Homework 7

1. Besides the Raviart–Thomas family of mixed finite elements for the Poisson equation, there is a second family, called the BDM (Brezzi–Douglas–Marini) family. Let $r \ge 1$ denote the degree. For the vector variable in the mixed formulation, the BDM_r family uses the space V_h whose shape functions are the complete polynomial space $P_r(T; \mathbb{R}^2)$ and whose DOFs are:

•
$$\tau \mapsto \int_{e} \tau \cdot n_{e} p \, ds, \quad p \in \mathcal{P}_{r}(e), \quad e \text{ an edge},$$

 $\tau \mapsto \int_{T} \tau \cdot p^{\perp} \, dx, \quad p \in \mathcal{P}_{r-1}^{-}(T; \mathbb{R}^{2}) \text{ (if } r > 1)$

Draw the element diagrams for BDM_1 and BDM_2 . Prove unisolvence for BDM_r (you may want to do r = 1 and 2 first to get the idea).

2. Define (for any triangulation \mathcal{T}_h) a projection operator $\pi_h : H^1(\Omega; \mathbb{R}^2) \to V_h$ (the BDM_r space) and prove the commuting diagram property

$$\operatorname{div} \pi_h \tau = P_h \operatorname{div} \tau, \quad \tau \in H^1(\Omega; \mathbb{R}^2).$$

Note: for the scalar variable in the mixed formulation, the BDM_r method uses the space W_h of all piecewise polynomials of degree r - 1, the same as for the Raviart–Thomas method, and here P_h denotes the L^2 projection into this space.

3. Prove that the BDM family of methods are stable.