k =
N−1∑
j=0

e−2πijk/Nyj, k = 0, 1, 2, . . . , N − 1,

(note that we index the vectors starting from 0). We can use the above formula to define
(FNy)k for any k, not just 0 ≤ k < N , but it is an N -periodic sequence. If you recall that

the kth Fourier coefficient of a function f on [0, 1] is defined by f̂(k) =
∫ 1

0
f(x)e−2πikx dx,

we see that N−1(FNy)k is just the approximation to f̂(k) obtained by using the trapezoidal
rule with N equal subintervals to compute the integral, expressed in terms of the values
yj = f(j/N).

Note that application of the DFT is simply multiplication of an N -vector by a particular
N × N matrix. This would suggest that N2 multiplications and additions are needed to
compute it. The fast Fourier transform (FFT) is a clever algorithm to compute the DFT
much more quickly (for large N). Because large DFTs arise in many contexts, the FFT
proved to be one of the most important algorithms of the twentieth century. In particular,
it has played a tremendous role in signal processing.

The FFT can also be used as a fast means of computing the coefficients of the a trigono-
metric interpolating polynomial with equally spaced interpolation points (or for the closely
related problem of computing the algebraic polynomial interpolating polynomial at the
Chebyshev points). In this last section of the chapter we introduce the FFT in that context.

We defined the space Tn of real-valued trigonometric polynomials of degree at most n as
the span of the 2n+ 1 functions 1, cosx, sin x, . . . , cosnx, sinnx. Recall that

Tn = {
n∑

k=−n

cke
ikx | ck ∈ C, c−k = c̄k }.

This space has dimension 2n + 1. However, for reasons that will soon be clear, it is more
convenient to work with a space of even dimension at this point. Hence we define T ′n as the
span of the 2n functions 1, cosx, sin x, . . . , cosnx, or, equivalently,

T ′n = {
n∑

k=−n

cke
ikx ∈ Tn | c−n = cn } = span[1, cosx, sinx, . . . , cosnx].

This space has dimension N = 2n.
We now consider the problem of finding a function in T ′n interpolating given data yj at

N equally spaced points xj in [0, 2π]. Since the trigonometric polynomials are 2π-periodic,
we include only one of the endpoints, 0, but not 2π, among the interpolation points. Thus
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the interpolation points are xj = 2πj/N , j = 0, . . . , N − 1. The interpolation problem is
thus to find coefficients ck ∈ C, k = −n, . . . , n, with cn = c−n, such that

n∑
k=−n

cke
2πijk/N = yj, j = 0, . . . , N − 1.

(If the yj are real, we may conjugate this equation to find that if (ck) is a solution, then so
is (c̄−k). Since—as we shall see—the solution is unique, we see that the condition ck = c̄−k
is automatic.)

It is possible to write this system of equations in a somewhat more convenient fashion.
If −n ≤ k ≤ −1, we use the identity e2πijk/N = e2πij(k+N)/N . Then n ≤ k + N ≤ N − 1. In
this way we find

(1.13)
n∑

k=−n

cke
2πijk/N =

N−1∑
k=0

dke
2πijk/N

where

dk =


ck, 0 ≤ k < n,

cn + c−n, k = n,

ck−N , n < k < N.

Note that, since cn = c−n, we can recover the ck from the dk.
Thus our problem is to find the coefficients dk such that

(1.14)
N−1∑
k=0

dke
2πijk/N = yj.

Once this is done, we can define

(1.15) ck =


dk, 0 ≤ k < n,

dn/2, k = −n or n,

dk+N , −n < k < 0,

to obtain the coefficients of the interpolating trigonometric polynomial.
Notice that (1.14) is just an n× n linear system. The matrix is

MN = (e2πijk/N)0≤j,k<N = (ωjk)0≤j,k<N =


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)2


Thus MN is a Vandermonde matrix based on the powers of ω = ωN = e2πi/N , an Nth root
of unity. Notice the close connection with the DFT: M̄N is exactly the matrix of the DFT.

The very special form of the matrix MN allows us to write down its inverse explicitly.
First note that ω̄ = ω−1. Also, by summing the geometric series, we find

N−1∑
k=0

ωjk =

{
0, j 6≡ 0 (mod N),

N, j ≡ 0 (mod N).
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Now consider the product M̄NMN . For 0 ≤ j,m < N , the (j,m) element is

N−1∑
k=0

ω−jkωkm =
N−1∑
k=0

ω(m−j)k = Nδjm.

Thus M−1
N = 1

N
M̄N .

To summarize: given a vector of values yj, we take its discrete Fourier transform to get
a vector dj, and then rearrange the dj according to (1.15) to get the coefficients cj of the
trigonmetric polynomial of degree at most n interpolating the yj at xj.

In 1965 Cooley and Tukey published a clever way to multiply by FN that exploits its
special structure. The resulting algorithm, which exists in many variants, is the FFT. With
it, it is quite practical to compute DFTs of size in the tens of thousands, or even millions.

Let x ∈ RN be given with N = 2n. Let x̄, x̃ ∈ Rn be the odd and even index elements of
x: x̄j = x2j, x̃j = x2j+1. Then

(FNx)k =
N−1∑
j=0

ω−jkN xj =
n−1∑
j=0

ω−2jk
N x2j +

n−1∑
j=0

ω
−(2j+1)k
N x2j+1

=
n−1∑
j=0

ω−jkn x̄j + ω−kN

n−1∑
j=0

ω−jkn x̃j

= (Fnx̄)k + ω−kN (Fnx̃)k.

This equation shows how to reduce the evaluation of the size N discrete Fourier transform
FNx to the two size n discrete Fourier transforms Fnx̄ and Fnx̃. In matrix terms it shows

FNx
 =


Fnx̄
......
Fnx̄

+


1

ω−1
N

. . .

ω1−N
N



Fnx̃
......
Fnx̃

 .

Now if n is itself an even number, then we can reduce each of the discrete Fourier
transforms of size n to two transforms of size n/2, etc. If N is a power of 2, we can continue
in this way until we have reduced the work to N transforms of size 1, which of course are
trivial (F1 = 1). Algorithm 1.1 shows, in metacode, an algorithm for computing the FFT in
this case. Notice that the use of recursion makes the algorithm statement quite brief.
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y = FFT(x)
input: x = (x0, . . . , xn−1) ∈ Cn where n is a power of 2
output: y = Fnx ∈ Cn

if n = 1 then
y ← x

else
x̄← (x0, x2, . . . , xn−2)
x̃← (x1, x3, . . . , xn−1)
ȳ ← FFT(x̄)
ỹ ← FFT(x̃)
ω ← e−2πi/n

yk ← ȳk + ω−kỹk, k = 0, 1, . . . , n/2− 1
yk ← ȳk−n/2 + ω−kỹk−n/2, k = n/2, n/2 + 1, . . . , n− 1

end if

Algorithm 1.1: Simple FFT.

In fact the code is even briefer when implemented in Matlab,2 as shown in the listing
below.

function y = simplefft(x)

N = length(x);

if N == 1

y = x;

else

omega = exp(-2*pi*i/N);

ybar = simplefft(x(1:2:N-1));

ytilde = simplefft(x(2:2:N));

y = [ ybar ; ybar ] + omega.^-(0:N-1)’ .* [ ytilde; ytilde ];

end

Algorithm 1.2: Simple FFT implemented in Matlab.

Let us count the amount of work for this algorithm. For simplicity we count only the
multiplications and ignore the additions. We also ignore the computation of the powers of ωN
needed in the algorithm. In an efficient implementation, all N powers would be computed
once (via N multiplications). If we let mN be the number of multiplications needed to
compute the action of FN , we have mN = 2mn + N where n = N/2. Also m1 = 0. This
gives m2k = k2k, i.e., mN = N log2N .

We close with some applications. Figure 1.24 shows a plot of a smooth periodic function
and its derivative on the left. The function was sampled at 16 equally spaced points and its

2Matlab offers an FFT function, fft, which is more sophisticated and also works when N is not a power
of 2.
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trigonometric polynomial interpolant
∑8

k=−8 cke
ikx was computed and plotted on the right.

The derivative, computed as
∑8

k=−8 ikcke
ikx, is also shown. This approach to reconstructing

the derivative of a function from its values at a discrete set of points is the basis of spectral
methods for solving differential equations.

Figure 1.24. A trigonometric interpolant and its derivative.
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Of course when N = 16 the efficiency afforded by the FFT is not important. Figure 1.25
shows an application involving 1,024 interpolation points, for which the efficiency is signif-
icant. On the left are 1024 points (taken from a sound sample of people laughing). In the
middle is the trigonometric polynomial interpolant of the sample values (computed via the
FFT), and on the right is a blow-up of the region 2 ≤ x ≤ 2.1 showing that the polynomial
does indeed interpolate the given values.

Figure 1.25. Trigonometric interpolation at 1,024 points.
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Exercises

(1) Show that for any 1 ≤ p < q ≤ ∞ the Lp and Lq norms on C(I) are not equivalent.

(2) Let f(x) = ex. a) For p = 1, 2, and ∞ find the best Lp approximation to f in P0(I).
b) Same thing but in P1(I).
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(3) Prove or disprove: if f ∈ C([−1, 1]) is odd then a best approximation to f by odd
polynomials of degree at most n is a best approximation to f among all polynomials of
degree n.

(4) Prove or disprove: if f ∈ C([−1, 1]) has mean value zero, then a best approximation to
f by polynomials of degree at most n with mean value zero is a best approximation to f
among all polynomials of degree n.

(5) State and prove the Jackson theorem in Ck([a, b]) paying attention to the dependence of
the constant on the interval [a, b].

(6) If f ∈ C(R) and δ > 0 define Rδf ∈ C(R) by

Rδf(x) =
1
δ

∫ x+δ/2

x−δ/2
f(t) dt.

Note that Rδf ∈ C1(R). Prove that ‖f − Rδf‖ ≤ ω(δ), where ω denotes the modulus of
continuity of f (i.e., ω(δ) is the supremum of |f(x)−f(y)| over x, y for which |x−y| ≤ δ).

(7) Let f ∈ C2π and let ω denote its modulus of continuity. Using the Jackson theorem in
C1

2π and the regularization operator of the previous problem, prove that

inf
p∈Tn
‖f − p‖∞ ≤ c ω

(
1

n+ 1

)
.

Give an explicit expression for c.

(8) Let f ∈ C([−1, 1]) and let ω denote its modulus of continuity. Prove that

inf
p∈Pn
‖f − p‖∞ ≤ c ω

(
1

n+ 1

)
.

Give an explicit expression for c.

(9) Suppose that f ∈ C([−1, 1]) satisfies the Holder condition |f(x) − f(y)| ≤ M |x − y|α
where M,α > 0. What can you say about the rate of convergence of the best uniform
approximation to f by polynomials of increasing degree?

In the exercises 10–17, which treat divided differences and Newton’s formula for
the interpolating polynomial, we denote by f a real-valued function on an interval,
by x0, . . . , xn n+ 1 distinct points in J and by pk ∈ Pk the Lagrange interpolating
polynomial for f at the first k + 1 points x0, . . . , xk.

(10) Prove that pn(x) − pn−1(x) = c(x − x0) · · · (x − xn−1) for some constant c. We use the
notation f [x0, . . . , xn] to denote this constant and call it the nth divided difference of f at
the xi. Use Lagrange’s formula for the interpolating polynomial to derive an expression
for f [x0, . . . , xn] in terms of xi and f(xi).

(11) Prove that f [x0, . . . , xn] is a symmetric function of its n+ 1 arguments.

(12) Prove the recursion relation

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
,

where, by convention, f [x] := f(x). (This explains the terminology “divided difference”.)

(13) Give explicit formulas for f [a], f [a, b], f [a, b, c], and f [x, x+ h, x+ 2h, . . . , x+ nh].
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(14) Prove Newton’s formula for the interpolating polynomial

pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) · · ·
+ f [x0, . . . , xn](x− x0) · · · (x− xn−1),

and the error formula

f(x)− pn(x) = f [x0, . . . , xn, x](x− x0) · · · (x− xn).

(15) Prove that if f ∈ Cn(J), then there exists a point ξ in the interior of J such that

f [x0, . . . , xn] =
1
n!
f (n)(ξ).

(16) Assuming that f ∈ Cn(J), use the recursion defining the divided differences to establish
the Hermite-Gennochi formula

f [x0, . . . , xn] =
∫
Sn

f (n)(t0x0 + t1x1 + · · ·+ tnxn) dt,

where

SN =

{
t = (t1, . . . , tn) ∈ Rn | ti ≥ 0,

n∑
1

ti ≤ 1

}
,

and t0 = 1−
∑n

1 ti.

(17) The Hermite-Gennochi formula shows that as a function of n+1 variables the nth divided
difference extends to a function on all of Jn+1 (the arguments need not be distinct). Find
simple closed form expressions for f [a, a], f [a, a, b], and f [a, a, b, b].

For the next 3 problems define Πn : C([−1, 1]) → Pn([−1, 1]) by ‖f − Πnf‖w =
infp∈Pn‖f − p‖w, where ‖f‖2w =

∫ 1
−1 |f(x)|2(1− x2)−1/2 dx.

(18) Give a formula for Πnf .

(19) Prove that
‖f −Πnf‖∞ ≤ c

√
n+ 1 inf

p∈Pn
‖f − p‖∞

for some constant c. N.B.: This estimate is not sharp. It can be show to hold with
√
n+ 1

replaced by 1 + log(2n+ 1), but that is harder to prove.

(20) Prove that if f ∈ Pn+1, then

‖f −Πnf‖∞ = inf
p∈Pn
‖f − p‖∞,

that is, Πn coincides with best minimax approximation when applied to polynomials of
degree n+ 1.

(21) In proving the convergence of the conjugate gradient method for solving linear systems, a
key step is showing that

(1.16) min
p∈Pn
p(0)=1

max
x∈[a,b]

|p(x)| = 2(
1+
√
a/b

1−
√
a/b

)n
+
(

1−
√
a/b

1+
√
a/b

)n
for 0 < a < b. In fact, the polynomial for which the minimum is achieved is a scaled
Chebyshev polynomial:

p(x) = Tn(x̂)/Tn

(
b+ a

b− a

)
, where x =

b+ a

2
− b− a

2
x̂,
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and the right-hand side of (1.16) is just 1/Tn
(
(b+ a)/(b− a)

)
. Prove all this.

(22) Let f ∈ C1([a, b]). Prove that the cubic spline interpolant with derivative end conditions
minimizes the quantity ‖g′′‖L2([a,b]) among all C2 functions on [a, b] which interpolate f
at the xi and f ′ at a and b. Since the second derivative is a measure of curvature, this
says that in a certain sense the cubic spline interpolant is the straightest, or smoothest,
function satisfying the interpolation conditions.

(23) Let x0 < x1 < · · · < xp and suppose that s is a cubic spline defined on all of R with
breakpoints at the xi (only), and for such that s(x) ≡ 0 if x ≤ x0 or x ≥ xp. Prove
that if p ≤ 3, then s(x) ≡ 0. In other words, there does not exist a nonzero cubic spline
supported in just 3 intervals.

(24) With the same notation as the previous problem show that that such a nonzero cubic
spline s(x) does exist if p = 4. Show that s(x) is determined uniquely up to a constant
multiple. With appropriate normalization s(x) is called the cubic B-spline for the knots
x0, . . . x4.

(25) Give the explicit formula for the cubic B-spline B(x) with knots xi = i, i = 0, . . . , 4,
normalized so that

∑
B(i) = 1. Draw a plot of this function.

(26) Let ΠN = { (ai)∞i=−∞ | ai ∈ C, ai+N = ai } denote the space of bi-infinite N -periodic
complex sequences. If a, b ∈ ΠN we define the convolution c = a ∗ b by

ck =
N−1∑
j=0

ajbk−j .

Prove that the discrete Fourier transform converts convolution into multiplication: (FNc)k =
(FNa)k(FNb)k.

(27) Let p and q be polynomials of degree less than n, where n is a power of 2. Explain how
the coefficients of the product pq can be computed from the coefficients of p and q in
O(n log2 n) operations.
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CHAPTER 2

Numerical Quadrature

1. Basic quadrature

The problem is to compute
∫ b
a
f(x) dx given a, b, and an integrable function f on [a, b].

We shall mainly use quadrature rules of the form∫ b

a

f(x) dx ≈
n∑
i=0

wif(xi),

with points xi ∈ [a, b] and weights wi ∈ R. More abstractly put, we want to approximate

the functional f 7→
∫ b
a
f by a linear combination of point-evaluation functionals.

Typical examples are:

left endpoint rule:
∫ b
a
f ≈ (b− a)f(a)

midpoint rule:
∫ b
a
f ≈ (b− a)f

(
(a+ b)/2

)
trapezoidal rule:

∫ b
a
f ≈ b−a

2
[f(a) + f(b)]

Simpson’s rule:
∫ b
a
f ≈ b−a

6
[f(a) + 4f

(
(a+ b)/2

)
+ f(b)]

2 point Gauss rule:∫ b
a
f ≈ b−a

2
[f
(
(a+ b)/2− (b− a)/(2

√
3)
)

+ f
(
(a+ b)/2 + (b− a)/(2

√
3)
)
]

composite midpoint rule (equal subintervals):∫ b
a
f =

∑n
i=1 hf(a− h/2 + ih), h = (b− a)/n

composite midpoint rule (a = x0 < x1 < · · · < xn = b):∫ b
a
f =

∑n
i=1 hif

(
(xi−1 + xi)/2

)
, hi = xi − xi−1

For any choice of distinct points xi ∈ [a, b], i = 0, 1, . . . , n there is a natural way to assign

weights wi: let p ∈ Pn interpolate f at the points xi and approximate
∫ b
a
f by

∫ b
a
p. Using

Lagrange’s formula p(x) =
∑

i f(xi)li(x), with li(x) = Πj 6=i(x − xj)/(xi − xj), we can write

the resulting quadrature rule
∫ b
a
f ≈

∑
iwif(xi) where wi =

∫ b
a
li(x) dx. Such rules are called

interpolatory quadrature rules. All the rule listed above except the composite midpoint rule
are of this form (the composite rules are based on piecewise polynomial interpolation). By
construction an interpolatory quadrature with n+1 points has degree of precision at least n,
that is, the rule is exact on all polynomials of degree at most n. For some choices of points
a higher degree of precision is achieved. For example, Simpson’s rule has degree of precision
3 as does the 2 point Gauss rule.

A well-known class of interpolatory quadrature rules are based on using n + 1 equally
spaced points including the end points. These are called the closed Newton-Cotes rules (the
word “closed” refers to the fact that the endpoints are included). For n = 1 this is the
trapezoidal rule, for n = 2 it is Simpson’s rule. For n = 3 we get Simpson’s 3/8 rule with
weights 1/8, 3/8, 3/8, 1/8 (on an interval of unit length). For n = 4 we get Boole’s rule with
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weights 7/90, 32/90, 12/90, 32/90, 7/90. By construction the Newton-Cotes rule with n+ 1
points has degree of precision n. But it is also provides the exact value when applied to any
odd power of x− (a+ b)/2 (namely 0) by symmetry. Thus when n is even the Newton-Cotes
rule with n+ 1 points has degree of precision n+ 1.

In view of the large Lebesgue constant of high degree interpolation with equally spaced
points, it is not suprising that the Newton-Cotes rules are not very good for n large. Starting
with n = 8 some of the weights are negative, and for larger n the coefficients become very
large and oscillatory (they sum to one). As a result the formulas are very sensitive to errors
in f and difficult to evaluate in finite precision (cancellation).

For interpolatory quadrature rule we can deduce the error from the error formula for
Lagrange interpolation. As an example consider the trapezoidal rule on the unit interval
[0, 1], which is based on Lagrange interpolation at the points 0 and 1. Denoting by p the
interpolant, we have f(x)− p(x) = f [x, 0, 1]x(x− 1), so the error in the trapezoidal rule is

(2.1) err =

∫ 1

0

f −
∫ 1

0

p =

∫ 1

0

f [x, 0, 1]x(x− 1) dx.

We now recall the integral mean value theorem: if u ∈ C([a, b]) and w is an integrable (but
not necessarily continuous) function on [a, b] which doesn’t change sign, then∫ b

a

u(x)w(x) dx = u(η)

∫ b

a

w(x) dx

for some η ∈ (a, b). Applying this to the integral on the right-hand side of (2.1) with
u(x) = f [x, 0, 1] and w(x) = x(x− 1) we find that∫ 1

0

f −
∫ 1

0

p = −1

6
f [η, 0, 1]

for some η ∈ (0, 1), and hence, if f ∈ C2([0, 1]),

err = f [η, 0, 1]

∫ 1

0

x(x− 1) dx = − 1

12
f ′′(ξ)

for some ξ ∈ (0, 1).
Next we scale this result to an arbitrary interval [α, β]. If f ∈ C2([α, β]), we define

f̂(x̂) = f(x) where x = α + (β − α)x̂. Then∫ β

α

f − β − α
2

[f(α) + f(β)] = (β − α)

{∫ 1

0

f̂ − 1

2
[f̂(0) + f̂(1)]

}
= − 1

12
(β − α)f̂ ′′(ξ̂) = − 1

12
(β − α)3f ′′(ξ),

for some ξ ∈ (α, β).
Now consider the composite trapezoidal rule using n equal subintervals of size h = (b−

a)/n. Applying the above result on each subinterval and summing we get∫ b

a

f − h[
1

2
f(a) +

n−1∑
i=1

f(a+ ih) +
1

2
f(b)] = − 1

12
h3

n∑
i=1

f ′′(ξi) = − 1

12
(b− a)h2f ′′(ξ).
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Here ξi ∈ (a+ (i− 1)h, a+ ih) and we have used the fact that
∑

i f
′′(ξi) = nf ′′(ξ) for some

ξ ∈ (a, b) (again a consequence of the intermediate value theorem). This is an exact formula,
not just a bound, for the error. It implies the bound |err| ≤ (b− a)h2/12‖f ′′‖L∞ .

Now consider the composite trapezoidal rule with unequal subintervals determined by a
partition a = x0 < . . . xn = b. With hi = xi − xi−1, h = maxi hi, we have∣∣∣∣∣
∫ b

a

f −
n∑
i=0

hi
2

[f(xi−1) + f(xi)]

∣∣∣∣∣ =

∣∣∣∣∣− 1

12

n∑
i=1

h3
i f
′′(ξi)

∣∣∣∣∣
≤ 1

12
h2
∑

hi‖f ′′‖L∞ =
1

12
(b− a)h2‖f ′′‖L∞ ,

and we see that this bound is sharp since equality must hold if f ′′ is constant.
Note that we get the same bound |err| ≤ (b− a)h2/12‖f ′′‖L∞ for an unequal spacing of

points as for uniform spacing. Of course this bound doesn’t show any particular advantage
to choosing a nonuniform spacing. For that we would have to consider more carefully the
sum

∑
i h

3
i f
′′(ξi). If we adjust the spacing so that hi is smaller where |f ′′| is larger we can

decrease the error.
If we try to apply the same arguments to the midpoint rule we come across one difference.

For the midpoint rule on [0, 1] the interpolant is simply the constant value f(1/2), and so
we get, instead of (2.1),

err =

∫ 1

0

f − f(1/2) =

∫ 1

0

f [x, 1/2](x− 1/2) dx.

However now the kernel x− 1/2 changes sign on [0, 1] and so we cannot continue using the
integral mean value theorem as before.

A simple approach for the midpoint rule is to use Taylor’s theorem. Assuming that
f ∈ C2([0, 1]) we have

f(x) = f(1/2) + f ′(1/2)(x− 1/2) +
1

2
f ′′(ξx)(x− 1/2)2, x ∈ (0, 1)

where ξx ∈ (0, 1) depends continuously on x. Integrating over x ∈ (0, 1) we get

(2.2)

∫ 1

0

f − f(1/2) =
1

2

∫ 1

0

f ′′(ξx)(x− 1/2)2 dx =
1

24
f ′′(ξ),

for some ξ ∈ (0, 1). Note that term involving x − 1/2 integrated to zero and we were able
to use the integral mean value theorem in the last term because (x − 1/2)2 is everywhere
non-negative. Once we have the expression (2.2) for the error in the simple midpoint rule
on the unit interval, we can scale to an arbitary interval and add up over subintervals just
as for the trapezoidal rule. We find that the error is bounded by (1/24)(b − a)h2‖f ′′‖L∞ ,
exactly 1/2 times the bound we got for the trapezoidal rule.

2. The Peano Kernel Theorem

In the last section we derived expressions for the error in the simple trapezoidal and
midpoint rules on the unit interval, and then scaled and summed to get bounds for the error
in the composite rules. In this section we describe an approach that can be used to give
easily manipulated expressions for the error in any quadrature rule.
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Define two linear functionals on C([a, b]) by the integral and by the quadrature rule:

If =
∫ b
a
f , Jf =

∑n
i=0wif(xi). If the degree of the precision of the quadrature rule is d,

then the error functional Ef := If−Jf vanishes on Pd. From this fact alone we can derive a
very useful expression for the error. The approach is very much like the one we used to derive
interpolation error estimates on triangles in Chapter 1.6.2. In deriving the Bramble–Hilbert
lemma we represented an arbitrary function in Ck as the sum of a polynomial of degree at
most k (the averaged Taylor polynomial), and an integral of the k + 1st derivatives of the
function times suitable kernel functions. In one dimension the story is simpler, because we
can use the ordinary Taylor theorem with remainder, without the averaging.

Let 0 ≤ k ≤ d be an integer and suppose that f ∈ Ck+1([a, b]). Then, by Taylor’s
theorem,

f(x) = p(x) +
1

k!

∫ x

a

f (k+1)(t)(x− t)k dt,

with p ∈ Pk the Taylor polynomial for f about x = a. Now let us write xn+ = xn for
x > 0, 0 otherwise. We can then express the remainder in Taylor’s theorem as r(x) =
1
k!

∫ b
a
f (k+1)(t)(x − t)k+ dt. Since f = p + r and Ep = 0, we have Ef = Er. This gives the

Peano Kernel representation of the error:

Ef =

∫ b

a

f (k+1)(t)K(t) dt

where K(t) = Ex[(x− t)k+]/k!. The key point is that when the linear functional E vanishes

on Pk, we can express Ef as the integral of f (k+1)(t) times an explicit function K(t). The
function K(t) is called the Peano kernel of the error. To establish this result we required
only that E be a linear functional which vanishes on polynomials of degree k and be of a
form that commutes with integration. So it can be used for bounding errors in other contexts
than numerical integration. Note also that if E vanishes on Pk, it also vanishes on Pk−1,
Pk−2, etc. So we have k different Peano kernel representations of the error, which express it
as integral involving f ′, f ′′, . . . , f (k+1). We refer to the corresponding Peano kernels as the
first derivative Peano kernel, the second derivative Peano kernel, etc.

As an example of the application of the Peano kernel error representation, we reanalyze
the midpoint rule from using it. Again, we consider first the unit interval and so define

Ef =

∫ 1

0

f − f(1/2).

The degree of precision is 1, so we have two error representations. If f ∈ C2, we have
Ef =

∫ 1

0
f ′′(t)K(t) dt with

K(t) =

∫ 1

0

(x− t)+ dx− (1/2− t)+ =

{
t2/2, 0 ≤ t ≤ 1/2,

(1− t)2/2, 1/2 ≤ t ≤ 1

This is the second derivative Peano kernel for the midpoint rule on [0, 1], and is plotted on
the left of Figure 2.1, which also shows the second derivative Peano kernel for the trapezoidal
rule and Simpson’s rule. Note that the midpoint rule Peano kernel satisfies K ≥ 0 on [0, 1],
‖K‖L∞ = 1/8, ‖K‖L1 = 1/24.
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Figure 2.1. The second derivative Peano kernels for the midpoint rule, the
trapezoidal rule, and Simpson’s rule. on [0, 1].
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Next scale to an arbitrary interval [α, β] to find the Peano kernel in that case. To
distinguish between the Peano kernel for the midpoint rule on [0, 1] and the Peano kernel for
the midpoint rule on [α, β], at this point we will write K[0,1] and K[α,β] for the latter. With

t̂ = (t− α)/(β − α) we have∫ β

α

f(x) dx−(β−α)f
(α + β

2

)
= (β−α)

[∫ 1

0

f̂(x̂) dx̂− f̂(1/2)

]
= (β−α)

∫ 1

0

f̂ ′′(t̂)K[0,1](t̂) dt̂

= (β − α)3

∫ 1

0

f ′′(t)K[0,1](t̂) dt̂ = (β − α)2

∫ β

α

f ′′(t)K[0,1](t̂) dt =

∫ β

α

f ′′(t)K[α,β](t) dt,

where

K[α,β](t) = (β − α)2K[0,1](t̂) =

{
(t− α)2/2, α ≤ t ≤ α+β

2
,

(β − t)2/2, α+β
2
≤ t ≤ β.

For the Peano kernel on [α, β] we have K[α,β] ≥ 0 and ‖K[α,β]‖L1 = (β − α)3/24.
As an immediate consequences we obtain:

Ef =
(β − α)3

24
f ′′(ξ) for some ξ ∈ (α, β), |Ef | ≤ (β − α)3

24
‖f ′′‖L∞ ,

Note that the first result is an exact expression for the error and used the fact that K[α,β] is
of one sign, while the only property of K[α,β] entering the error bound are its L1 norm.

Now consider the composite midpoint rule arising from a partition a = x0 < · · · < xn = b.
Once again we have a Peano kernel error representation,

(2.3)

∫ b

a

f −
n∑
i=1

hif
(xi−1 + xi

2

)
=

∫ b

a

f ′′(t)K(t) dt,

where now

(2.4) K(t) =

{
(t− xi−1)2/2, xi−1 ≤ t ≤ (xi−1 + xi)/2,

(xi − t)2/2, (xi−1 + xi)/2 ≤ t ≤ xi,

i = 1, . . . , n. Note that again K ≥ 0 and now ‖K‖L∞ = supi h
2
i /8 = h2/8. We thus obtain

Ef =
1

24

(∑
i

h3
i

)
f ′′(ξ) for some ξ ∈ (a, b), |Ef | ≤ (b− a)h2

24
‖f ′′‖L∞ .(2.5)

Thus if f ∈ C2([a, b]), the composite midpoint rule converges as the second power of the
maximal subinterval size.
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We can also use the Peano kernel theorem to represent the error as the integral of the
first derivative of the integrand times the kernel K0(t) = E[( · − t)+0]. In fact, rather than
compute this, let us derive the final (composite rule) representation by integrating by parts
in (2.3). Writing K1 for the kernel given by (2.4) we have∫ b

a

f −
n∑
i=1

hif
(xi−1 + xi

2

)
=

∫ b

a

f ′′(t)K1(t) dt = −
∫ b

a

f ′(t)K ′1(t) dt,

so

K0(t) = −K ′1(t) =

{
xi−1 − t, xi−1 ≤ t ≤ (xi−1 + xi)/2,

xi − t, (xi−1 + xi)/2 ≤ t ≤ xi.

Note that in this case the kernel does not have constant sign. The L1 norm is easily bounded:
‖K0‖L1 =

∑
h2
i /4 ≤ (b − a)h/4. We thus get another estimate for the composite midpoint

rule, valuable especially for f which is not in C2([a, b]):

|Ef | ≤ (b− a)h

4
‖f ′‖L∞ .

Remark. We have bounded the Peano kernels in L1 in order to obtain an error bound
involving the L∞ norm of a derivative of the solution. It is also possible to use an Lp bound
for the Peano kernel (p > 1) in order to obtain a bound in terms of the Lq (q = p/(p−1) <∞)
norm of a derivative of the solution. This is preferable in cases were the derivative is singular
or nearly so.

3. Richardson Extrapolation

Let J1 be a quadrature rule on the unit interval with degree of precision p. That is
E1f := If − J1f = 0 for f ∈ Pp, but not, in general for f ∈ Pp+1. We can then write

E1f =
∫ 1

0
fp+1(t)K1(t) dt. Let c1 =

∫ 1

0
K1. Note that c1 6= 0, since that would imply degree

of precision at least p+ 1.
Now let J2 be another quadrature of the same degree of precision, and let c2 denote the

corresponding constant. Assume that c2 6= c1. Then it is possible to find a linear combination
J = α1J1 +α2J2 of the rules, which is itself a quadrature rule with degree of precision greater
than p. Indeed, define the αi by the equations α1 +α2 = 1 and α1c1 +α2c2 = 0. With these
values, suppose f ∈ Pp+1 so f (p+1) is constant. Then

If − (α1J1f + α2J2f) = α1(If − J1f) + α2(If − J2f) = α1c1f
(p+1) + α2c2f

(p+1) = 0.

That is, J̄f := α1J1f + α2J2f is a new quadrature rule of higher precision.
As an example, let J1f = [f(0) + f(1)]/2 be the trapezoidal rule and J2f = f(1/2)

the midpoint rule. Then we have c1 = −1/12, c2 = 1/24, so α1 = 1/3, α2 = 2/3, and
J̄f = f(0)/6+2/3f(1/2)+f(1)/6, which is precisely Simpson’s rule. Note that the new rule
has degree of precision at least 2 by construction, but actually 3, since, as usual, a symmetric
rule integrates odd powers exactly.

One common way to apply Richardson’s extrapolation is with a quadrature rule and
the same rule applied in composite form with two subintervals of equal length. Thus, for
example, we could combine the trapezoidal rule J1f with J2f := [f(0) + 2f(1/2) + f(1)]/4.
For this purpose it is not even necessary to know the error constant c1 for J1, but only
the fact that the degree of precision of the rule is 1. When we apply the composite form
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this means we bring in a factor of the second power of the subinterval size, i.e., a factor
of 1/4, so c2 = c1/4. Thus α1 = −1/3 and α2 = 4/3, and the new rule turns out to be
Simpson’s rule again. The general pattern is that if J1 is a rule with degree of precision p,
and J2 is the same rule applied with two subintervals, then the constants ci are in the ratio
2p+1 : 1 so α1 = −1/(2p+1 − 1), α2 = 2p+1/(2p+1 − 1). As a second example, suppose that
J1f = [f(0) + 3f(1/3) + 3f(2/3) + f(1)]/8 is Simpson’s 3/8 rule, so p = 3. Then

J̄f = − 1

15
[f(0) + 3f(1/3) + 3f(2/3) + f(1)]/8

+
16

15
[f(0) + 3f(1/6) + 3f(1/3) + 2f(1/2) + 3f(2/3) + 3f(6/6) + f(1)]/16

=
1

120
[7f(0) + 24f(1/6) + 21f(1/3) + 16f(1/2) + 21f(2/3) + 24f(5/6) + 7f(1)].

The result 7 point rule has degree of precision 5 (so does not coincide with the 7 point closed
Newton-Cotes rule, which has degree of precision 7).

4. Asymptotic error expansions

Consider again the error in the trapezoidal rule

Ef = If − Jf =

∫ 1

0

f − f(0) + f(1)

2
.

We have Ef =
∫ 1

0
Kf ′′ where

∫ 1

0
K = −1/12. Now if f ∈ P2 then f ′′ is constant, so∫ 1

0
(K + 1/12)f ′′ = 0. Thus

Ef =

∫ 1

0

Kf ′′ = − 1

12

∫ 1

0

f ′′ +

∫ 1

0

(K + 1/12)f ′′ =
1

12
[f ′(0)− f ′(1)] + 0.

In other words, if the quadrature rule

J̃f =
f(0) + f(1)

2
+
f ′(0)− f ′(1)

12
,

(known as the trapezoidal rule with endpoint corrections), has degree of precision at least
2. By symmetry, again, we see it has degree of precision 3. The use of derivative values in
the quadrature rule is unusual, but we still get a linear functional to which we can apply
the Peano kernel theorem, and hence this rule will be fourth order accurate when applied in
composite form, that is, the error will be bounded by a multiple of h4‖f (4)‖L∞ where h is the
maximum subinterval size. The fact that the derivative values enter only as the difference
(not the sum!) at the endpoints leads to a big simplification for the composite rule with
equal subintervals. If h = (b − a)/n, xi = a + ih, and Jhf denotes the usual composite
trapezoidal rule, then the composite trapezoidal rule with endpoint corrections is simply∫ b

a

f ≈ J̃hf = Jhf + h2f
′(a)− f ′(b)

12
.

Since this rule is fourth order accurate, we have identified the leading term of an asymptotic
expansion of the error is the (ordinary) composite trapezoidal rule as a function of h. We
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knew before that Eh =
∫ b
a
f − Jhf = O(h2). We know now that

Ehf = c2h
2 +O(h4),

where c2 is precisely [f ′(b)− f ′(a)]/12.
With careful analysis we can determine the entire asymptotic expansion of Ehf . To do

this, we need to introduce the Bernoulli polynomials Bn(x). There are many ways to define
the Bernoulli polynomials. We use:

• B0(x) = 1
• B1(x) = x− 1/2
• B′n(x) = nBn−1(x), n = 2, 3, . . .
• Bn(0) = Bn(1) = 0 for n = 3, 5, 7, . . .

This clearly uniquely determines all the odd-indexed polynomials as the solution of the
boundary value problem

B′′n(x) = n(n− 1)Bn−2(x), Bn(0) = Bn(1) = 0, n = 3, 5, . . . ,

and then the equation nBn−1(x) = B′n(x) determines the even-indexed Bernoulli polynomi-
als. Note that Bn(x) is a monic polynomial of degree n and is an odd or even function of
x− 1/2 according to whether n is odd or even.

B0(x) = 1,(2.6)

B1(x) = x− 1

2
,(2.7)

B2(x) = (x− 1

2
)2 − 1

12
= x2 − x+

1

6
,(2.8)

B3(x) = (x− 1

2
)3 − 1

4
(x− 1

2
) = x3 − 3

2
x+

1

2
x,(2.9)

B4(x) = (x− 1

2
)4 − 1

2
(x− 1

2
)2 +

7

48
(x− 1

2
) = x4 − 2x3 + x2 − 1

30
.(2.10)

The Bernoulli numbers are defined by Bk = Bk(0). Thus B1 = −1/2 and Bk = 0 for
k = 3, 5, 7 . . .. B0 = 1, B2 = 1/6, B4 = −1/30, B6 = 1/42.

Remark. Euler gave a generating function for the Bernoulli polynomials:

tetx

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
,

and this is often used to define them. Setting x = 0 we get a generating function for the
Bernoulli numbers:

t

et − 1
=
∞∑
n=0

Bn
tn

n!
.

Now we apply the Bernoulli polynomials to expand
∫ 1

0
f in terms of the values of f and

its derivatives at 0 and 1. This will give the trapezoidal rule, the endpoint corrections, and
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then higher endpoint corrections. The derivation is simply repeated integration by parts:∫ 1

0

f(x) dx =

∫ 1

0

f(x)B0(x) dx =

∫ 1

0

f(x)B′1(x) dx

=
1

2
[f(0) + f(1)]−

∫ 1

0

f ′(x)B1(x) dx

=
1

2
[f(0) + f(1)]− 1

2

∫ 1

0

f ′(x)B′2(x) dx

=
1

2
[f(0) + f(1)] +

B2

2
[f ′(0)− f ′(1)] +

1

2

∫ 1

0

f ′′(x)B2(x) dx.

Now
1

2

∫ 1

0

f ′′(x)B2(x) dx =
1

4!

∫ 1

0

f ′′(x)B′′4 (x) dx,

so integrating by parts two more times gets us to∫ 1

0

f(x) dx

=
1

2
[f(0) + f(1)] +

B2

2
[f ′(0)− f ′(1)] +

B4

4!
[f ′′′(0)− f ′′′(1)] +

1

4!

∫ 1

0

f (4)(x)B4(x) dx.

Continuing this argument (formally, using induction) we prove:

Theorem 2.1. Let m be a positive integer, f ∈ C2m([0, 1]). Then∫ 1

0

f(x) dx

=
1

2
[f(0) + f(1)] +

m∑
k=1

B2k

(2k)!
[f (2k−1)(0)− f (2k−1)(1)] +

1

(2m)!

∫ 1

0

f (2m)(x)B2m(x) dx.

This theorem gives the formula for the trapezoidal rule with m endpoint corrections and
shows that it has degree of precision at least 2m−1, and exhibits the Peano kernel. However∫ 1

0
B2m(x) dx = 2m[B2m−1(1)−B2m−1(0)] = 0, so the degree of precision is at least 2m, and

by parity, actually 2m + 1. To derive the Peano kernel error representation in terms of the
2m + 2 derivative, replace m by m + 1 in the expansion and combine the final term of the
sum with the integral to get∫ 1

0

f(x) dx =
1

2
[f(0) + f(1)] +

m∑
k=1

B2k

(2k)!
[f (2k−1)(0)− f (2k−1)(1)] +Rm,

where

Rm =
B2m+2

(2m+ 2)!
[f (2m+1)(0)− f (2m+1)(1)] +

1

(2m+ 2)!

∫ 1

0

f (2m+2)(x)B2m+2(x) dx

=
1

(2m+ 2)!

∫ 1

0

f (2m+2)(x)[B2m+2(x)−B2m+2] dx.
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Thus we see that the trapezoidal rule with m end corrections has degree of precision 2m+ 1
and the Peano kernel for the 2m+ 2nd derivative is [B2m+2(x)−B2m+2(0)]/(2m+ 2)!. Note
that this kernel does not change sign (since the even indexed Bernoulli polynomials are
monotonic on [0, 1/2] and even), and that its integral is −B2m+2/(2m + 2)! (since the even
indexed Bernoulli polynomials have mean value zero). Thus we have the following theorem.

Theorem 2.2. Let m be a positive integer, f ∈ C2m+2([0, 1]). Then∫ 1

0

f(x) dx =
1

2
[f(0) + f(1)] +

m∑
k=1

B2k

(2k)!
[f (2k−1)(0)− f (2k−1)(1)] +Rm

where

Rm =
1

(2m+ 2)!

∫ 1

0

f (2m+2)(x)[B2m+2(x)−B2m+2] dx = − B2m+2

(2m+ 2)!
f (2m+2)(ξ)

for some ξ ∈ (0, 1).

From this we easily get a result for the composite trapezoidal rule.

Corollary 2.3. Let m and n be positive integers and f ∈ C2m+2([a, b]) for some a < b.
Set h = (b− a)/n, xi = a+ ih. Then∫ b

a

f(x) dx =
h

2
[f(a) + 2

n−1∑
i=1

f(xi) + f(b)] +
m∑
k=1

B2k

(2k)!
h2k[f (2k−1)(a)− f (2k−1)(b)] +Rm

where

Rm = − B2m+2

(2m+ 2)!
(b− a)h2m+2f (2m+2)(ξ),

for some ξ ∈ (a, b).

For smooth periodic functions integrated over a period, the endpoint corrections disap-
pear and the ordinary trapezoidal rule (with constant subintervals) is O(hp) for any p:

Corollary 2.4. Let m and n be positive integers and f ∈ C2m+2(R) is periodic with
period T . Let a ∈ R, b = a+ T , h = T/n, xi = a+ ih. Then∫ b

a

f(x) dx = h

n−1∑
i=0

f(xi) +Rm

where

Rm = − B2m+2

(2m+ 2)!
(b− a)h2m+2f (2m+2)(ξ),

for some ξ ∈ (a, b).

In fact, if f is real-analytic and periodic, then the convergence of the trapezoidal rule is
exponential. We can deduce this from our previous analysis of the approximation of periodic
analytic functions by trigonometric polynomials (and so we don’t need the Euler-Maclaurin
expansion for this). Assume for simplicity that the period is 2π and recall that we proved
that for such f there exist positive constants C and δ for which infq∈Tn‖f − q‖L∞ ≤ Ce−δn.

Now if q(x) = eimx, m 6= 0, then
∫ 2π

0
q = 0 and

∑n−1
k=0 q(k/n) = 0 for all n which are not

divisors on m. In particular, if we write En for the error operator for the trapezoidal rule
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with n equal subintervals, Enq = 0 for all q ∈ Tn−1. Note also that |Eng| ≤ 2‖g‖L∞ for any
continuous g. Thus

|Enf | = inf
q∈Tn−1

|En(f − q)| ≤ 2 inf
q∈Tn−1

‖f − q‖L∞ ≤ 2Ce−δ(n−1) = C ′e−δn.

Theorem 2.5. Let f be real-analytic and T -periodic, b = a+T . Then there exist positive
constants δ and C such that∣∣∣∣∣

∫ b

a

f − T

n

n−1∑
k=0

f(a+ kT/n)

∣∣∣∣∣ ≤ Ce−δn.

5. Romberg Integration

Suppose we compute the trapezoidal rule approximation to I =
∫ b
a
f using equal subin-

tervals of size h, and compute it again using twice as many subintervals of size h/2. Call the
resulting approximations Thf and Th/2f , respectively. Then, assuming f is smooth, we have

I = Thf + c1h
2 + c2h

4 + · · · ,

I = Th/2f +
1

4
c1h

2 +
1

16
c2h

4 + · · · .

Here the ci are independent of h (c1 = [f ′(a)− f ′(b)]/12,. . . ). We may then use Richardson
extrapolation to obtain an O(h4) approximation to I: with T 1

h/2 = (4Th/2f − Th)/3 we have

I = T 1
h/2 + c1

2h
4 + c1

3h
6 + · · ·

for some numbers c2
1 independent of h. Of course we know that the fourth order rule T 1 is

just Simpson’s rule.
If we also compute Th/4f as well, that we can combine similarly it with Th/2f to obtain

T 1
h/4f , and for which the leading term of the error will be (c1

2/16)h4. We can then combine

T 1
h/2f and T 1

h/4 by Richardson extrapolation to obtain a sixth order rule: T 2
h/4 = (16T 1

h/4 −
T 1
h/2)/15. In fact, using the same set of functional evaluations we need to compute the 2nd

order rule Th/2mf we can obtain a 2mth order rule Tmh/2mf . The following diagram shows the
order of computation.

Thf
↘

Th/2f → T 1
h/2f

↘ ↘
Th/4f → T 1

h/4 → T 2
h/4f

...
...

...
. . .

Th/2mf → T 1
h/2mf → T 2

h/2mf · · · Tmh/2mf

This systematic use of Richardson extrapolation to obtain the highest possible order from
the given point evaluations is called Romberg Integration. The computation of the final
approximation Tmh/2mf is very cheap once the first column has been generated (namely once

f has been evaluated at all the necessary points), but it often gives a drastic improvement
in accuracy.
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This diagram is reminiscent of a divided difference table for computing an interpolating
polynomial. In fact, there is a direct connection. Let us denote by T (h) the trapezoidal rule
approximation to I using equal subintervals of size h. (Of course T (h) is only defined when
h = (b− a)/n for some positive integer n.) The limh→0 T (h) = I. If we have computed T (h)
for m+ 1 distinct positive values of h, h0, . . . , hm, then a natural way to estimate I = T (0)
is to compute the Lagrange interpolating polynomial determined by these m+ 1 values of h
and T (h) and estimate I by the value of the interpolating polynomial at 0. Actually, since
we know from the Euler-Maclaurin expansion that T (h) has an asymptotic expansion in
powers of h2, we shall use a polynomial in h2: P (h) = Q(h2) =

∑m
k=0 akh

2k. The polynomial
Q ∈ Pm is determined by the conditions Q(h2

i ) = Thif . For example, if we have computed
Th0f and Th1f , then

Q(x) = Th0f +
Th1f − Th0f

h2
1 − h2

0

(x− h2
0),

so

I ≈ Q(0) =
h2

0Th1f − h2
1Th0f

h2
1 − h2

0

,

In particular, if h1 = h0/2, then

I ≈ Q(0) =
4Th1f − Th0f

3
,

and we see that this procedure reduces to Richardson extrapolation (this in fact explains
the use of the word “extrapolation”). In general, if we compute Thif for i = 0, . . . ,m with
hi = h0/2

i, and then compute the polynomial Q ∈ Pm determined by Q(h2
i ) = Thif , it can

be checked that Q(0) is exactly Tmh0/2m
f , the result of Romberg integration. For this reason,

Romberg integration is sometimes called extrapolation to the limit. This analysis also shows
that it is not necessary that the hi = h0/2

i. We could use another sequence of values of hi
as well. Of course the sequence h0/2

i is convenient, because it means that all the function
evaluation needed to compute Thmf are sufficient to compute all the Thif .

Remark. Note that the idea of extrapolation to the limit applies not only to error in
quadrature, but whenever we know that the error has an asymptotic expansion in powers of
a parameter h. We have assumed the expansion is a sum of even powers, but this can be
generalized to allow an expansion in an arbitrary sequence of (known) powers.

6. Gaussian Quadrature

Consider an ordinary quadrature rule with n points x1 < x2 < · · · < xn and weights
w1, w2, . . . , wn: ∫ b

a

f(x) dx ≈
n∑
i=1

wif(xi).

What is the maximal possible degree of precision? For example, it’s obvious that if n = 1,
the maximal possible degree of precision is 1, which is achieved by the midpoint rule. For
any number of points, an upper bound is immediate:

Theorem 2.6. The degree of precision of an n-point rule is < 2n.
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Proof. The function f(x) =
∏n

i=1(x− xi)2 is a polynomial of degree 2n. Clearly
∫
f >

0 =
∑
wif(xi). �

We shall show that the maximum possible degree of precision 2n − 1 is achieved by a
unique n-point rule. Without loss of generality, we may restrict to the interval [a, b] = [−1, 1].
Our chief tool will be the Legendre polynomials Pn(x). Recall that degPn = n and Pn is
L2([−1, 1])-orthogonal to Pn−1. Let x1 < · · · < xn denote the roots of Pn, which we know to
be distinct and to belong to [−1, 1]. These are called the n Gauss points on [−1, 1].

We define a quadrature rule by
∫ 1

−1
f ≈

∫ 1

−1
Inf where Inf ∈ Pn−1 is the Lagrange

interpolant to f at the n Gauss points. This is a standard interpolatory quadrature rule:∫ 1

−1

Inf =
n∑
i=1

wif(xi), wi =

∫ b

a

n∏
j=1
j 6=i

x− xj
xi − xj

dx.

This rule is called the n-point Gauss rule.

Theorem 2.7. The n-point Gauss rule has degree of precision = 2n− 1.

Proof. Given f ∈ P2n−1, we can write f(x) = q(x)Pn(x) + r(x), q ∈ Pn−1, r ∈ Pn−1.
Then ∑

wif(xi) =
∑

wir(xi) =

∫ 1

−1

Inr(x) dx =

∫ 1

−1

r(x) dx,

since Inr = r. Also∫ 1

−1

f(x) dx =

∫ 1

−1

q(x)Pn(x) dx+

∫ 1

−1

r(x) dx =

∫ 1

−1

r(x) dx.

�

The weights of the n-point Gauss rule are positive for all n. To see this, let lj ∈ Pn−1 be
the function that is 1 at xj and 0 at the other xi. Then l2j ∈ P2n−2, so

wj =
∑
i

wil
2
j (xi) =

∫ 1

−1

l2j (x) dx > 0.

Note that the n-point Gauss rule is the only n-point quadrature rule with degree of
precision 2n− 1. For if

∑n
i=1wif(xi) =

∫ 1

−1
f , then we find that∫ 1

−1

q(x)Πn
i=1(x− xi) dx = 0, q ∈ Pn−1.

This implies that Πn
i=1(x− xi) is a multiple of Pn, and hence the xi are the n Gauss points.

Example: Since P2(x) = (3x2 − 1)/2, the only 2-point rule with degree of precision 3 is
the 2-point Gauss rule ∫ 1

−1

f(x) dx ≈ f(a) + f(−a),

where a =
√

3/3 ≈ 0.57735.
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6.1. Weighted Gaussian quadrature. The error in numerical integration depends on
the smoothness of the integrand. Frequently an integrand can be written as the product of
a relatively simple, but unsmooth function, times a smoother function. This leads to the
subject of product integration, the determination of quadrature rules for integrands of the
form f(x)ω(x) where f(x) is smooth and ω(x) is in some sense simple or standard.

If ω(x) is any non-negative integrable weight function on [a, b], we can generalize the

notion of Gaussian quadrature to computing the product
∫ b
a
f(x)ω(x) dx. We summarize

the result as:

Theorem 2.8. Let p0, p1, . . . be the orthogonal polynomials on [a, b] with respect to the

innerproduct (f, g) =
∫ b
a
f(x)g(x)ω(x) dx. Then pn has n distinct roots in (a, b), x1, . . . , xn.

If weight wi are defined by

wi =

∫ b

a

n∏
j=1
j 6=i

x− xj
xi − xj

ω(x) dx.

then ∫ b

a

f(x)ω(x) dx =
∑

wif(xi) for all f ∈ P2n−1,

and no other choice of n points and weights realizes this. The weights wi are all positive.

The reader should supply the proof.
For weight ≡ 1 on [−1, 1], we get ordinary Gaussian integration, with the points at the

roots of the Legendre polynomials.
The zeros of the Chebyshev polynomials are the best points to use for approximating

product integrals of the form ∫ 1

−1

f(x)√
1− x2

dx.

The Hermite polynomials, which are orthogonal polynomials on R with the weight e−x
2
, give

the best points for estimating ∫ ∞
−∞

f(x)e−x
2

dx.

6.2. The error in Gaussian quadrature. Let xi and wi be the Gaussian quadra-
ture weights and points for approximating

∫ 1

−1
f(x)ω(x) dx (we allow a general non-negative

weight, because it adds no additional difficulty). Then the error functional

Ef :=

∫ 1

−1

f(x)ω(x) dx−
n∑
i=1

wif(xi)

vanishes for f ∈ P2n−1, so the Peano kernel theorem implies that

Ef =

∫ 1

−1

K(x)f (2n)(x) dx, for f ∈ C(2n),

so
|Ef | ≤ Cn‖f (2n)‖∞.

We can use Hermite interpolation to get an explicit expression for the constant Cn.
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Let h ∈ P2n−1 be the Hermite interpolant of f :

h(xi) = f(xi), h′(xi) = f ′(xi), i = 1, . . . , n.

Then ∫ 1

−1

h(x)ω(x) dx =
n∑
i=1

wih(xi) =
n∑
i=1

wif(xi),

so

Ef =

∫ 1

−1

[f(x)− h(x)]ω(x) dx.

Now by the error formula for interpolation,

f(x)− h(x) = f [x1, x1, x2, x2, . . . , xn, xn, x](x− x1)2(x− x2)2 · · · (x− xn)2

= f [x1, x1, x2, x2, . . . , xn, xn, x]|pn(x)|2,

(where for simplicity we normalize pn to be monic). Thus

Ef =

∫ 1

−1

f [x1, x1, x2, x2, . . . , xn, xn, x]|pn(x)|2ω(x) dx.

Now |pn(x)|2ω(x) is positive, and f [x1, x1, x2, x2, . . . , xn, xn, x] is a continuous function of x
(by the Hermite-Gennochi Theorem), so the integral mean value theorem applies giving

Ef = f [x1, x1, x2, x2, . . . , xn, xn, η]

∫ 1

−1

|pn(x)|2ω(x) dx

=
f (2n)(ξ)

(2n)!

∫ 1

−1

|pn(x)|2ω(x) dx = ‖pn‖2
ω

f (2n)(ξ)

(2n)!

for some η, ξ ∈ (−1, 1) (where ‖ · ‖ω is the L2-norm with weight ω). Thus we have shown:

Theorem 2.9. If f ∈ C(2n)([−1, 1]), then the error in the Gaussian quadrature rule
satisfies ∫ 1

−1

f(x)ω(x) dx−
n∑
i=1

wif(xi) = ‖pn‖2
ω

f (2n)(ξ)

(2n)!

for some ξ ∈ (−1, 1).

If we restrict to the case ω = 1, we can scale this result from the unit interval to an
interval of length h, and add up on subintervals to obtain the usual sort of error estimate
when the Gauss rule is used as a composite quadrature rule. (If f ∈ C2n([a, b]), then the error
in the composite n-point Gauss rule tends to zero like h2n where h is the largest subinterval
size.

Now we want to analyze the behavior of the error Enf in the simple n-point Gauss rule
as n→∞. For the Newton-Cotes rules, we don’t have convergence as the number of points
tends to infinity, even for f analytic on [−1, 1] (this is quite believable, in view of the Runge
example). However the situation for the Gauss rules is altogether different. First we consider
the Lebesgue constant of the n-point Gauss rule:

Ln = sup
‖f‖L∞≤1

|
∑

wif(xi)| =
∑
|wi|.



70 2. NUMERICAL QUADRATURE

Since the wi are all positive and sum to ‖ω‖L1 =
∫ b
a
ω(x) dx, we have Ln = ‖ω‖L1 . Note that

we also have |
∫ b
a
fω| ≤ ‖ω‖L1‖f‖L∞ , so |Enf | ≤ 2‖ω‖L1‖f‖L∞ . We then use the standard

argument:
|Enf | = inf

q∈P2n−1

|En(f − q)| ≤ 2‖ω‖L1 inf
q∈P2n−1

‖f − q‖L∞ .

We can thus bound the error using what we know about polynomial approximation. For
example using the Weierstrass theorem we get:

Theorem 2.10. For any f ∈ C([a, b]) error Enf in the n-point (weighted) Gauss rule
tends to zero as n tends to infinity.

Similarly, using the Jackson theorems, we get:

Theorem 2.11. For each positive integer m, there exists a constant C such that |Enf | ≤
Cn−m‖f (m)‖L∞ for all f ∈ Cm([a, b]).

Finally we get exponential convergence for f analytic.

Theorem 2.12. If f is analytic on [a, b], then there exist positive constant C and δ such
that |Enf | ≤ Ce−δn.

Thus to improve the error in a Gaussian quadrature calculation we have two choices:
we may increase n, or we may use the rule as a composite rule and increase the number of
subinterval size.

A disadvantage of the Gaussian rules, is that, whichever of these two choices we make,
we won’t be able to use the functional evaluations from the previous computation for the
new one.

7. Adaptive quadrature

The idea of adaptive quadrature is to use a composite rule with (unequal) subintervals
chosen automatically so as to make the error small with as few function evaluations as
possible. To explain the ideas we will first discuss the composite Simpson’s rule.

Let a = x0 < . . . < xn = b, hi = xi − xi−1. Let S[xi−1,xi]f = hi[f(xi−1) + 4f((xi−1 +
xi)/2) + f(xi)]/6 denote the Simpson’s rule on the ith subinterval and Ei = E[xi−1,xi]f =∫ xi
xi−1

f − S[xi−1,xi]f the error. We know that Ei = ch5
i f

(4)(ξi) for some ξi ∈ (xi−1, xi) and

some absolute constant c. (For Simpson’s rule, c = −1/2880, but we don’t need to know the
particular value in what follows.) We will assume that hi is small enough that f (4) is roughly

constant on (xi−1, xi), so Eif = ch5
i f

(4)
i where f

(4)
i is this constant value (e.g., the value of

f (4) at the midpoint). The error in the composite Simpson’s rule is given by |E1 + · · ·+En|.
Since we don’t want to count on the errors from some subintervals cancelling those from
other subintervals, we shall try to minimize |E1| + · · · + |En|. If we vary the subinterval
sizes hi, we vary this quantity. We claim that when an optimal choice of the hi is made,

then the error per unit subinterval size, |Ei/hi| = ch4
i |f

(4)
i |, will be roughly the same on each

subinterval (i.e., independent of i). To see this, consider how the error on the ith subinterval
changes when we increase the interval size by a small amount δ. The change is

δ
d|Ei|
dhi

= 5cδh4
i |f

(4)
i |.
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So if we decrease hi by δ and increase hj by δ, the total change to the error will be about

5cδ(h4
j |f

(4)
j | − h4

i |f
(4)
i |). If we are at an optimum, this quantity must be 0 (since if it were

negative it would be advantageous to make this change, and if it were positive it would
be advantageous to change in the opposite way). Thus for the optimal mesh distribution,

h4
i |f

(4)
i | is indeed roughly constant.
This suggest the basic structure of an adaptive quadrature algorithm. Start with a coarse

partition (e.g., one or a few equal subintervals), and a tolerance ε for |Ei|/hi, i.e., the solution
will be considered acceptable when |Ei|/hi ≤ ε for all subintervals. This will ensure that
|E1| + · · · + |En| ≤ ε(h1 + · · · + hn) = ε(b − a) and the user should supply the tolerance
accordingly. Now check each of the subintervals for the condition |Ei|/hi ≤ ε, and bisect (or
otherwise refine) any one which does not pass.

In order to be able to implement a scheme along these lines we need a way to estimate

E[α,β]f for h = β − α small. Since we don’t know the exact value
∫ β
α
f we can’t use the

definition of the error as the difference between the exact and computed values. Since we
don’t know f (4) we can’t use our asymptotic formula for the error either. Instead we shall
use Richardson extrapolation. Set γ = (α+β)/2 and let S̃[α,β] = S[α,γ]f +S[γ,β]f , the double
Simpson’s rule (composite rule with two equal subintervals). Then∫ β

α

f = S[α,β]f + Ch5 +O(h7),∫ β

α

f = S̃[α,β]f +
1

16
Ch5 +O(h7),

where the constant C = cf (4)(γ). Combining these we have∫ β

α

f =
1

15
(16S̃[α,β]f − S[α,β]f) +O(h7),∫ β

α

f − S[α,β]f =
16

15
(S̃[α,β]f − S[α,β]f) +O(h7),∫ β

α

f − S̃[α,β]f =
1

15
(S̃[α,β]f − S[α,β]f) +O(h5).

Thus if we compute both the simple and the double Simpson’s rule, we may estimate the
error in either by a multiple of their difference. We can then test whether this error passes
our tolerance test |E|/h < ε. Since we have to compute the double Simpson’s rule to estimate
the errors, and this is almost surely more accurate than the simple rule (with about 1/16th
the error), it is sensible to use the double rule as the value we test and eventually accept.
That is, we check if (1/15)[S̃[α,β]f−S[α,β]f ]|/(β−α) ≤ ε, and, if so, we use S̃[α,β]f to estimate∫ β
α
f .

Remark. Actually, it is reasonable to use the Richardson extrapolated value (16S̃[α,β]f−
S[α,β]f)/15 to estimate

∫ β
α
f , since this is expected to have a much smaller error. However it

is not possible, without doing further Richardson extrapolation, to estimate the error in this
rule. Thus the code writer has a design choice to make: (1) use S̃ because the estimates apply
to this, or (2) use (16S̃ − S)/15 because it is probably better and will therefore probably
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supply the user with a even less error than requested. In either case, the error would be
estimated by (S̃ − S)/15.

If we are willing to use recursion, the implementation of such an algorithm, it is quite
simple. Here is metacode that illustrates the basic flow:

I = adapt(f, a, b, ε)
input: a, b, endpoints of interval of integration

f ∈ C([a, b]), integrand
ε error per unit subinterval tolerance

output: I ≈
∫ b
a
f(x) dx

compute S[a,b]f , S̃[a,b]f , and E = (S̃[a,b]f − S[a,b]f)/15
if |E| ≤ ε(b− a) then
I = S̃[a,b]f

else
I = adapt(f, a, (a+ b)/2, ε) + adapt(f, (a+ b)/2, b, ε)

end if

Algorithm 2.1: Basic flow for an adaptive quadrature routine.

The following Matlab function, adaptsimp.m implements this flow. It includes some
basic practicalities. First, it takes care not to evaluate f at the same point twice. Second, in
order to avoid very long or possibly non-terminating computations for very bad integrands
it puts a limit of 10 on the number of times a subinterval can be bisected. It accomplishes
both of these by using two different calling syntaxes. When called by the user, the syntax
is adaptsmp(f,a,b,tol) as above. But when the routine calls itself recursively it uses the
call adaptsmp(f,a,b,tol,lev,fa,fm,fb). The extra parameter lev simply keeps track
of the recursion level so that an exit can be effected if it exceeds 10. The parameters fa,
fm, fb are the values of f at a, (a + b)/2, and b, since these have already been computed
and will be needed again. Finally, from among the various ways to pass a function (f)
as the argument to another function (adaptsimp) in Matlab, we have chosen to make the
argument f a string containing the name of another Matlab function, which should be of the
form function y=f(x), and then we use, e.g., feval(f,a) to evaluate this function at a.

function int = adaptsmp(f,a,b,tol,lev,fa,fm,fb)

%ADAPTSMP Adaptive Simpson’s rule quadrature

%

% Call as ADAPTSMP(’f’,a,b,tol) to approximate the integral of f(x)

% over the interval a < x < b, attempting to achieve a absolute error

% of at most tol(b-a). The first argument should be a string containing

% the name of a function of one variable. The return value is the

% approximate integral.

%

% ADAPTSMP calls itself recursively with the argument list
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% ADAPTSMP(’f’,a,b,tol,lev,fa,fm,fb). The variable lev gives the

% recursion level (which is used to terminate the program if too many

% levels are used), and fa, fb, and fm are the values of the integrand

% at a, b, and (a+b)/2, respectively, (which are used to avoid

% unnecessary function evaluations).

% initialization, first call only

if nargin == 4

lev = 1;

fa = feval(f,a);

fm = feval(f,(a+b)/2);

fb = feval(f,b);

end

% recursive calls start here

% start by checking for too many levels of recursion; if so

% don’t do any more function evaluations, just use the already

% evaluated points and return

if lev > 10

disp(’10 levels of recursion reached. Giving up on this interval.’)

int = (b-a)*(fa+4*fm+fb)/6;

else

% Divide the interval in half and apply Simpson’s rule on each half.

% As an error estimate for this double Simpson’s rule we use 1/15 times

% the difference between it and the simple Simpson’s rule (which is

% an asymptotically exact error estimate).

h = b - a;

flm = feval(f,a+h/4);

frm = feval(f,b-h/4);

simpl = h*(fa + 4*flm + fm)/12;

simpr = h*(fm + 4*frm + fb)/12;

int = simpl + simpr;

simp = h*(fa+4*fm+fb)/6;

err = (int-simp)/15;

% if tolerance is not satisfied, recursively refine approximation

if abs(err) > tol*h

m = (a + b)/2;

int = adaptsmp(f,a,m,tol,lev+1,fa,flm,fm) ...

+ adaptsmp(f,m,b,tol,lev+1,fm,frm,fb);

end

end
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Algorithm 2.2: Matlab routine for adaptive Simpson’s rule quadrature.

Figure 2.2. Evaluation points for the adaptive quadrature routine adaptsmp.
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Figure 2.2 shows the performance of this routine in computing∫ 3

0

[
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.04
− 6

]
dx.

We supplied a tolerance of 0.001 and the routine evaluated the integrand 77 times before
terminating. The evaluation points were spaced by 3/512 ≈ 0.006 in a small region near the
sharp peak of the integrand but only by 3/16 ≈ 0.2 on the entire right half of the interval
of integration. The computed solution is 23.9693, which differs from the exact answer of
23.96807984 . . . by about 0.0012 or 0.00005%. Thus the error per unit subinterval is 0.0004
which is well below our tolerance of 0.001. This is to be expected since whenever a subinterval
exceed tolerance, even if only by a little, it is bisected, reducing the error per unit subinterval
substantially (by about a factor of 16).

Exercises

(1) Consider the function fα(x) = xα on (0, 1). For α > −1 this function is integrable. Using
the computer investigate the rate of convergence of the composite midpoint rule with
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equal subintervals for computing
∫ 1

0 fα for various values of α. Let rα denote the rate of
convergence, i.e., the largest real number so that the error can be bounded by Chrα for
some constant C independent of h. Based on your experiments conjecture an expression
for rα in terms of α valid for all α > −1. State your result precisely and prove it that it
is indeed true.

(2) Make the same study and analysis for the composite Simpson’s rule, except restrict to
α ≥ 0 (since Simpson’s rule is not defined if f(0) is not defined).

(3) Give a thorough analysis of Simpson’s rule using the Peano kernel theorem. More specifi-
cally, there are four separate Peano kernel representations for the error in Simpson’s rule
depending on the degree of smoothness we assume of the integrand. Give all four in the
case of the simple rule on the interval [−1, 1]. Give explicit expressions for all four kernels
and plot them (indicate the scale on the y axis). Apply this to analyze the error for the
composite Simpson’s rule on an arbitrary interval using equal subintervals under the as-
sumptions that f (i) is bounded or just integrable for i = 1, 2, 3, or 4. For the case f ∈ C4

also give the result for the composite rule without assuming equal subintervals.

(4) Find the simple quadrature rule of highest degree of precision for estimating
∫ 1
−1 f(x) dx

in terms of the value of f at −1/2, 0, and 1/2. Give a complete convergence analysis for
the corresponding composite quadrature rule using an arbitary subdivision of the interval
of integration into subintervals.

(5) Suppose that Jh is an approximation of a desired quantity I for which the asymptotic
expansion I ∼ J(h) + c1h

r1 + c2h
r2 + · · · holds as h→ 0. Here 0 < r1 < r2 < · · · and the

ci are independent of h. Imagine that we have computed J(h), J(h/2), J(h/4). Show how
Richardson extrapolation can be used to the maximum extent to combine these values to
get a higher order approximation to I. What is the order of this approximation?

(6) Find the 1- and 2-point Gaussian quadrature rules for the weight function log(1/x) on
[0, 1]. Find expression for the errors.

(7) The n-point Gauss-Lobatto quadrature rule (n > 1) is the rule
∫ 1
−1 f ≈

∑n
i=1wif(xi)

where the x1 = −1, xn = 1, and the other nodes and the weights are chosen so that the
degree of precision is as high as possible. Determine the rule for n = 2, 3, and 4. Explain
how, for general n, the points relate to the orthogonal polynomials with weight 1 − x2.
Give a formula for the weights.

(8) One way to define a non-uniform partition of an interval is through a grading function.
A grading function for the interval [a, b] is a monotone increasing function f mapping
[0, 1] one-to-one and onto [a, b]. We can then define a partition of [a, b] into n subintervals
via the points xi = φ(i/n), i = 0, . . . , n. Consider using this partition to compute the
integral

∫ 1
0 f(x) dx with the trapezoidal rule. Justify heuristically but convincingly that

the optimal choice of grading function should satisfy f ′′
(
φ(t)

)
[φ′(t)]2 = const. For the

function f(x) = xα, 0 < α < 1, find a grading function satisfying this equation (hint: try
φ(t) = tβ). For α = 0.2, and n = 1, 2, . . . , 1024, compute the trapezoidal rule approxima-
tion to

∫ 1
0 x

α dx using the optimal grading function, and verify numerically that the error
behaves as O(1/n2). Thus, using the appropriate grading function, we obtain the same
rate of convergence for this singular integrand as for a smooth integrand.

(9) Prove that the rate of convergence for the appropriately graded trapezoidal rule approx-
imation to

∫ 1
0 x

α dx is indeed O(1/n2) by making a change of variable in the integral so
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that the trapezoidal rule with the graded partition for the original integral corresponds
to the trapezoidal rule with a uniform partition for the new integral.



CHAPTER 3

Direct Methods of Numerical Linear Algebra

1. Introduction

To fix ideas and notations we start with a very simple algorithm: multiplication of an
n-vector by an m× n matrix: b = Ax, A ∈ Rm×n, x ∈ Rn, so b ∈ Rm. An obvious algorithm
is

for i = 1 : m
bi =

∑n
j=1 aijxj

end

or, written out in full,

for i = 1 : m
bi ← 0
for j = 1 : n
bi ← bi + aijxj

end
end

Thus the algorithm involves nm additions and nm multiplications. The number of oper-
ations is proportional to the number of input data, which is optimal.

Note that the operation bi =
∑n

j=1 aijxj may be viewed as the computation of a dot
product of the vector x with the ith row of A. Since many linear algebra algorithms involve
dot products, there are optimized routines to compute dot products on almost all computers,
and an efficient implementation can be built on these. This is one example of a BLAS (basic
linear algebra subroutine).

Note that our algorithm accesses the matrix A by row order. If the matrix is stored by
columns in the computer memory, it is more efficient to use a column oriented algorithm
(especially if the matrix is so large that it does not fit in main memory and must be paged
to disk; similar considerations apply to cache memory). The computer languages Fortran
and Matlab store matrices by column. The computer language C stores by rows.

In fact the matrix-vector multiplication algorithm can be reordered to become column-
oriented. Namely, we think of b as a linear combination of the columns of a: b =

∑
j xjaj,

where aj denotes the jth column of A. Written out fully in terms of scalar operations the
algorithm is now

77
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for i = 1 : m
bi ← 0

end
for j = 1 : n

for i = 1 : m
bi ← bi + aijxj

end
end

The inner loop computes a SAXPY operation. A SAXPY is a BLAS which takes a scalar
s and two vectors x and y and computes sx + y. Thus we may implement matrix-vector
multiplication as a row-oriented algorithm consisting chiefly of m dot products of size n or
a column-oriented algorithm consisting chiefly of n SAXPYs of size m.

2. Triangular systems

We recall the forward elimination algorithm to solve Lx = b where L is lower triangular.
We have xi = (bi−

∑i−1
j=1 lijxj)/lii. We may overwrite the bi with the xi to get the algorithm:

b1 ← b1/l11

for i = 2 : n
for j = 1 : (i− 1)
bi ← bi − lijbj

end
bi ← bi/lii

end

With the usual convention for empty loops, we can write this more briefly as

for i = 1 : n
for j = 1 : (i− 1)
bi ← bi − lijbj

end
bi ← bi/lii

end

or just

for i = 1 : n
bi ← (bi −

∑i−1
j=1 lijbj)/lii

end
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Note that this algorithm accesses L by rows and can be implemented in terms of dot
products. To get a column-oriented algorithm, we can partition L as(

l11 0

l̃ L̃

)(
x1

x̃

)
=

(
b1

b̃

)
.

This shows that, after computing x1 = b1/l11 we can reduce to the (n − 1) × (n − 1) lower

triangular system L̃x̃ = b̃− x1l̃. This idea leads to the algorithm

for j = 1 : n
bj ← bj/ljj
for i = (j + 1) : n
bi ← bi − lijbj

end
end

Note that this algorithm can be implemented in terms of SAXPY operations.

Of course we may also solve upper triangular matrix systems. We just start with the last
equation. This is called back substitution.

3. Gaussian elimination and LU decomposition

Recall the classical Gaussian elimination algorithm, which begins with a matrix A = A(1)

and in n− 1 steps transforms it to an upper triangular matrix A(n−1).

for k = 1 : (n− 1)
for i = (k + 1) : n

mik = a
(k)
ik /a

(k)
kk

for j = (k + 1) : n

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj

end
end

end

The multipliers mik determine a unit lower triangular matrix L with the property that,
setting U = A(n−1), we have A = LU . That is, Gaussian elimination computes the Doolittle
decomposition of a matrix as a product of a unit lower triangular matrix times an upper
triangular matrix.

We may store the a
(k)
ij over the initial aij and the multiplier mik over aik (since after mik

is computed, aik is set equal to zero). This leads to:
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Figure 3.1. The bold numbers indicate the order in which the equations are considered.
a11 a12 a13 · · · 1

a21

a31
...

2

a22 a23 · · · 3

a32
...

4

for k = 1 : (n− 1)
for i = (k + 1) : n
aik ← aik/akk
for j = (k + 1) : n
aij ← aij − aikakj

end
end

end

Note that Gaussian elimination may break-down, namely one of the diagonal elements

a
(k)
kk may be zero. The most obvious situation in which this happens is when a11 happens

to be zero. To investigate when this happens, let us consider a more direct algorithm for
computing the Doolittle LU decomposition. Suppose A = LU with L unit lower triangular,
U upper triangular. Then

aij =
n∑
k=1

likukj =

{∑j
k=1 likukj, j < i,∑i
k=1 likukj, j ≥ i

Using a Matlab-like notation for rows and columns we may write:

a(1, 1 : n) = u(1, 1 : n),

a(2 : n, 1) = l(2 : n, 1)u(1, 1),

a(2, 2 : n) = l(2, 1)u(1, 2 : n) + u(2, 2 : n),

a(3 : n, 2) = l(3 : n, 1)u(1, 2) + l(3 : n, 2)u(2, 2),

...

The first equation uniquely determines the first row of u. Supposing u11 6= 0 the second
equation then uniquely determines the first column of L. Then the third equation uniquely
determines the second row of U . Supposing that u22 6= 0, the next equation uniquely
determines the second column of L, etc.

Now let Ak = a(1 : k, 1 : k) denote the kth principal minor of A. Clearly u11 6= 0 if
and only if A1 is nonsingular (u11 = a11 = A1). In that case the second principle minors L2

of L and U2 of U are uniquely determined and L2U2 = A2. Thus U2 is nonsingular if and
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only if A2 is nonsingular and, since we know that u11 6= 0, this holds if and only if u22 is
nonsingular. Continuing in this way, we conclude

Theorem 3.1. An n× n nonsingular matrix A admits a decomposition LU with L unit
lower triangular and U upper triangular if and only if all its principal minors are nonsingular.

We have seen two algorithms for computing the Doolittle LU factorization. They involve
basically the same operations in different order. In particular the number of additions and
multiplications required are n3/3 in each case. The classical Gaussian elimination is easily
implemented with the inner loop consisting of row-oriented SAXPY operations. It is also
straightforward to devise a column-oriented version.

If the nonsingular matrix admits a Doolittle decomposition, we may write the upper
triangular part as DU with D diagonal and U unit upper triangular. Thus A has a unique
decomposition as LDU with D diagonal and L and U unit lower and upper triangular,
respectively. In addition to the Doolittle decomposition L(DU), there is the Crout decom-
position (LD)U into a lower triangular matrix times a unit upper triangular. Algorithms
for this may be constructed as for the Doolittle decomposition.

If A is symmetric, then in the LDU decomposition U = LT . If, in addition, the elements
of D are positive, then we can use the symmetric decomposition LD1/2D1/2LT . Writing L
for LD1/2, so now L is a lower triangular matrix with positive diagonal elements, we have
A = LLT . This is the Cholesky decomposition of A. If A admits a Cholesky decomposition, it
is SPD (symmetric positive-definite). Conversely, reasoning much as we did for the Doolittle
decomposition, we can show that every SPD matrix admits a unique Cholesky decomposition
(left as an exercise to the reader). Here is an algorithm. In view of the symmetry of A, it
never refers to the elements of A lying above the diagonal:

for k = 1 : n
for i = 1 : (k − 1)

lki = (aki −
∑i−1

m=1 limlkm)/lii
end

lkk =
√
akk −

∑k−1
m=1 l

2
km

end

We may overwrite the lower triangular part of A with L:

for k = 1 : n
for i = 1 : (k − 1)

aki ← (aki −
∑i−1

m=1 aimakm)/aii
end

akk ←
√
akk −

∑k−1
m=1 a

2
km

end

Note the Cholesky algorithm costs n3/6 multiplications asymptotically.
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4. Pivoting

Gaussian elimination breaks down at the first step if a11 = 0. In this case we may switch
the first row with any row that has a nonzero element in the first column. Such a row
must exist, if the matrix is nonsingular. Similarly, at some later stage of the procedure one
of the updated diagonal elements akk (the so-called pivots) may vanish and the algorithm
will break-down. Even if the pivot is not zero, it may be very small, and this increases the
possibility there will be large round-off errors introduced. Indeed if a very small pivot is
used, the corresponding multiplier will be very large, and if the solution is not large, there
must be some cancellation occuring when we compute it. To understand this in more detail,
let’s consider the 2× 2 case.

For the system (
a11 a12

a21 a22

)(
x1

x2

)
=

(
b1

b2

)
Gaussian elimination reads:

1: m← a21/a11

2: a22 ← a22 −m · a12

3: b2 ← b2 −m · b1

4: x2 ← b2/a22

5: x1 ← (b1 − a12 · x2)/a11

Precision can be lost, possibly, in steps 2, 3, and 5, since only these involve addition or
subtraction.

Now consider the specific system(
ε 1
1 1

)(
x1

x2

)
=

(
1
2

)
where ε is very small (near unit round-off). If ε = 0, the solution is x1 = x2 = 1, and if ε
is small, the solution is x1 = 1/(1 − ε) = 1 + O(ε), x2 = (1 − 2ε)/(1 − ε) = 1 + O(ε). The
multiplier m is ε−1, so the subtractions in steps 2 and 3 are 1 − ε−1 and 2 − ε−1 which will
not entail much loss of precision. However, the subtraction in step 5 is 1− x2 with x2 very
near 1, and so will result in catastrophic cancellation. Hence we would expect that for ε
very small x2 will be computed accurately, but not x1. In fact, a Fortran single precision
program with ε = 10−6 gives x1 = 1.013279, x2 = 0.999999. The correct answers to 7 places
are 1.000001 and 0.999999, and the relative errors are 1.3× 10−2 for x1, 1.3× 10−8 for x2.

If we consider this system with ε = 0, the solution is obvious: interchange the rows. The
same is advisable for ε small. In this case the multiplier is ε, and the subtractions are 1− ε,
1− 2ε, and 2− x2 where x2 is close to 1. Thus there are no serious cancellations.

In general, if facing a matrix in which the (1, 1) element is very small, a reasonable idea is
to switch the first row with the row containing an element which is not small. A reasonable
choice, which is usually made, is to switch with the row which has the largest element (in
absolute value) in the first column. This results in multipliers which are no greater than 1,
which prevents the creation of large magnitude element during this step of the elimination,
which tends to decrease cancellation in later stages.
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Similarly, before performing the second step of the elimination we switch the second row
with whatever row below the first has the largest magnitude element in the second column.
Etc. This procedure is known as partial pivoting. Actually, in practice one does not switch
the rows, but rather changes the order of the rows used in elimination. That is, rather than
using the order 1, 2, . . . , n, one uses some permutation p1, p2, . . . , pn, which is determined
in the course of the algorithm (as described above). Thus the basic Gaussian elimination
routine which reads

for k = 1, 2, . . . , n− 1
for i = k + 1, k + 2, . . . , n

aik ← aik/akk
aij ← aij − aikakj, j = k + 1, k + 2, . . . , n

end for
end for

becomes
for pi = i, i = 1, 2, . . . , n
for k = 1, 2, . . . , n− 1

choose i ≥ k and interchange pk and pi
for k = 1, 2, . . . , n− 1
for i = k + 1, k + 2, . . . , n

m← apik/apkk
apij ← apij −mapkj, j = k + 1, k + 2, . . . , n

end for
end for

The values of the pi are determined in the course of the algorithm (before they are used
of course!). It can be seen that Gaussian elimination with partial pivoting is equivalent to
factoring the matrix PA as LU where PA is the matrix obtained from A by switching the
order of the rows from the outset. This is actually the matrix product PA where P is a
permutation matrix, i.e., a matrix with the same columns as the identity matrix (but in
a different order). For any nonsingular matrix, partial pivoting determines a permutation
such that PA admits an LU decomposition. In other words, in exact arithmetic Gaussian
elimination with partial pivoting always works. (In the next section we shall discuss the effect
of partial pivoting on the propagation of round-off error when floating point arithmetic is
used.)

There are also several situations in which it can be shown that pivoting is not neces-
sary. The two most important cases are positive definite matrices and diagonally dominant
matrices (matrices with |aii| >

∑
j 6=i |aij|.

5. Backward error analysis

Now we consider the effects of floating point arithmetic on Gaussian elimination. That
is we assume that every real number x is represented in the computer by a floating point
number fl(x) satisfying fl(x) = x(1 + δ) for some δ bounded in magntitude by u, the unit
round-off error for the floating point number system under consideration. For 32 bit IEEE
arithmetic u = 2−24 ≈ 6×10−8, and for 64 bit IEEE arithmetic u = 2−53 ≈ 10−16. Moreover,
if x and y are two floating point numbers (i.e., x = fl(x), y = fl(y), then we assume that the
result of computing x+ y, x− y, x× y, and x/y on the computer is fl(x+ y), fl(x− y), etc.
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Now we consider the effect of computing the LU decomposition of an n×n matrix A via
classical Gaussian elimination using floating point arithmetic at every step of the algorithm.
For simplicity we assume that A is a matrix of floating point numbers (the approximation
of the elements of A can be considered separately).

We use the following notation: if A is a matrix with entries aij, |A| denotes the matrix
whose (i, j) entry is |aij|. If A and B are matrices of the same size, then A ≤ B means
aij ≤ bij for each i, j. Thus, for example, if A and B are matrices of floating point numbers
of the same size and C is the computed sum of A and B using floating point arithmetic
(cij = fl(aij + bij)), then C = A+B + E where the matrix E satisfies |E| ≤ (|A|+ |B|)u.

Theorem 3.2. Let A be an n × n matrix of floating point numbers and let L̂ and Û be
computed by Gaussian elimination with floating point arithmetic assuming no zero pivots are
encountered. Then

L̂Û = A+ E,

where |E| ≤ 2(n− 1)(|A|+ |L̂||Û |)u +O(u2).

Proof. Induction on n, the case n = 1 being obvious. Partition A as

A =

(
a11 uT

v B

)
,

with u, v ∈ Rn−1, B ∈ R(n−1)×(n−1). With exact arithmetic Gaussian elimination yields
A = LU with

L =

(
1 0
l L1

)
, U =

(
a11 uT

0 U1

)
.

Here l ∈ Rn−1 is the given by l = v/a11 and L1 and U1 are triangular matrices of size n− 1,
coming from Gaussian elimination applied to the matrix A(1) = B − luT . Now, if we use
floating point arithmetic we get instead

L̂ =

(
1 0

l̂ L̂1

)
, Û =

(
a11 uT

0 Û1

)
,

where l̂ = fl(a/a11) (the fl operator is applied componentwise), and L̂1 and Û1 are obtained

by Gaussian elimination with floating point arithmetic applied to Â(1) = fl(B − fl(l̂uT )).
Thus

L̂Û =

(
a11 uT

a11l̂ L̂1Û1 + l̂uT

)
=: A+

(
0 0
f F

)
, |L̂||Û | =

(
|a11| |u|T
|a11||l̂| |L̂1||Û1|+ |l̂||u|T

)
.

Thus we need to show that

|f | ≤ 2(n− 1)(|v|+ |a11||l̂|)u +O(u2),(3.1)

|F | ≤ 2(n− 1)(|B|+ |L̂1||Û1|+ |l̂||u|T )u +O(u2).(3.2)

Now
|f | = |a11l̂ − a11l| = |a11||l̂ − l| ≤ |a11||l|u = |v|u,

so (3.1) is trivially satisfied and the proof will be complete if we can establish (3.2).
Now

(3.3) F = L̂1Û1 + l̂uT −B = (L̂1Û1 − Â(1)) + (Â(1) + l̂uT −B).
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First consider the second term on the right-hand side. From the definition of Â(1), we have
Â(1) = [B − (l̂uT +G)] +H with |G| ≤ |l̂||u|Tu, |H| ≤ (|B|+ |l̂||u|T )u +O(u2), so

(3.4) |Â(1) + l̂uT −B| = | −G+H| ≤ 2(|B|+ |l̂||u|T )u +O(u2).

We also deduce from this estimate that

(3.5) |Â(1)| ≤ (1 + 2u)(|B|+ |l̂||u|T ) +O(u2).

Turning to the first term on the right-hand side of (3.3), we invoke the inductive hypoth-
esis and then use (3.5) to get

(3.6)
|L̂1Û1 − Â(1)| ≤ 2(n− 2)(|Â(1)|+ |L̂1||Û1|)u +O(u2)

≤ 2(n− 2)(|B|+ |l̂||u|T + |L̂1||Û1|)u +O(u2).

Combining (3.3), (3.4), and (3.6), we easily obtain (3.2), and so conclude the proof. �

It is important to interpret the result of this theorem. First of all, it is a backward error
analysis. That is, we are not bounding the errors L− L̂ and U − Û (which is harder to do),

but rather the residual E = L̂Û−A. Second, in the bound derived for |E|, the term 2(n−1)
should be considered of little importance. Since in practice u is many orders of magnitude
smaller than 1/n, we can think of this factor as contributing little. (In fact, at the expense
of a fussier proof and less transparent final statement, we could sharpen this factor, but
there is little point to doing so, just as there is little point in giving an explicit bound for
the O(u2) term although it would be possible to do.) So psychologically the bound on |E|
should be read as O

(
(|A|+ |L̂||Û |)u). Now if the bound were simply O(|A|u), this would be

a very satisfactory result: it would say that L̂Û is the LU decomposition of a matrix whose
elements approximate those of A with the same order of accuracy as the closest floating
point approximation. Put in another way, it would say that the errors due to floating point
arithmetic are of the same order as the errors that occur when the matrix (not assumed to

have exact floating point entries) is rounded to machine numbers. Now if the matrices L̂

and Û are not much larger than A, then we still have a very satisfactory result. However,
if we use Gaussian elimination without pivoting, we have seen that even in the 2 × 2 case,
that small pivots may arise, and then it will usually happen that L̂ and Û (or just L and
U) have much larger entries than A. In this case the bound suggests (correctly) that the
error matrix E may be much larger than one would get by just approximating the original
matrix. One nice aspect, is that one can monitor this potential problem. After computing
the LU decomposition one can simply check whether L̂ and Û are very large. If this is not
the case, the relative residual L̂Û − A will not be large.

A similar backward error analysis can be given for the solution to triangular systems. If
we combine these results with the theorem above, we get a backward error bound for the
solution of linear systems. A proof is given in Golub and Van Loan, Matrix Computations.

Theorem 3.3. Let A be an n × n matrix of floating point numbers and b an n-vector
of floating point numbers. Let L̂ and Û be computed by Gaussian elimination with floating
point arithmetic assuming no zero pivots are encountered and let x̂ be computed by solving



86 3. DIRECT METHODS OF NUMERICAL LINEAR ALGEBRA

L̂Û x̂ = b using forward elimination and back substitution with floating point arithmetic.
Then there exists a matrix E satisfying

|E| ≤ 5n(|A|+ |L̂||Û |)u +O(u2),

such that (A+ E)x̂ = b.

Thus, if L̂ and Û are not very large, the computed solution is the exact solution to the
problem where the matrix has been replaced by a nearby matrix. Again, if we don’t pivot it
may happen that L̂ and/or Û is very large.

Let us now consider what happens if we perform Gaussian elimination with pivoting. We
may think of this as applying Gaussian elimination to a matrix which has been reordered
so that at every step the pivot element exceeds in magnitude all elements below it in the
column. In other words, the elements of the matrix L are all bounded by 1 in magnitude.
The question then becomes, how much larger the eliminated matrix U can be than the
original matrix A. In fact, it can be much larger. If we let

A =


1 0 0 . . . 1
−1 1 0 . . . 1
−1 −1 1 . . . 1

...
...

...
. . .

...
−1 −1 −1 . . . 1

 ,

then it is easy to carry out the elimination by hand. All the multipliers are −1 (so partial
pivoting won’t occur) and the final matrix U is

U =


1 0 0 . . . 1
0 1 0 . . . 2
0 0 1 . . . 4
...

...
...

. . .
...

0 0 0 . . . 2n−1

 .

Thus, although the largest magnitude of an element of A is 1, the eliminated matrix U has
an element equal to 2n−1.

Fortunately cases like the above are rare, and the received wisdom is that in practice
Gaussian elimination with partial pivoting rarely fails.

For complete pivoting the worst possible growth of matrix size due to elimination is much
smaller. Let us define the growth factor as maxij |uij|/maxij |aij|. (Actually the growth

factor is generally defined as g = maxi,j,k |a(k)
ij |/maxi,j |aij| where the a

(k)
ij are the elements

of the intermediate matrices which come up during the elimination process, however for
complete pivoting the maximum in the numerator is achieved by one of the pivots, and
hence are present (on the diagonal) in the final matrix, so the two ratios are equal.) No one
has proved a sharp bound on the growth factor for complete pivoting. The chief theoretical
bound seems to be Wilkinson’s from 1961: the ratio of the largest element of U to that of
A with complete pivoting does not exceed n1/2

∏n
j=2 j

1/[2(j−1)]. This gives a value of about

19 for n = 10; 570 for n = 50; 3, 500 for n = 100; 9, 000, 000 for n = 1000; and 1017 for
n = 100, 000. However based on numerical experience Wilkinson conjectured that the ratio
is actually bounded by n. This turned out to be false: a counterexample was given (by Nick
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Gould, corrected by Alan Edelman) in 1991, with a matrix of size n = 13 with factor a bit
above 13.02. Similarly a matrix of size 25 was computed with a growth factor of 32.99. In
any case, as mentioned above, the received wisdom is that the growth due to partial pivoting
is almost always acceptable in practice, and so the slower growth due to complete pivoting
rarely justifies the extra expense. (Partial pivoting requires n2/2 comparisons, and thus
invokes a small cost compared to the O(n3) operations necessary to perform the elimination,
but complete pivoting requires n3/3 comparisons, which is not negligeable.)

6. Conditioning

Backward error analysis essentially assures us that if we use Gaussian elimination with
pivoting to solve a linear system with floating point arithmetic, then the residual of the
resulting solution will be small. It is important to realize that this does not imply that the
error will be small.

Thus, suppose Ax = b with A nonsingular. If we perturb b to b̃, this leads to a change
in x to x̃ defined by Ax̃ = b̃. If the relative error

‖b̃− b‖
‖b‖

is small (measured in some vector norm), what about the relative error in x?

‖x̃− x‖
‖x‖

=
‖A−1(b̃− b)‖

‖b‖
‖Ax‖
‖x‖

≤ κ(A)
‖b̃− b‖
‖b‖

where

κ(A) = ‖A‖‖A−1‖
is the condition number of A with respect to the associated matrix norm. (Given any norm
on Rn, there is an associated norm on Rn×n defined by ‖A‖ = sup0 6=x∈Rn‖Ax‖/‖x‖. Such
a norm is sometimes called an operator norm, since it is the natural norm in the space of
linear operators from the normed vector space Rn to itself. The associated operator matrix
norm is compatible with the given vector norm in the sense that ‖Ax‖ ≤ ‖A‖‖x‖.)

Example (due to R. Wilson):

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 , b =


32
23
33
31

 , x =


1
1
1
1

 .

b̃ =


32.1
22.9
33.1
30.9

 , x̃ =


9.2
−12.6

4.5
−1.1

 .

‖b̃− b‖
‖b‖

=
.4

119
= .0034,

‖x̃− x‖1

‖x‖1

=
27.4

4
= 6.85,
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A−1 =


25 −41 10 −6
−41 68 −17 10
10 −17 5 −3
−6 10 −3 2

 , κ1(A) = 4, 488.

The condition number also measures the sensitivity of the solution to perturbations in
A. Suppose that Ax = b with A nonsingular, and let E be a matrix such that ‖A−1E‖ < 1.
Then A+ E is nonsingular and

‖(A+ E)−1‖ ≤ ‖A−1‖
1− ‖A−1E‖

.

Let x̃ be the solution of the perturbed system: (A+ E)x̃ = b. Then x− x̃ = A−1Ex̃, so

‖x− x̃‖ ≤ ‖A−1‖‖E‖‖x̃‖,
or

‖x− x̃‖
‖x̃‖

≤ κ(A)
‖E‖
‖A‖

.

Finally, we may use the condition number to get an a posteriori bound on the error in the
solution. If we have somehow computed an approximate solution x̃ to Ax = b, although we
don’t know ‖x− x̃‖, we can always compute the residual Ax̃− b. Now x− x̃ = A−1(b−Ax̃),
so ‖x− x̃‖ ≤ ‖A−1‖‖Ax̃− b‖. We also clearly have ‖x‖ ≥ ‖b‖/‖A‖. If we divide these two
inequalities we get

‖x− x̃‖
‖x‖

≤ κ(A)
‖Ax̃− b‖
‖b‖

.

Thus the condition number relates the relative error in the computed solution to the relative
residual it engenders.

Although the condition number is not easy to compute exactly, it can be cheaply (if not
always accurately) estimated from the LU decomposition. There is no way to accurately
solve a system of linear equations when the matrix is ill-conditioned, and one should always
check the condition number.

Exercises

(1) Prove that if A is symmetric positive definite, then A = LLT for a unique lower triangular
matrix L. State an algorithm for computing L, and show that it does not break down (no
divisions by zero or square-roots of negative numbers).

(2) Write a column oriented algorithm to compute the Doolittle LU decomposition. That
is, given a matrix A with nonsingular principal minors, your algorithm should overwrite
the elements on or above the diagonal of A with the corresponding elements of an upper
triangular matrix U and overwrite the below-diagonal elements of A with the correspond-
ing elements of a unit lower triangular matrix L such that LU = A, and your algorithm
should access the elements of A by columns. In addition to writing the algorithm, submit
a direct Matlab translation along with a verification that it works using a random 4 × 4
matrix. Discuss the implementation of your algorithm using BLAS.



CHAPTER 4

Numerical solution of nonlinear systems and optimization

1. Introduction and Preliminaries

In this chapter we consider the solution of systems of n nonlinear equations in n un-
knowns. That is, with Ω an open subset of Rn and F : Ω → Rn a continuous function we
wish to find x∗ ∈ Ω such that F (x∗) = 0.

For nonlinear systems there is rarely a direct method of solution (an algorithm which
terminates at the exact solution), so we must use iterative methods which produce a sequence
of approximate solutions x0, x1, . . . in Ω for which, hopefully, limxi exists and equals a root
x∗ of F .

First some definitions relating to the speed of convergence of sequences in Rn. Let xi be
a sequence in Rn which converges to 0. For p > 1 we say that the sequence converges to 0
with order p if there exists a constant C and a number N so that ‖xi+1‖ ≤ C‖xi‖p for all
i ≥ N . This definition doesn’t depend on the particular norm: if a sequence converges to 0
with order p in one norm, it converges with order p in all norms. Of course we extend this
definition to sequences that converge to an arbitrary x∗ by saying that xi converges to x∗
with order p if and only if xi − x∗ converges to 0 with order p.

For p = 1 it is common to use the same definition except with the requirement that
the constant be less than unity: a sequence would then be said to converge linearly to 0, if
there exists r < 1 and N such that ‖xi+1‖ ≤ r‖xi‖ for all i ≥ N . However, this notion is
norm-dependent. According to this definition, the sequence in R2

(1, 1), (1, 0), (1/4, 1/4), (1/4, 0), (1/16, 1/16), (1/16, 0), . . .

converges linearly to 0 in the 1-norm, but does not converge linearly to 0 with respect to
the ∞-norm. To avoid the norm-dependence, we note that the above definition implies
that there exists a constant C such that ‖xi‖ ≤ Cri for all i. (Proof: ‖xi‖ ≤ ri−N‖xN‖
for all i ≥ N . Equivalently, ‖xi‖ ≤ C0r

i for i ≥ N where C0 = r−N‖xN‖. Setting C =
max(C0,max0≤i<N‖xi‖/ri), we obtain the result.) We take this inequality as our definition
of linear convergence: xi converges to 0 linearly if there exists a constant C and a number
r < 1 such that ‖xi‖ ≤ Cri. This notion is independent of norm (if it holds for one norm,
then it holds for another with the same value of r, but possibly a different value of C). Note
also that if this definition of linear convergence holds for some r < 1, then it also holds for
all larger r. The infimum of all such r is called the rate of the linear convergence. If the
infimum is 0, we speak of superlinear convergence.

Note that if 1 < p1 < p2 and 0 < r1 < r2 < 1, then

convergence with order p2 =⇒ convergence with order p1 =⇒ superlinear convergence

=⇒ linear convergence with rate r1 =⇒ linear convergence with rate r2

89
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2. One-point iteration

For many iterative methods, xi+1 depends only on xi via some formula that doesn’t
depend on i: xi+1 = G(xi). Such a method is called a (stationary) one-point iteration.
Before considering specific iterations to solve F (x) = 0, we consider one-point iterations in
general.

Assuming the iteration function G is continuous, we obviously have that if the iterates
xi+1 = G(xi) converge to some limit x∗, then x∗ = G(x∗), i.e., x∗ is a fixed point of G.

A basic result is the contraction mapping theorem. Recall that a map G : B → Rn

(B ⊂ Rn) is called a contraction (with respect to some norm on Rn) if G is Lipschitz with
Lipschitz constant strictly less than 1.

Theorem 4.1. Suppose G maps a closed subset B of Rn to itself, and suppose that G
is a contraction (with respect to some norm). Then G has a unique fixed point x∗ in B.
Moreover, if x0 ∈ B is any point, then the iteration xi+1 = G(xi) converges to x∗.

If G ∈ C1 a practical way to check whether G is a contraction (with respect to some
norm on Rn) is to consider ‖G′(x)‖ (in the associated matrix norm). If ‖G′(x)‖ ≤ λ < 1 on
some convex set Ω (e.g., some ball), then G is a contraction there. In one dimension this is
an immediate consequence of the mean value theorem. In n dimensions we don’t have the
mean value theorem, but we can use the fundamental theorem of calculus to the same end.
Given x, y ∈ Ω we let g(t) = G(x + t(y − x)), so g′(t) = G′(x + t(y − x))(y − x). From the

fundamental theorem of calculus we get g(1)− g(0) =
∫ 1

0
g′(t) dt, or

G(y)−G(x) =

[∫ 1

0

G′(x+ t(y − x)) dt

]
(y − x),

whence

‖G(y)−G(x)‖ ≤ sup
0≤t≤1

‖G′(x+ t(y − x))‖‖y − x‖ ≤ λ‖y − x‖,

and so G is a contraction.
If we assume that x∗ is a fixed point of G, G ∈ C1, and r = ‖G′(x∗)‖ < 1, then we can

conclude that the iteration xi+1 = G(xi) converges for any starting iterate x0 sufficiently
close to x∗. This is called a locally convergent iteration. The above argument also shows
that convergence is (at least) linear with rate r.

In this connection, the following theorem, which connects ‖A‖ to ρ(A) (the spectral
radius of A, i.e., the maximum modulus of its eigenvalues), is very useful.

Theorem 4.2. Let A ∈ Rn×n. Then

(1) For any operator matrix norm, ‖A‖ ≥ ρ(A).
(2) If A is symmetric, then ‖A‖2 = ρ(A).
(3) If A is diagonalizable, then there exists an operator norm so that ‖A‖ = ρ(A).
(4) For any A and any ε > 0, there exists an operator norm so that ρ(A) ≤ ‖A‖ ≤

ρ(A) + ε.

Proof. 1. If Ax = λx where x 6= 0 and |λ| = ρ(A), then from ‖Ax‖ = |λ|‖x‖ we see
that ‖A‖ ≥ ρ(A).

2. ‖A‖2 =
√
ρ(ATA) =

√
ρ(A2) = ρ(A).
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3. First note that if S ∈ Rn×n is nonsingular and ‖ · ‖0 any vector norm, then ‖x‖ :=
‖Sx‖0 is another vector norm, and the associated matrix norms satisfy ‖A‖ = ‖SAS−1‖0.
Now if A is diagonalizable, then there exists S nonsingular so that SAS−1 is a diagonal
matrix with the eigenvalues of A on the diagonal (the columns of S−1 are the eigenvectors
of A). Hence if we apply the above relation beginning with the ∞-norm for ‖ · ‖0, we get
‖A‖ = ρ(A).

4. The proof is similar in this case, but we use the Jordan canonical form to write
SAS−1 = J where J has the eigenvalues of A on the diagonal, 0’s and ε’s above the diagonal,
and 0’s everywhere else. (The usual Jordan canonical form is the case ε = 1, but if we
conjugate a Jordan block by the matrix diag(1, ε, ε2, . . .) the 1’s above the diagonal are
changed to ε.) Thus for the matrix norm associated to ‖x‖ := ‖Sx‖∞, we have ‖A‖ =
‖J‖∞ ≤ ρ(A) + ε. �

Corollary 4.3. If G is C1 in a neighborhood of a fixed point x∗ and r = ρ(G′(x∗)) < 1,
the one point iteration with iteration function G is locally convergent to x∗ with rate r.

Although we don’t need immediately it, we note another useful corollary of the proceeding
theorem.

Corollary 4.4. Let A ∈ Rn×n. Then limn→∞A
n = 0 if and only if ρ(A) < 1, and in

this case the convergence is linear with rate ρ(A).

Proof. ‖An‖ ≥ ρ(An) = ρ(A)n, so if ρ(A) ≥ 1, then An does not converge to 0.
Conversely, if ρ(A) < 1, then for any ρ̄ ∈ (ρ(A), 1) we can find an operator norm so that

‖A‖ ≤ ρ̄, and then ‖An‖ ≤ ‖A‖n = ρ̄n → 0. �

Finally, let us consider the case G′(x∗) = 0. Then clearly the iteration is superlinearly
convergent. If G is C2, or, less, if G′ is Lipschitz, then we can show that the convergence is
in fact quadratic. First note that for any C1 function G,

G(y)−G(x)−G′(x)(y − x) =

∫ 1

0

[G′(x+ t(y − x))−G′(x)] dt(y − x).

Hence, if G′ is Lipschitz,

‖G(y)−G(x)−G′(x)(y − x)‖ ≤ C

2
‖y − x‖2,

where C is the Lipschitz constant. Applying this with x = x∗ and y = xi and using the fact
that G(x∗) = x∗, G

′(x∗) = 0, we get

‖xi+1 − x∗‖ ≤
C

2
‖xi − x∗‖2,

which is quadratic convergence. In the same way we can treat the case of G with several
vanishing derivatives.

Theorem 4.5. Suppose that G maps a neighborhood of x∗ in Rn into Rn and that x∗
is a fixed point of G. Suppose also that all the derivatives of G of order up to p exist, are
Lipschitz continuous, and vanish at x∗. Then the iteration xi+1 = G(xi) is locally convergent
to x∗ with order p+ 1.
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3. Newton’s method

An important example of a one-point iteration is Newton’s method for root-finding. Let
F : Ω→ Rn be C1 with Ω ⊂ Rn. We wish to find a root x∗ of F in Ω. If x0 ∈ Ω is an initial
guess of the root, we approximate F by the linear part of its Taylor series near x0:

F (x) ≈ F (x0) + F ′(x0)(x− x0).

The left-hand side vanishes when x is a root, so setting the right-hand side equal to zero gives
us an equation for a new approximate root, which we take to be x1. Thus x1 is determined
by the equation

F (x0) + F ′(x1)(x1 − x0) = 0,

or, equivalently,

x1 = x0 − F ′(x0)−1F (x0).

Continuing in this way we get Newton’s method:

xi+1 = xi − F ′(xi)−1F (xi), i = 0, 1, . . . .

(Of course it could happen that some xi /∈ Ω or that some F ′(xi) is singular, in which case
Newton’s method breaks down. We shall see that under appropriate conditions this doesn’t
occur.)

Note that Newton’s method is simply iteration of the function

G(x) = x− F ′(x)−1F (x).

Now if x∗ is a root of F and F ′(x∗) is nonsingular (i.e., if x∗ is a simple root), then G is
continuous in a neighborhood of x∗, and clearly x∗ is a fixed point of G. We have that

G′(x) = I −K(x)F (x)− F ′(x)−1F ′(x) = −K(x)F (x)

where K is the derivative of the function x 7→ F ′(x)−1 (this function maps a neighborhood
of x∗ in Rn into Rn×n). It is an easy (and worthwhile) exercise to derive the formula for
K(x) in terms of F ′(x) and F ′′(x), but we don’t need it here. It suffices to note that K
exists and is Lipschitz continuous if F ′ and F ′′ are. In any case, we have that G′(x∗) = 0.
Thus, assuming that F is C2 with F ′′ Lipschitz (e.g., if F is C3), we have all the hypotheses
necessary for local quadratic convergence. Thus we have proved:

Theorem 4.6. Suppose that F : Ω → Rn, Ω ⊂ Rn is C2 with F ′′ Lipschitz continuous,
and that F (x∗) = 0 and F ′(x∗) is nonsingular for some x∗ ∈ Ω. Then if x0 ∈ Ω is sufficiently
close to x∗, the sequence of points defined by Newton’s method is well-defined and converges
quadratically to x∗.

The hypothesis that the root be simple is necessary for the quadratic convergence of
Newton’s method, as can easily be seen by a 1-dimensional example. However, the smooth-
ness assumption can be weakened. The following theorem requires only that F ′ (rather than
F ′′) be Lipschitz continuous (which holds if F is C2). In the statement of the theorem any
vector norm and corresponding operator matrix norm can be used.

Theorem 4.7. Suppose that F (x∗) = 0 and that F ′ is Lipschitz continuous with Lipschitz
constant γ in a ball of radius r around x∗. Also suppose that F ′(x∗) is nonsingular with
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‖F ′(x∗)−1‖ ≤ β. If ‖x0 − x∗‖ ≤ min[r, 1/(2βγ)], then the sequence determined by Newton’s
method is well-defined, converges to x∗, and satisfies

‖xi+1 − x∗‖ ≤ βγ‖xi − x∗‖2.

Proof. First we show that F ′(x0) is nonsingular. Indeed,

‖F ′(x∗)−1[F ′(x0)− F ′(x∗)]‖ ≤ βγ‖x0 − x∗‖ ≤ 1/2,

from which follows the nonsingularity and the estimate

‖F ′(x0)−1‖ ≤ ‖F ′(x∗)−1‖ 1

1− 1/2
≤ 2β.

Thus x1 is well-defined and

x1 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

= x0 − x∗ − F ′(x0)−1[F (x0)− F (x∗)]

= F ′(x0)−1[F (x∗)− F (x0)− F ′(x0)(x∗ − x0)].

We have previously bounded the norm of the bracketed quantity by γ‖x∗ − x0‖2/2 and
‖F ′(x0)−1‖ ≤ 2β, so

‖x1 − x∗‖ ≤ βγ‖x0 − x∗‖2.

This is the kind of quadratic bound we need, but first we need to show that the xi are indeed
converging to x∗. Using again that ‖x0 − x∗‖ ≤ 1/(2βγ), we have the linear estimate

‖x1 − x∗‖ ≤ ‖x∗ − x0‖/2.

Thus x1 also satisfies, ‖x1 − x∗‖≤ min[r, 1/(2βγ)], and the identical argument shows

‖x2 − x∗‖ ≤ βγ‖x1 − x∗‖2, and ‖x2 − x∗‖ ≤ ‖x1 − x∗‖/2.

Continuing in this way we get the theorem. �

The theorem gives a precise sufficient condition on how close the initial iterate x0 must
be to x∗ to insure convergence. Of course it is not a condition that one can apply practically,
since one cannot check if x0 satisfies it without knowing x0. There are several variant results
which weaken the hypotheses necessary to show quadratic convergence for Newton’s method.
A well-known, but rather complicated one is Kantorovich’s theorem (1948). Unlike the above
theorems, it does not assume the existence of a root x∗ of F , but rather states that if an
initial point x0 satisfies certain conditions, then there is a root, and Newton’s method will
converge to it. Basically it states: if F ′ is Lipschitz near x0 and nonsingular at x0, and if
the value of F (x0) is sufficiently small (how small depending on the Lipschitz constant for
F ′, and the norm of F ′(x0)−1), then Newton’s method beginning from x0 is well-defined and
converges quadratically to a root x∗. The exact statement is rather complicated, so I’ll omit
it. In principle, one could pick a starting iterate x0, and then compute the norms of F (x0)
and F ′(x0), and check to see if they fulfil the conditions of Kantorovich’s theorem (if one
knew a bound for the Lipschitz constant of F ′ in a neighborhood of x0), and thus tell in
advance whether Newton’s method would converge. In practice this is difficult to do and
would rule out many acceptable choices of initial guess, so it is rarely used.
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4. Quasi-Newton methods

Each iteration of Newton’s method requires the following operations: evaluate the func-
tion F at the current approximation, evaluate the derivative F ′ at the current approximation,
solve a system of equations with the latter as matrix and the former as right-hand side, and
update the approximation. The evaluation of F ′ and the linear solve are often the most
expensive parts. In some applications, no formula for F ′ is available, and exact evaluation of
F ′ is not possible. There are many variations of Newton’s method that attempt to maintain
good local convergence properties while avoiding the evaluation of F ′, and/or simplifying
the linear solve step. We shall refer to all of these as quasi-Newton methods, although some
authors restrict that term to specific types of modification to Newton’s method.

Consider the iteration

xi+1 = xi −B−1
i F (xi),

where for each i, Bi is a nonsingular matrix to specified. If Bi = F ′(xi), this is Newton’s
method. The following theorem states that if Bi is sufficiently close to F ′(xi) then this
method is still locally convergent. With a stronger hypothesis on the closeness of Bi to
F ′(xi) the convergence is quadratic. Under a somewhat weaker hypothesis, the method still
converges superlinearly.

Theorem 4.8. Suppose F ′ is Lipschitz continuous in a neighborhood of a root x∗ and
that F ′(x∗) is nonsingular.

(1) Then there exists δ > 0 such that if ‖Bi − F ′(xi)‖ ≤ δ and ‖x0 − x∗‖ ≤ δ, then the
generalized Newton iterates are well-defined by the above formula, and converge to
x∗.

(2) If further ‖Bi − F ′(xi)‖ → 0, then the convergence is superlinear.
(3) If there is a constant c such that ‖Bi−F ′(xi)‖ ≤ c‖F (xi)‖, then the convergence is

quadratic.

Proof. Set β = ‖F ′(x∗)−1‖ <∞. Choosing δ small enough, we can easily achieve

‖x− x∗‖ ≤ δ, ‖B − F ′(x)‖ ≤ δ =⇒ ‖B−1‖ ≤ 2β.

Let γ be a Lipschitz constant for F ′. Decreasing δ if necessary we can further achieve
2β(γ/2 + 1)δ ≤ 1/2.

Now let x0 and B0 be chosen in accordance with this δ. Then

x1 − x∗ = x0 − x∗ −B−1
0 F (x0) = B−1

0 [F (x∗)− F (x0)−B0(x∗ − x0)]

= B−1
0

∫ 1

0

[F ′((1− t)x0 + tx∗)−B0]dt (x∗ − x0).

Now ‖F ′((1− t)x0 + tx∗)−B0‖ ≤ γt‖x0 − x∗‖+ δ, by the triangle inequality, the Lipschitz
condition, and the condition on B0. Thus

‖x1 − x∗‖ ≤ 2β(γ‖x0 − x∗‖/2 + δ)‖x0 − x∗‖ ≤ 2β(γ/2 + 1)δ‖x0 − x∗‖ ≤ ‖x0 − x∗‖/2.

In particular ‖x1 − x∗‖ ≤ δ, so this process may be repeated. (1) follows easily. Note that
we obtained linear convergence with rate 1/2, but by choosing δ sufficiently small we could
obtain the linear convergence with any desired rate r ∈ (0, 1).
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From the above reasoning we get

‖xi+1 − x∗‖ ≤ 2β(γ‖xi − x∗‖/2 + ‖Bi − F ′(xi)‖)‖xi − x∗‖,

which gives superlinearity under the additional hypothesis of (2). From the additional hy-
pothesis of (3), we get

‖Bi − F ′(xi)‖ ≤ c‖F (xi)− F (x∗)‖ ≤ c′‖xi − x∗‖,

which gives the quadratic convergence. �

Some examples of quasi-Newton methods:

• Replace ∂F i(x)/∂xj by [F i(x+hej)−F i(x)]/h for small h or by a similar difference
quotient. From the theorem, convergence is guaranteed if h is small enough.
• Use a single evaluation of F ′ for several iterations. (Then one can factor F ′ one

time, and back solve for the other iterations.) Other methods, including Broyden’s
method which we consider next, use some sort of procedure to “update” a previous
Jacobian.
• Use Bi = θ−1

i F ′(xi), where θi is a relaxation parameter. Generally θi is chosen in
(0, 1], so that xi+1 = xi− θiF ′(xi)−1F (xi) is a more “conservative” step than a true
Newton step. This is used to stabilize Newton iterations when not sufficiently near
the root. From the theorem, convergence is guaranteed for θi sufficiently near 1, and
is superlinear if θi → 1. If |θi−1| ≤ c‖F (xi)‖ for all i sufficiently large, convergence
is quadratic.
• Another possibility, which we shall study when we consider the minimization meth-

ods, is Bi = θiF
′(xi) + (1 − θi)I. Convergence statements similar to those for the

relaxed method hold.

5. Broyden’s method

Broyden’s method (published by C. G. Broyden in 1965) is an important example of
a quasi-Newton method. It is one possible generalization to n-dimensions of the secant
method. For a single nonlinear equation, the secant method replaces f ′(xi) in Newton’s
method with the approximation [f(xi)− f(xi−1)]/(xi − xi−1), to obtain the iteration

xi+1 = xi −
xi − xi−1

f(xi)− f(xi−1)
f(xi).

Of course, we cannot directly generalize this idea to Rn, since we can’t divide by the vector
xi − xi−1. Instead, we can consider the equation

Bi(xi − xi−1) = F (xi)− F (xi−1).

However, this does not determine the matrix Bi, only its action on multiples of xi−xi−1. To
complete the specification of Bi, Broyden’s method sets the action on vectors orthogonal to
xi − xi−1 to be the same as Bi−1. Broyden’s method is an update method in the sense that
Bi is determined as a modification of Bi−1.

In order to implement Broyden’s method, we note:
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Theorem 4.9. Given vectors s 6= 0, v in Rn, C ∈ Rn×n, there is a unique matrix
B ∈ Rn×n such that

Bs = v,

Bz = Cz, for all z such that sT z = 0.

To see this, we note that there is certainly at most one such B. To see that such a B
exists, we give the formula:

B = C +
1

sT s
(v − Cs)sT .

It is important to note that B is derived from C by the addition of a matrix of rank 1. In a
certain sense C is the closest matrix to B which takes s to v (see the exercises).

We are now ready to give Broyden’s method:

Choose x0 ∈ Rn, B0 ∈ Rn×n

for i = 0, 1, . . .
xi+1 = xi −B−1

i F (xi)
si = xi+1 − xi
vi = F (xi+1)− F (xi)

Bi+1 = Bi +
1

sTi si
(vi −Bisi)s

T
i

end

Remark. For example, B0 can be taken to be F ′(x0). In one dimension, Broyden’s
method reduces to the secant method.

Key to the effectiveness of Broyden’s method is that the matrix Bi+1 differs from Bi

only by a matrix of rank 1. But, as shown in the following theorem, once one can compute
the action of the inverse of a matrix on a vector efficiently (e.g., by by forward and back
substitution once the matrix has been factored into triangular matrices), then once can
compute the action of the inverse of any rank 1 perturbation of the matrix.

Theorem 4.10 (Sherman-Morrison-Woodbury formula). Let B ∈ Rn×n, y, v ∈ Rn, and
suppose that both B and B̃ := B + vyT are nonsingular. Then 1 + yTB−1v 6= 0 and

B̃−1 = B−1 − 1

1 + yTB−1v
B−1vyTB−1.

Proof. Given any u ∈ Rn, let x = B̃−1u, so

(4.1) Bx+ (yTx)v = u.

Multiplying on the left by yTB−1 gives (yTx)(1 + yTB−1v) = yTB−1u. In particular, if we
take u = By, then the right-hand side is yTy, and so 1 + yTB−1v 6= 0 and we obtain

yTx =
yTB−1u

1 + yTB−1v
.
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Combining this expression and (4.1) we see that

Bx = u− yTB−1u

1 + yTB−1v
v.

Multiplying byB−1 and recalling that x = B̃−1u we obtain the Sherman–Morrison–Woodbury
formula. �

Thus to compute the action of B̃−1 on a vector, we just need to know the action of B−1

on that vector and on v and y, and to compute some inner products and simple expressions.
A good way to implement this formula for Broyden’s method is to store Hi := B−1

i rather
than Bi. The algorithm then becomes:

Choose x0 ∈ Rn, H0 ∈ Rn×n

for i = 0, 1, . . .
xi+1 = xi −HiF (xi)
si = xi+1 − xi
vi = F (xi+1)− F (xi)

Hi+1 = Hi +
1

sTi Hivi
(si −Hivi)s

T
i Hi

end

Note that if H0 is B−1
0 this algorithm is mathematically equivalent to the basic Broyden

algorithm.

5.1. Convergence of Broyden’s method. Denote by x∗ the solution of F (x∗) = 0,
and let xi and Bi denote the sequences of vectors and matrices produced by Broyden’s
method. Set

ei = xi − x∗, Mi = Bi − F ′(x∗).
Roughly speaking, the key to the convergence of Broyden’s method are the facts that (1)
ei+1 will be small compared to ei if Mi is not large, and (2) Mi+1 will not be much larger
than Mi if the ei’s are small. Precise results will be based on the following identities, which
follow directly from the definitions of xi and Bi,

ei+1 = −B−1
i [F (xi)− F (x∗)− F ′(x∗)(xi − x∗)] +B−1

i Miei,(4.2)

Mi+1 = Mi

(
I − 1

sTi si
sis

T
i

)
+

1

sTi si
(vi − F ′(x∗)si)sTi .(4.3)

Our first result gives the local convergence of Broyden’s method, with a rate of conver-
gence that is at least linear. The norms are all the 2-norm.

Theorem 4.11. Let F be differentiable in a ball Ω about a root x∗ ∈ Rn whose derivative
has Lipschitz constant γ on the ball. Suppose that F ′(x∗) is invertible, with ‖F ′(x∗)−1‖ ≤ β.
Let x0 ∈ Ω and B0 ∈ Rn×n be given satisfying

‖M0‖+ 2γ‖e0‖ ≤
1

8β
.

Then the iterates xi, Bi given by Broyden’s method are well defined, and the errors satisfy
‖ei+1‖ ≤ ‖ei‖/2, for i = 0, 1, · · · .
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Proof. Claim 1: If xi and Bi are well-defined and ‖Mi‖ ≤ 1/(2β), then Bi is invertible
(so xi+1 is well-defined), and

‖B−1
i ‖ ≤ 2β, ‖ei+1‖ ≤ (γβ‖ei‖+ 2β‖Mi‖)‖ei‖.

Indeed, F ′(x∗)
−1Bi = I + F ′(x∗)

−1Mi, and since ‖Mi‖ ≤ 1/(2β), ‖F ′(x∗)−1Mi‖ ≤ 1/2, so
Bi is invertible with ‖B−1

i ‖ ≤ 2β. Therefore, xi+1 is well-defined. The estimate on ‖ei+1‖
follows easily from the bound on B−1

i and (4.2).
Note that from claim 1 and the hypotheses of the theorem we know that x1 is well-defined

and ‖e1‖ ≤ ‖e0‖/2.
Claim 2: If B0, . . . , Bi are defined and invertible, then

‖Mi+1‖ ≤ ‖Mi‖+ γmax(‖ei‖, ‖ei+1‖).
To prove this, we use (4.3). The first term on the right-hand side is the product of Mi with
the orthogonal projection onto the orthogonal complement of si, so its 2-norm is bounded
by ‖Mi‖. For the second term, note that

vi − F ′(x∗)si =

∫ 1

0

[F ′((1− t)xi+1 + txi)− F ′(x∗)] dt si.

Since ‖F ′(1− t)xi+1 + txi)− F ′(x∗)‖ ≤ γmax(‖ei‖, ‖ei+1‖),
‖vi − F ′(x∗)si‖ ≤ γmax(‖ei‖, ‖ei+1‖)‖si‖,

and the second term on the right-hand side of (4.3) is bounded in norm by

γmax(‖ei‖, ‖ei+1‖),
which establishes the claim.

We are now ready to prove the theorem. We shall show, by induction on i, that
x0, . . . , xi+1 are well-defined and

‖ei‖ ≤
1

8γβ
, ‖Mi‖ ≤

1

8β
, ‖ei+1‖ ≤ ‖ei‖/2.

This is clearly true for i = 0. Assuming it true for i and all smaller indices, we immediately
get the first inequality with i replaced by i + 1. Using claim 2 repeatedly (and noting that
‖ei+1‖ ≤ ‖ei‖ ≤ · · · , we have

‖Mi+1‖ ≤ ‖M0‖+ γ(‖e0‖+ ‖e1‖+ · · ·+ ‖ei+1‖)
≤ ‖M0‖+ γ‖e0‖(1 + 1/2 + · · · ) = ‖M0‖+ 2γ‖e0‖ ≤ 1/(8β),

which establishes the second inequality, and then applying claim 1 gives the third inequality.
�

Notice that the constant 1/2 in the linear convergence estimate arose from the proof
rather than anything inherent to Broyden’s method. Rearranging the proof, one could
change this constant to any positive number. Thus the convergence is actually superlinear.
It would be natural to try to prove this as an application of Theorem 4.8, but this is not
possible, because it can be shown by example, that Bi need not converge to F ′(x∗). The
superlinear convergence of Broyden’s method was first proved in 1973 by Broyden, Dennis,
and Moré. They proved slightly more, namely that ‖xi+1 − x∗‖ ≤ ri‖xi − x∗‖ where ri → 0.
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6. Unconstrained minimization

We now turn to the problem of minimizing a real-valued function F defined on Rn. (The
problem of minimizing F over a subset of Rn, e.g., a subspace or submanifold, is known as
constrained minimization and is an important subject, which, however, we will not consider
in this course.) We shall sometimes refer to F as the cost function. Usually we will have
to content ourselves with finding a local minimum of the cost function since most methods
cannot distinguish local from global minima. Note that the word “local” comes up in two
distinct senses when describing the behavior of minimization methods: methods are often
only locally convergent (they converge only for initial iterate x0 sufficiently near x∗), and
often the limit x∗ is only a local minimum of the cost function.

If F : Rn → R is smooth, then at each x its gradient F ′(x) is a row vector and its Hessian
F ′′(x) is a symmetric matrix. If F achieves a local minimum at x∗, then F ′(x∗) = 0 and
F ′′(x∗) is positive semidefinite. Moreover, if F ′(x∗) = 0 and F ′′(x∗) is positive definite, then
F definitely achieves a local minimum at x∗.

There is a close connection with the problem of minimizing a smooth real-valued function
of n variables and that of finding a root of an n-vector-valued function of n variables. Namely
if x∗ is a minimizer of F : Rn → R, then x∗ is a root of F ′ : Rn → Rn. Another connection
is that a point is a root of the function K : Rn → Rn if and only if it is a minimizer of
F (x) = ‖K(x)‖2 (we usually use the 2-norm or a weighted 2-norm for this purpose, since
then F (x) is smooth if K is).

7. Newton’s method

The idea of Newton’s method for minimization problems is to approximate F (x) by its
quadratic Taylor polynomial, and minimize that. Thus

F (x) ≈ F (xi) + F ′(xi)(x− xi) +
1

2
(x− xi)TF ′′(xi)(x− xi).

The quadratic on the right-hand side achieves a unique minimum value if and only if the
matrix F ′′(xi) is positive definite, and in that case the minimum is given by the solution to
the equation

F ′′(xi)(x− xi) + F ′(xi)
T = 0.

Thus we are lead to the iteration

xi+1 = xi − F ′′(xi)−1F ′(xi)
T .

Note that this is exactly the same as Newton’s method for solving the equation F ′(x) = 0.
Thus we know that this method is locally quadratically convergent (to a root of F ′, which
might be only a local minima of F ).

Newton’s method for minimization requires the construction and “inversion” of the entire
Hessian matrix. Thus, as for systems, there is motivation for using quasi-Newton methods in
which the Hessian is only approximated. In addition, there is the fact that Newton’s method
is only locally convergent. We shall return to both of these points below.
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8. Line search methods

Line search methods, of which there are many, take the form

choose initial iterate x0

for i = 0, 1, . . .
choose search direction vector si ∈ Rn

choose step length λi ∈ R
xi+1 = xi + λisi

end

There is a great deal of freedom in choosing the direction and the step length. The major
criterion for the search direction is that a lower value of F than F (xi) exist nearby on the
line xi + λsi. We may as well assume that the step λi is positive in which case this criteria
is that si is a descent direction, i.e., that F (xi + λsi) decreases as λ increases from 0. In
terms of derivatives this condition is that F ′(xi)

T si < 0. Geometrically, this means that si
should make an acute angle with the negative gradient vector −F ′(xi)T . An obvious choice
is si = −F ′(xi)T (or −F ′(xi)T/‖F ′(xi)‖ if we normalize), the direction of steepest descents.

For the choice of step length, one possibility is exact line search. This means that λi is
chosen to minimize F (xi + λsi) as a function of λ. In combination with the steepest descent
direction we get the method of steepest descents :

choose λi > 0 minimizing F (xi − λF ′(xi)T ) for λ > 0 set xi+1 = xi − λiF ′(xi)T
This method can be shown to be globally convergent to a local minimizer under fairly

general circumstances. However, it may not be fast. To understand the situation better
consider the minimization of a quadratic functional F (x) = xTAx/2− xT b where A ∈ Rn×n

is symmetric postive definite and b ∈ Rn. The unique minimizer of F is then the solution x∗
to Ax = b. In this case, the descent direction at any point x is simply −F ′(x)T = b − Ax,
the residual. Moreover, for any search direction s, the step length λ minimizing F (x + λs)
(exact line search) can be computed analytically in this case:

F (x+ λs) =
λ2

2
sTAs+ λ(sTAx− sT b) +

1

2
xTAx− xT b,

d

dλ
F (x+ λs) = λsTAs+ sT (Ax− b),

so that at the minimum λ = sT (b− Ax)/sTAs, and if s = b− Ax, the direction of steepest
descent, λ = sT s/sTAs. Thus the steepest descent algorithm for minimizing xTAx/2− xT b,
i.e., for solving Ax = b is

choose initial iterate x0

for i = 0, 1, . . .
si = b− Ax
λi =

sTi si
sTi Asi

xi+1 = xi + λisi
end
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It can be shown that this algorithm is globally convergent to the unique solution x∗ as
long as the matrix A is positive definite. However the convergence order is only linear and
the rate is (κ − 1)/(κ + 1) where κ(A) is the 2-norm condition number of A, i.e., the ratio
of the largest to the smallest eigenvalues of A. Thus the convergence will be very slow if A
is not well-conditioned.

Figure 4.1. Convergence of steepest descents with a quadratic cost function.
Left: condition number 2; right: condition number: 10.
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This highlights a weakness of the steepest descent direction. It will be even more pro-
nounced for a difficult non-quadratic cost function, such as Rosenbrock’s example in R2

F (x) = (y − x2)2 + .01(1− x)2.

Figure 4.2. Some contours of the Rosenbrock function. Minimum is at (1, 1).
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While exact line search is possible for a quadratic cost functions, in general it is a scalar
minimization problem which can be expensive or impossible to solve. Moreover, as illustrated
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by the performance of steepest descents above, since the minimum may not be very near
the search line, it is often not worth the effort to search too carefully. Thus many methods
incorporate more or less sophisticated approximate line search algorithms. As we shall see,
it is possible to devise an approximate line search method which, when used in conjunction
with a reasonable choice of search direction, is globably convergent.

We begin our analysis with a simple calculus lemma.

Lemma 4.12. Let f : R → R be C1 and bounded below and suppose that f ′(0) < 0. For
any 0 < α < 1 there exists a non-empty open interval J ⊂ (0,∞) such that

(4.4) f(x) < f(0) + αxf ′(0), f ′(x) > αf ′(0),

for all x ∈ J .

Proof. Since f ′(0) < 0 and 0 < α < 1, we have 0 > αf ′(0) > f ′(0). Thus the
line y = f(0) + αf ′(0)x lies above the curve y = f(x) for sufficiently small positive x.
But, since f is bounded below, the line lies below the curve for x sufficiently large. Thus
x1 := inf{x > 0 | f(x) ≥ f(0) + αf ′(0)x } > 0. Choose any 0 < x0 < x1. By the mean value
theorem there exists x between x0 and x1 such that

f ′(x) =
f(x1)− f(x0)

x1 − x0

.

For this point x we clearly have (4.4), and by continuity they must hold on an open interval
around the point. �

Add a figure.

Now suppose we use a line search method subject to the following restrictions on the
search directions si and the step lengths λi. We suppose that there exist positive constants
η, α, β, such that for all i:

(H1) there exists η ∈ (0, 1] such that −F ′(xi)si ≥ η‖F ′(xi)‖‖si‖
(H2) there exists α ∈ (0, 1) such that F (xi + λisi) ≤ F (xi) + αλiF

′(xi)si
(H3) there exists β ∈ (0, 1) such that F ′(xi + λisi)si ≥ βF ′(xi)si
We shall show below that any line-search method meeting these conditions is, essentially,

globally convergent. Before doing so, let us discuss the three conditions. The first condition
concerns the choice of search direction. If η = 0 were permitted it would say that the search
direction is a direction of non-ascent. By insisting on η positive we insure that the search
direction is a direction of descent (F (xi + λsi) is a decreasing function of λ at λ = 0).
However the condition also enforces a uniformity with respect to i. Specifically, it says
that the angle between si and the steepest descent direction −F ′(xi)T is bounded above by
arccos η < π/2. The steepest descent direction satisfies (H1) for all η ≤ 1 and so if η < 1
there is a open set of directions satisfying this condition. If the Hessian is positive definite,
then the Newton direction −F ′′(xi)−1F ′(xi)

T satisfies (H1) for η ≤ 1/κ2(F ′′(xi)), with κ2

the condition number with respect to the 2-norm, i.e., the ratio of the largest to smallest
eigenvalues (verify!). One possible strategy to obtain the fast local convergence of Newton’s
method without sacrificing global convergence is to use the Newton direction for si whenever
it satisfies (H1) (so whenever F ′′(xi) is positive definite and not too badly conditioned),
otherwise to use steepest descents. A better approach when the Newton direction fails
(H1) may be to use a convex combination of the Newton direction and the steepest descent
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direction: si = −[θF ′′(xi)
−1F ′(xi)

T + (1 − θ)F ′(xi)
T ] which will satisfy (H1) if θ > 0 is

small enough. Or similarly, one can take si = [F ′′(xi)
−1 + νI]−1F ′(xi)

T with ν large enough
to insure that the bracketed matrix is positive definite. This is the Levenberg–Marquardt
search direction.

Conditions (H2) and (H3) concern the step length. Roughly, (H2) insures that it is not
too large, and in particular insures that F (xi+1) < F (xi). It is certainly satisfied if λi is
sufficiently small. On the other hand (H3) ensures that the step is not too small, since it is
not satisfied for λi = 0. It is however satisfied at a minimizing λi if one exists. The lemma
insures us that if 0 < α < β < 1, then there is an open interval of values of λi satisfying
(H2) and (H3), and hence it is possible to design line-search algorithms which find a suitable
λi in a finite number of steps. See, e.g., R. Fletcher, Practical Methods of Optimization or
J. Dennis & R. Schnabel, Numerical methods for unconstrained optimization and nonlinear
equations. Fletcher also discusses typical choices for α and β. Typically β is fixed somewhere
between 0.9 and 0.1, the former resulting in a faster line search while the latter in a more
exact line search. Fletcher says that α is generally taken to be quite small, e.g., 0.01, but
that the value of of α is not important in most cases, since it is usually the value of β which
determines point acceptability.

We now state the global convergence theorem.

Theorem 4.13. Suppose that F : Rn → R is C1 and bounded below, that x0 ∈ Rn is such
that {x ∈ Rn : F (x) ≤ F (x0) } is bounded, and that x1, x2, . . . is defined by a line search
method with descent search directions and positive step lengths satisfying the three conditions
above. Then limi→∞ F (xi) exists and limi→∞ F

′(xi) = 0.

The next comment should be filled out. Perhaps the theorem should be stated in the
case of a single minimum and then the full state given as a corollary to the proof.

Remark. If there is only one critical point x∗ of F in the region {x ∈ Rn : F (x) ≤
F (x0) }, then the theorem guarantees that limxi = x∗. In general the theorem does not
quite guarantee that the xi converge to anything, but by compactness the xi must have one
or more accumulation points, and these must be critical points.

Proof. Since the sequence F (xi) is decreasing and bounded below, it converges. Hence
F (xi)− F (xi+1)→ 0. By (H2),

F (xi)− F (xi+1) ≥ −αλiF ′(xi)si ≥ 0,

so λiF
′(xi)si → 0. By the (H1), this implies ‖F ′(xi)‖λi‖si‖ → 0. There are now two

possibilities: either ‖F ′(xi)‖ → 0, in which case we are done, or else there exists ε > 0 and
a subsequence S with ‖F ′(xi)‖ ≥ ε, i ∈ S. In view of the previous inequality, λisi → 0, i.e.,
xi − xi+1 → 0, for i ∈ S. Since all the iterates belong to the compact set {x ∈ Rn : F (x) ≤
F (x0) }, we may invoke uniform continuity of F ′ to conclude that F ′(xi+1)− F ′(xi)→ 0 as
i→∞, i ∈ S. We shall show that this is a contradiction.

Using (H3) and (H1), we have for all i

‖F ′(xi+1)− F ′(xi)‖‖si‖
≥ [F ′(xi+1)− F ′(xi)]si ≥ (1− β)[−F ′(xi)si] ≥ η(1− β)‖F ′(xi)‖‖si‖.
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Hence for i ∈ S,
‖F ′(xi+1)− F ′(xi)‖ ≥ η(1− β)ε > 0,

which gives the contradiction. �

The next theorem shows that if the point xi is sufficiently close to a minimum, then
choosing si to be the Newton direction and λi = 1 satisfies (H1)–(H3). This means that
it is possible to construct algorithms which are globally convergent, but which are also
quadratically convergent, since they eventually coincide with Newton’s method.

Theorem 4.14. Suppose that F is smooth, x∗ is a local minimum of F , and F ′′(x∗)
is positive definite. Let 0 < α < 1/2, α < β < 1. Then there exists ε > 0 such that
if ‖xi − x∗‖ ≤ ε, si = −F ′′(xi)−1F ′(xi)

T , and λi = 1, then (H1)–(H3) are satisfied with
η = 1/{4κ2[F ′′(x∗)]}.

Proof. Let D denote the ball about x∗ of radius ε, where ε > 0 will be chosen below.
From our analysis of Newton’s method we know that by taking ε sufficiently small, xi ∈
D =⇒ xi + si ∈ D. By continuity of F ′′, we may also arrange that whenever x ∈ D, F ′′(x)
is positive definite, ‖F ′′(x)‖ ≤ 2‖F ′′(x∗)‖, and ‖F ′′(x)−1‖ ≤ 2‖F ′′(x∗)−1‖.

Then

− F ′(xi)si = F ′(xi)F
′′(xi)

−1F ′(xi)
T

≥ λmin[F ′′(xi)
−1]‖F ′(xi)‖2 =

1

‖F ′′(xi)‖
‖F ′(xi)‖2 ≥ 1

2‖F ′′(x∗)‖
‖F ′(xi)‖2.

Now

‖F ′(xi)‖ ≥
1

‖F ′′(xi)−1‖
‖si‖ ≥

1

2‖F ′′(x∗)−1‖
‖si‖,

and (H1) follows from the last two estimates.
By Taylor’s theorem,

F (xi + si)− F (xi) = F ′(xi)si +
1

2
sTi F

′′(x̄)si,

for some x̄ ∈ D. Thus

F (xi + si)− F (xi) =
1

2
F ′(xi)si +

1

2
sTi [F ′(xi)

T + F ′′(xi)si] +
1

2
sTi [F ′′(x̄)− F ′′(xi)]si.

Now the second term on the right-hand side vanishes by the choice of si, and the third term
can be bounded by a Lipschitz condition on F ′′, so

F (xi + si)− F (xi) ≤
1

2
F ′(xi)si +

γε

2
‖si‖2.

Since we have already established (H1), we have

(4.5) ‖si‖2 ≤ 2‖F ′′(x∗)−1‖‖F ′(xi)‖‖si‖ ≤ −
2

η
‖F ′′(x∗)−1‖F ′(xi)si.

Combining the last two estimates and choosing ε sufficiently small gives (H2) with any desired
α < 1/2.

For (H3), we note that

F ′(xi + si) = F ′(xi) + sTi F
′′(xi) + sTi [F ′′(x̃)− F ′′(xi)] = sTi [F ′′(x̄)− F ′′(xi)],
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for some x̃ ∈ D. Using the Lipschitz condition and (4.5) we get

F ′(xi + si)si ≥ −γε‖si‖2 ≥ γε
2

η
‖F ′′(x∗)−1‖F ′(xi)si,

and the desired estimate holds for ε sufficiently small. �

9. Conjugate gradients

Now we return to the case of minimization of a positive definite quadratic function
F (x) = xTAx/2−xT b with A ∈ Rn×n symmetric positive definite and b ∈ Rn. So the unique
minimizer x∗ is the solution to the linear system Ax = b. Consider now a line search method
with exact line search:

choose initial iterate x0

for i = 0, 1, . . .
choose search direction si

λi =
sTi (b− Axi)
sTi Asi

xi+1 = xi + λisi
end

Thus x1 = x0 + λ0s0 minimizes F over the 1-dimensional affine space x0 + span[s0], and
then x2 = x0+λ0s0+λ1s1 minimizes F over the affine space 1-dimensional x0+λ0s0+span[s1].
However x2 does not minimize F over the 2-dimensional affine space x0 +span[s0, s1]. If that
were the case, then for 2-dimensional problems we would have x2 = x∗ and we saw that that
was not the case for steepest descents.

However, it turns out that there is a simple condition on the search directions si that
ensures that x2 is the minimizer of F over x0 +span[s0, s1], and more generally that xi is the
minimizer of F over x0 + span[s0, . . . , si−1]. In particular (as long as the search directions
are linearly independent), this implies that xn = x∗.

Theorem 4.15. Suppose that xi are defined by exact line search using search directions
which are A-orthogonal: sTi Asj = 0 for i 6= j. Then

F (xi) = min{F (x) |x ∈ x0 + span[s0, . . . , si−1] }.

Proof. By induction on i, the case i = 1 being clear. Write Wi for span[s0, . . . , si−1].
Now

min
x0+Wi+1

F = min
y∈x0+Wi

min
λ∈R

F (y + λsi).

But

F (y + λsi) =
1

2
yTAy + λsTi Ay +

λ2

2
sTi Asi − yT b− λsTi b.

The second term on the right-hand side appears to couple the minimizations with respect
to y and λ, but in fact this is not so. Indeed, xi ∈ x0 +Wi, so for y ∈ x0 +Wi, y − xi ∈ Wi

and so is A-orthogonal to si. That is, sTi Ay = sTi Axi, whence

F (y + λsi) = [
1

2
yTAy − yT b] + [

λ2

2
sTi Asi + λsTi (Axi − b)],
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and the minimization problem decouples. By induction the minimum of the first term in
brackets over x0 + Wi is achieved by y = xi, and clearly the second term is minimized by
λ = sTi (b − Axi)/sTi Asi, i.e., the exact line search. Thus xi+1 = xi + λisi minimizes F over
x0 +Wi+1. �

Any method which uses A-orthogonal (also called “conjugate”) search directions has the
nice property of the theorem. However it is not so easy to construct such directions. By
far the most useful method is the method of conjugate gradients, or the CG method, which
defines the search directions by A-orthogonalizing the residuals ri = b− Axi:

• s0 = r0

• si = ri −
i−1∑
j=0

sTj Ari

sTj Asj
sj.

The last formula (which is just the Gram-Schmidt procedure) appears to be quite expensive
to implement, but fortunately we shall see that it may be greatly simplified.

Lemma 4.16. (1) Wi = span[s0, . . . , si−1] = span[r0, . . . , ri−1].
(2) The residuals are l2-orthogonal: rTi rj = 0 for i 6= j.
(3) There exists m ≤ n such that W1 ( W2 ( · · · ( Wm = Wm+1 = · · · and x0 6= x1 6=
· · · 6= xm = xm+1 = · · · = x∗.

(4) For i ≤ m, { s0, . . . , si−1 } is an A-orthogonal basis for Wi and { r0, . . . , ri−1 } is an
l2-orthogonal basis for Wi.

(5) sTi rj = rTi ri for 0 ≤ j ≤ i.

Proof. The first statement comes directly from the definitions. To verify the second
statement, note that, for 0 ≤ j < i, F (xi + trj) is minimal when t = 0, which gives
rTj (Axi− b) = 0, which is the desired orthogonality. For the third statement, certainly there
is a least integer m ∈ [1, n] so that Wm = Wm+1. Then rm = 0 since it both belongs to
Wm and is orthogonal to Wm. This implies that xm = x∗ and that sm = 0. Since sm = 0,
Wm+1 = Wm and xm+1 = xm = x∗. Therefore rm+1 = 0, which implies that sm+1 = 0,
therefore Wm+2 = Wm+1, xm+2 = x∗, etc.

The fourth statement is an immediate consequence of the preceding ones. For the last
statement, we use the orthogonality of the residuals to see that sTi ri = rTi ri. But, if 0 ≤ j ≤
i,then

sTi rj − sTi r0 = sTi A(x0 − xj) = 0,

since x0 − xj ∈ Wi. �

Since si ∈ Wi+1 and the rj, j ≤ i are an orthogonal basis for that space for i < m, we
have

si =
i∑

j=0

sTi rj
rTj rj

rj.

In view of part 5 of the lemma, we can simplify

si = rTi ri

i∑
j=0

rj
rTj rj

= ri + rTi ri

i−1∑
j=0

rj
rTj rj

,
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whence

si = ri +
rTi ri

rTi−1ri−1

si−1.

This is the formula which is used to compute the search direction. In implementing this
formula it is useful to compute the residual from the formula ri+1 = ri − λiAsi (since
xi+1 = xi + λisi). Putting things together we obtain the following implementation of CG:

choose initial iterate x0, set s0 = r0 = b− Ax0

for i = 0, 1, . . .

λi =
rTi ri
sTi Asi

xi+1 = xi + λisi
ri+1 = ri − λiAsi
si+1 = ri+1 +

rTi+1ri+1

rTi ri
si

end

At each step we have to perform one multiplication of a vector by A, two dot-products,
and three SAXPYs. When A is sparse, so that multiplication by A is inexpensive, the
conjugate gradient method is most useful. Here is the algorithm written out in full in
pseudocode:

choose initial iterate x
r ← b− Ax
r2← rT r
s← r
for i = 0, 1, . . .
t← As (matrix multiplication)
s2← sT t (dot product)
λ← r2/s2
x← x+ λs (SAXPY)
r2old← r2
r ← r − λt (SAXPY)
r2← rT r (dot product)
s← r + (r2/r2old)s (SAXPY)

end

The conjugate gradient method gives the exact solution in n iterations, but it is most
commonly terminated with far fewer operations. A typical stopping criterion would be to
test if r2 is below a given tolerance. To justify this, we shall show that the method is linearly
convergence and we shall establish the rate of convergence. For analytical purposes, it is
most convenient to use the vector norm ‖x‖A := (xTAx)1/2, and its associated matrix norm.

Lemma 4.17. Wi = span[r0, Ar0, . . . , A
i−1r0] for i = 1, 2, . . . ,m.
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Proof. Since dimWi = i, it is enough to show that Wi ⊂ span[r0, Ar0, . . . , A
i−1r0],

which we do by induction. This is certainly true for i = 1. Assume it holds for some i.
Then, since xi ∈ x0 + Wi, ri = b − Axi ∈ r0 + AWi ∈ span[r0, Ar0, . . . , A

ir0], and therefore
Wi+1, which is spanned by Wi and ri belongs to span[r0, Ar0, . . . , A

ir0], which completes the
induction. �

The space span[r0, Ar0, . . . , A
i−1r0] is called the Krylov space generated by the matrix A

and the vector r0. Note that we have as well

Wi = span[r0, Ar0, . . . , A
i−1r0] = { p(A)r0 | p ∈ Pi−1 } = { q(A)(x∗ − x0) | q ∈ Pi, q(0) = 0 }.

Since ri is l2-orthogonal to Wi, x∗ − xi is A-orthogonal to Wi so

‖x∗ − xi‖A = inf
w∈Wi

‖x∗ − xi + w‖A.

Since xi − x0 ∈ Wi,
inf
w∈Wi

‖x∗ − xi + w‖A = inf
w∈Wi

‖x∗ − x0 + w‖A.

Combining the last three equations, we get

‖x∗ − xi‖A = inf
q∈Pi
q(0)=0

‖x∗ − x0 + q(A)(x∗ − x0)‖A = inf
p∈Pi
p(0)=1

‖p(A)(x∗ − x0)‖A.

Applying the obvious bound ‖p(A)(x∗ − x0)‖A ≤ ‖p(A)‖A‖x∗ − x0‖A we see that we can
obtain an error estimate for the conjugate gradient method by estimating

C = inf
p∈Pi
p(0)=1

‖p(A)‖A.

Now if 0 < ρ1 < · · · < ρn are the eigenvalues of A, then the eigenvalues of p(A) are p(ρj),
j = 1, . . . , n, and ‖p(A)‖A = maxj |p(ρj)| (this is left as exercise 6). Thus1

C = inf
p∈Pi
p(0)=1

max
j
|p(ρj)| ≤ inf

p∈Pi
p(0)=1

max
ρ1≤ρ≤ρn

|p(ρ)|.

The final infimum can be calculated explicitly using the Chebyshev polynomials, see Fig-
ure 4.3 and (1.16). The minimum value is precisely

2(√
κ+1√
κ−1

)i
+
(√

κ−1√
κ+1

)i ≤ 2

(√
κ− 1√
κ+ 1

)i
,

where κ = ρn/ρ1 is the condition number of A. (To get the right-hand side, we suppressed
the second term in the denominator of the left-hand side, which is less than 1 and tends to
zero with i, and kept only the first term, which is greater than 1 and tends to infinity with
i.) We have thus proven that

‖xi − x∗‖A ≤ 2

(√
κ− 1√
κ+ 1

)i
‖x0 − x∗‖A,

1Here we bound maxj |p(ρj)| by maxρ1≤ρ≤ρn
|p(ρ)| simply because we can minimize the latter quantity

explicitly. However this does not necessarily lead to the best possible estimate, and the conjugate gradient
method is often observed to converge faster than the result derived here. Better bounds can sometimes be
obtained by taking into account the distribution of the spectrum of A, rather than just its minimum and
maximum.
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Figure 4.3. The quintic polynomial equal to 1 at 0 with the smallest L∞

norm on [2, 10]. This is a scaled Chebyshev polynomial, and so the norm can
be computed exactly.
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which is linear convergence with rate

r =

√
κ− 1√
κ+ 1

.

Note that r ∼ 1 − 2/
√
κ for large κ. So the convergence deteriorates when the condition

number is large.

Let us compare this convergence estimate with the analogous one for the method of
steepest descents. To derive an estimate for steepest descents, we use the fact that the first
step of conjugate gradients coincides with steepest descents, and so

‖x∗ − x1‖A ≤
2

√
κ+1√
κ−1

+
√
κ−1√
κ+1

‖x∗ − x0‖A =
κ− 1

κ+ 1
‖x∗ − x0‖A.

Of course, the same result holds if we replace x0 by xi and x1 by xi+1. Thus steepest descents
converges linearly, with rate (κ− 1)/(κ+ 1). Notice that the estimates indicate that a large
value of κ will slow the convergence of both steepest descents and conjugate gradients, but,
since the dependence is on

√
κ rather than κ, the convergence of conjugate gradients will

usually be much faster.

The figure shows a plot of the norm of the residual versus the number of iterations for
the conjugate gradient method and the method of steepest descents applied to a matrix
of size 233 arising from a finite element simulation. The matrix is irregular, but sparse
(averaging about 6 nonzero elements per row), and has a condition number of about 1, 400.
A logarithmic scale is used on the y-axis so the near linearity of the graph reflects linear
convergence behavior. For conjugate gradients, the observed rate of linear convergence is
about .8, and it takes 80 iterations to reduce the initial residual by a factor of about 106.
The convergence of steepest descents is too slow to be useful: in 400 iterations the residual
is not even reduced by a factor of 2.
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Figure 4.4. Convergence of conjugate gradients for solving a finite element
system of size 233. On the left 300 iterations are shown, on the right the first
50. Steepest descents is shown for comparison.
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Remark. 1. The conjugate gradient algorithm can be generalized to apply to the min-
imization of general (non-quadratic) functionals. The Fletcher–Reeves method is such a
generalization. However in the non-quadratic case the method is significantly more compli-
cated, both to implement and to analyze.

2. There are a variety of conjugate-gradient-like iterative methods that apply to matrix
problems Ax = b where A is either indefinite, non-symmetric, or both. Many share the idea
of approximation of the solution in a Krylov space.

9.1. Preconditioning. The idea is we choose a matrix M ≈ A such that the system
Mz = c is relatively easy to solve. We then consider the preconditioned system M−1Ax =
M−1b. The new matrix M−1A is SPD with respect to the M innerproduct, and we solve the
preconditioned system using conjugate gradients but using the M -inner product in place of
the l2-inner product. Thus to obtain the preconditioned conjugate gradient algorithm, or
PCG, we substitute M−1A for A everywhere and change expressions of the form xTy into
xTMy. Note that the A-inner product xTAy remains invariant under these two changes.
Thus we obtain the algorithm:

choose initial iterate x0, set s0 = r̄0 = M−1b−M−1Ax0

for i = 0, 1, . . .

λi =
r̄Ti Mr̄i
sTi Asi

xi+1 = xi + λisi
r̄i+1 = r̄i − λiM−1Asi

si+1 = r̄i+1 +
r̄Ti+1Mr̄i+1

r̄Ti Mr̄i
si

end
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Note that term sTi Asi arises as the M -inner product of si with M−1Asi. The quantity
r̄i is the residual in the preconditioned equation, which is related to the regular residual,
ri = b− Axi by ri = Mr̄i. Writing PCG in terms of ri rather than r̄i we get

choose initial iterate x0, set r0 = b− Ax0, s0 = M−1r0

for i = 0, 1, . . .

λi =
rTi M

−1ri
sTi Asi

xi+1 = xi + λisi
ri+1 = ri − λiAsi
si+1 = M−1ri+1 +

rTi+1M
−1ri+1

rTi M
−1ri

si

end

Thus we need to compute M−1ri at each iteration. Otherwise the work is essentially the
same as for ordinary conjugate gradients. Since the algorithm is just conjugate gradients for
the preconditioned equation we immediately have an error estimate:

‖xi − x∗‖A ≤ 2

(√
κ− 1√
κ+ 1

)i
‖x0 − x∗‖A,

where κ now is the ratio of the largest to the least eigenvalue of M−1A. To the extent that
M approximates A, this ratio will be close to 1 and so the algorithm will converge quickly.

The matrix M is called the preconditioner. A good preconditioner should have two prop-
erties. First, it must be substantially easier to solve systems with the matrix M than with
the original matrix A, since we will have to solve such a system at each step of the precon-
ditioned conjugate gradient algorithm. Second, the matrix M−1A should be substantially
better conditioned than A, so that PCG converges faster than ordinary CG. In short, M
should be near A, but much easier to invert. One simple possibility is to take M to be the
diagonal matrix with the same diagonal entries as A. This certainly fulfils the first criterion
(easy invertibility), and for some matrices A, the second criterion is met as well. A similar
possibility is to take M to be a tridiagonal matrix with its nonzero entries taken from A. A
third possibility which is often applied when A is sparse is to determine M via the incomplete
Cholesky factorization. This means that a triangular matrix L is computed by the Cholesky
algorithm applied to A, except that no fill-in is allowed: only the non-zero elements of A
are altered, and the zero elements left untouched. One then takes M = LLT , and, so M−1

is easy to apply. Other preconditioners take into account the source of the matrix problem.
For example, if a matrix arises from the discretization of a complex partial differential equa-
tion, we might precondition it by the discretization matrix for a simpler related differential
equation (if that lead to a linear systems which is easier to solve). In fact the derivation of
good preconditioners for important classes of linear systems remain a very active research
area.

We close with numerical results for the simplest preconditioner: the diagonal precondi-
tioner. The following figure reproduces the results shown in Figure 4.4, together with the
norm of the residual for PCG. An error reduction of 10−6 occurs with 44 iterations of PCG,
as opposed to 80 of CG.
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Figure 4.5. Convergence of preconditioned conjugate gradients for solving a
finite element system of size 233. On the left 300 iterations are shown, on the
right the first 50. Unpreconditioned CG and Steepest descents are shown for
comparison.
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Exercises

(1) Let f : R → R be a C2 function with a root x∗ such that neither f ′ nor f ′′ has a root.
Prove that Newton’s method converges to x∗ for any initial guess x0 ∈ R.

(2) Consider the 2× 2 system of nonlinear equations

f(x, y) = 0, g(x, y) = 0, x, y ∈ R.

The Jacobi iteration for solving this system beginning from an initial guess x0, y0 is Thus

for i = 0, 1, 2, . . .
solve f(xi+1, yi) = 0 for xi+1

solve g(xi, yi+1) = 0 for yi+1

end

each step of the iteration requires the solution of 2 scalar nonlinear equations. (N.B.: Of
course the method extends to systems of n equations in n unknowns.) If we combine the
Jacobi iteration with Newton’s method to solve the scalar equations, we get the Newton–
Jacobi iteration:

choose initial guess x0, y0

for i = 1, 2, . . .

xi+1 = xi −
∂f

∂x
(xi, yi)−1f(xi, yi)

yi+1 = yi −
∂g

∂y
(xi, yi)−1g(xi, yi)

end

Determine under what conditions this algorithm is locally convergent.
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(3) The Gauss–Seidel iteration for a 2 × 2 system of nonlinear equations differs from the
Jacobi iteration in that the equation determining yi+1 is g(xi+1, yi+1) = 0. Formulate the
Newton–Gauss–Seidel iteration, determine conditions under which it is locally convergent,
and compare the conditions to those for the Newton–Jacobi iteration.

(4) Recall that in Broyden’s method we update a matrix B to obtain a matrix B̃ which
satisfies B̃s = v for given vectors s 6= 0, v. Show that B̃ the closest matrix to B which
satisfies this equation, that is that ‖B̃−B‖ ≤ ‖B̄−B‖ for any matrix B̄ satisfying B̄s = v
where the norm is the matrix 2-norm. Show that the same result holds if the norm is the
Frobenius norm, which is defined by ‖A‖ = (

∑
i,j a

2
ij)

1/2, and that in this case B̃ is the
unique nearest matrix to B satisfying the desired equation.

(5) Consider a system of n equations in n unknowns consisting of m linear equations and
n−m nonlinear equations

Ax− b = 0, g(x) = 0, A ∈ Rm×n, b ∈ Rm, g : Rn → Rn−m.

Let x0, x1, . . . be the sequence of iterates produced by Newton’s method. Show that all the
iterates after the initial guess satisfy the linear equations exactly. Show the same result
is true when the xi are determined by Broyden’s method with B0 chosen to be F ′(x0).

(6) Prove that if A is a symmetric positive-definite matrix with eigenvalues ρ1, . . . , ρn, and p
is a polynomial, then ‖p(A)‖A = max

1≤j≤n
|p(ρj)|.

(7) Prove that for the conjugate gradient method the search directions si and the errors
ei := x∗ − xi satisfy sTi ei+1 ≤ 0 (in fact sTi ej ≤ 0 for all i, j). Use this to show that the
l2-norm of the error ‖ei‖ is a non-increasing function of i.

(8) We analyzed preconditioned conjugate gradients, with a symmetric positive definite pre-
conditioner M , as ordinary conjugate gradients applied to the problem M−1Ax = M−1b
but with the M -inner product rather than the l2-inner product in Rn. An alternative
approach which doesn’t require switching inner products in Rn is to consider the or-
dinary conjugate gradient method applied to the symmetric positive definite problem
(M−1/2AM−1/2)z = M−1/2b for which the solution is z = M1/2x. Show that this ap-
proach leads to exactly the same preconditioned conjugate gradient algorithm.

(9) The Matlab command A=delsq(numgrid(’L’,n)) is a quick way to generate a symmetric
positive definite sparse test matrix: it is the matrix arising from the 5-point finite difference
approximation to the Laplacian on an L-shaped domain using an n×n grid (e.g., if n = 40,
A will be 1, 083×1, 083 sparse matrix with 5, 263 nonzero elements and a condition number
of about 325. Implement the conjugate gradient algorithm for the system Ax = b for this
A (and an arbitrary vector b, e.g., all 1’s). Diagonal preconditioning does no good for this
problem. (Why?) Try two other possibilities: tridiagonal preconditioning and incomplete
Cholesky preconditioning (Matlab comes equipped with an incomplete Cholesky routine,
so you don’t have to write your own). Study and report on the convergence in each case.





CHAPTER 5

Numerical Solution of Ordinary Differential Equations

1. Introduction

In this chapter we are concerned with the numerical solution of the initial value problem
(IVP)

(5.1) y′ = f(t, y), y(t0) = y0.

More precisely, we suppose we are given a function f(t, y) defined in some domain D ⊂ R2

and a point (t0, y0) ∈ D. We wish to find an interval I containing t0 and a function y : I → R
satisfying

y′(t) = f
(
t, y(t)

)
, t ∈ I,

as well as the initial condition. The function f specifies a slope field on the domain D, which
we can visualize graphically as a small line segment passing through each point of D, and
the IVP says that the graph of y passes through (t0, y0) and at each point is tangent to the
line segment at that point.

Figure 5.1. The slopefield for f(t, y) = [(y+ 1− t/3)2− sin t]e−.15(y−1)2 and
the solution to y′(t) = f

(
t, y(t)

)
, y(0) = −3.
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Theorem 5.1 (Local Existence Theorem). Let f be a continuous function on a domain
D ⊂ R2 and let (t0, y0) be an interior point of D. Then there exists an interval I containing
t0 in its interior and a function y : I → R solving (5.1).

115
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The question of existence of solutions on a given interval I containing t0 is more subtle. It
can certainly happen that the solution curve (t, y(t)) leaves the domain D before t traverses
the entire given interval. See Figures 5.2

Figure 5.2. The solution to y′ = f(t, y), y(0) = .2. In this example the
domain D of f is the unit square, and the solution curve leaves D at t = .75, so
there is no solution to the initial value problem defined on the whole interval
I = [0, 1].
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Even if D ⊃ I × R, it may happen that the solution tends to infinity as t tends to some
interior point of I, and so the solution can again not be continued to the end of the interval
I. For example, the solution to the IVP

y′ = y2, y(1) = 1,

is y(t) = 1/(2 − t), which blows up as t approaches 2. Thus there is no solution to this
simple-looking IVP on the interval [1, 3]. See Figure 5.3.

Another issue which must be faced before we can study numerical methods and their
convergence is uniqueness of solutions. If we only assume that f is continuous, then we
cannot assert uniqueness. For example, the function f(x, y) =

√
|1− y2| is continuous on

R2, and the IVP

y′ =
√
|1− y2|, y(−π/2) = −1,

has infinitely many solutions, among them y(t) = sin t and y(t) = −1.
Fortunately there is a simple condition which implies both global existence and unique-

ness.

Definition. Let f be a function defined on I×R where I is an interval. Then f satisfies
a uniform Lipschitz condition with respect to its second variable if

|f(t, y)− f(t, z)| ≤ K|y − z|, t ∈ I, y, z ∈ R.

Note that if f ∈ C1(I × R) and ∂f/∂y is bounded, then f satisfies a uniform Lipschitz
condition with respect to y.
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Figure 5.3. The solution to y′ = y2, y(1) = 1 cannot be continued to t ≥ 2.

1 1.5 2 2.5 3

1

2

3

4

5

6

7

8

Theorem 5.2 (Global existence–uniqueness theorem). Let f be a continuous function
on I × R which satisfies a uniform Lipschitz condition with respect to its second variable.
Then, for any (t0, y0) ∈ I × R, there exists a unique solution y : I → R to the IVP

y′ = f(t, y), y(t0) = y0.

Notice that many simple, smooth functions f on I×R, such as f(t, y) = y2 or f(t, y) = ty2

fail to satisfy a uniform Lipschitz condition with respect to its second variable, because the
partial derivative ∂f/∂y is unbounded. For such functions, we cannot assert global existence
in general, but on an interval on which a solution exists, it is unique. Indeed, suppose
that y′ = f(t, y) and z′ = f(t, z) on some finite closed interval I, and that y(t0) = z(t0)
for some t0 ∈ I. Then y ≡ z on I. To see this, let J be a finite interval which contains
the ranges y(I) and z(I) (both of which are bounded, since y and z are continuous and I
is closed and bounded). Let φ be a smooth function which is identically equally to unity
on J but identically equal to zero outside some large bounded closed interval K, and set
F (t, y) = φ(y)f(t, y). Then

Here we need material on uniqueness, existence and uniqueness if we assume a Lipschitz
condition with respect to y, and sensitivity of solutions with respect to initial data (stability
theorem to be labelled th:odestab).

Theorem 5.3. . . .

Make reference to Figure 5.4.

2. Euler’s Method

2.1. Derivation. If we recall the interpretation of a solution to the IVP as a function
whose graph passes through (t0, y0) as is tangent to the slope field determined by f , this
suggests a graphical approach to the approximate solution of the IVP. We start to draw its
graph at the initial point, extending it in the direction of, say, increasing t, along the line
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Figure 5.4. The left figure shows several solutions of an ODE for which
the solution is very sensitive to the initial data. The right figures shows the
opposite situation: even large differences in the initial data cause only small
differences in the solutions at the end of the interval.

through that point with slope f(t0, y0). This determines an approximate solution on a short
time interval [t0, t0 + h] as

yh(t) = y0 + (t− t0)f(t0, y0), t0 ≤ t ≤ t0 + h.

If h is sufficiently small this should not differ much from the true solution y(t) (since a curve
does not differ much from its tangent in a small interval). We may then repeat the process
starting from t1 := t0 + h and using the slope at (t1, y1) where y1 = yh(t1) = y0 + hf(t0, y0),
and so forth. Defining tn = t0 + nh, we thus get approximations yn = yh(tn) ≈ y(tn)
satisfying

yn+1 = yn + hf(tn, yn), n = 0, 1, . . .

This is Euler’s method for solving the IVP. For most purposes it is sufficient to think of
the approximate solution yh as defined only at the discrete points tn and thus given by the
values yn. For others it is useful to consider the approximate solution as the piecewise linear
function with break points at the tn and which interpolates yn at tn.

The graphical derivation just given does not easily generalize to give other numerical
methods, but here are three other derivations of Euler’s method which do.

2.1.1. Taylor series. The exact solution satisfies

y(tn+1) = y(tn) + hy′(tn) +O(h2).

Neglecting the O(h2) term we get

y(tn+1) ≈ y(tn) + hy′(tn) = y(tn) + hf(tn, y(tn)).

This suggests the method

(5.2) yh(tn+1) = yh(tn) + hf(tn, y
h(tn))

or

yn+1 = yn + hf(tn, yn),

which is Euler’s method.
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2.1.2. Numerical differentiation. Approximating the derivative y′(tn) by the forward dif-
ference [y(tn+1)− y(tn)]/h gives

y(tn+1)− y(tn)

h
≈ f

(
tn, y(tn)

)
,

or
y(tn+1) ≈ y(tn) + hy′(tn) = y(tn) + hf

(
tn, y(tn)

)
.

which again suggests Euler’s method.
2.1.3. Numerical integration. The exact solution satisfies the integral condition

y(tn+1) = y(tn) +

∫ tn+1

tn

f
(
t, y(t)

)
dt.

Approximating the integral by the left endpoint rule we get, once again,

y(tn+1) ≈ y(tn) + hf
(
tn, y(tn)

)
.

2.2. Convergence. In this section we analyze the convergence of Euler’s method. For
simplicity we assume that f ∈ C(I × R), I = [t0, t

∗], and satisfies a uniform Lipschitz
condition with respect to its second variable (so there is a unique solution defined on all of
I. For any h > 0 define N = Nh = b(t∗ − t0)/hc (so that tN is the largest break point in I),
and define yn = yh(tn) for 0 ≤ n ≤ N by Euler’s method. The error is eh = yh− y. We shall
measure the error in the discrete max norm

‖eh‖∞,h = max
0≤n≤Nh

|eh(tn)|,

and determine the behavior of this quantity as h ↓ 0. It would be a small matter, but not
now worth the effort, to use the max norm on the whole interval I.

Theorem 5.4 (Convergence of Euler’s method). lim
h↓0
‖yh − y‖∞,h = 0.

Proof. Define the local truncation error on the (n+ 1)st step by the equation

(5.3) y(tn+1) = y(tn) + hf
(
tn, y(tn)

)
+ Tn.

Thus Tn is the amount by which the exact solution fails to satisfy Euler’s method. It is local
to the n+ 1st step in that we compare the exact solution at the end of the step to what we
would have obtained using Euler’s method over the step starting with the exact solution at
the beginning of the step, and ignoring all the accumulated errors up to that point.

By the mean value theorem,

y(tn+1) = y(tn) + hy′(ξn) for some ξn ∈ (tn, tn+1),

while the differential equation gives f
(
tn, y(tn)

)
= y′(tn). Thus

(5.4) Tn = h[y′(ξn)− y′(tn)].

Subtracting (5.3) from (5.2) gives

en+1 = en + h[f
(
tn, y

h(tn)
)
− f

(
tn, y(tn)

)
]− Tn.

Setting T = max0≤n≤N−1 |Tn| and using the Lipschitz condition we get

|en+1| ≤ (1 + hL)|en|+ T, 0 ≤ n ≤ N − 1,
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and, since we start with the exact initial value, e0 = 0. We now apply a simple lemma (which
is easily established by induction):

Lemma 5.5. Let A, B, η0, η1, . . . , ηN be non-negative numbers satisfying

ηn+1 ≤ Aηn +B, n = 0, 1, . . . , N − 1.

Then

ηn ≤ Anη0 +
(n−1∑
i=0

Ai
)
B, n = 0, 1, . . . , N.

For A 6= 1 the quantity in parenthesis is equal to (An − 1)/(A− 1).

Applying the lemma, we get

|en| ≤
(1 + hL)n − 1

hL
T, n = 0, 1, . . . , N.

Since 1 + x ≤ ex for all x, this gives

(5.5) |en| ≤
eL|t

∗−t0| − 1

L

T

h
,

and we have reduced the theorem to showing that limh→0 T/h = 0.
Since f is continuous, the solution y′ is uniformly continuous on the closed interval I.

Therefore, give ε > 0 there exists h0 > 0 such that |y′(t) − y′(u)| ≤ ε if t, u ∈ I satisfy
|t− u| ≤ h0. In view of (5.4) we have T/h ≤ ε whenever h ≤ h0. �

If we require a little extra regularity, we can get an estimate with a rate of convergence.

Theorem 5.6 (Rate of convergence for Euler’s method). If y ∈ C2(I) then

‖yh − y‖∞,h ≤ Ch,

where

(5.6) C = ‖y′′‖∞
eL|t

∗−t0| − 1

2L
.

Proof. By Taylor’s theorem

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(ξn),

for some ξn. In view of the definition (5.3), Tn = (h2/2)y′′(ξn), and so |T/h| ≤ (h/2)‖y′′‖∞.
The theorem therefore follows from (5.5). �

The constant C asserted in the preceeding theorem, is often very pessimistic compared to
the outcome of actual computation, but the first order convergence is not. The next theorem
shows (assuming a bit more smoothness), that the error at any time does indeed behave like
ch, up to higher order, for some c.

Theorem 5.7 (Asymptotic error estimate for Euler’s method). Suppose that y ∈ C3(I)
and that ∂f/∂y and ∂2f/∂y2 are both continuous. Then there exists a function δ : I → R
independent of h such that

yh(tn)− y(tn) = δ(tn)h+O(h2), n = 0, 1, . . . , N(h).
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The function δ is the solution of the linear initial value problem

(5.7) δ′(t) =
∂f

∂y

(
t, y(t)

)
δ(t)− 1

2
y′′(t), δ(t0) = 0.

Proof. Using Taylor’s theorem and the definition of Euler’s method we get

en+1 = en + h[f
(
tn, y

h(tn)
)
− f

(
tn, y(tn)

)
]− h2

2
y′′(tn)− h3

6
y′′′(ξn),

for some ξn. Applying Taylor’s theorem to f as a function of y we get

f
(
tn, y

h(tn)
)

= f
(
tn, y(tn)

)
+
∂f

∂y

(
tn, y(tn)

)
en +

1

2

∂2f

∂y2
(tn, ζn)e2

n

for some ζn between y(tn) and yh(tn). Combining these two expansions we get

(5.8) en+1 =

[
1 + h

∂f

∂y

(
tn, y(tn)

)]
en −

h2

2
y′′(tn) +Rn

where

Rn = −h
3

6
y′′′(ξn)− 1

2

∂2f

∂y2
(tn, ζn)e2

nh.

By the first order convergence of Euler’s method we know that ζn stays bounded for all n
and h and that en = O(h). Thus Rn = O(h3).

Now we define gn by replacing en by gn in (5.8) and dropping the term Rn:

(5.9) gn+1 =

[
1 + h

∂f

∂y

(
tn, y(tn)

)]
gn −

h2

2
y′′(tn), g0 = 0.

To complete the proof we will show that

gn = δ(tn)h+O(h2),(5.10)

en = gn +O(h2).(5.11)

Now (5.10) is equivalent to

dn = δ(tn) +O(h),

where dn = gn/h. In terms of dn, (5.9) becomes

dn+1 = dn + h

[
∂f

∂y

(
tn, y(tn)

)
dn −

1

2
y′′(tn)

]
, g0 = 0.

which is precisely Euler’s method for the initial value problem (5.7). Thus (5.10) follows
from Theorem 5.6.

To prove (5.11), let kn = en − gn. Subtract (5.9) from (5.8) to get

kn+1 = [1 + h
∂f

∂y

(
tn, y(tn)

)
]kn +Rn.

Therefore

|kn+1| ≤ (1 +Kh)|kn|+ max
n
|Rn| with K = max

t0≤t≤t∗

∣∣∣∣∂f∂y (tn, y(tn)
)∣∣∣∣ .
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Noting that k0 = 0 and applying Lemma 5.5 we get

|kn| ≤
(1 +Kh)n − 1

Kh
max |Rn|.

Bounding (1+Kh)n by exp(K|t∗−t0|) and recalling that Rn = O(h3) we obtain the theorem.
�

Remark. The initial value problem (5.7) is linear so its solution can be written in closed
terms:

δ(t) = −1

2
ρ(t)

∫ t

t0

y′′(s)

ρ(s)
ds, ρ(s) = exp[

∫ t

t0

∂f

∂y

(
s, y(s)

)
ds].

This is not very useful in practice, since we don’t know y, much less y′′. So the significance
of the theorem is mainly the assertion that the error behaves like δh, not the particular form
of δ. This is useful for many purpose, e.g., for Richardson extrapolation.

2.3. Variable step size. There is no reason why the same value of h has to be used
in each step of Euler’s method. We can instead vary h, determining it in advance or as we
go along in some adaptive way (adaptive step size selection will be treated in § 5 of this
chapter). Euler’s method with variable step size is thus

yh(t0) = y0

for n = 0, 1, . . .
choose hn > 0
tn+1 = tn + hn
if tn+1 ≤ t∗ then
yh(tn+1) = yh(tn) + hnf

(
tn, y

h(tn)
)

else
stop

end if
end

Let e = yh − y denote the error. We again use the discrete maximum norm:

‖e‖ = max |e(tn)|,
where the maximum is taken over the particular mesh points used. We also set H = maxhn,
the largest step size. We then again have convergence (we continue to assume that f satisfies
a uniform Lipschitz condition with respect to y), and, if the solution is C2, the convergence
is first order in H:

Theorem 5.8 (Convergence of Euler’s method with variable step). For Euler’s method
with variable step size

lim
H→0
‖e‖ = 0,

i.e., for all ε > 0 there exists H0 > 0 such that for any choice of steps hn with maxhn ≤ H0

there holds max |e(tn)| ≤ ε.
Moreover, if the solution y ∈ C2(I), then ‖e‖ ≤ CH, where C is again defined by (5.6).
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The proof of this theorem follows very much along the lines of the proofs of Theorems 5.4
and 5.6. The bounds on the local truncation error are the same. Lemma 5.5 which is used
to bound the accumulated contributions of the local truncation errors on all the steps, must
be generalized as follows.

Lemma 5.9. Let An > 1 and Bn ≥ 0 for n = 0, 1, . . . , N − 1 and let η0, η1, . . . , ηN ≥ 0.
Suppose that

ηn+1 ≤ Anηn +Bn, n = 0, 1, . . . , N − 1.

Then

ηn ≤
(n−1∏
i=0

Ai

)
η0 +

(n−1∏
i=0

Ai − 1
)

sup
0≤i≤n−1

Bi

Ai − 1
, n = 1, 2, . . . , N.

The proof of the lemma—which is a straightforward induction—and that of Theorem 5.8,
is left to the reader.

Remark. Without some assumption on the way the step sizes are chosen we cannot
prove (or even sensibly state) an asymptotic error estimate. One possibility is to assume
that the step sizes are determined using a step size parameter h > 0 and a continuous step
modification function Θ : I → R+ by the formula hn = Θ(tn)h. That is, as the mesh is
refined the ratio of step sizes in one part of the interval to those in another is determined by
Θ. In practice, Θ would reflect the nature of the solution (larger where the solution is very
smooth and smaller where the solution varies rapidly). In this case it is possible to prove an
asymptotic error estimate very similar to Theorem 5.7.

3. Linear multistep methods

Euler’s method is an example of a one-step method: the numerical solution yn+1 at tn+1

is determined from the numerical solution at the single preceding point yn. More generally,
we can consider methods take a constant step size h and determine yn+1 using the values
from several preceding steps:

yn+1 = Φ(f, tn, yn+1, yn, yn−1, . . . , yn−k, h).

Here yn+1 depends on k+1 previous values, so this is called a k+1-step method. Notice that
we have allowed yn+1 to appear in the right-hand side of the equation as well as the left. When
this happens, we speak of an implicit method, and we need to solve a nonlinear equation to
determine yn+1. In any case, we need to determine the first k+ 1 values y0, y1, . . . yk by some
other method, such as a single step method.

If Φ does not depend on yn+1 we speak of an explicit method. Thus Euler’s method is
an explicit one-step method. The backward Euler method

yn+1 = yn + hf(tn+1, yn+1),

and the trapezoidal method

yn+1 = yn +
h

2
[f(tn+1, yn+1) + f(tn, yn)],

are examples of implicit one-step methods.
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Notice that in each of these cases, the Φ is a linear function of yn, yn+1, f(tn, yn), and
f(tn+1, yn+1). By contrast, for the improved Euler method,

yn+1 = yn +
h

2
[f(tn, yn) + f

(
tn+1, yn + hf(tn, yn)

)
],

which is an explicit one-step method, and the implicit midpoint method,

yn+1 = yn + hf(
tn + tn+1

2
,
yn + yn+1

2
),

which is an implicit one-step method, the dependence of Φ on yn and yn+1 is more compli-
cated. In the next section, we shall consider such nonlinear one-step methods, while in this
section we study multistep methods, but assume linear dependence. That is, we consider
linear multistep methods with constant step size, which, by definition, are methods of the
form

(5.12) yn+1 = −a0yn − a1yn−1 + · · · − akyn−k + h[b−1fn+1 + b0fn + · · ·+ bkfn−k].

Here we have written fn for f(tn, yn) (for brevity). The ai and bi are constants which must
be given and determine the specific method. For an explicit linear multistep method b−1 = 0.
It is also convenient to define a−1 = 1, so that the method can be written

k∑
j=−1

ajyn−j = h
k∑

j=−1

bjfn−j.

One obvious question concerning implicit methods is whether the formula for the method
determines yn+1 (whether the equation has a solution and whether it is unique). The answer
is yes, at least for h sufficiently small.

Theorem 5.10. Let h0 = (|b−1|L)−1 where L is the Lipschitz constant for f . Then for
any h < h0 and any yn, yn−1, . . . , yn−k there is a unique yn+1 such that

(5.13)
k∑

j=−1

ajyn−j = h
k∑

j=−1

bjf(tn−j, yn−j).

Proof. Define

F (z) = −
k∑
j=0

ajyn−j + hb−1f(tn+1, z) + h

k∑
j=0

bjf(tn−j, yn−j) = hb−1f(tn+1, z) + · · · ,

where the dots represent terms not depending on z. Then the equation is simply the fixed
point equation yn+1 = F (yn+1). Now F is a Lipschitz with Lipschitz constant ≤ h|b−1|L.
By hypothesis the Lipschitz constant is stritly less than 1, i.e., F is a contraction. The
contraction mapping theorem then guarantees a unique fixed point. �

Remark. The contraction mapping theorem also implies that the solution can be com-
puted by fixed point iteration, and this is often done in practice. Of course only finitely
many iterations are made (often quite few), introducing an additional source of error.

Several examples of linear multistep methods are listed in Table 5.1. All the methods
in the table except the last can be derived from the integral relation y(tn+1) = y(tn−k) +∫ tn+1

tn−i
f
(
t, y(t)

)
dt using an appropriate interpolatory quadrature rule. Note that for the two
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Table 5.1. Examples of linear multistep methods.

Euler’s method (1-step, explicit) yn+1 = yn + hfn

backward Euler method (1-step, implicit) yn+1 = yn + hfn+1

trapezoidal method (1-step, implicit) yn+1 = yn +
h

2
(fn+1 + fn)

midpoint method (2-step, explicit) yn+1 = yn−1 + 2hfn

Milne–Simpson method (2-step, implicit) yn+1 = yn−1 +
h

3
(fn+1 + 4fn + fn−1)

Adams–Bashford 2-step method (explicit) yn+1 = yn +
h

2
(3fn − fn−1)

Adams–Moulton 2-step method (implicit) yn+1 = yn +
h

12
(5fn+1 + 8fn − fn−1)

3-step backward differentiation formula (implicit) yn+1 − 19yn + 9yn−1 − 2yn−2 = 6fn+1

Adams methods (the Adams–Bashford and Adams–Moulton families of methods will be dis-
cussed in detail in § 3.3 below) the quadrature rule is open, i.e., contains quadrature points
outside the interval of integration. The final method of the table is one of the backward differ-
entiation formula, or BDF, family of methods, which can be derived by replacing y′(tn+1) in
the equation y′(tn+1) = f

(
tn+1, y(tn+1)

)
with a backward difference approximation obtained

by differentiating an interpolating polynomial.

3.1. Consistency and order. Clearly the coefficients aj and bj in (5.12) must be chosen
carefully if the multistep method is to have a chance of being convergent. Specifically, we
should have

k∑
j=−1

ajy(tn−j) ≈ h
k∑

j=−1

bjy
′(tn−j)

for the exact solution y. Since this has to hold for any solution to any ODE, it should hold
for all reasonably smooth functions y. Thus we define

(5.14) L[y, h, t] =
k∑

j=−1

ajy(t− jh)− h
k∑

j=−1

bjy
′(t− jh)

for any y ∈ C1, h > 0 and t ∈ R. Note that if y is the exact solution, then L[y, h, tn] is
simply the local truncation error at the (n+ 1)st step.

Definition. The linear multistep is consistent if

lim
h↓0

max
k≤n<N

∣∣∣∣L[y, h, tn]

h

∣∣∣∣ = 0
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for all y ∈ C1(I). The method has order p (at least) if for all y ∈ Cp+1(I) there exists
constants C, h0 > 0 such that

max
k≤n<N

∣∣∣∣L[y, h, tn]

h

∣∣∣∣ ≤ Chp

whenever h < h0.

Warning: it is not true that every method of order p converges with order p, or even
converges at all!

Using Taylor’s theorem, we can derive simple algebraic criteria for consistency and order.

Theorem 5.11. A linear multistep method is consistent if and only if

(5.15)
k∑

j=−1

aj = 0,
k∑

j=−1

jaj +
k∑

j=−1

bj = 0.

The method is of order p if and only if

(5.16)
k∑

j=−1

(−j)maj −m
k∑

j=−1

(−j)m−1bj = 0, m = 0, 1, . . . , p.

The algebraic conditions (5.15) are called the consistency conditions and the conditions
(5.16) are called the order conditions. Before giving the proof we notice an immediate
corollary: a method is consistent if and only if it is of order at least 1.

Proof. The proof is just Taylor’s theorem. We have y(tn − jh) = y(tn) − jhy′(ξj), for
some ξj ∈ [tn − kh, tn + h], j = −1, 0, . . . , k. Note that each ξj → t as h→ 0. Plugging into
(5.14)

L[y, h, tn] =
k∑

j=−1

aj[y(tn)− jhy′(ξj)]− h
k∑

j=−1

bjy
′(tn − jh)

= y(tn)C0 + hy′(tn)C1 + hR,

where

C0 =
k∑

j=−1

aj, C1 = −
k∑

j=−1

jaj −
k∑

j=−1

bj,

and

R = −h
k∑
j=0

jaj[y
′(ξj)− y′(tn)]− h

k∑
j=−1

bj[y
′(tn − jh)− y′(tn)].

By the uniform continuity of y′, we see that R/h→ 0 as h→ 0. Therefore L[y, h, tn]/h→ 0
if and only if C0 = C1 = 0, i.e., the consistency conditions are satisfied.
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Similarly, if y ∈ Cp+1 we have

y(tn − jh) =

p∑
m=0

(−j)m

m!
hmy(m)(tn) +

(−j)p+1

(p+ 1)!
hp+1y(p+1)(ξj),

y′(tn − jh) =

p∑
m=1

(−j)m−1

(m− 1)!
hm−1y(m)(tn) +

(−j)p

p!
hpy(p+1)(ζj),

for some ξj, ζj ∈ [tn − kh, tn + h]. This gives

L[y, h, tn] =

p∑
m=0

hmy(m)(tn)Cm +R,

where

(5.17) Cm =
1

m!

[ k∑
j=−1

(−j)maj −m
k∑

j=−1

(−j)m−1bj

]
,

and

R = hp+1

k∑
j=−1

[aj
(−j)p+1

(p+ 1)!
y(p+1)(ξj)− bj

(−j)p

p!
y(p+1)(ζj)].

Since R = O(hp+1), L/h = O(hp) if and only if all the Cm vanish. �

Remark. This theorem furnishes an example of how a complicated analytic condition
may sometimes be reduced to a simple algebraic criterion. Many such criteria for multistep
methods can be expressed in terms of the characteristic polynomials of the method:

ρ(z) =
k∑

j=−1

ajz
k−j, σ(z) =

k∑
j=−1

bjz
k−j.

For example, the consistency conditions are simply ρ(1) = 0 and ρ′(1) = σ(1).

As an example of the use of the order conditions, we will use the method of undetermined
coefficients to find the 2-step method of highest order. For a 2-step method there are five
undetermined coefficients: a0, a1, b−1, b0, and b1. The first five order conditions are

1 + a0 + a1 = 0, 1− a1 − b−1 − b0 − b1 = 0, 1 + a1 − 2b−1 + 2b1 = 0,

1− a1 − 3b−1 − 3b1 = 0, 1 + a1 − 4b−1 + 4b1 = 0.

This system of linear equations has a unique solution:

a0 = 0, a1 = −1, b−1 =
1

3
, b0 =

4

3
, b1 =

1

3
,

which are precisely the coefficients of the Milne-Simpson method. Thus the Milne-Simpson
method is the unique fourth order 2-step method.

If we consider instead explicit 2-step methods we no longer have the coefficient b−1 at
our disposal. Setting b−1 to zero in the first four linear equations above we get

1 + a0 + a1 = 0, 1− a1 − b0 − b1 = 0, 1 + a1 + 2b1 = 0, 1− a1 − 3b1 = 0,
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which gives a0 = 4, a1 = −5, b0 = 4, b1 = 2. Thus the unique explict 2-step method of order
3 is

yn+1 + 4yn − 5yn−1 = h[4fn + 2fn−1].

Warning: we shall see below that this is not a good method. Order is not everything!

3.2. Stability and convergence. In this section we study the convergence of linear
multistep methods. Recalling that the initial k+ 1 values of yhn must be determined by some
other method, we define convergence as follows.

Definition. A linear multistep method is convergent if whenever the initial values yhn
are chosen so that max0≤j≤k |ehj | → 0 as h→ 0, then max0≤j≤Nh |ehj | → 0.

There is a rather complete convergence theory available for linear multistep methods with
constant step size, due largely to G. Dahlquist. It is somewhat technical, and we will only
sketch it below. However, for many linear multistep methods a simple proof of convergence
can be given along the lines of the proof we used for Euler’s method. For example, consider
the midpoint method

yn+1 = yn−1 + 2hf(tn, yn).

Checking the order conditions we find that this method is second order, i.e., if y is a smooth
function, then

y(tn+1) = y(tn−1) + 2hy′(tn) + L[y, h, tn]

where L[y, h, tn] = O(h3). Now let en = yn − y(tn). Then

en+1 = en−1 + 2h[f(tn, yn)− f
(
tn, y(tn)

)
]− L[y, h, tn],

so

|en+1| ≤ |en−1|+ 2hL|en|+ T, n = 1, 2, . . . , N − 1,

where T = max |L[y, h, tn]| = O(h3). This immediately implies that

max(|en+1|, |en|) ≤ (1 + 2hL) max(|en|, |en−1|) + T, n = 0, 1, 2, . . . , N − 1,

whence, by Lemma 5.5,

max(|en+1|, |en|) ≤
e2L|t∗−t0| − 1

2L

T

h
+ e2L|t∗−t0|max(|e1|, |e0|), n = 0, 1, 2, . . . , N − 1,

i.e., ‖e‖∞,h ≤ C1T/h + C2 max(|e1|, |e0|) with C1, C2 independent of h. If the initial values
are choosen so that max(|e1|, |e0|) → 0 as h → 0, then we have that ‖e‖∞,h → 0. This
is precisely the definition of convergence. For the midpoint method we see as well, that if
the initial error is O(h2) the error is globally O(h2). Note the one new idea of the proof:
instead of considering the propagation of the error (en−1, en) 7→ en+1, we instead consider
the propagation of the pair of values, (en−1, en) 7→ (en, en+1).

Next we consider the two step method of highest order

yn+1 = −4yn + 5yn−1 + h(4fn + 2fn−1).

We shall show that this method is not convergent even for the most trivial of initial value
problems:

y′(t) = 0, 0 ≤ t ≤ 1, y(0) = 0.



3. LINEAR MULTISTEP METHODS 129

The multistep method is then yn+1 = −4yn + 5yn−1. If we take as initial values y0 = 0,
y1 = εh, then the multistep method is easily seen to give

yn = [1− (−5)n]εh/6,

and so, if h = 1/N , yh(1) = yN = [1 − (−5)1/h]εh/6. It is clearly not sufficient that εh → 0
in order to have convergence, we need 51/hεh → 0, i.e., exponentially accurate initial values.

Note that if we take exact starting values y0 = y1 = 0, then yn = 0 for all n. Thus a
perturbation of size ε in the starting values leads to a difference of size roughly 51/hε in the
discrete solution. Thus the method is not stable:

Definition. A linear k + 1-step method is stable if for any admissable initial value
problem (satisfying a Lipschitz condition) and for all ε > 0 there exists δ, h0 > 0 such that
if h ≤ h0 and two choices of starting values yj and ȳj are chosen satisfying

max
0≤j≤k

|yj − ȳj| ≤ δ,

then the corresponding approximate solutions satisfy

max
0≤j≤N

|yj − ȳj| ≤ ε.

If, as above, we consider the trivial differential equation y′ = 0, then the general linear
multistep method becomes

yn+1 +
k∑
j=0

ajyn−j = 0, n = k, k + 1, . . . .

This is an example of a homogeneous linear difference equation of order k + 1 with constant
coefficients. For such an equation there is a simple approach to finding the general solution
in closed form, which we shall now briefly present. We shall allow complex solutions. Then
there is clearly a unique solution (yn)∞n=0 for any choice of initial values (yn)kn=0 ∈ Ck+1.
Thus the space of solutions is a complex vectorspace of dimension k + 1.

To find the general solution, we first try for a solution of the form (λn)∞n=0. Plugging
this into difference equation, we see that it is a solution if and only if λ is a root of the
characteristic polynomial ρ(t) = tk+1 +

∑k
j=0 ajt

k−j. If there are k + 1 distinct roots λi,
i = 0, . . . , k, we obtain a full basis of k+ 1 linearly independent solutions in this way. To see
linear independence, notice that the matrix of initial values (λni )0≤i,n≤k is a Vandermonde
matrix, and so nonsingular. In the case of multiple roots this does not give a complete set
of solutions. In the case where λ is a double root, we obtain, in addition to the solution
(λn)∞n=0 the solution (nλn)∞n=0. For a triple root we find that (n2λn)∞n=0 is a solution as
well, and so forth. In this case we obtain a complete set of solutions in terms of the roots
of the characteristic polynomial. We illustrate with a simple example unrelated to linear
multistep methods. The difference equation yn+1 = yn + yn−1 together with the initial
conditions y0 = 0, y1 = 1 defines the Fibonacci sequence. The characteristic polynomial of
the difference equation is ρ(t) = t2 − t− 1 with roots (1±

√
5)/2. Thus the general solution

is yn = c0[(1 −
√

5)/2]n + c1[(1 +
√

5)/2]n. Imposing the initial conditions y0 = y1 = 1 we
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find Binet’s formula for the nth Fibonacci number:

yn =
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]
.

Returning to linear multistep methods, consider again the trivial differential equation
y′ = 0, so the method reduces to a homogeneous linear difference equation. If the first
characteristic polynomial has a root of modulus greater than 1, then the difference equation
will have exponentially growing solutions, and so yh(1) which equals yN when h = 1/N , will
grow exponentially unless the initial values are chosen to exactly suppress the coefficient of
this solution. Thus the method will not be stable. The same is true if the characteristic
polynomial has a multiple root of modulus 1, although the instability will be much less severe
because the growth will be algebraic rather than exponential. These considerations lead to
the following definition and theorem, another example in which a complex analytic condition
for the behavior of a linear multistep condition is reduced to a simple algebraic condition.

Definition. A linear multistep method satisfies the root condition if

(1) every root of its first characteristic polynomial has modulus ≤ 1,
(2) all roots of modulus 1 are simple.

Theorem 5.12. A stable linear multistep method satisfies the root condition. If a con-
sistent linear multistep method satisfies the root conditions, it is stable.

The considerations above lead to the proof that the root condition is necessary for sta-
bility. To prove the reverse implication (which obviously lies deeper, since it concerns an
arbitrary differential equation, and not just the trivial equation y′ = 0), will be discussed
below.

We now state the fundamental convergence theorem for linear multistep methods. In
view of Theorems 5.11 and 5.12, this theorem states that it can be determined whether or
not a linear multistep method is convergent simply by checking some algebraic conditions
concerning its characteristic polynomials.

Theorem 5.13. A linear multistep method is convergent if and only if it is consistent
and stable.

We only sketch the proof. The statement consists of three parts:

• convergence implies consistency,
• convergence implies stability,
• consistency and stability imply convergence.

The first statement is easy. For the trivial initial value problem y′ = 0, y(0) = 1,
The first two statements are straightforward (assuming Theorem 5.12). They can be

proven considering only the simple differential equations y′ = 0, for the root condition and
the first consistency condition, and y′ = 1, for the second consistency condition. The difficult
part is the third part (and the second statement in Theorem 5.12 is proven in the same way).
To show the main idea, we prove it in the case of an explicit two step method (most of the
ideas of the full proof arise already in this case).

We write the two step method

yn+1 = −a0yn − a1yn−1 + h(b0fn + b1fn−1)
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in matrix form: (
yn
yn+1

)
=

(
0 1
−a1 −a0

)(
yn−1

yn

)
+

(
0

h(b0fn + b1fn−1)

)
.

The exact solution satisfies a similar equation with the addition of the local truncation error:(
y(tn)
y(tn+1)

)
=

(
0 1
−a1 −a0

)(
yn−1

yn

)
+

(
0

h[b0f
(
tn, y(tn)

)
+ b1f

(
tn−1, y(tn−1)

)
] + L[y, h, tn]

)
.

Subtracting gives an equation for the error. Let

en = yn − y(tn), En =

(
en−1

en

)
, A =

(
0 1
−a1 −a0

)
,

Qn =

(
0

h[b0fn − f
(
tn, y(tn)

)
+ b1fn−1 − f

(
tn−1, y(tn−1)

)
]− L[y, h, tn]

)
.

Then

(5.18) En+1 = AEn +Qn, n = 1, 2, . . .

Note that ‖Qn‖ ≤ Ch‖En‖+ T where T = maxn |L[y, h, tn]| = O(hp+1) where p is the order
of the method (and we use the l∞ norm for the vectors). Iterating (5.18) gives

En = An−1E1 +
n−1∑
j=1

An−1−jQj, n = 1, . . . , N.

Now we use the root condition. The characteristic polynomial of the matrix A is ρ(t) =
t2 + a0t + a1, i.e., the first characteristic polynomial of the linear multistep method. Thus
the eigenvalues of A all have modulus ≤ 1 with only simple eigenvalues of modulus 1. This
is precisely the condition for the powers of A to remain bounded: supn≥0‖An‖ < ∞. Thus
we have

‖En‖ ≤ C(‖E1‖+
n−1∑
j=1

‖Qj‖) ≤ C ′(h
n−1∑
j=1

‖Ej‖+ ‖E1‖+
T

h
), n = 1, . . . , N,

for some constants C and C ′. Now from this relation it follows (by a sort of discrete Gronwall
lemma1 that

max
1≤n≤N

‖En‖ ≤ K(‖E1‖+
T

h
),

for a suitable constant K. For a consistent method T/h → 0 as h → 0, so convergence
follows.

We end this section with a statement of the attainable order of multistep methods.
Counting coefficients and order conditions one would guess (correctly) that the highest order
attainable by a k step method is 2k. However, such a method is not stable for any k > 1.
The next theorem states that only about half this order is attainable by a stable method.

1Specifically, if ξm ≤ α

m−1∑
j=1

ξj + β, m = 1, 2, . . ., where the ξm, α, and β are non-negative, then ξm ≤

β(1 + α)m−1.
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Theorem 5.14 (First Dahlquist barrier). The highest order of a stable k step method is
k + 1 if k is odd and k + 2 if k is even.

3.3. Adams methods. The Adams methods are linear multistep methods with the
best possible stability properties. Namely the first characteristic polynomial has all its roots
at the origin except for the mandatory root at 1. That is, the first characteristic polynomial
of a k+ 1 step Adams method is ρ(t) = tk+1− tk. There are two Adams methods for each k,
an explicit method, called an Adams–Bashford method, and an implicit method, called an
Adams–Moulton method. They can be derived by quadrature as follows. We start with the
equation

y(tn+1) = y(tn) +

∫ tn+1

tn

f
(
t, y(t)

)
dt.

Now, assuming that yj is known for j ≤ n, let P (t) ∈ Pk denote the Lagrange interpolating
polynomial satisfying P (tj) = fj := f(tj, yj), j = n, n− 1, . . . , n− k. We then define

yn+1 = yn +

∫ tn+1

tn

P (t) dt,

which is the k + 1 step Adams–Bashford method. For k = 0, 1, and 2, the formulas are

yn+1 = yn + hfn, (Euler’s method)

yn+1 = yn + h(
3

2
fn −

1

2
fn−1),

yn+1 = yn + h(
23

12
fn −

4

3
fn−1 +

5

12
fn−2).

Using Lagrange’s formula for the interpolating polynomial, we can easily find the general
formula

yn+1 = yn + h
k∑
j=0

bjfn−j,

where

bj =
1

h

∫ tn+1

tn

∏
0≤m≤k
m6=j

t− tn−m
tn−j − tn−m

dt =

∫ 1

0

∏
0≤m≤k
m 6=j

m+ t

m− j
dt.

(Note that the first expression can be used also in the case of non-constant step size.)
The Adams–Moulton methods are constructed similarly, except that P ∈ Pk+1 interpo-

lates fn−j at tn−j for j = −1, . . . , k. The first few formulas are

yn+1 = yn + h(
1

2
fn+1 +

1

2
fn), (trapezoidal method)

yn+1 = yn + h(
5

12
fn+1 +

2

3
fn −

1

12
fn−1),

yn+1 = yn + h(
3

8
fn+1 +

19

24
fn −

5

24
fn−1 +

1

24
fn−2).

We may also think of the backward Euler method as an Adams–Moulton method with
k = −1.
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It is easy to check the order of the Adams methods. E.g., for the k + 1 step Adams–
Bashford method

L[y, h, tn] =

∫ tn+1

tn

[y′(t)− P (t)] dt,

where P ∈ Pk interpolates y′ at tn, . . . , tn−k. By the Newton error formula for Lagrange
interpolation,

y′(t)− P (t) = y′[tn, . . . , tn−k, t](t− tn) · · · (t− tn−k),
so, using the integral mean value theorem,

L[y, h, tn] = y′[tn, . . . , tn−k, ξ]

∫ tn+1

tn

(t− tn) · · · (t− tn−k) dt

=
1

(k + 1)!
y(k+2)(η)

∫ tn+1

tn

(t− tn) · · · (t− tn−k) dt.

for some ξ. The integral is clearly order O(hk+2), so the method is of order k + 1. In fact
it equals γk+1h

k+2 where γ1 = 1/2, γ2 = 5/12, γ3 = 3/8, . . . . Thus for the Adams–Bashford
methods, the order is equal to the number of steps.

Similarly, for k step Adams–Moulton method also has order k+1 and the local truncation
error satisfies

L[y, h, tn] =
1

(k + 1)!
y(k+1)(η)γ∗k+1h

k+2.

The first few γ∗k are γ∗0 = −1/2 (for backward Euler), γ∗1 = −1/12 (for trapezoidal), γ∗2 =
−1/24, . . . . Thus to achieve the same order k + 1 we can use a k + 1 step Adams–Bashford
method or a k step Adams–Moulton method. The coefficient of hk+2 in the local truncation
error is significantly smaller for the Adams–Moulton method. When we study the notion of
absolute stability later, we shall find other advantages of the Adams–Moulton methods over
the Adams–Bashford methods.

3.4. Predictor-corrector schemes. To implement an Adams–Moulton method, or
any implicit method, we need a way to solve, at least approximately, the nonlinear equation
arising at each time step. The most common method is to solve this equation approximately
using a small number of fixed point iterations starting from an initial approximation obtained
by an explicit method. Thus the scheme takes the form:

1. predict: pn+1 = E(yn, yn−1, . . . , fn, fn−1, . . .)

2. evaluate: fpn+1 = f(tn+1, pn+1)

3. correct: y
(1)
n+1 = I(yn, yn−1, . . . , f

p
n+1, fn, fn−1, . . .)

4. evaluate: f
(1)
n+1 = f(tn+1, y

(1)
n+1)

5. correct: y
(2)
n+1 = I(yn, yn−1, . . . , f

(1)
n+1, fn, fn−1, . . .)

6. evaluate: f
(2)
n+1 = f(tn+1, y

(2)
n+1)

...

Here E(yn, yn−1, . . . , fn, fn−1, . . .) refers to some explicit scheme, e.g., an Adams–Bashford
scheme, and I(yn, yn−1, . . . , fn+1, fn, . . .) to some implicit, e.g., Adams–Moulton, scheme. At
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some point we stop and declare yn+1 = y
(m)
n+1. We could stop in response to some stopping

criterion, but more commonly, a fixed, usually small, number of iterations are made. For

example, we may stop the iteration after step 4, and accept y
(1)
n+1. This would then be

referred to as a PECE scheme. Other possibilities are PECECE, P(EC)3E, etc. As a simple
example, consider the PECE method with a 2 step Adams–Bashford predictor and a 2 step
Adams–Moulton corrector. This gives

pn+1 = yn + h[3f(tn, yn)− f(tn−1, yn−1)]/2,

yn+1 = yn + h[5f(tn+1, pn+1) + 8f(tn, yn)− f(tn−1, yn−1)]/12.

Thus

yn+1 = yn+h
[
5f
(
tn+1, yn+h[3f(tn, yn)−f(tn−1, yn−1)]/2

)
+8f(tn, yn)−f(tn−1, yn−1)

]
/12.

Thus the resulting method is a nonlinear 2 step method.
The analysis of the error of such a scheme is relatively straightforward. We just briefly

sketch the main ideas for a PECE scheme. There are two contributions to the local trun-
cation error, one arising from predictor formula and one arising from the corrector formula.
If the predictor formula has order p and the corrector formula has order q, so their local
truncation errors are O(hp+1) and O(hq+1) respectively, then the local truncation error for
the PECE scheme will be O(hp+2) + O(hq+1) = O(hmin(p+2,q+1)). The extra order in predic-
tor contribution comes from the fact that the term f(tn+1, pn+1) involving the predictor is
multiplied by h in the formula for yn+1. Thus if p ≥ q− 1, the local truncation error will be
O(hq+1) just as if the predictor equation were solved exactly. In fact, if we take p ≥ q, the
local truncation error for the PECE scheme will be asymptotically equal to that for the full
implicit scheme (i.e., they will agree up to terms of higher order). Thus the most common
choices are either p = q − 1 or p = q. For a PECE scheme based on Adams methods, we
might use the k step Adams–Bashford for predictor (order k) and the k step Adams–Moulton
for corrector (order k + 1), and thus achieve a method of order k + 1. Or we might take a
k + 1 step Adams–Bashford predictor, which would still achieve the same order, but which
we would expect to have an asymptotically smaller error. Yet another possibility is to use a
PECECE scheme with k step Adams methods for both predictor and corrector. This would
again produce asymptotically the same error as the fully implicit k step Adams–Moulton
method.

4. One step methods

We have seen three linear one step methods thus far:

yn+1 = yn + hfn, (Euler’s method)

yn+1 = yn + hfn+1, (backward Euler method)

yn+1 = yn + h(
1

2
fn+1 +

1

2
fn). (trapezoidal method)

Actually these are all special cases of the θ-method

yn+1 = yn + h[(1− θ)fn+1 + θfn],

which is a consistent stable linear 1 step method for any real θ (of course, all consistent 1
step methods are stable). Except for Euler’s method, all these methods are implicit.
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We may also obtain an explicit, but nonlinear, single step method using Euler as a
predictor and one of the other methods as a corrector in a PECE (or PECECE, . . . ) scheme.
E.g., with the trapezoidal method as corrector, we get

yn+1 = yn + h[f(tn, yn) + f
(
tn+1, yn + hf(tn, yn)

)
]/2,

which is known as the improved Euler method or Heun’s method.
An example of an implicit, nonlinear single step method is a variant of the theta method:

yn+1 = yn + hf
(
(1− θ)yn+1 + θyn

)
.

All single step methods may be written in the form

yn+1 = yn + hΦ(f ; tn, yn, h),

where Φ is called the relative increment function. For an explicit method, Φ(f ; tn, yn, h) is
an explicit function of tn and yn involving f and h. For implicit methods, Φ(f ; tn, yn, h) is
given in terms of the solution to an algebraic equation. In fact we can even consider the
exact relative increment function

∆(f ; tn, yn, h) =
y(tn+1)− y(tn)

h
,

where u is the exact solution to the differential equation u′(t) = f
(
t, y(t)

)
, y(tn) = yn. This

one step method gives the exact solution, but is not implementable. A single step method
with increment function Φ is of order p (its local truncation error is O(hp+1)) if and only if

Φ(f ; tn, yn, h) = ∆(f ; tn, yn, h) +O(hp).

4.1. Taylor series methods. In a sense, there is a canonical pth order one step method.
Taylor’s theorem tells us that

y(t+ h) = y(t) + hy′(t) + · · ·+ hp

p!
y(p)(t) +O(h(p+1)).

Now the differential equation tells us that y′(t) = f
(
t, y(t)

)
. But we can also differentiate

the differential equation to get

y′′(t) =
∂f

∂t

(
t, y(t)

)
+ f
(
t, y(t)

)∂f
∂y

(
t, y(t)

)
,

or, briefly, y′′ = ft + ffy =: Df , the total derivative of f . Differentiating again gives

y′′′ = ftt + 2ffty + ftfy + ff 2
y + f 2fyy =: D2f,

y(4) = D3f , etc. (The expressions for the total derivatives get very complicated, very quickly.)
The p-term Taylor series method is the single step method

yn+1 = yn + hfn +
h2

2
Dfn + · · ·+ hp

p!
Dp−1fn,

which clearly has order p. This method can be implemented in some cases, but it requires
evaluation of the partial derivatives of f , and is not commonly used.
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4.2. Runge–Kutta methods. Now let us return to Heun’s method, which we derived
as a PECE scheme with Euler’s method as predictor and the trapezoidal method as corrector.
The relative increment function is

Φ = [f(tn, yn) + f
(
tn+1, yn + hf(tn, yn)

)
]/2.

Expanding the second term in brackets in a Taylor polynomial around (tn, yn) we get

Φ = f +
h

2
(ft + ffy) +O(h2),

where the f and its derivatives are evaluated at (tn, yn). Comparing with the Taylor expan-
sion of the exact relative increment we see that Φ = ∆ + O(h2), and hence Heun’s method
is second order. (If we expand Φ out to terms of order h2, we get

Φ = f +
h

2
(ft + ffy) +

h2

4
(ftt + 2ffty + f 2fyy) +O(h3).

The coefficient of h2 does not agree with D2f/3!, so Heun’s method is definitely not of higher
than second order.

Heun’s method is an explicit single step method which requires 2 evaluations of f per
step (but does not require knowledge of the derivatives of f). This is an example of a
Runge–Kutta (RK) method. The general form of an explicit RK method is

yn+1 = yn + h(b1φ1 + · · ·+ bqφq),

where φi = f(tn + cih, ηi) and

η1 = yn,

η2 = yn + ha2,1φ1,

η3 = yn + h(a3,1φ1 + a3,2φ2),

...

ηq = yn + h(aq,1φ1 + aq,2φ2 + · · ·+ aq,q−1φq−1).

To specify a particular method of this form we must give the number of stages q ≥ 1, the
coefficients bi, ci, 1 ≤ i ≤ q, and aij, 1 ≤ i ≤ q, 1 ≤ j < i. The bi are called the weights, the
ci (or the points tn + cih) the nodes, and the ηi, or, sometimes, the φi, are called the stages
of the RK method. Thus, a RK method is specified by weight and node vectors, b, c ∈ Rq,
and a strictly lower triangular matrix A ∈ Rq×q. These are often recorded in a RK tableau
thus:

c A

bT

The tableau for Heun’s method is

0
1 1

1
2

1
2
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where we don’t bother to write the zeros in the upper triangle of A. Other well-known RK
methods are the modified Euler method, Heun’s 3 stage method, and the Runge–Kutta–
Simpson 4-stage method (often referred to as the Runge–Kutta method), whose tableaux
are

0
1
2

1
2

0 1

0
1
2

1
2

1 −1 2

1
6

2
3

1
6

0
1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

respectively. For any of these methods, it is an elementary, but tedious computation (easily
carried out by a computer algebra program) to determine their order by an expansion in
Taylor series. One finds that the modified Euler method is of order 2, Heun’s 3-stage method
is of order 3, and the Runge–Kutta-Simpson method is of order 4. These are the highest
possible orders achievable with the given number of stages. That is, it can be verified, by
similarly tedious computation, that the highest order achievable by a Runge–Kutta method
with q stages is q for each q from 1 to 4. However for q from 5 to 7 order q − 1 is the
best achievable, and for q = 8, order 6 is the best achievable. Butcher has developed graph
theoretic techniques for constructing and analyzing RK methods which are necessary when
working with more than a modest number of stages.

It is also possible to use implicit Runge–Kutta methods. These are defined by the same
equations, except that the coefficient matrix A is no longer required to be lower triangular.
This requires the solution of a coupled system of q nonlinear equations to determine the ηi
at each step (and if, as is usually the case, we are solving a system of, say, d, ODEs, each ηi
is itself a vector with d components, and we have to solve a system of qd coupled nonlinear
algebraic equations). For this reason one rarely uses implicit RK methods with more than a
few stages.

4.3. Convergence of single step methods. We now consider the convergence of the
general single-step method

yn+1 = yn + hΦ(f ; tn, yn, h).

We assume as usual that f(t, y) belongs to C([t0, t
∗] × R) and satisfies a uniform Lipschitz

condition with respect to y. We assume that the relative increment function Φ(f ; t, y, h),
which is defined for t ∈ [t0, t

∗], y ∈ R, h ∈ [0, t∗ − t], is continuous there. Moreover we
assume the uniform Lipschitz condition

|Φ(f ; t, y, h)− Φ(f ; t, ȳ, h)| ≤ K|y − ȳ|,

whenever (t, y, h) and (t̄, y, h) belong to the domain of Φ. For Taylor series methods it is
easy to deduce the continuity and Lipschitz condition for Φ for smooth f . For Runge–Kutta
methods continuity is evident and the Lipschitz condition is not hard to obtain using the
same condition for f .

A single step method with relative increment function Φ is consistent if

lim
h↓0

[Φ(f ; t, y, h)−∆(f ; t, y, h)] = 0.
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In view of continuity we can state this simply as Φ(f ; t, y, 0) = f(t, y). The method has
order p if |Φ(f ; t, y, h)−∆(f ; t, y, h)| ≤ Chp (whenever f is smooth).

Theorem 5.15. A single step method is convergent if and only if it is consistent.

Proof. Define yh by the single step method:

yh(tn+1) = yh(tn) + hΦ
(
f ; tn, y

h(tn), h
)
,

starting from yh(t0) = y0. We claim that, whether or not the method is consistent, as h→ 0
yh converges to the solution of the boundary value problem

z′(t) = g
(
t, z(t)

)
, z(t0) = y0,

where g(t, y) = Φ(f ; t, y, 0). Since, by definition, the method is consistent if and only
if f = g, this will prove the theorem. (If f(t̄, ȳ) 6= g(t̄, ȳ) for some (t̄, ȳ), then we let
y(t) be the solution to y′ = f(t, y) passing through ȳ at t̄. Then either y(t̄) 6= z(t̄) or
y′(t̄) = f(t̄, ȳ) 6= g(t̄, ȳ) = z′(t̄), so, in either case, z 6≡ y.)

To prove the claim, note that

z(tn+1) = z(tn) + hz′(ξn) = z(tn) + hg
(
ξn, z(ξn)

)
,

for some ξn ∈ (tn, tn+1). Putting en = z(tn)− yh(tn) and subtracting we get

en+1 = en + h[g
(
ξn, z(ξn)

)
− Φ

(
f ; t, yh(tn), h

)
].

Now the term in brackets may we decomposed as

[g
(
ξn, z(ξn)

)
− g
(
tn, z(tn)

)
]

+[Φ(f ; tn, z(tn), 0)− Φ
(
f ; tn, z(tn), h

)
]

+[Φ
(
f ; tn, z(tn), h

)
− Φ

(
f ; tn, y

h(tn), h
)
].

The first two terms tend to 0 with h by uniform continuity of g and Φ, and the last term
can be bounded by K|en| using the Lipschitz condition. Thus we have

|en+1| ≤ (1 +Kh)|en|+ ω(h),

where limh→0 ω(h) = 0. Since we also have e0 = 0, it follows, in the usual way, that the
sequence en tends to 0. �

5. Error estimation and adaptivity

Just as for numerical quadrature, a code for the numerical solution of ordinary differential
equations can be much more efficient if the step size is adjusted adaptively to the solution.
Very roughly speaking, in parts of its domain where the solution is rapidly varying, and so
has large derivatives, a smaller step size will be needed than in places where the solution
is more slowly varying. In this section we will study the main ideas behind some modern
adaptive ODE solvers.

The first step in designing an adaptive solver is to establish the goal of the solver. In many
cases the user may wish to control some global error measure, like the discrete maximum
norm error

max
0≤n≤N

|yh(tn)− y(t)|.
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Thus we could ask the user to input a tolerance ε and take as the goal of the code to select
step sizes which achieve max |yh(tn)− y(t)| ≤ ε as inexpensively (i.e., with as few steps) as
possible. Unfortunately, the global error is difficult to estimate and to control. Indeed, as
we have seen, small error committed near the beginning of the interval of solution, may, or
may not, lead to large errors later in the interval. This cannot be known a code at least
until the solution process is complete, and thus there is no way to select the step size near
the beginning of the computation to control the final global error. This being the case, most
adaptive ODE solvers try to control a different error quantity known as the local error.

Definition. Let wn−1(t) be the solution to the differential equation w′n−1 = f(t, wn−1)
satisfying wn−1(tn−1) = yh(tn−1). The local error at the nth step is defined to be

ln = yh(tn)− wn−1(tn).

Thus, for a single step method with relative increment function Φ

ln = h[Φ(f ; tn−1, y
h(tn−1), h)−∆(f ; tn−1, y

h(tn−1), h)].

Figure 5.5 shows the local error, the local truncation error, and the global error.

Figure 5.5. Local error, local truncation error, and global error.

local truncation error

global error

local error

wn−1(t)

yh(t)
y(t)

t0 t1 tn−1 tn

The role of the local error is clarified by the equation

yh(tn)− y(tn) = [yh(tn)− wn−1(tn)] + [wn−1(tn)− y(tn)].

The first bracketed quantity is the local error at the nth step. The second bracketed quantity
is the difference between two exact solutions of the ODE, one starting at yh(tn−1) at the
beginning of the step and the other starting at y(tn). Thus this quantity represents the
error at the end of the nth step due to the accumulated global error at the start of the step
propagated forward by the differential equation, and the equation says that the error at the
end of the step is the sum of the local error on the step plus the accumulated errors made
previously and propagated forward.
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In a similar way, we may write

yh(tn)− y(tn) = wn(tn)− w0(tn) =
n∑
i=1

[wi(tn)− wi−1(tn)].

Here wi and wi−1 are both exact solutions of the ODE. They differ by wi(ti) − wi−1(ti) =
yh(ti)−wi−1(ti) = li at ti, and so the term wi(tn)−wi−1(tn) represents the error at tn obtained
by propagating the forward the local error on the ith step to the end of the interval. From
the stability theorem, Theorem 5.3, we have for 1 ≤ i ≤ n ≤ N ,

|wi(tn)− wi−1(tn)| ≤ C|li|

where C = exp(L|tN − t0|)|li|. In this way we see that the global error is bounded by a
multiple of the sum of the local errors, with the multiplier depending on the stability of the
differential equation.

In light of these considerations, a useful goal for an adaptive solver is to choose the
number of steps and the step sizes to achieve as economically as possible that

∑N
n=1|li| ≤ ε,

where ε is a user-supplied tolerance. The basic stucture of such solver is summarized, at a
very high level, in the following algorithm:

Initialization. n← 0, h← initial value
Step computation. tn+1 ← tn + h, yn+1 ← yn + hΦ(f ; tn, yn, h)
Error estimation. est← estimate of ln+1

if est is small enough then
Step acceptance. n← n+ 1, h← trial value for next step
return to step computation.

else
Step rejection. h← new trial value for current step
return to step computation.

end if

5.1. Error estimation and step size selection. To fill out this algorithm, we need
to answer several questions:

(1) How should the initial step size be chosen?
(2) How can we estimate the local error?
(3) When is the local error “small enough” to accept the step?
(4) After an acceptable step, how should the step size for the next step be predicted?
(5) After rejecting a step, how should the step size be adjusted for the next trial?

5.1.1. The local error per unit step criterion. Just as when we discussed adaptive quad-
rature we arrived at the error per unit step criterion, a good criterion for step acceptance
for adaptive ODE solvers is the local error per unit step criterion. This means that given a
desired bound ε for the sum of the local errors, we accept a step of size hn with a local error
of size ln if

|ln| ≤ ε
hn

T − t0
.
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If this criterion is met at each step, then we have

N∑
n=1

|ln| ≤
ε

T − t0

N∑
n=1

hn = ε,

as desired. If we set tol = ε/(T − t0), our step acceptance criterion is just |ln|/hn ≤ tol.
5.1.2. Step size design. Next we turn to answering questions 4 and 5. Our goal is to find

the largest step size hn so that the local error per unit step |ln|/hn does not exceed tol. Now

ln
hn

= Φ(f ; tn−1, y
h(tn−1), hn)−∆(f ; tn−1, y

h(tn−1), hn) = Chpn +O(hp+1
n ),

where p is the order of the single step method and the constant C depends on the differential
equation and the step. Now suppose we have somehow computed est, a good approximation
for |ln|/hn, and found that it exceeds tol, and so we have rejected the step.

STOPPED HERE

5.1.3. Estimation of the local error.

5.2. Numerical example.

6. Stiffness

Consider the very simple linear system with 2 components

(5.19) y′ = Ay, y(0) = y0,

where

A =

(
−33.4 66.6
33.3 −66.7

)
, y0 =

(
3
0

)
.

The matrix A has eigenvalues −100 and −1/10 and corresponding eigenvalues x1 = (1,−1)T ,
x2 = (2, 1)T . Thus the functions e−100tx1 and e−t/10x2 are both exact solutions to the
given differential equation. To find the solution with the given initial value, we note that
y0 = α1x1 + α2x2 where α1 = 1, α2 = 2, so

(5.20) y(t) = α1e
−100tx1 + α2e

−t/10x2 =

(
e−100t + 2e−t/10

−e−100t + e−t/10

)
.

The exact solution on the interval [0, 3] is plotted in Figure 5.6. Note that the solution is
very smooth and slowly varying, after an initial transient period, related to the large negative
eigenvalue −100.

In the first five plots in Figure 5.7 we show the approximate solution to this system
obtained by using Euler’s method with step size h = 1/10, 1/20, 1/40, 1/80, and 1/160.
Notice the wild scale in the first three plots. Although both components of the exact solution
are bounded between 0 and 3, the approximate solution is on the order of 1028 when h = 1/10
and on the order of 1036 when h = 1/20. For h = 1/80 the solution appears qualitatively
correct except for a short time near 0, and for h = 1/160 the numerical solution is visually
indistinguishable from the exact solution.

Since our computation shows that we can integrate this system accurately with Euler’s
method if we take h = 1/160, and since the solution is very smooth for t ≥ 1/2, a natural
idea is to use a step size of 1/160 to solve on [0, 1/2], and then to increase the step size to,



142 5. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Figure 5.6. The exact solution of the moderately stiff 2 × 2 linear system
(5.19). The solid line shows the first component, the dashed line the second.
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Figure 5.7. Euler’s method applied to a stiff 2× 2 linear system. step sizes
are h = 1/10, 1/20, 1/40, 1/80, and 1/160. The final plot uses 80 steps of size
1/160 followed by steps of size 1/10.
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say, 1/10. The result is shown in the final plot Figure 5.7. We have abject failure: again the
solution is off by orders of magnitude.

As a final computational example, we compute the solution using two adaptive single
step solvers from Matlab, ode45, which uses an embedded Runge–Kutta pair, and ode15s,
which is designed for stiff problems. The results, pictured in Figure 5.8, show clearly that in
order to obtain an accurate solution ode45 requires small step size all through the domain,
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Figure 5.8. The solution using Matlab’s ode45 and ode15s.

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

even where the solution is smooth, while ode15s is able to use large step sizes after the initial
transient.

What we are seeing here is the problem of stiffness. A stiff problem is characterized
by rapidly varying transients which decay quickly, but for some reason require us to take
small step sizes even after they have disappeared from the solution. As we see from the
ode15s results, there are methods that are able to overcome the problem of stiffness. Stiff
problems are important, because they arise (though in more complicated form than this
simple example), in a number of applications including chemical reaction modeling, numerical
solution of parabolic and hyperbolic PDEs, control theory, and electric circuit modeling. In
the rest of this section, we seek to understand what is happening and how stiff problems can
be efficiently dealt with.

First let us return to Euler’s method with a constant step size. Because of the very simple
nature of the ODE, we can give a closed form for the Euler solution. Euler’s method for this
ODE gives yn+1 = (I + hA)yn. This gives yn = (I + hA)ny0 for all n, howsoever the initial
value y0 is chosen. In particular, if we take the initial value equal to the eigenvector x1, then
at the nth step we have yn = (1− 100h)nx1 (since x1 is also an eigenvector of I + hA, with
eigenvalue 1− 100h). Similarly if the initial data is x2, then yn = (1− h/10)nx2. Now any
2-vector can be written as linear combination of x1 and x2. In particular, the given initial
data y0 = (3, 0)T = α1x1 + α2x2, with α1 = 1 and α2 = 2. Thus the Euler approximation
to (5.19) is given by

(5.21) yn = α1(1− 100h)nx1 + α2(1− h/10)nx2.

Comparing with (5.20), we see that e−100t is being approximated by (1 − 100h)n when
t = hn. Now if 100h << 1 this is a reasonable approximation. Then e−100h ≈ 1− 100h and
e−100hn ≈ (1−100h)n. But if 100h is not so small, then (1−100h)n does not behave at all like
e−100hn. In fact if 100h > 2, then 1− 100h is a negative number of magnitude greater than
one, and so (1− 100h)n is exponentially growing, and alternating sign. In that case the first
time on the right hand side on (5.21), instead of becoming negligeable as n increases, will
dominate the computation. In fact, in order that this term decay as n increases, a necessary
and sufficient condition is that |1− 100h| < 1, or −2 < −100h < 0, or h ∈ (0, 1/50), which
matches will our numerical experience.
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Notice, that we could have analyzed this situation by looking at the simpler problem
y′ = −100y, y(0) = 1. In general, an advantageous property for methods to be used with
stiff problems is that when they are used to solve the very simple model problem

(5.22) y′ = λy, y(0) = 1,

where λ < 0, the numerical solution yn should decay, not grow, as n increases. Generally,
this will imply some restriction on the step size. The more severe that restriction, the less
suitable the method is for stiff problems.

The model problem (5.22), while very simple, has relevance for a great many problems.
Many ODEs can be approximated, at least locally by a linear ODE. Starting with any linear
ODE y′ = Ay, where A is a matrix, we may diagonalize to obtain a set of equations of the
form of (5.22) where the values of λ which arise are the eigenvalues of A. Of course this
requires that A be diagonalizable, but since any matrix is arbitrarily close to a diagonalizable
matrix, this is not a big restriction. However, a diagonalizable matrix may well have complex
eigenvalues (even when the matrix is real), and thus to results relevant to a reasonably
general situation we should consider (5.22) for λ ∈ C. Since the solution y = eλt decays with
increasing t, if and only if <λ < 0, we would like that the numerical solution yn decays with
increasing n for <λ < 0 and h > 0.

For Euler’s method, yn = (1 +λh)n, which is decaying if and only |1 +hλ| < 1. Consider
next the backward Euler method. Then yn+1 = yn +hλyn+1, whence yn = [1/(1−hλ)]n. For
<λ < 0, this holds for all h > 0. Thus we would expect (correctly), that stiffness is not a
problem for the backward Euler method.

Similarly, for any single step method and any λ ∈ C, we may consider the set of values of
h for which the numerical solution obtained when the method is applied to (5.22) is decaying
as n→∞. (It doesn’t matter what nonzero initial value is used, since the problem is linear.)
Now for virtually any method (certainly any method we have studied, including all implicit
and explicit Runge–Kutta methods), the values of yn depend only on the product hλ (check
this!). Therefore we define the region of absolute stability of the single step method as

S = {hλ ∈ C : lim
n→∞

yn = 0, when yn is the numerical solution to (5.22) with step size h }

For example, consider the improved Euler method

yn+1 = yn + h[f(tn, yn) + f
(
tn+1, yn + hf(tn, yn)

)
]/2.

Applied to the equation y′ = λy this becomes

yn+1 = yn + h[λyn + λ(yn + hλyn)]/2 = yn(1 + h̄+ h̄2/2),

where h̄ = hλ. Thus the region for stability for the improved Euler method is

S = { h̄ ∈ C | |1 + h̄+ h̄2/2| < 1 }.
This region is plotted in Figure 5.9(b). In fact it is easy to check that the 3 term Taylor
series method and any two-stage second order Runge–Kutta method have exactly the same
absolute stability region.

The region of absolute stability is defined for linear multistep methods as well. It consists
of the set of h̄ = hλ ∈ C such that the numerical solution decays for any choice of initial
values. Equivalently, this is the set of h̄ such that the stability polynomial ρ(z)− h̄σ(z) has
all its roots in the open unit disk.
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Figure 5.9. Regions of absolute stability of Runge–Kutta methods. a)
Euler’s method; b) any 2-stage 2nd order method; c) any 3-stage 3rd order
method; d) any 4-stage 4th order method.
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Figures 5.9, 5.10, and 5.11 show the regions of absolute stability for various explicit
Runge–Kutta methods, some implicit single step methods, and some Adams methods, re-
spectively

Looking at the Figures 5.9–5.11 we can make several observations.

(1) All the explicit methods shown have bounded regions of absolute stability. In fact,
this can be proven to be the case for all explicit methods.

(2) A method is called A-stable if its region of absolute stability contains the entire left
half plane (so whenever the exact solution decays, so does the numerical solution).
Of the methods shown, only the backward Euler method, the trapezoidal method,
the Gauss–Legendre 2-stage implicit Runge–Kutta method are A-stable.

(3) The Adams–Moulton methods (which are implicit) have bounded regions of absolute
stability, but these are notably larger than for the Adams–Bashford methods.

As just mentioned only implicit methods can be A-stable. However, for linear multistep
methods, there is another major limitation as well.
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Figure 5.10. Regions of absolute stability of some implicit one-step meth-
ods. a) Backward Euler method; b) trapezoidal method; c) the 2-stage Gauss–
Legendre implicit Runge–Kutta method.
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Theorem 5.16 (Second Dahlquist Barrier). An A-stable linear multistep method is im-
plicit and of order at most 2.

Because the Adams methods, and various other linear multistep methods, have rather
small regions of absolute stability, other linear multistep methods are preferred for stiff
problems. The most popular are the backward differentiation formula methods or BDF
methods. These are methods of the form

k∑
j=−1

ajyn−j = hfn+1.
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Figure 5.11. Regions of absolute stability of some Adams methods. a)
Adams–Bashford 2-step; b) Adams–Moulton 2-step; a) Adams–Bashford 3-
step; b) Adams–Moulton 3-step.
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The coefficients are aj are determined by interpolating yn−j and tn−j j = −1, . . . , k by a
polynomial p(t) of degree k and evaluating p′(tn+1). The first few BDF methods are

yn+1 − yn = hfn+1 BDF1 (backward Euler),

(3yn+1 − 4yn + yn−1)/2 = hfn+1 BDF2,

(11yn+1 − 18yn + 9yn−1 − 2yn−2)/6 = hfn+1 BDF3.

The k-step BDF method is of order k. For k = 1 and 2, the method is A-stable. The second
Dahlquist barrier implies that this is not true for k > 2, but for k = 3 the region of absolute
stability just misses a tiny piece of the left half plane, so the method is good for most stiff
problems. See Figure 5.12. As k increases the region of absolute stability decreases, but it
still contains a great deal of the left half plane for k = 4 and k = 5. For k > 6, the BDF
formulas are not stable, in the usual sense, and so should not be used..
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Figure 5.12. Regions of absolute stability of some BDF methods. a) BDF
2-step; b) BDF 3-step; a) BDF 4-step; b) BDF 5-step.
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Exercises

(1) Prove that Euler’s method is stable with respect to perturbations in the initial data y0

and the function f . That is, prove that if yn is defined by Euler’s method and ȳn is defined
by the perturbed equations:

ȳn+1 = ȳn + hf̄(tn, ȳn), ȳ0 given,

then |yn − ȳn| ≤ C1|y0 − ȳ0|+C2‖f − f̄‖L∞(I×R). (State precisely the hypotheses needed
and give explicit formulas for C1 and C2.)

(2) State precisely and prove an asymptotic error estimate for the trapezoidal method.

(3) Find the most general two stage Runge–Kutta method of order 2.

(4) For solving the equation y′ = f(t, y), consider the scheme

yn+1 = yn +
h

2
(y′n + y′n+1) +

h2

12
(y′′n − y′′n+1),
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where y′n = f(tn, yn), and y′′n = (∂f/∂t + f∂f/∂y)(tn, yn). Determine the order of this
method. Show that its region of absolute stability contains the entire negative real axis.

(5) Consider a consistent linear multistep methods yn+1 +
∑k

j=0 ajyn−j = h
∑k

j=−1 bjfn−j
for which the coefficients aj ≤ 0, j = 0, . . . , k (there are many such methods). a) Prove
that all such consistent methods satisfy the root condition, and so are stable. b) Give an
elementary proof that all such methods are convergent (without invoking the Dahlquist
theory).





CHAPTER 6

Numerical Solution of Partial Differential Equations

1. BVPs for 2nd order elliptic PDEs

We start with a typical physical application of partial differential equations, the modeling
of heat flow. Suppose we have a solid body occupying a region Ω ⊂ R3. The temperature
distribution in the body can be given by a function u : Ω× J → R where J is an interval of
time we are interested in and u(x, t) is the temperature at a point x ∈ Ω at time t ∈ J . The
heat content (the amount of thermal energy) in a subbody D ⊂ Ω is given by

heat content of D =

∫
D

cu dx

where c is the product of the specific heat of the material and the density of the material.
Since the temperature may vary with time, so can the heat content of D. The rate of change
of heat in D is given by

rate of change of heat in D =
∂

∂t

∫
D

cu dx =

∫
D

∂(cu)

∂t
(x, t) dx.

Now any change of heat in D must be accounted for by heat flowing in or out of D through
its boundary or by heat entering from external sources (e.g., if the body were in a microwave
oven). Fourier’s law of heat conduction says that heat flows in the direction opposite the
temperature gradient with a rate proportional to the magnitude of the gradient. That is,
the heat flow, at any point and any time, is given by

heat flow = −λ gradu,

where the positive quantity λ is called the conductivity of the material. (Usually λ is just
a scalar, but if the material is thermally anisotropic, i.e., it has preferred directions of heat
flow, as might be a fibrous or laminated material, λ can be a 3× 3 positive-definite matrix.)
Therefore the heat that flows out of D is given by

rate of heat flow out of D = −
∫
∂D

(λ gradu) · n ds.

Now the divergence theorem says that for any vectorfield v,
∫
∂D
v ·n ds =

∫
D

div v dx. Thus

rate of heat flow out of D = −
∫
D

div(λ gradu) dx.

Conservation of energy then gives us∫
D

∂(cu)

∂t
dx−

∫
D

div(λ gradu) dx =

∫
D

f dx,

151
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where f is the rate at which heat per unit volume is being added from external sources (if
heat is being removed, f is negative). Thus the quantity

∂(cu)

∂t
− div(λ gradu)− f

has vanishing integral on any smoothly bounded subregion D. This happens if and only if
this quantity vanishes. Thus we have derived the equation

∂(cu)

∂t
= div(λ gradu) + f in Ω× J.

The source function f , the material coefficients c and λ and the solution u can all be functions
of x and t. If the material is homogeneous (the same everywhere) and not changing with
time, then c and λ are constants and the equation simplifies to the heat equation,

µ
∂u

∂t
= ∆u+ f̃ ,

where µ = c/λ and we have f̃ = f/λ. If the material coefficients depend on the temperature
u, as may well happen, we get a nonlinear PDE generalizing the heat equation.

The heat equation not only governs heat flow, but all sorts of diffusion processes where
some quantity flows from regions of higher to lower concentration. The heat equation is the
prototypical parabolic differential equation.

Now suppose our body reaches a steady state: the temperature is unchanging. Then the
time derivative term drops and we get

(6.1) − div(λ gradu) = f in Ω,

where now u and f are functions of f alone. For a homogeneous material, this becomes the
Poisson equation

−∆u = f̃ ,

the prototypical elliptic differential equation. For an inhomogeneous material we can leave
the steady state heat equation in divergence form as in (6.1), or differentiate out to obtain

−λ∆u+ gradλ · gradu = f.

To determine the steady state temperature distribution in a body we need to know not
only the sources and sinks within the body (given by f), but also what is happening at the
boundary Γ := ∂Ω. For example a common situation is that the boundary is held at a given
temperature

(6.2) u = g on Γ.

The PDE (6.1) together with the Dirichlet boundary condition (6.2) form an elliptic bound-
ary value problem. Under a wide variety of circumstances this problem can be shown to
have a unique solution. The following theorem is one example (although the smoothness
requirements can be greatly relaxed).

Theorem 6.1. Let Ω be a smoothly bounded domain in Rn, and let λ : Ω̄→ R+, f : Ω̄→
R, g : Γ → R be C∞ functions. Then there exists a unique function u ∈ C2(Ω̄) satisfying
the differential equation (6.1) and the boundary condition (6.2). Moreover u is C∞.
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Instead of the Dirichlet boundary condition of imposed temperature, we often see the
Neumann boundary condition of imposed heat flux (flow across the boundary):

∂u

∂n
= g on Γ.

For example if g = 0, this says that the boundary is insulated. We may also have a Dirichlet
condition on part of the boundary and a Neumann condition on another.

2. The five-point discretization of the Laplacian

With the motivation of the previous section, let us consider the numerical solution of the
elliptic boundary value problem

(6.3) ∆u = f in Ω, u = g on Γ.

For simplicity we will consider first a very simple domain Ω = (0, 1)× (0, 1), the unit square
in R2. Now this problem is so simplified that we can attack it analytically, e.g., by separation
of variables, but it is very useful to use as a model problem for studying numerical methods.

Let N be a positive integer and set h = 1/N . Consider the mesh in R2

R2
h := { (mh, nh) : m,n ∈ Z }.

Note that each mesh point x ∈ R2
h has four nearest neighbors in R2

h, one each to the left,
right, above, and below. We let Ωh = Ω∩R2

h, the set of interior mesh points, and we regard
this a discretization of the domain Ω. We also define Γh as the set of mesh points in R2

h

which don’t belong to Ωh, but which have a nearest neighbor in Ωh. We regard Γh as a
discretization of Γ. We also let Ω̄h := Ωh ∪ Γh

Figure 6.1. Ω̄h for h = 1/8: • – points in Ωh, ◦ – points in Γh.
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ • • • • • • • ◦
◦ • • • • • • • ◦
◦ • • • • • • • ◦
◦ • • • • • • • ◦
◦ • • • • • • • ◦
◦ • • • • • • • ◦
◦ • • • • • • • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

To discretize (6.3) we shall seek a function uh : Ω̄h → R satisfying

(6.4) ∆h uh = f on Ωh, uh = g on Γh.

Here ∆h is an operator, to be defined, which takes functions on Ω̄h (mesh functions) to
functions on Ωh. It should approximate the true Laplacian in the sense that if v is a smooth
function on Ω̄ and vh = v|Ω̄h is the associated mesh function, then we want

∆h vh ≈ ∆ v|Ωh
for h small.
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Before defining ∆h, let us turn to the one-dimensional case. That is, given a function vh
defined at the mesh points nh, n ∈ Z, we want to define a function D2

hvh on the mesh points,
so that D2

hvh ≈ v′′|Zh if vh = v|Zh. One natural procedure is to construct the quadratic
polynomial p interpolating vh at three consecutive mesh points (n− 1)h, nh, (n + 1)h, and
let D2

hvh(nh) be the constant value of p′′. This gives the formula

D2
hvh(nh) = 2vh[(n− 1)h, nh, (n+ 1)h] =

vh
(
(n+ 1)h

)
− 2vh(nh) + vh

(
(n− 1)h

)
h2

.

D2
h is known as the 3-point difference approximation to d2/dx2. We know that if v is C2 in

a neighborhood of nh, then limh→0 v[x − h, x, x + h] = v′′(x)/2. In fact, it is easy to show
by Taylor expansion (do it!), that

D2
hv(x) = v′′(x) +

h2

12
v(4)(ξ), for some ξ ∈

(
x− h, x+ h

)
,

as long as v is C4 near x. Thus D2
h is a second order approximation to d2/dx2.

Remark. Alternatively, we could use the Peano kernel theorem to analyze the error
D2
hv(0)− v′′(0), say when h = 1, and then use scaling to get the result for arbitrary h. We

leave this as an exercise for the reader.

Now returning to the definition of the ∆h ≈ ∆ = ∂2/∂x2 + ∂2/∂y2, we simply use the
3-point approximation to ∂2/∂x2 and ∂2/∂y2. Writing vm,n for v(mh, nh) we then have

∆h v(mh, nh) =
vm+1,n − 2vm,n + vm−1,n

h2
+
vm,n+1 − 2vm,n + vm,n−1

h2

=
vm+1,n + vm−1,n + vm,n+1 + vm,n−1 − 4vm,n

h2
.

From the error estimate in the one-dimensional case we easily get that for v ∈ C4(Ω̄),

∆h v(mh, nh)−∆ v(mh, nh) =
h2

12

[
∂4v

∂x4
(ξ, nh) +

∂4v

∂y4
(mh, η)

]
,

for some ξ, η. Thus:

Theorem 6.2. If v ∈ C2(Ω̄), then

lim
h→0
‖∆h v −∆ v‖L∞(Ωh) = 0.

If v ∈ C4(Ω̄), then

‖∆h v −∆ v‖L∞(Ωh) ≤
h2

6
M4,

where M4 = max(‖∂4v/∂x4‖L∞(Ω̄), ‖∂4v/∂y4‖L∞(Ω̄)).

The discrete PDE ∆h uh = f on Ωh is a system of (N − 1)2 linear equations in the
unknown values of uh at the mesh points. Since the values of uh are given on the boundary
mesh points, we may regard (6.4) as a system of (N − 1)2 linear equations in (N − 1)2
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unknowns. For example, in the case N = 4 the system is

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4





u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3


=



h2f1,1 − u1,0 − u0,1

h2f2,1 − u2,0

h2f3,1 − u3,0 − u4,1

h2f1,2 − u0,2

h2f2,2

h2f3,2 − u4,2

h2f1,3 − u0,3 − u1,4

h2f2,3 − u2,4

h2f3,3 − u4,3 − u3,4


The matrix may be rewritten as A I O

I A I
O I A


where I is the 3× 3 identity matrix, O is the 3× 3 zero matrix, and

A =

−4 1 0
1 −4 1
0 1 4

 .

For general N the matrix can be partitioned into (N − 1) × (N − 1) blocks, each in
R(N−1)×(N−1): 

A I O · · · O O
I A I · · · O O
O I A · · · O O
...

...
...

. . .
...

...
O O O · · · I A

 ,

where I and O are the identity and zero matrix in R(N−1)×(N−1), respectively, and A ∈
R(N−1)×(N−1) is the tridiagonal matrix with −4 on the diagonal and 1 above and below the
diagonal. This assumes the unknowns are ordered

u1,1, u2,1, . . . , uN−1,1, u1,2, . . . , uN−1,N−1,

and the equations are ordered similarly.
Notice that the matrix has many special properties:

• it is sparse with at most 5 elements per row nonzero
• it is block tridiagonal, with tridiagonal and diagonal blocks
• it is symmetric
• it is diagonally dominant
• its diagonal elements are negative, all others nonnegative
• it is negative definite

2.1. Analysis via a maximum principle. We will now prove that the problem (6.4)
has a unique solution and prove an error estimate. The key will be a discrete maximum
principle.
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Theorem 6.3 (Discrete Maximum Principle). Let v be a function on Ω̄h satisfying

∆h u ≥ 0 on Ωh.

Then maxΩh v ≤ maxΓh v. Equality holds if and only if v is constant.

Proof. Suppose maxΩh v ≥ maxΓh v. Take x0 ∈ Ωh where the maximum is achieved.
Let x1, x2, x3, and x4 be the nearest neighbors. Then

4v(x0) =
4∑
i=1

v(xi)− h2 ∆h v(x0) ≤
4∑
i=1

v(xi) ≤ 4v(x0),

since v(xi) ≤ v(x0). Thus equality holds throughout and v achieves its maximum at all the
nearest neighbors of x0 as well. Applying the same argument to the neighbors in the interior,
and then to their neighbors, etc., we conclude that v is constant. �

Remarks. 1. The analogous discrete minimum principle, obtained by reversing the in-
equalities and replacing max by min, holds. 2. This is a discrete analogue of the maximum
principle for the Laplace operator.

Theorem 6.4. There is a unique solution to the discrete boundary value problem (6.4).

Proof. Since we are dealing with a square linear system, it suffices to show nonsingu-
larity, i.e., that if ∆h uh = 0 on Ωh and uh = 0 on Γh, then uh ≡ 0. Using the discrete
maximum and the discrete minimum principles, we see that in this case uh is everywhere
0. �

The next result is a statement of maximum norm stability.

Theorem 6.5. The solution uh to (6.4) satisfies

(6.5) ‖uh‖L∞(Ω̄h) ≤
1

8
‖f‖L∞(Ωh) + ‖g‖L∞(Γh).

This is a stability result in the sense that it states that the mapping (f, g) 7→ uh is
bounded uniformly with respect to h.

Proof. We introduce the comparison function φ = [(x − 1/2)2 + (y − 1/2)2]/4, which
satisfies ∆h φ = 1 on Ωh, and 0 ≤ φ ≤ 1/8 on Ω̄h. Set M = ‖f‖L∞(Ωh). Then

∆h(uh +Mφ) = ∆h uh +M ≥ 0,

so

max
Ωh

uh ≤ max
Ωh

(uh +Mφ) ≤ max
Γh

(uh +Mφ) ≤ max
Γh

g +
1

8
M.

Thus uh is bounded above by the right-hand side of (6.5). A similar argument applies to
−uh giving the theorem. �

By applying the stability result to the error u − uh we can bound the error in terms of
the consistency error ∆h u−∆u.

Theorem 6.6. Let u be the solution of the Dirichlet problem (6.1) and uh the solution
of the discrete problem (6.4). Then

‖u− uh‖L∞(Ω̄h) ≤
1

8
‖∆u−∆h u‖L∞(Ω̄h).
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Proof. Since ∆h uh = f = ∆u on Ωh, ∆h(u − uh) = ∆h u −∆u. Also, u − uh = 0 on
Γh. Apply Theorem 6.5 (with uh replaced by u− uh), we obtain the theorem. �

Combining with Theorem 6.2, we obtain error estimates.

Corollary 6.7. If u ∈ C2(Ω̄), then

lim
h→0
‖u− uh‖L∞(Ω̄h) = 0.

If u ∈ C4(Ω̄), then

‖u− uh‖L∞(Ω̄h) ≤
h2

48
M4,

where M4 = max(‖∂4u/∂x4‖L∞(Ω̄), ‖∂4u/∂y4‖L∞(Ω̄)).

Remark. The quantity ‖∆u−∆h u‖ is the consistency error of the discretization, and
the statement that limh→0‖∆u−∆h u‖ = 0 means that the discretization is consistent. An
estimate of the form ‖v‖ ≤ Ch‖f‖ whenever ∆h v = f on Ωh and v = 0 on Γh, is a stability
estimate, and if it holds with Ch independent of h, we say the discretization is stable. The
preceding proof shows that

consistency + stability =⇒ convergence.

(Of course all three concepts are defined with respect to specific norms.)

2.2. Fourier analysis. Define L(Ωh) to be the set of functions Ωh → R, which is
isomorphic to RM , M = (N −1)2. Sometimes we think of these as functions on Ω̄h extended
by zero to Γh. The discrete Laplacian then defines an isomorphism of L(Ωh) onto itself. The
stability result from the previous section says simply that ‖∆−1

h ‖ ≤ 1/8 where the operator
norm is with respect to the L∞ norm on L(Ωh). In this section we use Fourier analysis to
establish a similar stability result for a discrete analogue of the L2 norm.

First consider the one-dimensional case. With h = 1/N let Ih = {h, 2h, . . . , (N − 1)h},
and let L(Ih) be the space of functions on Ih, which is an N − 1 dimensional vectorspace.
On L(Ih) we define the inner product

〈u, v〉h = h

N−1∑
k=1

u(kh)v(kh),

with the corresponding norm ‖v‖h.
The space L(Ih) is a discrete analogue of L2(I) where I is the unit interval. On this

latter space the functions sinπmx, m = 1, 2, . . ., form an orthogonal basis consisting of
eigenfunctions of the operator d2/dx2. The corresponding eigenvalues are π2, 4π2, 9π2, . . ..
We now establish the discrete analogue of this result.

Define φm ∈ L(Ih) by φm(x) = sinπmx, x ∈ Ih. It turns out that these mesh functions
are precisely the eigenvectors of the operator D2

h. Indeed

D2
hφm(x) =

sin πm(x+ h)− 2 sinπmx+ sin πm(x− h)

h2
=

2

h2
(cos πmh− 1) sinπmx.

Thus

D2
hφm = −λmφm, λm =

2

h2
(1− cos πmh) =

4

h2
sin2 πmh

2
.
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Note that

0 < λ1 < λ2 < · · · < λN−1 <
4

h2
.

Note also that for small m << N , λm ≈ π2m2. In particular λ1 ≈ π2. To get a strict lower
bound we note that λ1 = 8 for N = 2 and λ1 increases with N .

Since the operator D2
h is symmetric with respect to the inner product on L(Ih), and the

eigenvalues λm are distinct, it follows that the eigenvectors φm are mutually orthogonal. (This
can also be obtained using trigonometric identities, or by expressing the sin functions in terms
of complex exponentials and using the discrete Fourier transform studied in Chapter 1.7.)
Since there are N − 1 of them, they form a basis of L(Ih).

Theorem 6.8. The functions φm, m = 1, 2, . . . , N − 1 form an orthogonal basis of
L(Ih). Consequently, any function v ∈ L(Ih) can be expanded as v =

∑N−1
m=1 amφm with

am = 〈v, φm〉h/‖φm‖2
h, and ‖v‖2

h =
∑N−1

m=1 a
2
m‖φm‖2

h.

From this we obtain immediately a stability result for the one-dimensional Laplacian. If
v ∈ L(Ih) and D2

hv = f , we expand v in terms of the φm:

v =
N−1∑
m=1

amφm, ‖v‖2
h =

N−1∑
m=1

a2
m‖φm‖2

h.

Then

f = −
N−1∑
m=1

λmamφm, ‖f‖2
h =

N−1∑
m=1

λ2
ma

2
m‖φm‖2

h ≥ 82‖v‖2
h.

Thus ‖v‖h ≤ ‖f‖h/8.

The extension to the two-dimensional case is straightforward. We use the basis φmn =
φm ⊗ φn, i.e.,

φmn(x, y) := φm(x)φn(y), m, n = 1, . . . , N − 1,

for L(Ωh). It is easy to see that these (N − 1)2 functions form an orthogonal basis for L(Ωh)
equipped with the inner product

〈u, v〉h = h2

N−1∑
m=1

N−1∑
n=1

u(mh, nh)v(mh, nh)

and corresponding norm ‖ · ‖h. Moreover φmn is an eigenvector of ∆h with eigenvalue λmn =
λm + λn ≥ 16. The next theorem follows immediately.

Theorem 6.9. The operator ∆h defines an isomorphism from L(Ωh) to itself. Moreover
‖∆−1

h ‖ ≤ 1/16 where the operator norm is with respect to the norm ‖ · ‖h on L(Ωh).

Since the ‖v‖h ≤ ‖v‖L∞(Ωh) we also have consistency with respect to the discrete 2-norm.
We leave it to the reader to complete the analysis with a convergence result.
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2.3. Analysis via an energy estimate. Let v be a mesh function. Define the back-
ward difference operator

∂xv(mh, nh) =
v(mh, nh)− v((m− 1)h, nh)

h
, 1 ≤ m ≤ N, 0 ≤ n ≤ N.

In this section we denote

〈v, w〉h = h2

N∑
m=1

N∑
n=1

v(mh, nh)w(mh, nh),

with the corresponding norm ‖ · ‖h (this agrees with the notation in the last section for mesh
functions which vanish on Γh).

Lemma 6.10. If v ∈ L(Ωh) (the set of mesh functions vanishing on Γh), then

‖v‖h ≤ ‖∂xv‖h.

Proof. For 1 ≤ m ≤ N , 0 ≤ n ≤ N ,

|v(mh, nh)|2 ≤

(
N∑
i=1

|v(ih, nh)− v((i− 1)h, nh)|

)2

=

(
h

N∑
i=1

|∂xv(ih, nh)|

)2

≤

(
h

N∑
i=1

|∂xv(ih, nh)|2
)(

h
N∑
i=1

12

)

= h
N∑
i=1

|∂xv(ih, nh)|2.

Therefore

h
N∑
m=1

|v(mh, nh)|2 ≤ h
N∑
i=1

|∂xv(ih, nh)|2

and

h2

N∑
m=1

N∑
n=1

|v(mh, nh)|2 ≤ h2

N∑
i=1

N∑
n=1

|∂xv(ih, nh)|2.

�

This result is a discrete analogue of Poincaré’s inequality, which bounds a function in
terms of its gradient as long as the function vanishes on a portion of the boundary. The
implied constant of 1 in the bound can be improved. The next result is a discrete analogue
of Green’s Theorem (essentially, integration by parts).

Lemma 6.11. If v, w ∈ L(Ωh), then

−〈∆h v, w〉h = 〈∂xv, ∂xw〉h + 〈∂yv, ∂yw〉h.
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Proof. Let v0, v1, . . . , vN , w0, w1, . . . , wN ∈ R with w0 = wN = 0. Then

N∑
i=1

(vi − vi−1)(wi − wi−1) =
N∑
i=1

viwi +
N∑
i=1

vi−1wi−1 −
N∑
i=1

vi−1wi −
N∑
i=1

viwi−1

= 2
N−1∑
i=1

viwi −
N−1∑
i=1

vi−1wi −
N−1∑
i=1

vi+1wi

= −
N−1∑
i=1

(vi+1 − 2vi + vi−1)wi.

Hence,

− h
N−1∑
i=1

v((i+ 1)h, nh)− 2v(ih, nh) + v((i− 1)h, nh)

h2
w(ih, nh)

= h
N∑
i=1

∂xv(ih, nh)∂xw(ih, nh),

and thus
−〈D2

xv, w〉h = 〈∂xv, ∂xw〉h.
Similarly, −〈D2

yv, w〉h = 〈∂yv, ∂yw〉h, so the lemma follows. �

Combining the discrete Poincaré inequality with the discrete Green’s theorem, we imme-
diately get a stability result. If v ∈ L(Ωh), then

‖v‖2
h ≤ ‖∂xv‖2

h ≤ ‖∂xv‖2
h + ‖∂yv‖2

h = −〈∆h v, v〉h ≤ ‖∆h v‖h‖v‖h.
Thus

‖v‖h ≤ ‖∆h v‖h, v ∈ L(Ωh),

which is a stability result.

2.4. Curved boundaries. Thus far we have studied as a model problem the discretiza-
tion of Poisson’s problem on the square. In this subsection we consider a variant which can
be used to discretize Poisson’s problem on a fairly general domain.

Let Ω be a smoothly bounded open set in R2 with boundary Γ. We again consider the
Dirichlet problem for Poisson’s equation, (6.3), and again set Ωh = Ω ∩ R2

h. If (x, y) ∈ Ωh

and the segment (x+ sh, y), 0 ≤ s ≤ 1 belongs to Γ, then the point (x+h, y), which belongs
to Ωh, is a neighbor of (x, y) to the right. If this segment doesn’t belong to Ω we define
another sort of neighbor to the right, which belongs to Γ. Namely we define the neighbor to
be the point (x + sh, y) where 0 < s ≤ 1 is the largest value for which (x + th, y) ∈ Ω for
all 0 ≤ t < s. The points of Γ so constructed (as neighbors to the right or left or above or
below points in Ωh) constitute Γh. Thus every point in Ωh has four nearest neighbors all of

which belong to Ω̄h := Ωh ∪ Γh. We also define Ω̊h as those points in Ωh all four of whose
neighbor belong to Ωh. See Figure 6.2.

In order to discretize the Poisson equation we need to construct a discrete analogue of
the Laplacian ∆h v for mesh functions v on Ω̄h. Of course on Ω̊h, ∆h v is defined as the
usual 5-point Laplacian. For (x, y) ∈ Ωh \ Ω̊h, let (x + h1, y), (x, y + h2), (x − h3, y), and
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Figure 6.2. The dots are points in Ωh with the elements of Ω̊h being circled.
The triangles are the points of Γh.

(x, y − h4) be the nearest neighbors (with 0 < hi ≤ h), and let v1, v2, v3, and v4 denote
the value of v at these four points. Setting v0 = v(x, y) as well, we will define ∆h v(x, y) as
a linear combination of the five values vi. In order to derive the formula, we first consider
approximating d2v/dx2(0) by a linear combination of v(−h−), v(0), and v(h+), for a function
v of one variable. By Taylor’s theorem

α−v(−h−) + α0v(0) + α+v(h+) = (α− + α0 + α+)v(0) + (α+h+ − α−h−)v′(0)

+
1

2
(α+h

2
+ + α−h

2
−)v′′(0) +

1

6
(α+h

3
+ − α−h3

−)v′′′(0) + · · · .

Thus, to obtain a consistent approximation we must have

α− + α0 + α+ = 0, α+h+ − α−h− = 0,
1

2
(α+h

2
+ + α−h

2
−) = 1,

which give

α− =
2

h−(h− + h+)
, α+ =

2

h+(h− + h+)
, α0 =

−2

h−h+

.

Note that we have simply recovered the usual divided difference approximation to d2v/dx2:

α−v(−h−)+α0v(0)+α+v(h+) =
[v(h+)− v(0)]/h+ − [v(0)− v(−h−)]/h−

(h+ + h−)/2
= 2v[−h−, 0, h+].

Returning to the 2-dimensional case, and applying the above considerations to both
∂2v/∂x2 and ∂2v/∂y2 we arrive at the Shortley–Weller formula for ∆h v:

∆h v(x, y)

=
2

h1(h1 + h3)
v1 +

2

h2(h2 + h4)
v2 +

2

h3(h1 + h3)
v3 +

2

h4(h2 + h4)
v4 −

(
2

h1h3
+

2

h2h4

)
v0.

Using Taylor’s theorem with remainder we easily calculate that for v ∈ C3(Ω̄),

‖∆ v −∆h v‖L∞(Ωh) ≤
2M3

3
h,
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where M3 is the maximum of the L∞ norms of the third derivatives of v. Of course at the
mesh points in Ω̊h, the truncation error is actually O(h2), but for mesh points neighboring
the boundary, it is reduced to O(h).

The approximate solution to (6.3) is uh : Ω̄h → R determined again by 6.4. This is a
system of linear equations with one unknown for each point of Ωh. In general the matrix
won’t be symmetric, but it maintains other good properties from the case of the square:

• it is sparse, with at most five elements per row
• it has negative diagonal elements and non-negative off-diagonal elements
• it is diagonally dominant.

Using these properties we can obtain the discrete maximum principle with virtually the same
proof as for Theorem 6.3, and then a stability result as in Theorem 6.5 follows as before. In
this way we can easily obtain an O(h) convergence result.

In fact this result can be improved. Although the truncation error ‖∆u − ∆h u‖L∞(Ωh)

is only O(h), it is O(h2) at all points except those neighboring the boundary, and these
account for only O(h−1) of the O(h−2) points in Ωh. Moreover these points are within h of
the boundary, where the solution is known exactly. For both of these reasons the contribution
to the error from these points is smaller than is seen from the simple argument outlined in
the previous paragraph. A sharp convergence result was proven by Bramble and Hubbard
in a paper in Numerische Mathematik 4 (1962), pp. 313–327.

Theorem 6.12. Let u be the solution to (6.3) and let uh be the mesh function satisfying
(6.4). Then

‖u− uh‖L∞(Ω̄h) ≤
M4d

2

96
h2 +

2M3

3
h3,

where d is the diameter of the smallest disk containing Ω and Mk = max
i+j=k

‖∂ku/∂xi∂yj‖∞.

Thus the rate of convergence is O(h2) as in the case of the square, and the points near
the boundary contribute only a higher order term (despite the fact that the truncation error
is of lower order there).

3. Finite element methods

3.1. The weak formulation of the Dirichlet problem. We start by considering
Poisson’s equation with homogeneous Dirichlet boundary conditions on a bounded plane
domain Ω:

(6.6) ∆u = f in Ω, u = 0 on Γ.

Let’s assume that f is continuous on Ω̄. Now if we multiply the differential equation by a
test function v and integrate over Ω, we get that∫

Ω

∆u v dx =

∫
Ω

fv dx,

and conversely, if this equation is satisfied for all integrable functions v, then u satisfies
Poisson’s equation. In fact, it is sufficient that the equation be satisfied for all C∞ functions
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with compact support inside Ω. In particular, if v is a C1 function on Ω which vanishes on
Γ, we may integrate by parts to get

(6.7)

∫
Ω

gradu · grad v dx = −
∫

Ω

fv dx.

Thus it is evident that a C2 function which vanishes on Γ satisfies Poisson’s equation if and
only if it satisfies (6.7) for all C2 functions v which vanish on Γ. The use of C2 functions
is, however, not very natural for the formulation (6.7). A more natural space would be the
Sobolev space

H1(Ω) = { v ∈ L2(Ω) | ∇v ∈ L2(Ω) }.
This is a Hilbert space with inner product

〈u, v〉H1(Ω) =

∫
Ω

(uv + gradu · grad v) dx,

and corresponding norm

‖v‖1 = ‖v‖H1(Ω) :=
√
‖v‖2

L2(Ω) + ‖grad v‖2
L2(Ω).

(Note: we are using the same notation L2(Ω) both for real-valued and vector-valued square
integrable functions.) We also define

H̊1(Ω) = { v ∈ H1(Ω) | v|Γ ≡ 0 }.
We then define the weak formulation of the Dirichlet problem for Poisson’s equation to be:

Find u ∈ H̊1(Ω) such that

(6.8)

∫
Ω

gradu · grad v dx = −
∫

Ω

fv dx for all v ∈ H̊1(Ω).

The weak formulation fits an abstract framework we shall see frequently. We have a Hilbert
space V (namely H̊1(Ω)), a bilinear form B : V × V → R (given by the left-hand side of
(6.8)), a linear functional F : V → R (given by the right-hand side of (6.8)), and the weak
formulation is

(6.9) Find u ∈ V such that B(u, v) = F (v) for all v ∈ V .

It is clear that if u is a C2 function satisfying the classical formulation (6.6) of our bound-

ary value problem, then u ∈ H̊1(Ω) and u satisfies the weak formulation (6.8). Conversely, if
u solves the weak formulation, and if u is C2, then u is a classical solution to the boundary
value problem. However the classical formulation and the weak formulation are not entirely
equivalent, because it may happen that there is a solution to the weak formulation which is
not C2. It can be shown that a solution to the weak formulation is automatically smooth if
both the forcing function f is smooth and the domain Ω has a smooth boundary, but such
elliptic regularity theorems are not trivial.

Remark. In defining the Sobolev spaces H1(Ω) and H̊1(Ω) we have glossed over several
points. In the definition of the former space, we assumed that it is clear what is meant by
grad v when v ∈ L2(Ω). If the reader is familiar with the theory of distributions, this is no
problem: she then knows that grad v in any case exists as a distribution, which may, or may
not, then belong to L2. Briefly, given an L2 function v, a vector-valued L2 function w is
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equal to grad v if and only if
∫

Ω
v div φ dx = −

∫
Ω
w ·φ dx for all C∞ vector-valued functions φ

with compact support in Ω. A more subtle point is that in defining H̊1(Ω), we have assumed
that it is clear what is meant by v|Γ for v ∈ H1(Ω). This is not so evident. For example,
there is certainly no way to make sense of v|Γ for an arbitrary function v ∈ L2(Ω) (which
is defined only almost everywhere, and may not be defined anywhere on Γ). In fact, it can
be shown that there is a unique bounded map γ : H1(Ω) → L2(Γ) such that γv = v|Γ for
all v ∈ H1(Ω) ∪ C(Ω̄). This is an example of a trace theorem, and requires some effort to
establish. By v|Γ we simply mean γv, for any v ∈ H1(Ω).

The weak formulation is in many ways a very natural formulation of the Dirichlet problem
for Poisson’s equation. One indication of this is that it is quite simple to establish existence
and uniqueness of weak solutions. One first establishes Poincaré’s inequality, which states
that there exists a constant c depending only on the domain Ω such that ‖u‖L2(Ω) ≤ c‖u‖H1(Ω)

for all u ∈ H̊1(Ω). This is fairly elementary; a good exercise is to prove it in the one-
dimensional case where Ω is a bounded interval (what is the best constant c?). It follows

that on the space H̊1(Ω), the quantity
√
‖gradu‖L2 is a norm equivalent to the full H1 norm,

and hence the left-hand side of (6.8) defines an inner product on H̊1(Ω) which is equivalent
to the H1 inner product. Existence and uniqueness of a weak solution is then an immediate
consequence of the Riesz representation theorem.

Remark. Besides the weak formulation of the boundary value problem (6.6), there is

a closely related variational formulation. In this we seek u ∈ H̊1(Ω) which minimizes the
energy functional

E(w) :=
1

2

∫
Ω

| gradw|2 dx+

∫
Ω

fw dx

over w ∈ H̊1(Ω). If u is the solution of the weak formulation and w ∈ H̊1(Ω) with w 6= u

but otherwise arbitrary, we may write w = u+ v, with 0 6= v ∈ H̊1(Ω), and then

E(w) =
1

2

∫
Ω

| gradu|2 dx+

∫
Ω

gradu · grad v dx+
1

2

∫
Ω

| grad v|2 dx+

∫
Ω

fu dx+

∫
Ω

fv dx

= E(u) +

[∫
Ω

gradu · grad v dx+

∫
Ω

fv dx

]
+

1

2

∫
Ω

| grad v|2 dx.

The term in brackets vanishes since u is the weak solution, and the final term is positive if
v 6= 0. Thus E(u) < E(w), and u is indeed the minimizer. Conversely, if u minimizes E over

H̊1(Ω) and v ∈ H̊1(Ω) is arbitrary, then the quadratic function G : R→ R given by

G(t) = E(u+ tv) = E(u) + t

[∫
Ω

gradu · grad v dx+

∫
Ω

fv dx

]
+
t2

2

∫
Ω

| grad v|2 dx,

has its minimum at t = 0, and this immediately shows that u is a weak solution. Thus the
notion of a weak solution and a variational solution (a minimizer of the energy functional)
are equivalent for this problem. For problems which are not symmetric however (e.g., if the
PDE were ∆u + ∂u/∂x = f), there is no natural variational formulation, while the weak
formulation still applies.
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3.2. Galerkin’s method. In the weak formulation, we seek a function in the trial space
H̊1(Ω) which satisfies the weak equation (6.8) for all v in the test space H̊1(Ω). In Galerkin’s

method we choose a finite dimensional space Sh ⊂ H̊1(Ω), and use it in place of H̊1(Ω) as
trial and test space. That is, we seek uh ∈ Sh satisfying the discrete weak formulation∫

Ω

graduh · grad v dx = −
∫

Ω

fv dx for all v ∈ Sh.

Let us show that such a function uh exists and is unique. Let {φ1, . . . , φN} be any basis of

Sh. Then we are seeking uh =
∑N

j=1 αjφj such that∫
Ω

graduh · gradφi dx = −
∫

Ω

fφi dx, i = 1, . . . , N.

(By linearity, it is enough that the weak equation hold for each basis function.) This means
that

N∑
j=1

αj

∫
Ω

gradφj · gradφi dx = −
∫

Ω

fφi dx.

If we define the stiffness matrix M ∈ RN×N by

Mij =

∫
Ω

gradφj · gradφi dx,

and the load vector F ∈ RN by

Fi = −
∫

Ω

fφi dx,

then the coefficient vector α is determined as the solution of the linear system

Mα = F .

The matrix M is clearly symmetric, and it is positive definite as well, since for any vector
α ∈ RN ,

αTMα =
∑
ij

αiαj

∫
Ω

gradφj · gradφi dx

=

∫
Ω

grad

(∑
j

αjφj

)
· grad

(∑
i

αiφi

)
dx =

∫
Ω

| grad v|2 dx,

where v =
∑

j αjφj. Since the latter quantity is a norm of v it is positive unless v ≡ 0 which
only happens if α = 0.

Thus Galerkin’s method is implementable. If we choose a space Sh for which we can find
a basis which is not too complicated, we can compute the N2 integrals giving the stiffness
matrix and the N integrals giving the load vector, and then solve the resulting N × N
symmetric positive definite linear system to find the coefficients of uh with respect to the
basis.

Remark. Instead of beginning with the weak formulation and restricting the test and
trial spaces to a finite dimensional subspace, we may start with the variational formulation
and restrict the trial space to Sh. That is, we define uh ∈ Sh to be the minimizer of E(v) over
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v ∈ Sh. This is called the Ritz method. Following the proof for the continuous case we see
that uh is in fact just the Galerkin solution. This viewpoint, that the approximate solution
is determined by restricting the minimization of energy to a finite dimensional space, was
the first motivation for the finite element method. However, we obtain greater generality by
using the weak formulation and Galerkin’s method rather than the variational formulation
and the Ritz method.

3.3. A simple finite element method. The finite element method consists of the
Galerkin method together with the choice of a particular sort of subspace Sh. Namely we
partition Ω into a finite number of disjoint triangles or other simple pieces, and take Sh to
be a space of piecewise polynomials with respect to this partition.

More specifically, let us assume, for now, that Ω is a polygon. Given a triangulation Th
we define M1

0 (Th) to be the space of continuous piecewise linear functions subordinate to this
triangulation, that is the space of continuous functions on Ω̄ which restrict to polynomials of
degree at most 1 on each T ∈ Th. The notation is the same as in Chapter 1.5: the superscript
1 refers to the polynomial degree and the subscript 0 to the fact that the continuity of C0

is enforced. It is easy to check that a piecewise polynomial is in H1 if and only if it is
continuous: the gradient of a continuous piecewise polynomial is the L2 function obtained
by taking the gradient triangle by triangle. Thus for any triangulation, M1

0 (Th) is a subspace

of H1. As a subspace of H̊1, we then take

Sh = M̊1
0 (Th) = M1

0 (Th) ∩ H̊1(Ω).

This is the simplest finite element space for the Dirichlet problem. A basis for Sh is given
by the hat functions associated with all the interior vertices.

Recall that the hat functions are local basis functions in that each is supported on just
a few triangles. Namely, the support of φj is the union of the triangles sharing the vertex
xj), and there will only be a few other basis functions whose support contains one of these
triangles, namely the basis functions associated to vertices of triangles in the support of φj.
If φi is any other basis function, then the corresponding stiffness matrix entry∫

gradφj · gradφi dx = 0.

As a consequence we see that with the hat function basis, the stiffness matrix is very sparse
(there will be only a few nonzero entries per row, and this number will not increase when we
refine the mesh, as long as we don’t allow the triangle angles to decrease). Also the stiffness
matrix entries which are nonzero are nonetheless easily computed: they are sums of integrals
of polynomials over only a few triangles (in fact, except for the diagonal entries of the stiffness
matrix, over two triangles). This adds greatly to the efficiency of the implementation of the
Galerkin method.

We may now roughly define the finite element method: it is Galerkin’s method using a
piecewise polynomial trial space with a local basis.

Let us now work out a simple example. We take Ω to be the unit square with a uniform
mesh. Namely we divide Ω into n × n subsquares of size h = 1/n and divide each of these
into two triangles using the positively sloped diagonal. See Figure 6.3.

Now if φ is a linear function, then ∂φ/∂x is constant, and we can find it by evaluating φ
at any two distinct points on a horizontal line, and taking a difference quotient. Since each
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Figure 6.3. Uniform mesh of the square.

of our triangles has a horizontal and a vertical edge, and since we know the values of the
hat basis functions at the vertices, we can easily compute the partial derivatives of the basis
functions. These are shown in the following figure.

Figure 6.4. Values of ∂φ/∂x and ∂φ/∂y for a hat function.
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It is then easy to compute the stiffness matrix. Writing φij for the basis function associ-
ated to the vertex xij = (ih, jh), we find∫

gradφij · gradφkl dx =


4, i = k, j = l,

−1, i = k ± 1, j = l or i = k, j = l ± 1,

0, else.

In other words, the stiffness matrix for piecewise linear finite elements for the Laplace opera-
tor on the unit square using a uniform mesh is exactly the matrix of the five-point Laplacian.
If we set

f̃ij :=
1

h2

∫
fφij.

and write the finite element solution as uh =
∑

i,j Uijφij, we have

4Uij − Ui+1,j − Ui−1,j − Ui,j+1 − Ui,j−1

h2
+ f̃ij = 0.
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Note that
∫
φij dx = h2 and if f is at least C2, then f̃ij = f(xij) +O(h2).

From this fact and our earlier analysis of the five-point Laplacian, it is easy to derive
an O(h2) convergence estimate at the vertices. In fact, as we shall see, one of the great
strengths of the finite element method is that there is a very natural approach to the error
analysis (which does not involve relating it to finite difference methods). The most natural
estimates are obtained in H1(Ω) and L2(Ω) (error estimates in L∞(Ω) can also be obtained,
but are more complicated). Below we shall prove, in more general circumstances, that if the
solution u ∈ H2(Ω), then

‖u− uh‖H1(Ω) ≤ Ch‖u‖H2(Ω), ‖u− uh‖L2(Ω) ≤ Ch2‖u‖H2(Ω),

for some constant C. Note that unlike our finite difference estimates the norms are norms of
functions on Ω, not just at the mesh vertices. Note also that we only require that u ∈ H2,
not even C2, to obtain O(h2) convergence. By contrast in the finite difference case we needed
u ∈ C4. For example, if the function f is merely in L2, then it may not even be defined at
the mesh points, and the standard finite difference method is not meaningful, while the finite
element method is applicable and will still deliver second order convergence in this case.

Most important, the same error estimates hold on a quite arbitrary domain with an
arbitrary triangulation. In this case h is to be interpreted as the diameter of the largest
triangle in the triangulation. The constant C in the estimates will depend on the domain,
but not on the triangulation (except that we will need to enforce a bound on the smallest
angle of a triangle). The derivation of such error estimates will be discussed later. The point
to note now is the power and flexibility of the finite element method in providing second
order convergent schemes on unstructured meshes. If we were to try to derive such schemes
directly, e.g., by Taylor expansions, it would be very messy indeed.

3.4. Application to more general problems. Another great strength of finite ele-
ment methods is the ease with which they can be adapted to a wide variety of problems.

3.4.1. More general elliptic PDEs. For example, suppose we replace Poisson’s equation
∆u = f with a more general second order PDE

2∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+

2∑
i=1

bi
∂u

∂xi
+ cu = f.

Here the coefficients aij, bi, and c may be functions of x. Once again, we may multiply by a

test function v ∈ H̊1(Ω) and integrate over Ω by parts to obtain a weak formulation of the
Dirichlet problem in the form (6.9). The only difference is that now

B(u, v) =

∫
Ω

∑
i,j

aij
∂u

∂xj

∂v

∂xi
−
∑
i

bi
∂u

∂xi
v − cuv dx.

Restricting the trial and test functions to Sh, we obtain a finite element method as before.
If the PDE is elliptic, which means that the matrix aij(x) is symmetric positive-definite,
uniformly in x, then the behavior of the finite element method for this problem will be very
similar to that for the Poisson problem. Thus the finite element method is well able to
handle variable coefficients, anisotropic equations, and lower order terms.

We can even allow the coefficients to depend on the solution u, and so have a nonlinear
PDE. In that case the form B(u, v) will be linear in v but nonlinear in u. Again the finite



3. FINITE ELEMENT METHODS 169

element method can be applied, although of course the resulting system of algebraic equations
will be nonlinear.

3.4.2. Neumann boundary conditions. Yet another great strength of finite element meth-
ods is their flexibility in handling different boundary conditions (which can be very tricky
for finite difference methods). Consider for example Poisson’s equation on a polygon but
suppose that some sides are subject to the Dirichlet boundary condition u = 0 and some to
the Neumann boundary condition, so the problem is to find u satisfying

∆u = f in Ω, u = 0 on ΓD,
∂u

∂n
= 0 on ΓN ,

where ΓD and ΓN are disjoint open subsets of Γ such that Γ = Γ̄D ∪ Γ̄N . The first thing you
might think to do is to seek u in a subspace of H1(Ω) satisfying both boundary conditions,
i.e., in

{ v ∈ H1(Ω) | v|ΓD ≡ 0, ∂v/∂n|ΓN ≡ 0 }.
However, this does not work, because there is no way to define ∂v/∂n for v ∈ H1. Such a
function has a well defined restriction to Γ (or ΓD) but its first derivatives, which are merely
L2 functions, do not. To see our way around this problem, let us multiply Poisson’s equation
by a smooth test function v and integrate over Ω.

Green’s formula for integration by parts shows us the way around this difficulty. For any
smooth u and v we have∫

Ω

gradu · grad v dx = −
∫

Ω

∆u v dx+

∫
Γ

∂u

∂n
v ds.

If u satisfies Poisson’s equation, then∫
Ω

∆u v dx =

∫
Ω

f v dx,

and if u satisfies the Neumann boundary condition, then∫
Γ

∂u

∂n
v ds =

∫
ΓD

∂u

∂n
v ds.

Define
H1
D(Ω) = { v ∈ H1(Ω) | v|ΓD ≡ 0 }.

Note that in this space the Dirichlet boundary condition has been imposed, but the Neumann
boundary condition has been ignored (since there is no way to make sense of it in H1). This
leads us to the weak formulation for the mixed Dirichlet/Neumann boundary value problem:
Find u ∈ H1

D(Ω) such that∫
Ω

gradu · grad v dx = −
∫

Ω

f v dx for all v ∈ H1
D(Ω).

Just as for the pure Dirichlet problem, as an easy consequence of the Riesz representation
theorem and the Poincaré inequality, this problem has a unique solution.

In deriving the weak formulation, we have shown that if u is a classical solution to the
boundary value problem then it satisfies this weak formulation. Conversely, if u solves the
weakly formulated problem, and u is C2, then we can integrate by parts to find that

−
∫

Ω

∆u v dx+

∫
Γ

∂u

∂n
v ds = −

∫
Ω

f v dx for all v ∈ H1
D(Ω).
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Taking first v to be smooth and compactly supported in Ω, we conclude that ∆u = f in Ω.
Therefore ∫

Γ

∂u

∂n
v ds = 0

for all v ∈ H1
D(Ω). Since such a function can be arbitrary on ΓN , we conclude that ∂u/∂n = 0

on ΓN .
To summarize: the weak formulation for the mixed Dirichlet/Neumann boundary value

problem has a unique solution. This coincides with the classical solution whenever it is C2

and whenever a classical solution exists. Note that the Dirichlet and Neumann boundary
conditions are treated completely differently in the weak formulation. The Dirichlet condition
is imposed a priori by building it into the trial space. The Neumann condition is not built
into the trial space, but arises as a consequence of the weak formulation. The terminology
used for this is that the Dirichlet condition is an essential boundary condition, while the
Neumann condition is natural.

Once we have the weak formulation we can use Galerkin’s method with any subspace
Sh of H1

D(Ω). This leads to a symmetric positive definite matrix problem. As long as we
arrange that each triangle edge in the boundary belongs entirely to either ΓD or ΓN we can
easily construct a piecewise linear finite element space:

M1
0D(Th) = M1

0 (Th) ∩H1
D(Ω).

A local basis is given by the hat functions at all the triangulation vertices except those
belonging to Γ̄D.

We didn’t consider the case of pure Neumann conditions because the boundary value
problem ∆u = f in Ω, ∂u/∂n = 0 on Γ is not well-posed. Green’s theorem implies that
there is no solution unless

∫
Ω
f = 0, and if there is a solution, we can add any constant to it

to get another solution. If we consider instead the differential equation −∆u + u = f , or,
more generally, − div(A gradu) + cu = f where A is a symmetric positive definite matrix
and c > 0, this problem goes away and the considerations above apply equally well to the
pure Neumann problem (ΓN = Γ, ΓD = ∅).

3.4.3. Inhomogeneous boundary conditions. Thus far we have considered homogeneous
Dirichlet and Neumann boundary conditions. Now we discuss inhomogeneous boundary
conditions. Natural boundary conditions are straightforward. If ∂u/∂n = g on ΓN , then for
any test function v ∈ H1

D(Ω), ∫
Γ

∂u

∂n
v ds =

∫
ΓN

gv ds,

and so the weak formulation becomes: Find u ∈ H1
D(Ω) such that∫

Ω

gradu · grad v dx = −
∫

Ω

f v dx+

∫
ΓN

gv ds for all v ∈ H1
D(Ω).

This is again of the form B(u, v) = F (v), where now F (v) contains an extra term arising
from the Neumann data.

Essential boundary conditions need to be built into the trial space. That is, if the
boundary condition is u = g on Γ (for simplicity suppose ΓN = ∅), we seek

u ∈ H1
g (Ω) := { v ∈ H1(Ω) | v|Γ ≡ g }.
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The weak equations are still∫
Ω

gradu · grad v dx = −
∫

Ω

f v dx for all v ∈ H1
D(Ω),

that is, the test space remains homogeneous. To see that there is still a unique solution,
choose any function ug ∈ H1(Ω) such that ug|Γ = g. Then

H1
g (Ω) = {ug + v | v ∈ H̊1(Ω) },

and the weak equations are satisfied by u = ug + u0 if and only if u0 ∈ H̊1(Ω) and

B(u0, v) = F (v)−B(ug, v) for all v ∈ H̊1(Ω).

For the finite element solution we thus can again use M̊1
0 (Th) as test space, but we cannot

use as trial space M1
0 (Th)∩H1

g (Ω), since, unless g happens to be piecewise linear, this space

is empty. Instead we use M1
0 (Th)∩H1

ḡ (Ω) where ḡ is some piecewise linear approximation to
g (with respect to the partition of Γ into edges of triangles of Th), e.g., its piecewise linear
interpolant, or L2(Γ)-projection.

3.4.4. Robin boundary conditions. As another example, we consider Poisson’s problem
with Robin boundary conditions, which model Newton’s law of cooling at the boundary (heat
flow through the boundary is proportional to the difference between the body’s temperature
and the outside temperature). This gives the boundary condition

∂u

∂n
= α(g − u)

where g is the outside temperature and α is a positive constant (positive since heat flow out
of the domain is positively proportional to −∂u/∂n and heat should flow out if u exceeds g.
Replacing g with αg we come to a boundary value problem like

∆u = f in Ω,
∂u

∂n
+ αu = g on Γ.

Since the boundary condition involves first derivatives, it cannot be imposed in H1(Ω).
Therefore the Robin boundary condition will prove to be a natural boundary condition. To
find the correct weak formulation, we multiply by a test function and integrate by parts to
obtain ∫

Ω

gradu · grad v dx−
∫

Γ

∂u

∂n
v dx = −

∫
Ω

fv dx.

Using the boundary condition we can rewrite this is as∫
Ω

gradu · grad v dx+

∫
Γ

αuv dx = −
∫

Ω

fv dx+

∫
Γ

gv dx.

The weak formulation is thus again of the form: Find u ∈ V such that B(u, v) = F (v) for
all v ∈ V , where V = H1(Ω), as for the pure Neumann problem, but now

B(u, v) =

∫
Ω

gradu · grad v dx+

∫
Γ

αuv dx, F (v) = −
∫

Ω

fv dx+

∫
Γ

gv dx.

In view of the Poincaré inequality, B is again a bounded symmetric bilinear form on H1×H1

and F is a bounded linear form. Moreover B(u, u) ≥ ‖gradu‖2
L2 , and B(u, u) = 0 only if

u ≡ 0 (since for such u, gradu = 0 and u = 0 on Γ). From this it follows (by a small argument
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which we omit) that B is equivalent to the usual inner product in H1(Ω). Thus Robin
boundary conditions can be incorporated easily into the weak formulation, and therefore
into a finite element discretization.

3.4.5. Curved boundaries. Finally we consider, briefly, the case where Ω has a curved
rather than polygonal boundary. This doesn’t affect the weak formulation, but the design
of finite element subspaces of H1(Ω) or H1

D(Ω) or H̊1(Ω) is non-trivial and has engendered
many algorithms, codes, and papers. By now curved boundaries are handled routinely in
the finite element method, but they do require additional effort.

In the case of natural boundary conditions, there is one obvious possibilitity. We may
triangulate a curved domain using ordinary triangles except for a layer of triangles containing
one curved edge near the boundary. See the figure.

Figure 6.5. A portion of a triangulation using curvilinear triangles near the boundary.

We may then specify a space of piecewise linear functions as before, by determining a
function on each triangle, straight or curved, by giving its vertex values. The only difficulty
with this approach is that it may not be straightforward to compute the necessary integrals
in the stiffness matrix.

In the case of Dirichlet boundary conditions there is a considerable additional difficulty.
Suppose we have a curvilinear triangle with two vertices on the boundary connected by a
curve e contained in the boundary. A linear function on the triangle which vanishes at the
two vertices will vanish on the entire straight line connecting them, not on the curve e. One
way to surmount this problem is not to face it. Instead, simply replace the original domain
Ω with a polygonal domain Ωh obtained by interpolating the vertices on the boundary
by a polygonal curve. This of course introduces an additional source of error. In fairly
general circumstances it can be shown that this new error doesn’t degrade the accuracy
of finite element methods based on piecewise linear finite elements, but it does degrade
the accuracy of higher order finite elements such as will be discussed below. This can be
overcome by simultaneously using higher order polynomial interpolation to the boundary,
e.g., approximating the curved edges of triangles by parabolic curves when using quadratic
finite elements. Yet another possibility is not to use polynomials trial functions at all on the
curved triangles. Instead one can construct a smooth mapping of a straight-edged reference
triangle onto a curvilinear triangles and use polynomial functions on the reference triangle.
The trial functions used on the curvilinear triangle are then the composition of the inverse
mapping to the reference triangle and polynomials on the reference triangle. A strategy
which turns out to be relatively easy to implement and to maintain good accuracy is to use
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a polynomial map from the reference polynomial to the true polynomial using polynomials
as the same degree as the trial functions on the reference triangle. This scheme is known as
isoparametric finite elements.

3.5. Other finite element spaces. We have thus seen many examples of boundary
value problems for which the trial and test spaces are H1(Ω) or a subspace of it incorporating
essential boundary conditions. For subspaces we have only considered piecewise linear finite
elements. One may also use piecewise polynomials of higher degree, and this turns out to
give finite element methods with higher rates of convergence.

We begin in one dimension: Ω = (0, 1), Th = {I1, . . . , In}, with In = [xn−1, xn], 0 = x0 <
x1 < · · · < xN = 1. In this case we studied the piecewise polynomial spaces Mp

0 (Th) for
any degree p > 0 in Chapter 1. We may use as a set of degrees of freedom the value of the
function at the nodes xn and at p− 1 points placed inside each element. This leads us to a
local basis. Typical basis elements for p = 2 are shown in Figure 6.6.

Figure 6.6. Some local basis functions for piecewise quadratic functions us-
ing a uniform partition of the unit interval into 10 equal elements. On the
axis, vertical lines indicate element boundaries; circles indicate nodes.
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In 2 dimensions we can construct higher degree finite element spaces in a similar manner.
If T is a triangle, we can uniquely specify a quadratic function on T by giving its value at
the three vertices and the three edge midpoints. See Figure 6.7. (Proof: since there are six
coefficients and six degrees of freedom it suffices to show that a quadratic vanishing at these
six points is identically zero. Since it vanishes at three points on each edge, it must vanish
on each edge. If the ith edge is given by li = 0 where li is a linear polynomial, then the
quadratic must be divisible by l1l2l3, which implies that it must be zero.)

Figure 6.7. Evaluation points, or nodes, for the degrees of freedom of a
quadratic function on a triangle.
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Now suppose we specify a piecewise quadratic function by giving values at all the nodes,
that is, the vertices and edge midpoints of the triangulation. If two triangles share a com-
mon edge, the two quadratic polynomials on the edge obtained by restricting the quadratic
polynomials on each of the two triangles to the edge will agree at three points on the edge.
Since a quadratic funtion on a line is determined by its value at three points, the restrictions
will agree. Thus the piecewise quadratic will be continuous. This shows that the values at
the nodes do indeed form a set of degrees of freedom for the space M2

0 (Th) of continuous
piecewise quadratics with respect to the triangulation Th. The dimension of this space is
thus the sum of the number of vertices and the number of edges, and we have a local basis.

Similar considerations apply to higher degree elements. The figure shows the nodal
configuration for continuous piecewise cubics and quartics.

Figure 6.8. Nodes for cubic and quartic elements.

3.6. Finite element approximation theory. We have seen that for many 2nd order
elliptic boundary value problems, the weak formulation is of the form:

Find u ∈ V such that

B(u, v) = F (v) for all v ∈ V ,
where V is some closed subspace of H1(Ω) incorporating essential boundary conditions,
B : V × V → R is a bounded bilinear, and F : V → R is a bounded linear form. In addition
to the boundedness,

|B(v, w)| ≤ C‖v‖1‖w‖1, v, w ∈ V,
for some constant C, we shall also assume coercivity in the sense that

B(v, v) ≥ γ‖v‖2
1, v ∈ V,

where γ is a positive constant. (This assumption is satisfied in many cases, although it can
be weakened in various ways. If B is also symmetric—which we don’t assume—then the
boundedness and coercivity together mean that B gives an inner product equivalent to the
usual one.) The Galerkin solution is defined as uh ∈ Sh such that

B(uh, v) = F (v) for all v ∈ Sh.

We then have B(uh, v) = B(u, v) for all v ∈ Sh, so if χ is an arbitrary element of Sh,
B(uh−χ, v) = B(u−χ, v) for all v ∈ Sh. Choosing v = uh−χ and using the coercivity and
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boundedness, we get

γ‖uh − χ‖2
1 ≤ B(uh − χ, uh − χ)

= B(u− χ, uh − χ)

≤ C‖u− χ‖1‖uh − χ‖1.

Thus ‖uh − χ‖1 ≤ (C/γ)‖u − χ‖1, and ‖uh − u‖1 ≤ (1 + C/γ)‖u − χ‖1. Since χ ∈ Sh is
arbitrary, this gives

(6.10) ‖u− uh‖1 ≤ c inf
χ∈Sh
‖u− χ‖1,

where c = 1 + C/γ. This says that when measured in H1, the error in the Galerkin ap-
proximation is no worse than a constant factor times the error in the best approximation
to u from Sh (with the constant independent of the particular solution u and the particular
subspace Sh). This property of the finite element solution is called quasioptimality.

The fundamental quasioptimality result (6.10) reduces the error in a Galerkin approxi-
mation to a question of approximation theory. We studied this question in some detail in
Chapter 1.6.2. There we obtained the following theorem.

Theorem 6.13. Let there be given a family of triangulations {Th} of a polygonal domain
Ω and let h = maxT∈Th diam(T ). Let r be a positive integer. For each h let Πh : C(Ω) →
M r

0 (Th) denote the nodal interpolant. Then there is a constant c such that

‖u− Πhu‖L∞(Ω) ≤ chr+1‖u(r+1)‖L∞(Ω) for all u ∈ Cr+1(Ω̄),

‖u− Πhu‖L2(Ω) ≤ chr+1‖u(r+1)‖L2(Ω) for all u ∈ Hr+1(Ω).

If, moreover, the family of triangulations is shape regular, then there is a constant C such
that

‖grad(u− Πhu)‖L∞(Ω) ≤ Chr‖u(r+1)‖L∞(Ω) for all u ∈ Cr+1(Ω̄),

‖grad(u− Πhu)‖L2(Ω) ≤ Chr‖u(r+1)‖L2(Ω) for all u ∈ Hr+1(Ω).

3.7. Error estimates. The combination of the quasioptimality estimate (6.10) and the
bounds on interpolation error of the last subsection immediately gives an H1 error estimate
for the finite element method using piecewise linear elements:

‖u− uh‖1 ≤ Ch‖D2u‖L2(Ω),

or simply

‖u− uh‖1 ≤ Ch‖u‖2,

where the norm on the right-hand side is the Sobolev 2 norm. For elements of degree r the
analogous result is

‖u− uh‖1 ≤ Chr‖u‖r+1.

In these estimates the constant C doesn’t grow as h tends to zero as long as the meshes
remain shape regular.

Thus the error in the finite element method with piecewise linear elements converges to
0 with order h in H1(Ω) as the mesh is refined. Since the method is closely related to the
five point Laplacian when applied to Poisson’s equation with a uniform mesh on the square,



176 6. NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

we might expect convergence with order h2. In fact we can obtain such a result by looking
at the rate of convergence in L2 rather than H1.

To be definite, let us consider the Dirichlet problem for Laplace’s equation, so that the
bilinear form is

B(u, v) =

∫
Ω

gradu · grad v dx,

and the finite element subspace is Sh = M̊1
0 (Th).

To obtain an L2 estimate we define an auxiliary function φ ∈ H̊1(Ω) as the solution of
the weakly posed boundary value problem

(6.11)

∫
Ω

grad v · gradφ dx =

∫
Ω

v(u− uh) dx for all v ∈ H̊1(Ω).

This is nothing other than the weak formulation of the boundary value problem

−∆φ = u− uh in Ω, φ = 0 on Γ,

that is the Dirichlet problem for Poisson’s equation where the error u − uh is taken as the
forcing term. At this point we have to invoke an elliptic regularity theorem. Namely if the
domain Ω is convex, then it is known that the solution φ to the boundary value problem
belongs to H2(Ω) and there exists a constant c such that ‖φ‖2 ≤ c‖u − uh‖0; that is, the
Sobolev 2-norm of the solution is bounded by the L2 norm of the forcing term. (The same
result holds when the boundary of Ω is smooth, but not in general if Ω is a non-convex
polygon.)

Setting v = u− uh in (6.11) we obtain

‖u− uh‖2
0 = B(u− uh, φ) = B(u− uh, φ− v) for all v ∈ Sh.

The last equality follows from the Galerkin equations. Thus

‖u− uh‖2
0 ≤ C‖u− uh‖1 inf

v∈Sh
‖φ− v‖1.

To get a bound on the last term we may take v = Πhφ:

inf
v∈Sh
‖φ− v‖1 ≤ ‖φ− Πhφ‖1 ≤ Ch‖φ‖2 ≤ Ch‖u− uh‖0,

where we have used the H1 error estimate for interpolation and the elliptic regularity result,
and where we are using the same letter C for various constants. Combining these estimates
we have shown that

‖u− uh‖0 ≤ Ch‖u− uh‖1,

that is, we pick up an additional power of h in passing from the H1 to the L2 norm of the
error. Thus

‖u− uh‖0 ≤ Ch2‖u‖2

for piecewise linear finite elements. Similarly,

‖u− uh‖0 ≤ Chr+1‖u‖r+1

for finite elements of degree r.
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Remarks. 1. The bound on the L2 norm of the error preceded by writing the norm
squared in the form B(u − uh, φ) for an auxiliary function φ defined by a boundary value
and then using the Galerkin equation. This approach is known as the Aubin-Nitsche duality
argument or sometimes just “Nitsche’s trick.” The same idea can be used to obtain a variety
of different estimates for a variety of different Galerkin methods. 2. The duality argument
requires H2 elliptic regularity, which in turn requires that the polygonal domain be convex.
In fact, for a non-convex polygonal domain, it will usually not be true that ‖u−uh‖0 = O(h2)
even if the solution u is smooth.

4. Difference methods for the heat equation

Consider the heat equation on a spatial domain Ω for a time interval [0, T ]. The solution
is a function u : Ω̄× [0, T ], such that

(6.12)
∂u

∂t
= c∆u+ f for x ∈ Ω, t ∈ [0, T ],

where the positive constant c depends on the conductivity, specific heat, and density of the
material, and f takes into account sources and sinks. To obtain a well-posed problem we
need to give boundary conditions such as

(6.13) u = 0 for x ∈ Γ, t ∈ [0, T ],

(Neumann or Robin boundary conditions could be used as well), and an initial condition

(6.14) u = u0 for x ∈ Ω, t = 0.

Let us suppose that Ω is the unit square in R2. Then we have a simple discretization of
the Laplacian, namely the 5-point Laplacian ∆h (mapping functions on Ω̄h to functions on
Ωh. Thus we seek a function uh : Ω̄h × [0, T ] satisfying

∂uh
∂t

= c∆h uh + f for x ∈ Ωh, t ∈ [0, T ],

uh = 0 for x ∈ Γh, t ∈ [0, T ],

uh = u0 for x ∈ Ωh, t = 0.

Since at any time t, uh is just the finite collection of numbers uh(ih, jh, t), we may view the
above problem as the initial value problem for a system of (N − 1)2 ordinary differential
equations. The process of reducing the evolutionary PDE to a system of ODEs by using
a finite difference approximation of the spatial operator is called semi-discretization or the
method of lines. This is not a full discretization, since we still have to chose a numerical
method to solve the ODEs. In principal, any of the methods we studied in Chapter 5 could
be used to obtain a full discretization. We shall investigate some of the simplest possibilities.

First we consider the forward Euler method. For simplicity, let us drop down to one
space dimension, so Ω = (0, 1). This is mainly a notational convenience; the analysis in 2D
is very similar. Let the spatial mesh size be denoted h = 1/N , and the time step k = T/M ,
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and write U j
n = uh(nh, jk). Then the fully discrete system is

U j+1
n − U j

n

k
= c

U j
n+1 − 2U j

n + U j
n−1

h2
+ f jn, 0 < n < N, j = 0, 1, . . .M − 1,(6.15)

U j
0 = U j

N = 0, j = 0, 1, . . . ,M,(6.16)

U0
n = u0(nh), 0 < n < N.(6.17)

We call this the centered difference/forward difference method for the heat equation. Since
the Euler method is explicit, we don’t have to solve any linear equations to get from (U j

n)n
to (U j+1

n )n. Indeed,

(6.18) U j+1
n = (1− 2λ)U j

n + λU j
n+1 + λU j

n−1 + kf jn, 0 < n < N, j = 0, 1, . . . ,M − 1,

where λ = ck/h2.
Figure 6.9 shows the result of this method applied with c = 1, h = 1/20, and k = 1/1200

for the first plot, k = 1/600 for the second. We take 40 time-steps in the first plot, 20 in the
second, and so reach T = 1/30 in each case. The initial data was taken, rather arbitrarily, to
be u0(x) = (x− x2)(x2 + sin 2πx), and the forcing function f was taken to be zero. We see
that the first computation gives very reasonable results (and we could have extended it for
a much longer time without problem), while the second computation becomes unreasonable
after a few time steps. In fact further experimentation shows that this is controlled by the
size of the time step in relation to the spatial mesh size. If λ ≤ 1/2 (i.e., k ≤ h2/(2c)), the
computation proceeds reasonably, while if λ > 1/2 the computed solution becomes oscillatory
with an exponentially increasing amplitude.

To analyze the situation, consider first the truncation error

τ jn =
uj+1
n − ujn
k

− c
ujn+1 − 2ujn + ujn−1

h2
− f jn,

where ujn = u(nh, jk). By Taylor’s theorem

τ jn =
k

2

∂2u

∂t2
− ch

2

12

∂4u

∂x4
,

where the derivatives are evaluated at appropriate points. Now let ejn = U j
n − ujn. Then

(6.19) ej+1
n = (1− 2λ)ejn + λejn+1 + λejn−1 − kτ jn.

Now suppose that λ ≤ 1/2. Then

|ej+1
n | = (1− 2λ)|ejn|+ λ|ejn+1|+ λ|ejn−1|+ k|τ jn|.

If we let Ej = maxn|ejn| denote the maximum norm of the error at the jth time step, we get

Ej+1 ≤ Ej + kτ

where τ = maxn,j|τ jn|. It follows that

(6.20) Ej ≤ E0 + jkτ = jkτ

for all j. Since we only integrate up to a fixed time T , jk ≤ T , we have maxn,j|ejn| ≤
Tτ ≤ C(k + h2). Since k ≤ h2/(2c), the error is O(h2). In particular, we have established
convergence h, k → 0 as long as the condition k ≤ h2/(2c) is maintained (e.g., we can let
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Figure 6.9. The heat equation discretized using central differences and for-
ward Euler, with two different time steps (k = h2/3 on the left, k = 2h2/3 on
the right). The top plots show the results at all time steps; the bottom figures
only at the final time.
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h→ 0 and set k = ρh2 for any ρ ≤ 1/(2c). Thus we have established conditional convergence
of the centered difference/forward difference method.

Notice that, just as we derived (6.20) from (6.19) under the assumption that k ≤ h2/(2c),
under the same assumption we can deduce from the discrete equations (6.18) that

max
0≤nh≤1
0≤jk≤T

|U(nh, jk)| ≤ max
0≤nh
|u0(nh)|.

This is a stability result: it says that the linear map which takes the initial data to the
fully discrete solution is bounded if the data is measured in the discrete max norm over the
interval and the solution in the discrete space-time max norm, and the bound (which is 1)
does not blow-up as the mesh size is decreased. In view of our past experience, we should not
be suprised that a method which is stable and consistent (in the sense that the truncation
error tends to zero with mesh size), is convergent.

Another very useful way to analyze stability and convergence is to use Fourier analysis,
as we did for 5-point Laplacian earlier in this chapter. To get the idea, first recall how the
continuous problem (6.12)–(6.14) may be solved in terms of Fourier series. We expand the
solution at any given time a Fourier sine series (we only use sines, and not cosines, in view
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of the Dirichlet boundary conditions):

u(x, t) =
∞∑
m=1

am(t) sinmπx, x ∈ I.

Assume, for simplicity, that the forcing function f vanishes, and substitute the expansion
into the differential equation to get

∞∑
m=1

a′m(t) sinmπx = −c
∞∑
m=1

am(t)m2π2 sinmπx,

and, using the orthogonality of the sine functions, we conclude that

a′m(t) = −cm2π2am(t) so am(t) = am(0)e−cm
2π2t.

The values am(0) can be determined from the Fourier sine expansion of the initial data:

u0(x) =
∞∑
m=1

am(0) sinmπx, x ∈ I.

Thus we see that all the modes that are present in the initial data are damped exponentially
with increasing time, with the higher frequency modes being damped most quickly. For this
reason heat evolution is a smoothing process.

Now let us do the same thing for the semi-discrete problem. Recall the notations we
used to introduce the discrete Fourier sine bases. With Ih = {nh | 0 ≤ n ≤ N } and
Īh = Ih ∪ {0, 1}, we let L(Ih) denote the set of real-valued functions on Ih which may
be viewed as functions on Īh by extension by zero. On L(Ih) we use the inner product

〈u, v〉h = h
∑N−1

k=1 u(kh)v(kh), and the orthogonal basis {φm |m = 1, . . . , N − 1 } given by
φm(x) = sinπmx, x ∈ Īh. These are eigenvalues of the 1D discrete Laplacian D2

h:

D2
hφm = −λmφm, λm =

4

h2
sin2 πmh

2
.

The eigenvalues satisfy

8 ≤ λ1 < λ2 < · · · < λN−1 <
4

h2
.

Proceeding as for the continuous solution, at any time t we write the semi-discrete solution
uh(t, · ) =

∑N−1
m=1 a

h
m(t)φm. Then

∂uh
∂t

=
N−1∑
m=1

dahm
dt

φm, D2
huh = −

N−1∑
m=1

ahmλmφm.

Thus the semi-discrete equations give

dahm
dt

= −cλmahm so ahm(t) = ahm(0)e−cλmt,

where the numbers ahm(0) are the coefficients in the discrete Fourier sine transform of the
initial data:

u0(x) =
N−1∑
m=1

ahm(0) sinπmx, x ∈ Īh.
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Thus the solution of the semi-discrete system may be written as

uh(x, t) =
N−1∑
m=1

ahm(0)e−cλmt sin πmx, x ∈ Īh.

Again all the modes that are present in the discretized initial data are damped exponentially
with increasing time.

Finally, consider the fully discrete centered difference/forward difference method. Let U j

be the solution at time t = jk (i.e., U j(nh) = U j
n). Write

U j(x) =
N−1∑
m=1

Ajmφm(x).

The difference equations then give

N−1∑
m=1

Aj+1
m φm =

N−1∑
m=1

Ajmφm − ck
N−1∑
m=1

Ajmλmφm i.e., Aj+1
m = (1− ckλm)Ajm.

It follows that

Ajm = (1− ckλm)jahm(0), U j =
N−1∑
m=1

(1− ckλm)jahm(0)φm.

Now λm ≤ 4/h2 for all m, so ckλm ≤ 4ck/h2, and so, if we assume that ck/h2 ≤ 1/2, we
get ckλm ≤ 2 and |1− ckλm| ≤ 1 for all m. Thus in this case (or at least if strict inequality
holds), we qualitative behavior of the continuous solution, that all modes of the initial data
are damped, is also present in the discrete case as well. On the other hand, if ck/h2 > 1/2,
then for h sufficiently small we will have |1 − ckλm| > 1 for larger values of m, and this
means that high frequency components of the initial data will increase exponentially with
increasing time step. This explains the behavior we saw earlier.

The same ideas can be used to establish a rigorous stability result. Suppose that U j
n satsi-

fies the fully discrete centered difference/forward difference equations (6.15)–(6.17). Writing
U j, f j for the restrictions of U and f to t = jk, we have

(6.21) U j+1 = (I + ckD2
h)U

j + kf j, j = 0, 1, . . . ,M − 1.

Now I + ckD2
h is a symmetric operator on L(Ih), so its operator norm with respect to

the discrete L2 norm on L(Ih) is simply the magnitude of its largest eigenvalue. Now the
eigenvectors of the operator I + ckD2

h are again the φm, with corresponding eigenvalues
1− ckλm. If ck/h2 ≤ 1/2, then maxm|1− ckλm| ≤ 1, and hence ‖(I + ckD2

h)v‖h ≤ ‖v‖h for
any v ∈ L(Ih). Thus from (6.21), we get

‖U j+1‖h ≤ ‖U j‖h + k‖f j‖, j = 0, 1, . . . ,M − 1.

Bounding ‖f j‖ by max0≤j≤M−1‖f j‖ and iterating this result (recall that Mk = T ), we get

(6.22) max
0≤j≤M

‖U j‖h ≤ ‖U0‖h + T max
0≤j≤M−1

‖f j‖h.

Thus, under the hypothesis ck/h2 ≤ 1/2 we have show that the fully discrete solution is
bounded (in the norm displayed on the left-hand side of (6.22) by an appropriate norm on
the data U0 and f , with constants that don’t depend on h and k. Because of the condition
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ck/h2 ≤ 1/2, which we know is not only sufficient but necessary for stability, the centered
difference/forward difference method is called conditionally stable.

Once we have stability, we obtain a convergence result in the same way as we did earlier
for the 5-point Laplacian. For the error ejn = U j

n − ujn we have

ej+1
n − ejn
k

= c
ejn+1 − 2ejn + ejn−1

h2
− τ jn, 0 < n < N, j = 0, 1, . . .M − 1,

ej0 = ejN = 0, j = 0, 1, . . . ,M,

e0
n = 0, 0 < n < N,

where τ jn is the local truncation error. It follows from the stability result that

max
0≤j≤M

‖ej‖h ≤ T max
0≤j≤M−1

‖τ j‖h

Of course

max
0≤j≤M−1

‖τ j‖h ≤ max
0≤j≤M−1

0≤n≤N

|τ jn| = O(k + h2),

so we have obtained O(k + h2) convergence of the method. Since we required k ≤ h2/(2c)
to obtain the result, we may write the error simply as O(h2).

4.1. The centered difference/backward difference method. We consider now a
different time discretization for the heat equation (6.12), namely we consider the backward
Euler method rather than the forward Euler method. This leads to the centered differ-
ence/backward difference method:

U j+1
n − U j

n

k
= c

U j+1
n+1 − 2U j+1

n + U j+1
n−1

h2
+ f j+1

n , 0 < n < N, j = 0, 1, . . .M − 1,

U j
0 = U j

N = 0, j = 0, 1, . . . ,M,

U0
n = u0(nh), 0 < n < N.

Thus U j+1 must be determined by solving the tridiagonal system

−λU j+1
n+1 + (1 + 2λ)U j+1

n − λU j+1
n−1 = U j

n + kf j+1
n , 0 < j < N, .U j+1

0 = U j+1
N = 0.

The matrix is strictly diagonally dominant, so there exists a unique and no pivoting is needed
if Gaussian elimination is used. The amount of work to solve the system is thus O(N). It
is easy to see that the truncation error for the scheme is again O(k + h2). To determine the
stability of this method, we will use Fourier analysis. In operator form the method is

U j+1 − U j

k
= cD2

hU
j+1 + kf j+1,

or

U j+1 = (I − ckD2
h)
−1(U j + kf j+1).

The operator I − ckD2
h has eigenvalues 1 + ckλm which are all greater than 1, so the norm

of (I − ckD2
h)
−1 is less than 1. Thus we obtain

‖U j+1‖h ≤ ‖U j‖h + k‖f j+1‖, j = 0, 1, . . . ,M − 1.
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and hence the stability result

max
0≤j≤M

‖U j‖h ≤ ‖U0‖h + T max
1≤j≤M

‖f j‖h.

We did not have to make any assumption on the relation between k and h to obtain this result:
the centered difference/forward difference method is unconditionally stable. Combining this
with the bounds on the truncation error, we find obtain an error estimate

max
0≤j≤M

‖ej‖h = O(k + h2)

for the method.

4.2. The Crank-Nicolson method. If we use the trapezoidal method to discretize in
time, we get the Crank-Nicolson method:

U j+1
n − U j

n

k
=
c

2
(D2

hU
j +D2

hU
j+1) +

1

2
(f j + f j+1).

Using a Taylor expansion about the point (nh, (j+ 1/2)k) it is straightforward to show that
the truncation error is O(k2 + h2), so the Crank-Nicolson method is second order in both
space and time. In operator terms the method is

U j+1 = (I − 1

2
ckD2

h)
−1(I +

1

2
ckD2

h)U
j +

k

2
(I − 1

2
ckD2

h)
−1(f j + f j+1).

As before the operator norm of (I − (1/2)ckD2
h)
−1 is bounded by 1. The eigenvalues of

(I − 1
2
ckD2

h)
−1(I + 1

2
ckD2

h) are (1 − ckλm/2)/(1 + ckλm/2) which are all less than 1 since
ckλm/2 > 0. Thus the operator norm of this composition is less than 1 and we can get
unconditional stability. The Crank-Nicolson method then converges with O(k2 + h2). We
may choose k proportional to h, rather than to h2 as in the previous methods, and obtain
an error of O(h2).

Include here a table showing the stencil, implicit/explicit, order, and stability of each of
the three methods considered.

5. Difference methods for hyperbolic equations

As the very simplest hyperbolic equation we consider the advection equation

∂u

∂t
+ c

∂u

∂x
= 0,

where c is a constant. We consider an initial value problem, so that the function u = u(x, t)
is given when t = 0 and is to be found for t > 0. The spatial domain may be an interval,
in which case we will need to impose boundary conditions to obtain a well-posed initial
value-boundary value problem, or the entire real line (the pure initial-value problem).

Let u be a solution to the pure initial-value problem for the advection equation. Fix some
x0 and let U(t) = u(x0 + ct, t). Then dU/dt ≡ 0 so U(t) = U(0) for all t, or u(x0 + ct, t) =
u0(x0), where u0 is the initial data. Substituting x0 = x− ct we get

u(x, t) = u0(x− ct), x ∈ R, t ≥ 0.

Thus for the pure initial value problem we have given the solution to the advection equation
analytically. The initial data is simply transferred to the right with speed c (for c > 0). The
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solution is constant on the lines {(x0 + ct, t} of slope 1/c, which are called the characteristics
of the equation.

Now suppose that the spatial domain is an interval, (0, 1) say. From the above consider-
ations the solution is determined at the boundary point x = 1 for 0 ≤ t ≤ 1/c by the initial
data: u(1, t) = u0(1 − ct). If the u is given on the left boundary, u(0, t) = g(t), say, then u
is determined everywhere:

u(x, t) =

{
u0(x− ct), x ≥ ct,

g(t− x/c), x < ct.

We have thus given the exact solution to the initial value-boundary value problem

∂u

∂t
+ c

∂u

∂x
= 0, 0 < x < 1, t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = g(t), t > 0.

The only boundary condition needed is on the left, or inflow boundary. It is not necessary
or permissible to give a boundary condition on the right or outflow boundary.

Although the advection equation is so simple that we can solve it analytically, it admits
many generalizations that lead to truly interesting equations, and so is valuable to study as
a model problem. Some generalizations are variable coefficients c = c(x, t), which result in
curves rather than lines as characteristics, lower order terms,

∂u

∂t
+ c

∂u

∂x
+ du = f,

hyperbolic systems, where u(x, t) takes values in Rn and c is an n × n matrix, hyperbolic
problems in two or more space dimensions like

∂u

∂t
+ c

∂u

∂x
+ d

∂u

∂y
= 0,

and nonlinear hyperbolic equations such as (inviscid) Burger’s equation

∂u

∂t
+ u

∂u

∂x
= 0,

in which the coefficients depend on the solution. Hyperbolic problems of higher order (i.e.,
involving second or higher partial derivatives.)

Suppose we have a system of the form ∂u/∂t + C∂u/∂x = 0 where u(x, t) ∈ Rn and C
is an n× n matrix with real eigenvalues (e.g., a symmetric matrix). Say C = S−1DS, with
S invertible and D a diagonal matrix. If we change dependent variables by v = S−1u, then
we get ∂v/∂t+D∂v/∂x = 0, i.e., ∂vi/∂t+ di∂vi/∂x = 0, i = 1, . . . , n. Thus the hyperbolic
system decouples into n advection equations whose speeds are the eigenvalues of the original
coefficient matrix.

As an example, consider the wave equation ∂2w/∂t2 − ∂2w/∂x2 = 0. Let u1 = ∂w/∂t,
u2 = ∂w/∂x. Then

∂

∂t

(
u1

u2

)
+

(
0 −1
−1 0

)
∂

∂x

(
u1

u2

)
= 0.
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Thus

C =

(
0 −1
−1 0

)
= S−1DS, S =

(
1 1
1 −1

)
, D =

(
−1 0
0 1

)
.

Thus we can find the solution from u1 + u2, which is just a wave moving to the left, and
u1 − u2, a wave moving to the right.

5.1. Difference methods for the advection equation. In simple cases, hyperbolic
problems can be solved by determining the characteristics (which often involves solving
ODEs), and then determining the solution along the characteristics (again often an ODE
problem). This method of characteristics is a viable numerical methods in some cases.
However it range of applicability is too limited for many important hyperbolic problems
which arise, for example it cannot be easily applied to hyperbolic systems in several space
dimensions. In this section we will study instead difference methods for hyperbolic problems.
For simplicity, we will investigate them only for the simple model problem of the advection
equation.

∂u

∂t
+ c

∂u

∂x
= 0.

We suppose that c > 0, so the solution is a wave travelling to the right.
Consider first the most obvious difference methods for the advection equation. We use

forward differences to discretize the time derivative, and three different possibilities for the
space derivative: forward differences, backward differences, and centered differences. Thus
the three methods are:

forward-forward
U j+1
n − U j

n

k
+ c

U j
n+1 − U j

n

h
= 0,

forward-backward
U j+1
n − U j

n

k
+ c

U j
n − U

j
n−1

h
= 0,

forward-centered
U j+1
n − U j

n

k
+ c

U j
n+1 − U

j
n−1

2h
= 0.

If we set λ = ck/h, these can be written

forward-forward U j+1
n = −λU j

n+1 + (1 + λ)U j
n,

forward-backward U j+1
n = (1− λ)U j

n + λU j
n−1,

forward-centered U j+1
n = −λ

2
U j
n+1 + U j

n +
λ

2
U j
n−1.

The truncation error is clearly O(k + h) for the first two methods and O(k + h2) for the
third.

Include numerical results here.

Numerical experiments suggest that if λ is sufficiently small, the forward-backward
method is stable and convergent, but not for larger λ, i.e., that the forward-backward
method is conditionally stable. On the other hand the forward-forward method and the
forward-centered method appear to be unstable for any positive value of λ.

In fact, the non-convergence of the forward-forward method is easy to establish, even
without considering stability. The solution to the advection equation at a point x at time t
depends only on the initial data at the point x − ct at time 0—in fact it equals the initial
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data there. (Other hyperbolic problems, such as the wave equation, the solution at a point x
at time t may depend on the initial data on an interval, not just a point, but the existence of
a bounded domain of dependence is typical feature of hyperbolic equations. Now consider the
forward-forward difference method. It is easy to see that the value at a mesh point x = nh at
a time t = jk depends only on the inital data at the mesh points in the interval [x, x+ ct/λ].
Now this interval doesn’t contain the point x − ct, for any positive value of λ. Hence, if
we choose initial data which is equal to 1 at x− ct, but identically zero on [x,∞), the true
solution of the advection equation will satisfy u(x, t) = 1, but the numerical solution will
be zero, and will remain zero as h, k → 0. In short, the numerical domain of dependence
fails to include the true domain of dependence, which is necessary for a convergent method.
This necessary condition, which fails for the forward-forward difference method, is called the
Courant-Friedrichs-Levy condition, or CFL condition.

If we apply the CFL condition to the forward-backward method, we see that the method
can only be conditionally convergent. Indeed, the numerical domain of dependence is the
interval [x−ct/λ, x], and this contains the true domain of dependence if and only if 0 < λ ≤ 1.
Hence 0 < λ ≤ 1 is a necessary condition for convergence. In fact, we shall see, that the
method is stable and convergent if and only if this condition is met. (Note: we are assuming
c > 0, so λ > 0. If c < 0, then the forward-backward method never converges, but the
forward-forward method converges for 0 > λ ≥ −1.)

One should not think, however, that the CFL condition is generally sufficient for conver-
gence. For example, the CFL condition for the forward-centered scheme is |λ| ≤ 1, but the
method turns out to be unconditionally unstable.

Conditional stability in the max norm is easy to establish for the forward-backward
method. If we consider the method, including a forcing term in the equation, we get

U j+1
n = (1− λ)U j

n + λU j
n−1 + kf jn.

If we assume that 0 ≤ λ ≤ 1, we easily deduce that

‖U j+1‖∞ ≤ ‖U j‖∞ + k‖f j‖∞,
and so

max
0≤j≤M

‖U j‖∞ ≤ ‖U0‖∞ + k
M−1∑
j=0

‖f j‖∞,

i.e., stability with respect to the both the initial data and the forcing function. From this,
the usual argument shows that the max norm of the error is bounded by k

∑M−1
j=0 ‖τ j‖∞

where τ is the truncation error, and so we get O(k + h) convergence.
If λ > 1, however, the magnitudes of the coefficients 1 − λ and λ sum to more than

1 and this argument fails (as, in fact, does max norm stability). Similarly the sum of the
magnitudes of the coefficients for the forward-forward scheme, 1 + λ and −λ, exceeds 1 for
any positive λ, and the same holds for the coefficients of the forward-centered scheme.

It is important to point out that the forward-forward method is unconditionally unstable
for advection to the right, and the forward-backward method is unconditionally unstable for
advection to the left. Since the wave equation involves the superposition of both of these,
neither scheme is stable for the wave equation.

The Lax–Friedrichs method is a variant of the forward-centered method which maintains
O(k + h2) accuracy and which is conditionally stable for advection to the right or left. The
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scheme is
U j+1
n − (U j

n+1 + U j
n−1)/2

k
+ c

U j
n+1 − U

j
n−1

2h
= 0,

or
U j+1
n = (1/2− λ/2)U j

n+1 + (1/2 + λ/2)U j
n−1.

It isn’t hard to see that the method is stable if |λ| ≤ 1. The truncation error is O(k + h2 +
h2/k), which is O(h) if λ is held-fixed.

Note that the Lax–Friedrichs method can be rewritten

U j+1
n − U j

n

k
+ c

U j
n+1 − U

j
n−1

2h
− ch

2λ

U j
n+1 − 2U j

n + U j
n−1

h2
= 0.

Thus the method suggests discretization of the equation

∂u

∂t
+ c

∂u

∂x
− ch

2λ

∂2u

∂x2
= 0.

This is an advection–diffusion equation with an O(h) coefficient multiplying the diffusion
term. Thus the Lax–Friedrichs method can be viewed as a variant of the forward-centered
difference method in which a small amount of artificial diffusion has been added to stabilize
the numerical method.

5.2. Fourier analysis. We can also use discrete Fourier analysis to study the stability
of these methods. This is known as von Neumann stability analysis. For simplicity we
consider a 1-periodic problem rather than a boundary value problem:

∂u

∂t
(x, t) + c

∂u

∂x
(x, t) = 0, x ∈ R, t > 0,

u(x+ 1, t) = u(x, t), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

We take as spatial mesh points nh, h = 1/N , n ∈ Z, and seek a solution U j
n ≈ u(nh, jk)

which satisfies the periodicity condition U j
n+N = U j

n, n ∈ Z, for each time level j. We will also
simplify by considering complex-valued rather than real-valued solutions. Let Lper

h denote
the space of complex-valued 1-periodic functions on Zh (functions Uj = U(jh) satisfying
Uj+N = Uj). As a basis for this space we can choose the functions ψm, m = 0, 1, . . . , N − 1,
defined by ψm(x) = exp(2πimx), x ∈ Zh. The ψm are orthonormal with respect to the inner

product 〈φ, ψ〉h = h
∑N−1

n=0 φ(nh)ψ(nh).
Now let τ+

h denote the simple forward shift operator on Lper
h : τ+

h U(x) = U(x + h) or
τ+
h Uj = Uj+1. Then τ+

h ψm = exp(2πimh)ψm, i.e., ψm is an eigenvector of the forward
shift operator with eigenvalue exp(2πimh). Similarly ψm is an eigenvector of the backward
shift operator, and consequently also of the forward difference operator D+

h = (τ+
h − I)/h,

the backward difference operator D−h = (I − τ−h )/h, and the centered difference operator
Dh = (τ+

h − τ
−
h )/2h. For example,

D−h ψm =
1− e−2πimh

h
ψm.

Now consider the forward-backward difference equations, which we may write as

U j+1 = (1− λ)U j + λτ−h U
j
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(as usual a forcing term can be added without difficulty). Defining S : Lper
h → Lper

h by
SV = (1− λ)V + λτ−h V , the method is

U j+1 = SU j.

Now Sφm = (1− λ+ λe−2πimh)φm, so

‖S‖L(Lper
h ,Lper

h ) = max
m=0,1,...,N−1

|1− λ+ λe−2πimh|.

Since the eigenvalues 1 − λ + λe−2πimh lie on a circle of radius |λ| around 1 − λ, we get
‖S‖ ≤ 1 if and only if 0 ≤ λ ≤ 1.

We now give several further examples of von Neumann analysis:
The forward-centered difference method for the advection equation: The eigenvalues are

−λ
2
e2πimh + 1 +

λ

2
e−2πimh = 1− iλ sin 2πmh.

Every eigenvalue has magnitude greater than 1, showing that the method is indeed uncon-
ditionally unstable.

Lax-Friedrichs method for the advection equation: The eigenvalues are

(
1

2
− λ

2
)e2πimh + (

1

2
+
λ

2
)e−2πimh = cos 2πmh− λi sin 2πmh.

The method is stable if |λ| ≤ 1.
Backward-centered difference method for the advection equation: The method is

U j+1
n − U j

n

k
+ c

U j+1
n+1 − U

j+1
n−1

2h
= 0,

so
SU j+1 − U j = 0 or U j+1 = S−1U j,

where S has as eigenvalues

1 + λ
e2πimh − e−2πimh

2
= 1− λi sin 2πmh.

Thus all the eigenvalues of S have modulus greater than 1, and so the norm of S−1 is less
than 1. The method is unconditionally stable.

Von Neumann stability analysis applies to a wide variety of evolution equations and
difference methods, in fact to virtually any equation with constant coefficients and any
difference method on a uniform mesh. In the case of parabolic problems it is very close to the
Fourier analysis we considered earlier, except that it assumes periodic rather than Dirichlet
boundary conditions. As a final example, we analyze the centered in space, forward in time
difference method for the heat equation, this time with periodic boundary conditions. The
method is

U j+1
n = U j

n + λ(U j
n+1 − 2U j

n + U j
n−1),

λ = ck/h2. The von Neumann eigenvalues are

1 + λ(e2πimh + e−2πimh − 2) = 1 + 2λ(cos 2πmh− 1).

Since 0 ≥ cos 2πmh − 1 ≥ −2 (with both equalities possible), the eigenvalues range from 1
to 1 − 4λ, and to have stability, we need 1− 4λ ≥ −1 or λ ≤ 1/2. We have thus recovered
the stability condition.
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6. Hyperbolic conservation laws

This section, when written will give a very brief introduction to (scalar, 1D, nonlinear)
hyperbolic conservation laws ending with a brief presentation of Godunov’s method and
Glimm’s method.

Consider some quantity spread through space, with a density u(x, t) that varies in space
and time. We consider here only the case of one space dimension, so x ∈ R. A good example
to have in mind is a long pipe filled with gas, with u(x, t) representing the density of gas a
distance x along the pipe at time t. Then the total quantity of gas in some interval [a, b] at

some time t is
∫ b
a
u(x) dx.

The flux F at the point x and time t is, by definition, the rate per unit time at which the
quantity flows past the point x. Thus, if [a, b] is an interval, the rate at which the quantity
flows into the interval from the left is F (a, t) (this is negative if the quantity is flowing out of
the interval at a) and the rate at which it flows in from the right is−F (b, t). The total amount

of material that flows in over some time interval [t1, t2] is then
∫ t2
t1
F (a, t) dt−

∫ t2
t1
F (b, t) dt.

Now suppose that the quantity is conserved. That is, the difference between the quantity
in some interval at some time t1 and the quantity in the same interval at a later time t2 is
entirely accounted for by the amount flowing in and out the end points of the interval. We
may express this by the equation

(6.23)

∫ b

a

u(x, t2) dx−
∫ b

a

u(x, t1) dx =

∫ t2

t1

F (a, t) dt−
∫ t2

t1

F (b, t) dt.

This equation is to hold for all a < b and all t1 < t2. This is an integral form of a conservation
law.

Now suppose that the both u and F are smooth functions. Then we may use the funda-
mental theorem of calculus to write (6.23) as∫ t2

t1

∫ b

a

[
∂u

∂t
(x, t) +

∂F

∂x
(x, t)

]
dxdt.

This will hold for all choices of intervals if and only if

∂u

∂t
+
∂F

∂x
= 0.

This is the differential form of the conservation law.
STOPPED HERE

Consider the nonlinear first order hyperbolic equation

(6.24)
∂u

∂t
+ c(u)

∂u

∂x
= 0, x ∈ R, t > 0,

which describes the transport of some quantity with a velocity that depends on the amount
of the quantity present. We suppose that the inital data u(x, 0) = u0(x) is given. We may
solve this problem by the method of characteristics. Assume that u(x, t) is a smooth solution,
and let x0 be any point. A characteristic curve X(t) is defined by the ODE initial value
problem

(6.25)
dX

dt
(t) = c

(
u(X(t), t)

)
, X(0) = x0.
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Then u is constant on the characteristic, because

d

dt
u
(
X(t), t

)
=

(
∂u

∂t
+ c(u)

∂u

∂x

)(
X(t), t

)
= 0.

Thus u
(
X(t), t

)
= u

(
X(0), 0

)
= u0(x0) for all t. Therefore the ODE (6.25) is trivial. It

just says that dX/dt equals the constant value c
(
u0(x0)

)
, so X(t) is the linear function

X(t) = x0 + c
(
u0(x0)

)
t.

Thus the characteristics for the nonlinear advection equation (6.24) are straight lines.
The solution u is constant on each characteristic line, with the slope of the line equal to
1/c(u).

The simplest nonlinear case is given by c(u) = u so the differential equation is

(6.26)
∂u

∂t
+ u

∂u

∂x
= 0.

This equation is known as the inviscid Burger’s equation. It describes a quantity advecting
with a speed proportional to its density.

Suppose first that the initial data u0 is continuous and monotone increasing. In this case
the characteristics sweep out the whole upper half-plane as shown on the left of Figure 6.10
and thus the solution u is uniquely determined everywhere. On the other hand, if the initial
data is decreasing, then the characteristics will cross as on the right of Figure 6.10. This
constitutes a proof that the initial value problem for (6.26) does not admit a smooth solution
for all t > 0 when the initial data is increasing. (If a solution did exist, we would obtain a
contradiction by following two crossing characteristics to obtain two different values for the
solution at the same point.)

This section needs to be finished. We need a bunch of diagrams including the one referred
to in the last paragraph.

Figure 6.10. . . .

Exercises

(1) Consider a nine-point difference approximation to the Laplacian of the form

∆∗hvm,n =
1
h2

[α(vm−2,n + vm+2,n + vm,n−2 + vm,n+2)

+ β(vm−1,n + vm+1,n + vm,n−1 + vm,n+1) + γvm,n] = fm,n.

Show how to choose the constants α, β, and γ so that the scheme ∆∗hv = f is consistent
to fourth order with the equation ∆u = f .

(2) Next consider a nine-point approximation of the form

∆∗hvm,n =
1
h2

[α(vm−1,n−1 + vm−1,n+1 + vm+1,n−1 + vm+1,n+1)

+ β(vm−1,n + vm+1,n + vm,n−1 + vm,n+1) + γvm,n].
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Show that there is no choice of constants α, β, and γ so that the scheme is fourth order
accurate. However show that the coefficients can be chosen to give a fourth order scheme
of the form ∆∗hv = Rf where

Rfm,n = (fm−1,n + fm+1,n + fm,n−1 + fm,n+1 + 8fm,n)/12.

(3) Show that with the same choice of coefficients as in the last problem the scheme ∆∗v = 0
is a sixth order accurate approximation of the homogeneous equation ∆u = 0.

(4) Consider the solution of the Poisson equation with zero Dirichlet boundary conditions on
a hexagon. Develop a seven-point Laplacian using mesh points lying at the vertices of a
grid of equilateral triangles, as shown below. Prove convergence of the method and exhibit
the rate of convergence.

(5) Find a weak formulation for the one-dimensional boundary value problem

−(au′)′ + bu′ + cu = f in (0, 1), u(0) = α, u(1) + 2u′(1) = β,

where a, b, c, f : [0, 1]→ R are given.

(6) Consider the solution to one-dimensional Poission equation

u′′ = f in (0, 1), u(0) = u(1) = 0,

using piecewise linear finite element on an arbitrary partition of the interval. Prove that
the finite element solution uh coincides with the interpolant Πhu. Note: this result is
special to the Poisson equation in one-dimension. The analogue in two dimensions is
certainly false.

(7) a) Let I = (a, b) be an interval. Prove the one-dimensional Poincaré inequality

‖u‖L2(I) ≤ c‖u′‖L2(I)

for u ∈ H1(I) such that u(a) = 0. Try to get the correct value for the constant c. In
particular make clear how it depends on the length of the interval.

b) Prove the Poincaré inequality for H̊1 functions on the unit square.

(8) a) Let T̂ be the triangle with vertices â1 = (0, 0), â2 = (1, 0), â3 = (0, 1). Find the
formulas for the three linear nodal basis function λ̂i which satisfy λ̂i(âi) = δij .

b) Same problem but now find all six quadratic nodal basis functions on T̂ .

c) Now let T be an arbitrary triangle with vertices a1, a2, a3. Find the formulas for the
linear nodal basis functions in this case.

(9) Obtain stability and convergence for the centered difference/backward difference method
for the heat equation using the discrete max norm in time and space.
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(10) Consider the use of centered differences in space and Crank-Nicolson in time for the
advection equation. Use von Neumann analysis to show unconditional stability of this
method.

(11) The reverse Lax–Friedrichs scheme for the advection equation is

(U j+1
n+1 + U j+1

n−1)/2− U j+1
n

k
+ c

U j+1
n+1 − U

j+1
n−1

2h
= 0.

Investigate the consistency, order, and stability of this scheme.



CHAPTER 7

Some Iterative Methods of Numerical Linear Algebra

1. Introduction

In this section we return to the question of solving linear systems Au = f , A ∈ Rn×n,
f ∈ Rn given, and u ∈ Rn is sought. We have in mind mostly the case where A arises from
discretization of a PDE (which is why we have chosen to use u and f rather than x and b for
the vectors). For example, A might be −D2

h or −∆h, the discrete Laplacian in one or two
dimensions, or it might be the stiffness matrix from a finite element method, or the linear
system which arises at each time step from the discretization of an evolutionary PDE by an
implicit method such as backward differences in time or Crank-Nicolson. Therefore A may
be a very large matrix, but it is also very sparse. In fact the number of non-zero elements in
the matrix A is generally O(n) rather than O(n2). E.g., for the 5-point Laplacian it is about
5n. We shall only consider the case where A is symmetric positive definite (SPD). This is
both because that is an important case, and because the theory is far simpler and better
developed in that case.

First let us recall earlier results. We may of course use Cholesky factorization. This takes
roughly n3/6 multiplications and additions. However this ignores the sparsity of A. If A has
a banded structure with semibandwidth d, that is aij = 0 if |i− j| ≥ d, then each step of the
Cholesky algorithm preserves this structure, and we can suppress the steps that zero entries
d or more positions below the diagonal. Careful operation counting reveals that a Cholesky
factorization then costs about nd2/4 operations. For example, if A = −D2

h so d = 1, and we
have only O(n) operations, and so have an optimal algorithm (no operation could require
less than one operation—it must take at least one operation to compute each component
of the solution). However, if we consider the 5-point Laplacian on the unit square using a
mesh spacing of h = 1/N , then the matrix size is n × n with n = (N − 1)2 ≈ h−2 and the
semibandwidth is N − 1 ≈ h−1. Thus Cholesky factorization can be implemented in about
h−4/4 = O(n2) operations. This is significantly better than what would occur if we were to
ignore sparsity—then we would require h−6/6 = O(n3) operations—but it is not optimal.

In this chapter we will consider iterative methods, which start with an initial guess u0

and construct iterates u1, u2, . . . which—hopefully—converge to the exact solution.

A method which we have already discussed is the conjugate gradient method, which we
derived as a line-search method for minimizing F (x) = uTAu/2−uTf (the minimum occurs
exactly at the solution of Au = f). Due to the sparsity of A, each iteration of the conjugate
gradient method only requires O(n) operations. For this method we proved that the error
e = u− ui converges linearly to 0:

‖ei‖ ≤ Cri,

193
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where the rate

r =

√
κ(A)− 1√
κ(A) + 1

,

and, if the norm ‖u‖A :=
√
uTAu is used C = 2‖e0‖A. (Recall that the linear convergence in

one norm implies linear convergence in all norms with the same rate.) Now each iteration of
conjugate gradients involves a matrix multiplication and some dot products and SAXPYs,
and so, for the 5-point Laplacian and similar matrices, can be completed in O(n) = O(h−2)
operations. However the condition number of the discrete Laplacian (in one or two dimen-
sions) is O(h−2) and so the rate of linear convergence is only 1−O(h), i.e., r ≈ 1− p ≈ e−p

where p ≈ ch for some c > 0. Thus to reduce the initial error by some given factor, say
by a factor of 10, we need to make O(h−1) iterations. (To reduce the error by a factor of
106 then would take 6 times as many iterations, so still O(h−1).) Thus the total work for
A = −∆h is O(h−3) = O(n3/2) operations. This is a notable improvement on a direct solve
using Cholesky decomposition, and should pretty much convince us that conjugate gradients
will beat the direct solver for h sufficiently small. Computational experience suggests that
there is a cross-over point: for fairly small problems direct solvers are often faster.

We also discussed previously improving the speed of conjugate gradients by precondi-
tioning. We shall return to this presently.

2. Classical iterations

Now we consider some classical iterative methods to solve Au = f . One way to motivate
such methods is to note that if u0 is some approximate solution, then the exact solution u
may be written u = u0 + e and the error e = u − u0 is related to the residual r = f − Au0

by the equation Ae = r. That is, we can express u as a residual correction to u0: u =
u0 + A−1(f − Au0). Of course, this is not a practical solution method since computing
e = A−1(f − Au0) by solving Ae = r is as difficult as the original problem of solving for u.
But suppose we have some nonsingular matrix B which approximates A−1 but is less costly
to apply. We are then led to the iteration u1 = u0 + B(f − Au0), which can be repeated to
give

(7.1) ui+1 = ui +B(f − Aui), i = 0, 1, 2, . . . .

Of course the effectiveness of such a method will depend on the choice of B. For speed of
convergence, we want B to be close to A−1. For efficiency, we want B to be easy to apply.
Some typical choices of B are:

• B = ωI for some ω > 0. This is just the method of steepest descents with a constant
step size ω. As we shall see, this method will converge for positive definite A if ω
is a sufficiently small positive number. This iteration is often called the Richardson
method.
• B = D−1 where D is the diagonal matrix with the same diagonal elements as A.

Then this is called the Jacobi method.
• B = E−1 where E is the lower triangular matrix with the same diagonal and sub-

diagonal elements of A. This is the Gauss–Seidel method.
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Remark. Another way to derive the classical iterative methods is to give a splitting of
A as P +Q for two matrices P and Q where P is in some sense close to A but much easier
to invert. We then write the equations as Pu = f −Qu, which suggests the iteration

um+1 = P−1(f −Qum).

Since Q = A− P , this iteration may also be written

ui+1 = ui + P−1(f − Aui).
Thus this iteration coincides with (7.1) when B = P−1.

Sometimes the iteration (7.1) is modified to

ui+1 = (1− α)ui + α[ui +B(f − Aui)], i = 0, 1, 2, . . . ,

for a real parameter α. If α = 1, this is the unmodified iteration. For 0 < α < 1 the iteration
has been damped, while for α > 1 the iteration is amplified. The damped Jacobi method will
come up below when we study multigrid. The amplified Gauss–Seidel method is known as
SOR (successive over-relaxation). This terminology is explained in the next two paragraphs.

Before investigating their convergence, let us particularize the classical iterations to the
discrete Laplacian −D2

h in one or two dimensions. In one dimension, the equations are

−um+1 + 2um − um−1

h2
= fm, m = 1, . . . , N − 1,

where h = 1/N and u0 = uN = 0. The Jacobi iteration is then simply

umi+1 =
um−1
i + um+1

i

2
+
h2

2
fm, m = 1, . . . , N − 1,

The error satisfies

emi+1 =
em−1
i + em+1

i

2
,

so at each iteration the error at a point is set equal to the average of the errors at the
neighboring points at the previous iteration. The same holds true for the 5-point Laplacian
in two dimensions, except that now there are four neighboring points. In an old terminology,
updating the value at a point based on the values at the neighboring points is called relaxing
the value at the point.

For the Gauss–Seidel method, the corresponding equations are

umi+1 =
um−1
i+1 + um+1

i

2
+
h2

2
fm, m = 1, . . . , N − 1,

and

emi+1 =
em−1
i+1 + em+1

i

2
, m = 1, . . . , N − 1.

We can think of the Jacobi method as updating the value of u at all the mesh points
simultaneously based on the old values, while the Gauss–Seidel method updates the values
of one point after another always using the previously updated values. For this reason the
Jacobi method is sometimes referred to as simultaneous relaxation and the Gauss–Seidel
method as successive relaxation (and amplified Gauss–Seidel as successive overrelaxation).
Note that the Gauss–Seidel iteration gives different results if the unknowns are reordered.
(In fact, from the point of view of convergence of Gauss–Seidel, there are better orderings
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than just the naive orderings we have taken so far.) By contrast, the Jacobi iteration is
unaffected by reordering of the unknowns.

To investigate the convergence of (7.1) we write it as

um+1 = (I −BA)um +Bf = Gum +Bf,

where the iteration matrix G = I − BA. The equation u = Gu + Bf is certainly satisfied
(where u is the exact solution), and so the classical iterations may be viewed as one-point
iterations for this fixed point equation, as studied in Chapter 4.2. The error then satisfies
em+1 = Gem, and the method converges for all starting values e0 = u − u0 if and only
if limm→∞G

m = 0. Recall that this holds if and only if the spectral radius ρ(G) < 1
(Corollary 4.4), and then the rate of convergence is ρ(G). Since G = I−BA, the convergence
condition is that all the eigenvalues of BA must lie strictly inside the unit circle in the
complex plane centered at 1. If BA has real eigenvalues (which will always be the case if B
is symmetric, since then BA is symmetric with respect to the inner product 〈u, v〉A = uTAv),
then the condition becomes that all the eigenvalues of BA belong to the interval (0, 2).

As a first example, we consider the convergence of the Richardson method. The matrix
A, being SPD, has a full set of eigenvalues

0 < λmin(A) = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(A) = ρ(A).

The eigenvalues of BA = ωA are then ωλi, i = 1, . . . , n, and the iteration converges if and
only if 0 < ω < 2/λmax.

Theorem 7.1. Let A be an SPD matrix. Then the Richardson iteration um+1 = um +
ω(f − Aum) is convergent for all choices of u0 if and only if 0 < ω < 2/λmax(A). In this
case the rate of convergence is

max(|1− ωλmax(A)|, |1− ωλmin(A)|).
For example, if we considerA = −D2

h, the discrete Laplacian in one dimension, and choose
ω = h2/4 (so ω ≈ 1/λmax(A)), the Richardson iteration converges with rate 1−h2λmin(A)/4 =
1−O(h2). Thus the converge is very slow (we will need O(h−2) iterations).

Note that for A = −D2
h the Jacobi method coincides with the Richardson method with

ω = h2/2. Since λmax(A) < 4/h2 the Jacobi method is convergent. But again convergence is
very slow, with a rate of 1− O(h2). In fact for any 0 < α ≤ 1, the damped Jacobi method
is convergent, since it coincides with the Richardson method with ω = αh2/2.

For the Richardson, Jacobi, and damped Jacobi iterations, the approximate inverse B is
symmetric, but this is not the case for Gauss–Seidel, in which B is the inverse of the lower
triangle of A. Of course we get a similar method if we use BT , the upper triangle of A. If we
take two steps of Gauss–Seidel, one with the lower triangle and one with the upper triangle,
the iteration matrix is

(I −BTA)(I −BA) = I − (BT +B −BTAB)A,

so this double iteration is itself a classical iteration with the approximate inverse

(7.2) B̄ := BT +B −BTAB.

This iteration is called symmetric Gauss–Seidel. Now, from the definition of B̄, we get the
identity

(7.3) ‖v‖2
A − ‖(I −BA)v‖2

A = 〈B̄Av, v〉A.
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It follows that 〈B̄Av, v〉A ≤ ‖v‖2
A, and hence that λmax(B̄A) ≤ 1. Thus the symmetrized

Gauss–Seidel iteration is convergent if and only if λmin(B̄A) > 0, i.e., if and only if B̄A
is SPD with respect to the A inner product. This is easily checked to be equivalent to B̄
being SPD with respect to the usual inner product. When this is the case (7.3) implies that
‖(I − BA)v‖A < ‖v‖A for all nonzero v, and hence the original iteration is convergent as
well.

Remark. In fact the above argument didn’t use any properties of the original ap-
proximate inverse B. So what we have really proved is that given any approximate in-
verse matrix B, if we symmetrize by the formula (7.2) then the symmetrized iteration
ui+1 = ui + B̄(f − Aui) is convergent if and only if B̄ is SPD, and, in that case, the
original iteration ui+1 = ui +B(f − Aui) is convergent as well.

For Gauss–Seidel, let us write A = D−L−LT where D is diagonal and L strictly lower
diagonal. Then the approximate inverse is B = (D − L)−1 and

B̄ = BT +B −BTAB = BT (B−1 +B−T − A)B

= BT [(D − L) + (D − LT )− (D − L− LT )]B = BTDB,

which is clearly SPD whenever A is. Thus we have proven:

Theorem 7.2. The Gauss–Seidel and symmetric Gauss–Seidel iterations are convergent
for any symmetric positive definite linear system.

It is worth remarking that the same result is not true for the Jacobi iteration: although
convergence can be proven for many of the SPD matrices that arise from discretizations of
PDE, there exists SPD matrices for which Jacobi iteration does not converge. As to the
speed of convergence for Gauss–Seidel when applied to the discrete Laplacian, the analysis
is much trickier than for Jacobi, but it can again be proven (or convincingly demonstrated
via simple numerical experiments) that for A = −D2

h the rate of convergence is again just
1− O(h2), as for Jacobi, although the constant in the O(h2) term is about twice as big for
Gauss–Seidel as for Jacobi.

Thus while the classical iterations have a certain elegance, and do converge for typical
SPD problems arising from elliptic PDE, they converge very slowly. In fact, they are not
competitive with the conjugate gradient method. One good use of the classical iterations,
however, is to precondition conjugate gradients. As long as the approximate inverse B is
SPD, we may use it as a preconditioner. The Jacobi preconditioner, also known as diagonal
preconditioning often has minimal effect. Indeed for the discrete Laplacian it has no effect
at all, since the diagonal is constant. The symmetric Gauss–Seidel preconditioner is a bit
more helpful.

In fact, we can show that conjugate gradients preconditioned by some SPD approximate
inverse always converges faster than the corresponding classical iterative method. For if λ is
an eigenvalue of BA, then −ρ ≤ 1− λ ≤ ρ where ρ is the spectral radius of I −BA, and so

λmin(BA) ≥ 1− ρ, λmax(BA) ≤ 1 + ρ, κ(BA) ≤ 1 + ρ

1− ρ
.
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Table 7.1. Operation counts for solving linear systems for the discrete Lapla-
cian in one and two dimensions. For the iterative methods, the total number
of operations to reduce the error by a given factor is the product of the number
of operations per iteration times the number of iterations required.

1D: A = −D2
h, n = O(h−1) 2D: A = −∆h, n = O(h−2)

Method
ops./iter. no. iters. total ops. ops./iter. no. iters. total ops.

Cholesky factorization – – O(h−1) – – O(h−4)

Conjugate gradients O(h−1) O(h−1) O(h−2) O(h−2) O(h−1) O(h−3)

Richardson, Jacobi O(h−1) O(h−2) O(h−3) O(h−2) O(h−2) O(h−4)

Gauss–Seidel O(h−1) O(h−2) O(h−3) O(h−2) O(h−2) O(h−4)

Thus the rate of convergence for the PCG method is at most√
κ(BA)− 1√
κ(BA) + 1

≤

√
1+ρ
1−ρ − 1√
1+ρ
1−ρ + 1

=
1−

√
1− ρ2

ρ
.

The last quantity is strictly less than ρ for all ρ ∈ (0, 1). (For ρ small it is about ρ/2, while
for ρ ≈ 1 − ε with ε small, it is approximately 1 −

√
2ε.) Thus the rate of convergence

of PCG with B as a preconditioner is better than that of the classical iteration with B as
approximate inverse.

3. Multigrid methods

Figure 7.1 shows the result of solving a discrete system of the form −D2
huh = f using

the Gauss–Seidel iteration. We have take h = 1/128, and chosen a smooth right-hand side
vector f which results in the vector uh which is plotted as a dashed line in each of the plots.
The initial iterate u0, which is shown in the first plot, was chosen at random, and then the
iterates u1, u2, u5, u50, and u500 are shown in the subsequent plots. In Figure 7.2, the relative
error ‖uh − ui‖/‖uh‖ is plotted for i = 0, 1, . . . , 50, in both the l∞ and the l2 norms.

These numerical experiments illustrate the following qualitative properties, which are
typical of the Gauss–Seidel iteration applied to matrices arising from the discretization of
elliptic PDEs.

• If we start with a random error, the norm of the error will be reduced fairly quickly
for the first few iterations, but the error reduction occurs much more slowly after
that.
• After several iterations the error is much smoother, but not much smaller, than

initially. Otherwise put, the highly oscillatory modes of the error are suppressed
much more quickly by the iteration than the low frequency modes.
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Figure 7.1. Iterative solution to −D2
huh = f , h = 1/128, using Gauss–

Seidel. The random initial iterate is rapidly smoothed, but approaches the
solution uh only very slowly.

initial iterate iteration 1 iteration 2

iteration 3 iteration 4 iteration 50

Figure 7.2. Relative error in percent in the Gauss–Seidel iterates 0 through
50 in the l∞ (•) and l2 (+) norms.
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The first observation is valid for all the methods we have studied: Richardson, Jacobi,
damped Jacobi, and Gauss–Seidel. The second obervation—that Gauss–Seidel iteration
smooths the error—is shared damped Jacobi with α < 1, but not by Jacobi itself.

If we take the Richardson method with ω = 1/λmax(A) for the operator A = −D2
h,

it is very easy to see how the smoothing property comes about. The initial error can be
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expanded in terms of the eigenfunctions of A: e0 =
∑n

m=1 ci sinmπx. The mth component
in this expansion is multiplied by 1 − λm/λmax = 1 − λm/λn at each iteration. Thus the
high frequency components, m ≈ n, are multiplied by something near to 0 at each iteration,
and so are damped very quickly. Even the intermediate eigenvalues, λm ≈ λn/2 are damped
reasonably quickly (by a factor of about 1/2 at each iteration). But the low frequency modes,
for which λm � λn, decrease very slowly.

This also explains the first observation, that the norm of the error decreases quickly
at first, and then more slowly. The norm of the error has contributions from all modes
present in the initial error. Those associated to the higher frequency modes disappear in a
few iterations, bringing the error down by a significant fraction. But after that the error is
dominated by the low frequency modes, and so decays very slowly.

The same analysis applies to damped Jacobi with positive damping, and shows that
undamped Jacobi doesn’t have the smoothing property: the mth mode is multiplied by
about 1 − 2λm/λn, and so convergence is very slow for low frequency modes and also the
highest frequency modes λm ≈ λn. For the intermediate modes, λm ≈ λn/2, convergence is
very fast.

Establishing the smoothing property for Gauss–Seidel is more complicated, since the
eigenfunctions of the Gauss–Seidel iteration don’t coincide with those of A even for A = −D2

h.
However both numerical study and careful analysis show that Gauss–Seidel does indeed have
the smoothing property for discretized elliptic operators.

The idea behind the multigrid method is to create an iterative method which reduces all
components of the residual quickly by putting together two steps. First it applies the approx-
imate inverse from Gauss–Seidel or another classical iterative method with the smoothing
property to the residual. This greatly reduces the high frequency components of the resid-
ual, but barely reduces the low frequency components. The new residual, being relatively
smooth, can then be accurately approximated on a coarser mesh. So, for the second step,
the residual is (somehow) transferred to a coarser mesh, and the equation solved there, thus
reducing the low frequency components. On the coarser mesh, it is of course less expensive
to solve. For simplicity, we assume for now that an exact solver is used on the coarse mesh.
Finally this coarse mesh solution to the residual problem is somehow transferred back to the
fine mesh where it can be added back to our smoothed approximation.

Thus we have motivated the following rough outline of an algorithm:

(1) Starting from an initial guess u0 apply a fine mesh smoothing iteration to get an
improved approximation ū.

(2) Transfer the residual in ū to a coarser mesh, solve a coarse mesh version of the
problem there, transfer the solution back to the fine mesh, and add it back to ū to
get ¯̄u.

Taking ¯̄u for u1 and thus have described an iteration to get from u0 to u1 (which we can
then apply again to get from u1 to u2, and so on). In fact it is much more common to also
apply a fine mesh smoothing at the end of the iteration, i.e., to add a third step:

3. Starting from ¯̄u apply the smoothing iteration to get an improved approximation ¯̄̄u.

The point of including the third step is that it leads to a multigrid iteration which is sym-
metric, which is often advantageous (e.g., the iteration can be used as a preconditioner for
conjugate gradients). If the approximation inverse B used for the first smoothing step is not
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symmetric, we need to apply BT (which is also an approximate inverse, since A is symmetric)
to obtain a symmetric iteration.

We have just described a two-grid iteration. The true multigrid method will involve not
just the original mesh and one coarser mesh, but a whole sequence of meshes. However, once
we understand the two-grid iteration, the multigrid iteration will follow easily.

To make the two-grid method more precise we need to explain step 2 more fully, namely
(a) how do we transfer the residual from the fine mesh to the coarse mesh?; (b) what problem
do we solve on the coarse mesh?; and (c) how do we transfer the solution of that problem
from the coarse mesh to the fine mesh? For simplicity, we suppose that N = 1/h is even
and that we are interested in solving Ahu = f where A = −D2

h. Let H = 2h = 1/(2N). We
will use the mesh of size H as our coarse mesh. The first step of our multigrid iteration is
then just

ū = u0 +Bh(f − Ahu0),

where Bh is just the approximate inverse of Ah from Gauss–Seidel or some other smoothing
iteration. The resulting residual is f − Ahū. This is a function on the fine mesh points
h, 2h, . . . , (N − 1)h, and a natural way to transfer it to the coarse mesh is restrict it to the
even grid points 2h, 4h, . . . , (N −2)h = H, 2H, . . . , (N/2−1)H, which are exactly the coarse
mesh grid points. Denoting this restriction operator from fine grid to coarse grid functions
(i.e., from RN−1 → RN/2−1) by PH , we then solve AHeH = PH(f − Ahūh) where, of course,
AH = −D2

H is the 3-point difference operator on the coarse mesh. To transfer the solution eH ,
a coarse grid function, to the fine grid, we need a prolongation operator QH : RN/2−1 → RN−1.
It is natural to set QHeH(jh) = eH(jh) if j is even. But what about when j is odd: how
should we define QHeH at the midpoint of two adjacent coarse mesh points? A natural
choice, which is simple to implement, is QHeH(jh) = [eH((j − 1)h) + e((j + 1)h)]/2. With
these two operators second step is

¯̄u = ū+QHA
−1
H PH(f − Ahū).

And then final post-smoothing step is

¯̄̄u = ¯̄u+BT
h (f − Ah ¯̄u).

Actually this does not give a symmetric iteration. To obtain symmetry we need Qh = cP T
H

and that is not the case for the grid transfer operators we defined. We have

(7.4) QH =



1/2 0 0 0 · · · 0
1 0 0 0 · · · 0

1/2 1/2 0 0 · · · 0
0 1 0 0 · · · 0
0 1/2 1/2 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1/2


,

but PH as we described it, consists only of 0’s and 1’s. Therefore one commonly takes a
different choice for PH , namely PH = (1/2)QT

H . This means that the transferred coarse grid
function doesn’t just take the value of the corresponding fine grid function at the coarse grid
point, but rather uses a weighted average of the fine grid function’s values at the point in
question and the fine grid points to the left and right (with weights 1/4, 1/2, 1/4). With
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this choice, QHAhPH is symmetric; in fact, QHAhPH = AH . This is a useful formula. For
operators other than the Ah = −D2

h, we can use the same intergrid transfer operators,
namely QH given by (7.4) and PH = (1/2)QT

H , and then define the coarse grid operator by
AH = QHAhPH .

Remark. In a finite element context, the situation is simpler. If the fine mesh is a
refinement of the coarse mesh, then a coarse mesh function is already a fine mesh function.
Therefore, the operator QH can be taken simply to be the inclusion operator of the coarse
mesh space into the fine mesh space. The residual in u0 ∈ Sh is most naturally viewed as
a functional on Sh: v 7→ (f, v) − B(u0, v). It is then natural to transfer the residual to the
coarse mesh simply by restricting the test function v to SH . This operation STh → STH is
exactly the adjoint of the inclusion operator SH → Sh. Thus the second step, solving the
coarse mesh problem for the restricted residual is obvious in the finite element case: we find
eH ∈ SH such that

B(eH , v) = (f, v)−B(ū, v), v ∈ SH ,
and then we set ¯̄u = ū+ eH ∈ Sh.

Returning to the case of finite differences we have arrived at the following two-grid
iterative method to solve Ahuh = fh.

uh = twogrid(h,Ah, fh, u0)
input: h, mesh size (h = 1/n with n even)

Ah, operator on mesh functions
fh, mesh function (right-hand side)
u0, mesh function (initial iterate)

output: uh, mesh function (approximate solution)

for i = 0, 1, . . . until satisfied
1. presmoothing: ū = ui +Bh(fh − Ahui)
2. coarse grid correction:

2.1. residual computation: rh = fh − Ahū
2.2. restriction: H = 2h, rH = PHrh, AH = PHAhQH

2.3. coarse mesh solve: solve AHeH = rH
2.4. prolongation: eh = QHeH
2.5. correction: ¯̄u = ū+ eh

3. postsmoothing: uh ← ui+1 = ¯̄u+BT
h (fh − Ah ¯̄u)

end

Algorithm 7.1: Two-grid iteration for approximately solving Ahuh = fh.

In the smoothing steps, the matrix Bh could be, for example, (D − L)−1 where D is
diagonal, L strictly lower triangular, and Ah = D − L− LT . This would be a Gauss–Seidel
smoother, but there are other possibilities as well. Besides these steps, the major work is in
the coarse mesh solve. To obtain a more efficient algorithm, we may also solve on the coarse
mesh using a two-grid iteration, and so involving an even coarser grid. In the following
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multigrid algorithm, we apply this idea recursively, using multigrid to solve at each mesh
level, until we get to a sufficiently coarse mesh, h = 1/2, at which point we do an exact solve
(with a 1× 1 matrix!).

uh = multigrid(h,Ah, fh, u0)
input: h, mesh size (h = 1/n with n a power of 2)

Ah, operator on mesh functions
fh, mesh function (right-hand side)
u0, mesh function (initial iterate)

output: uh, mesh function (approximate solution)

if h = 1/2 then
uh = A−1

h fh
else

for i = 0, 1, . . . until satisfied
1. presmoothing: ū = ui +Bh(f − Ahui)
2. coarse grid correction:

2.1. residual computation: rh = fh − Ahū
2.2. restriction: H = 2h, rH = PHrh, AH = PHAhQH

2.3. coarse mesh solve: eH = multigrid(H,AH , rH , 0)
2.4. prolongation: eh = QHeH
2.5. correction: ¯̄u = ū+ eh

3. postsmoothing: uh ← ui+1 = ¯̄u+BT
h (f − Ah ¯̄u)

end
end if

Algorithm 7.2: Multigrid iteration for approximately solving Ahuh = f .

Figure 7.3 shows two iterations of this multigrid algorithm for solving the system−D2
huh =

f , h = 1/128, considered at the beginning of this section. Compare with Figure 7.1. The
fast convergence of the multigrid algorithm is remarkable. Indeed, for the multigrid method
discussed here it is possible to show that the iteration is linearly convergent with a rate
independent of the mesh size. This means that the number of iterations needed to obtain a
desired accuracy remains bounded independent of h. It is also easy to count the number of
operations per iteration. Each iteration involves two applications of the smoothing iteration,
plus computation of the residual, restriction, prolongation, and correction on the finest mesh
level. All those procedures cost O(n) operations. But then, during the coarse grid solve, the
same procedures are applied on the grid of size 2h, incurring an additional cost of O(n/2).
Via the recursion the work will be incurred for each mesh size h, 2h, 4h, . . .. Thus the total
work per iteration will be O(n + n/2 + n/4 + . . . + 1) = O(n) (since the geometric series
sums to 2n). Thus the total work to obtain the solution of the discrete system to any desired
accuracy is itself O(n), i.e., optimal. For a fuller introduction to multigrid, including the
theoretical analysis, see [1].
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Figure 7.3. Iterative solution to −D2
huh = f , h = 1/128, using multigrid.

initial iterate iteration 1 iteration 2

Other things that could go here. Some more numerical results showing independence
of h. V-cycle diagram, discussion of multiple smoothings, W-cycle; more precise conver-
gence statement. Full multigrid. Multigrid for finite elements; connection with adaptivity.
Numerical results, e.g., from black hole research.

SOR theory might make some good exercises.

Exercises

(1) Let A be a tridiagonal matrix with all the diagonal entries equal to 3 and all the sub-
diagonal and superdiagonal entries equal to −1. Determine for which values of the real
parameter ω the iteration xi+1 = xi + ω(b−Axi) converges to the solution of Ax = b for
any choice of initial iterate x0.

(2) Consider the linear system: find u ∈ Rn and p ∈ Rm such that

Au+Bp = f, BTu = g.

Here A ∈ Rn×n is symmetric positive definite, B ∈ Rn×m has rank m, f ∈ Rn, and
g ∈ Rm.

a) Prove that this system is nonsingular.

b) The Uzawa iteration for this system proceeds as follows.

1. pick an initial iterate p0 ∈ Rm

2. for i = 0, 1, . . .
solve Aui +Bpi = f to determine ui ∈ Rn

set pi+1 = pi + α(BTui − g)

Determine for what values of the real parameter α, the Uzawa iteration converges.
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