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DOUGLAS N. ARNOLD

1. A first program in FEniCS

1.1. The boundary value problem. As a first problem we consider the Neumann boundary
value problem:

(1) −∆u+ u = f in Ω,
∂u

∂n
= 0 on ∂Ω,

where Ω is a domain in R2. This problem is particularly simple in that it does not involve coefficient
functions or essential boundary conditions, and the natural boundary conditions are homogeneous.
We will get to those aspects soon enough, but its nice to ignore them the first time through. Notice
that we do include a zero degree term in the PDE (−∆u+u rather than just −∆u), since otherwise
the Neumann problem would not be well-posed: any constant function would solve the problem for
f = 0.

As always for finite elements, we start by casting the problem in weak form. Thus we seek a
function u in a trial space V such that

b(u, v) = F (v) for all test functions v ∈ V .

For the boundary value problem (1) the trial space V = H1(Ω), and the bilinear form b : V ×V → R
and the linear functional F : V → R are given by

b(u, v) =

∫
Ω

(gradu · grad v + uv) dx, F (v) =

∫
Ω
fv dx.

1.2. A test problem. To specify a test problem we use the method of manufactured solutions. This
means that we start with the solution u and analytically compute the corresponding f = −∆u+u.
We choose u(x, y) = [(x2 − 2x) sin 2πy]2 on the unit square Ω = (0, 1) × (0, 1)Ω = (0, 1) × (0, 1).
This function satisfies the homogeneous Neumann boundary conditions.By direct calculation we
find that

(2) f(x, y) = −8[π(x2 − 2x)]2 cos 4πy + (x4 − 4x3 − 8x2 + 24x− 8) sin2 2πy.

1.3. The discrete problem. The finite element solution uh ∈ Vh is then determined from the
Galerkin equations

b(uh, v) = F (v), v ∈ Vh,
where Vh is the finite element subspace we use to approximate V . We shall take Vh to be the
Lagrange space of degree 2, which means that we choose a mesh (triangulation) of the domain Ω,
and that Vh consists of all continuous functions on Ω which restrict to polynomials of degree at
most 2 on each triangle of the triangulation.
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1.3.1. Specifying the mesh. Before turning to the FEniCS implementation, we discuss how the data
of the problem is expressed in FEniCS. In this case, the only data we need to supply is the mesh
(which implies the domain), and right-hand side function f : Ω→ R. There are numerous ways to
define a mesh in FEniCS. It may be constructed externally to FEniCS by various different programs,
then written to a file in an appropriate format and imported into FEniCS. Alternatively, there are
several ways to construct a mesh inside FEniCS. We shall use the FEniCS function UnitSquareMesh

which constructs a structured mesh of the unit square. Specifically, the code

mesh = UnitSquareMesh(10, 20)

produces the mesh obtained by dividing the unit square into 10× 20 rectangles and dividing each
of these into two triangles with the positively sloped diagonal, yielding this mesh of 400 elements:

Figure 1. (10× 20)× 2 mesh of the unit square.

1.3.2. Specifying the right-hand side. In order to define the functional F (v) =
∫

Ω fv dx, we have
to specify the function f on Ω. The simplest way to do this is define a FEniCS Expression,
which expresses the formula (2) for f in terms of the coordinates of the point. The coordinates
are expressed as x[0] and x[1], rather than x and y as used in (2). To the occasional surprise of
FEniCS novices, the expressions are given in a string that will be parsed by a C++ compiler, and so
are written in C++ rather than Python. Math expressions in the two languages are mostly identical
to each other and to math expressions in other languages, but one exception is that exponentiation
ab must obtained through the pow function: pow(a, b). The alternative syntax a**b which is
permitted in Python is not permitted in C++, so cannot be used in an Expression string. Taking
this into account, we get the following line of code to define f :

f = Expression(’-8 * pow(pi*(pow(x[0], 2) - 2*x[0]), 2) * cos(4*pi*x[1]) \

+ (pow(x[0], 4) - 4*pow(x[0], 3) - 8*pow(x[0], 2) + 24*x[0] - 8) \

* pow(sin(2*pi*x[1]), 2)’, degree=4)

Notice the mandatory degree= argument to Expression. When FEniCS needs to compute an
integral involving f , this helps it decide what quadrature rule to use.

1.4. The FEniCS program. We are now ready to present the full FEniCS implementation. As
you can see, it is just 10 Python statements, and it follows the mathematical specification of the
discrete problem closely.
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from fenics import * # import FEniCS into Python

# Define the function f. The degree parameter is used by FEniCS to

# decide what quadrature rule to use when integrating expressions involving f.

f = Expression(’-8 * pow(pi*(pow(x[0], 2) - 2*x[0]), 2) * cos(4*pi*x[1]) \

+ (pow(x[0], 4) - 4*pow(x[0], 3) - 8*pow(x[0], 2) + 24*x[0] - 8) \

* pow(sin(2*pi*x[1]), 2)’, degree=4)

# Define the mesh and the function space

mesh = UnitSquareMesh(10, 20)

Vh = FunctionSpace(mesh, ’Lagrange’, 2)

# Define the bilinear form b(u, v) and the linear function F(v)

# for any trial function u in V_h, test function v in V_h

u = TrialFunction(Vh)

v = TestFunction(Vh)

b = (dot(grad(u), grad(v)) + u*v)*dx

F = f*v*dx

# Solve the Galerkin equations for the function u_h in V_h

uh = Function(Vh) # this declares u_h as finite element function in V_h

solve(b == F, uh)

1.5. Processing the solution. At this point uh is the finite element solution. We can use it in
various ways.

1.5.1. Plotting. For example we can plot it using the the basic plotting capability built into FEniCS:

plot(uh) # use plot(uh, interactive=True) to manipulate the plot

Figure 2. Finite element solution.

As indicated in the comment, one may add the interactive=True clause to the plot call to make
the plot window responsive to the mouse and keyboard. Hit the “h” key to see the possibilities.
The “w” key is useful to toggle visibility of the mesh. The “c” and “v” keys toggle numbering
of the cells and vertices, respectively. Hitting the “p” key will save the plot to a PNG file. Use
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the “q” key to end interactivity. We also mention that you can save a plot to a file without using
interactivity. The statements

fig = plot(uh)

fig.write_png(’myfile’)

will write the plot to myfile.png.
While plotting from FEniCS is very convenient, it is also quite limited. For more advanced

plotting, one can export the solution to a PVD file, which can be imported to the ParaView
visualization program for plotting:

File("solution.pvd") << uh

Figure 3. ParaView visualization of the solution.

1.5.2. Evaluation of the solution and functionals of the solution. We can simply evaluate the com-
puted solution at a point. At the point (3/4, 3/4), the exact solution is u(3/4, 3/4) = 225/256 =
0.87890625. Compare with evaluation of the computed solution:

value = uh(0.75, 0.75)

exact = 225./256.

error = (exact - value)/exact

print "value at (3/4, 3/4): {:10.8f}, error = {:6.4f}%".format(value, 100*error)

which returns

value at (3/4, 3/4): 0.87875670, error = 0.0170%

Note that requires locating the element containing the point (3/4, 3/4), a relatively time-consuming
process. So this approach is not ideal for evaluating the solution at many points. By contrast, the
vector of DOF values of the solution, available as uh.vector().array()! returns the values of the
solution at all the nodes at very little cost.

Since uh is a finite element function, we can act on it in various ways. For example, we can
compute its integral over Ω using finite element assembly. Compare with the exact value which is
4/15 = 0.2666 . . .:
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uhint = assemble(uh*dx)

exact = 4./15.

error = (exact - uhint)/exact

print "integral of solution: {:10.8f}, error = {:6.4f}%".format(uhint, 100*error)

yielding

integral of solution: 0.2666667, error = 0.0000%

2. Digging a little deeper

2.1. The import statement. To use FEniCS we start our Python program with

from fenics import *

The name dolfin can be used instead of fenics; in this context they are interchangeable. Careful
programmers may want to use import fenics as fe and then refer to FEniCS objects as, e.g.,
fe.plot instead of just plot to avoid name clashes.

2.2. Expressions. The next statement defines f as a FEniCS Expression by providing a C++
string. This becomes unwieldy for complex expressions, or if non-arithmetic logic is involved. There
are other ways to define expressions. One of the most useful is by subclassing the Expression class.
With this approach the Expression statement above would be replaced by this class definition:

class fex(Expression):

def eval(self, values, x):

t1 =-8*(pi*(x[0]**2 - 2*x[0]))**2 * cos(4*pi*x[1])

t2 = (x[0]**4 - 4*x[0]**3 - 8*x[0]**2 + 24*x[0] - 8) * sin(2*pi*x[1])**2

values[0] = t1 + t2

# instantiate the class, specifying degree parameter

f = fex(degree=4)

Note that in this approach the code defining the expression is Python, so we can use the **

operator for exponentiation. We could also include complex code inside the evaluation routine eval,
with loops, conditional statements, and so forth. The degree parameter must still be provided. It
is used when FEniCS computes an integral involving the expression to select the quadrature rule to
use (chosen so that if the expression were a polynomial of the indicated degree, then the integration
rule would be exact).

We also mention that it is possible, and often very useful, to include parameters in the definition
of an expression. For example, to define the function of one variable f(x) = exp(−ax) with
parameter a = 10 we can use

f = Expression(’exp(-a x[0])’, degree=4, a=10.)

Later we can change the value of a to 20 with f.a = 20., after which further use of the expression
will evaluate exp (−20x).

2.3. Defining a mesh. To define a mesh of the unit square, we used UnitSquareMesh(10, 20).
This makes a mesh of 10×20 rectangles divided into triangles by the diagonal which increases to the
right. To use the diagonal increasing to the left we would use UnitSquareMesh(10, 20, ’left’).
To include both diagonals, use UnitSquareMesh(10, 20, ’crossed’). The analogous meshing
routines in 1D and 3D are called UnitIntervalMesh and UnitCubeMesh. For meshing a rectangle
in 2D which is not the unit square, there is an alternate routine which takes the bottom left and
top right points of the rectangle as additional inputs:
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mesh = RectangleMesh(Point(-5., -2.), Point(5., 2.), 10, 4, ’crossed’)

This produces a mesh of a 10 × 4 rectangle centered at the origin. Similarly in 3 dimensions we
could use

mesh = BoxMesh(Point(-5., -2., -3.), Point(5., 2., 3.), 10, 4, 20)

In 1 dimension, the syntax is a bit different:

mesh = IntervalMesh(100, 2., 3.)

gives a uniform mesh of 100 subintervals on the interval [2, 3].
For meshing more complicated shapes, FEniCS includes a module called mshr, which implements

constructive geometry. The mshr module must be explicitly loaded: from mshr import *. For
example the mesh in Figure 4 is produced by

disc1 = Circle(Point(0., 0.), 3.)

disc2 = Circle(Point(1., 0.), 1.)

annulus = disc1 - disc2

mesh = generate_mesh(annulus, 20)

Figure 4. A mesh produced by mshr.

An alternative way to obtain meshes in FEniCS is to use an external package, such as Gmsh, to
generate the mesh, and then import it into FEniCS.

2.4. Defining a finite element space. We defined the finite element space Vh with

FunctionSpace(mesh, ’Lagrange’, 2)

This specifies the Lagrange family of finite elements of degree 2. The spatial dimension is 2 as
FEniCS can infer from the mesh. Alternatively we can separate the specification of the finite
element—Lagrange triangle of degree 2—and the specification of the space from the mesh and the
finite element:

P2 = FiniteElement(’Lagrange’, triangle, 2)

Vh = FunctionSpace(mesh, P2)

As synonyms to ’Lagrange’ we can use ’CG’ (Continuous Galerkin). The degree, here 2, can
be any positive integer. Another family of finite elements is the ’DG’ or Discontinuous Galerkin
family, defined for any nonnegative degree. These elements have no interelement continuity and are
mostly used to discretize L2(Ω). Most of the other finite elements in FEniCS are for vector-valued
function spaces.
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2.5. Defining the bilinear and linear forms. The declarations u = TrialFunction(Vh) and
v = TestFunction(Vh) defines two arguments that can be used as variables to define the bi-
linear form (TrialFunction just means the first of the two arguments to the bilinear form and
TestFunction the second). The statement

b = (dot(grad(u), grad(v)) + u*v)*dx

F = f*v*dx

are written in FEniCS’s Unified Form Language (UFL), and are fairly self-explanatory. Note that
multiplication by the “measure” dx signals integration over Ω, i.e., the sum of the integrals over
the elements of the mesh associated to Vh. There are also numerous other operators, beyond grad

and dot, that can be used to define UFL expressions, and there is a way of defining a subset of
the triangles and integrating only over the subset using a notation like dx(1). Integration over the
boundary (that is the edges contained in the boundary) is obtained with ds, and integration over
the edges that are not contained in the boundary uses dS.

2.6. Solving the boundary value problem. The statement uh = Function(Vh) declares uh to
be a function in the finite element space Vh. Such a function is characterized by a vector of length
dimVh giving the values of its degrees of freedom. One may obtain the vector as uh.vector().
This has the type of a FEniCS Vector, which has associated to it a (numpy) array with the actual
values of the DOFs: uh.vector().array(). The array values are set to zero when we declare uh.

The most powerful statement in the program is the final solve:

solve(b == F, uh)

This triggers several actions in FEniCS. First the bilinear form b is assembled into a sparse matrix
A and the linear functional F into a vector y. Next the linear algebra problem Ax = y is solved
for the vector x, which is stored as the DOFs of the function uh.

These steps can be separated for more control:

A = assemble(b)

y = assemble(F)

uh = Function(Vh)

x = uh.vector()

solve(A, x, y)

The assembly command A = assemble(b) produces a FEniCS Matrix object. This encapsulates
a sparse matrix implemented using some backend linear algebra package, most commonly PETSc,
a highly tuned suite of datastructures and routines for working with sparse matrices. One could
examine the matrix in various ways. E.g., A.nnz() will report the number of nonzeros stored for
the matrix, and A.array() will convert A to a full matrix, stored as a numpy array. FEniCS (via
PETSc) also offers many ways to control the algorithm used to solve the matrix equation.

3. More general problems

3.1. Including coefficients. Suppose we had the more general differential equation

−div(a gradu) + p · gradu+ cuv = f

with coefficients a, p, and c, either variable or constant. We would then define each coefficient as
a FEniCS Expression, just as we did for f . Since the coefficient p is vector-valued, its expression
would be given by a pair of strings, like

p = Expression((’x[0] + 2*x[1]’, ’1.’), degree=1)

For constant coefficients, we can use Constant instead of Expression:
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p = Constant((3., 1.))

In either case, we would define the bilinear form using UFL similarly to before:

b = (a*dot(grad(u), grad(v)) + dot(p, grad(u))*v + c*u*v)*dx

We could also have a matrix-valued coefficient in place of a:

A = Expression(((’2.’, ’.5*x[0]’), (’.5*x[0]’, ’4. + x[0]*x[1]’)), degree=2)

b = (dot(dot(A, grad(u)), grad(v)) + dot(p, grad(u))*v + c*u*v)*dx

3.2. Inhomogeneous Neumann boundary conditions. The boundary value problem (1) has
the simplest boundary conditions for finite element solution, namely homogeneous Neumann con-
ditions. A very slight generalization is to take the inhomogeneous Neumann condition

(3)
∂u

∂n
= g on ∂Ω.

The only change this entails to the weak formulation is the addition of a second term to the linear
function F (v):

F (v) =

∫
Ω
fv dx+

∫
∂Ω
gv ds,

represented in FEniCS, of course, by

F = f ∗ v ∗ dx+ g ∗ v ∗ ds,
where g is an Expression object.

3.3. Dirichlet boundary conditions. Next suppose that, instead of the Neumann boundary
condition in (1) we wish to impose the Dirichlet boundary condition

u = g on ∂Ω.

This is an essential boundary condition, so that it should be imposed as a constraint on the space
V rather than by changing the bilinear form b or the linear functional F . The weak formulation is
now to find u ∈ V = H1(Ω) such that u = g on ∂Ω and

b(u, v) =

∫
Ω
fv dx for all v ∈ V such that v = 0 on ∂Ω.

On the discrete level, uh is restricted to elements of Vh which interpolate g on the boundary, i.e.,
any DOFs associated to vertices or edges on the boundary must give the same value when applied
to uh as when applied to g. We say that the DOFs of uh on the boundary are constrained to g.
In the case of Lagrange elements of degree 2, for instance, this means that uh must equal g at the
vertices on the boundary and the midpoints of edges on the boundary. Similarly the DOFs of the
test function v on the boundary are constrained to be zero. FEniCS imposes these constraints this
after assembling the stiffness matrix and load vector, by modifying the matrix and vector entries
associated to boundary DOFs. To accomplish this, we need to specify to FEniCS which DOFs
are to be constrained (in this case all the DOFs on the boundary), and what value they are to be
constrained to (namely to g). This is accomplished by invoking the procedure

DirichletBC(Vh, g, bdry)

where the three arguments are the function space to constrain, the function to constrain to, and
the portion of the domain where DOFs are to be constrained. The function g can be defined as an
Expression just as for the Neumann boundary condition. When the Dirichlet boundary condition is
to be imposed on the whole boundary of Ω, we can simply take specify bdry as DomainBoundary().
The relevant code is then:
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g = Expression(’...’)

bc = DirichletBC(Vh, g, DomainBoundary())

uh = Function(Vh)

solve(b == F, uh, bc)

Note that the solve call now takes a third argument, specifying the essential boundary condition.

3.4. Mixed boundary conditions. Sometimes we have different boundary conditions on differ-
ent, complementary, parts of the boundary. For example, let ΓD denote the bottom side of the unit
square, and ΓN the union of the remaining three sides, and consider the solution of the boundary
value problem

∆u = f in Ω, u = g on ΓD,
∂u

∂n
= k on ΓN .

The weak formulation then seeks u ∈ V = H1(Ω) constrained to equal g on ΓD such that∫
Ω

gradu · grad v dx =

∫
Ω
fv dx+

∫
∂Ω
kv ds

for all v ∈ V constrained to zero on ΓD. (Note that the last integral is really taken only over
ΓN , since v is constrained to zero on ΓD.) In this case we cannot use DomainBoundary() to
specify the DOFs to constrain, but must define the subset ΓD of the boundary. This is done by
defining a Python function and passing it as the third argument of DirichletBC. We might choose
to call the function GammaD. It takes two arguments, a point x, and a boolean on_boundary.
When FEniCS needs to identify whether some point of the domain belongs to ΓD it will call
GammaD(x, on_boundary) with x set to the point (the array of its coordinates x[0] and x[1]),
and on_boundary set to True or False according to whether the point x belongs to ∂Ω or not.
Our function must return a boolean value true or false according to whether the point x belongs
to ΓD or not. Since ΓD is the bottom edge of the square, the test is simply whether the second
coordinate is equal to zero. However one should never test floating point numbers for exact equality,
since they may suffer from small round off errors. For such purposes, FEniCS provides the routine
near(x[1], 0.) which is true if x[1] is within round off error of zero. Thus we can specify ΓD as
follows:

def GammaD(x, on_boundary):

return near(x[1], 0.) and on_boundary

which says that the points which should be constrained are those on the boundary of the domain
for which the y component is within round-off error of 0.1 From this point on, the code is similar
to that discussed above.

f = Expression(’...’)

g = Expression(’...’)

k = Expression(’...’)

b = dot(grad(u), grad(v))*dx

F = f*v*dx + k*v*ds

bc = DirichletBC(Vh, g, GammaD)

uh = Function(Vh)

solve(b == F, uh, bc)

1Actually, here we could drop the and on_boundary, since if y = 0 the point must belong to ∂Ω. But it is wise to
include it. If we were describing the portion of the boundary where y ≥ .5, for example, we would need to include
the restriction to the boundary so that we do not constrain DOFs at points inside the domain.
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Note that on the right hand side we have included
∫
∂Ω kv ds. Actually, this integral is over ΓN , the

complement of ΓD on the boundary, because it is only applied to v which are constrained to 0 on
ΓD.

Remark. People are often confused about what to do at the interface where the boundary conditions
switch from Neumann to Dirichlet. In our example, this would consist of the two points (0, 0) and
(1, 0), the end points of the bottom side ΓD. Should the DOFs associated with these points be
constrained, as for a Dirichlet BC or left unconstrained as for a Neumann BC? The answer is that
they should be constrained. The constraint u = g is a continuous condition: if it holds on a subset
of ∂Ω, it should hold on the closure of that set. In the case we have treated, where the Dirichlet
boundary is the bottom edge of the square, this was easy to code: near(x[0], 0.) includes the
end points. But consider the case where ΓD is the union of the bottom, top, and right sides of the
square. One might be tempted to define it by

def GammaD(x, on_boundary):

return x[0] > 1.e-15 and on_boundary

using the condition y > 1.e − 15 to include all points that are not on the left edge y = 0 (up to
round-off error). But this is an error, because it excludes the points (0, 0) and (0, 1), which must
be included in ΓD. A correct definition of the boundary is

def GammaD(x, on_boundary):

return (near(x[0], 0.) or near(x[1], 0.) or near(x[1], 1.)) and on_boundary

3.5. Multiple Dirichlet boundary conditions. It is possible to have multiple Dirichlet bound-
ary conditions, say u = g1 on the bottom side and u = g2 on the top side. We would then define
two different DirichletBC, each just as above, say bc1 and bc2, and pass both of them to the solve
routine:

solve(b == F, uh, [bc1, bc2])

3.6. Robin boundary conditions. Robin boundary conditions take the form ∂u/∂n + qu = g,
i.e., a linear combination of Dirichlet and Neumann boundary conditions. These can be treated
much as for Neumann boundary conditions, in that they are natural, not essential. In the case of
Robin boundary conditions, not only is the functional F modified, but also the bilinear form b.

3.7. Periodic boundary conditions. In the case of periodic boundary conditions, the boundary
condition does not constrain individual points on the boundary, but relates the values at two
different points, e.g., u(0, y) = u(1, y) for periodicity in the x-direction on the unit square. We will
not discuss this further except to say that this possibility is also available in FEniCS.


