1. Give the mixed variational formulation for the PDE problem

$$-\operatorname{div} a \operatorname{grad} u = f \text{ in } \Omega,$$

for each of the boundary conditions u=g or $\partial u/\partial n=0$. (For the latter assume $\int f=0$ and normalize the solution by $\int u=0$.)

- 2. Suppose we discretize the Dirichlet problem for the Laplacian in one dimension (-u'' = f) on (0,1), u(0) = u(1) = 0, using the mixed formulation and Lagrange quadratic finite elements both for u and $\sigma = u'$. Prove that the resulting matrix is singular.
- 3. Given a triangulation of a domain Ω in the plane, let V_h be the lowest order Raviart-Thomas space and W_h the space of piecewise constants.
- a) Define the operator $\pi_h: H^1(\Omega; \mathbb{R}^2) \to V_h$ and prove that it satisfies

$$\int_{\Omega} \operatorname{div} \pi_h \tau \, v \, dx = \int_{\Omega} \operatorname{div} \tau \, v \, dx, \quad v \in W_h.$$

- b) State the inf-sup condition (second Brezzi condition) required for stability of these elements for the mixed Poisson problem.
- c) Use the π_h operator to prove the inf-sup condition (you can assume that π_h is bounded uniformly in h.
- 4. Consider the mixed method for the 1D Laplacian on an interval Ω .
- a) Write down the bilinear forms $a: H^1 \times H^1 \to \mathbb{R}$ and $b: H^1 \times L^2 \to \mathbb{R}$ and in terms of them state the two Brezzi stability conditions for subspaces $V_h \subset H^1$ and $W_h \subset L^2$.
- b) Suppose that for the subspace V_h we choose the Lagrange piecewise quadratics and for the subspace W_h we choose piecewise constants. One of the two stability conditions holds in this case and one fails. Which one holds and which one fails? Prove your claim.
- 5. The lowest order Brezzi-Douglas-Marini finite element subspace V_h of H(div) uses as shape functions $\mathcal{P}_1(T;\mathbb{R}^2)$, T being a triangle.
- a) What are the degrees of freedom associated to a vertex, to an edge, and to the triangle? Draw the element diagram.
- b) Prove unisolvence.
- c) Define a projection operator $\pi_h: H^1(\Omega; \mathbb{R}^2) \to V_h$ satisfying a commutativity property involving the operator div. State and prove the commutativity property.
- 6. a) For the mini finite element method for the Stokes equations construct a Fortin operator. State the two properties such an operator must have and sketch the proof of these properties.
- b) What is the basic error estimate for solution of the Stokes equations using these elements (proof not required)?
- 7. Same question for the $\mathcal{P}_2 \mathcal{P}_0$ Stokes elements.

8. Ω be the unit cube in \mathbb{R}^3 and consider the closed Hilbert complex

$$L^2(\Omega; \mathbb{R}^3) \xrightarrow{(\operatorname{curl}, H(\operatorname{curl}))} L^2(\Omega; \mathbb{R}^3) \xrightarrow{(\operatorname{div}, H(\operatorname{div}))} L^2(\Omega).$$

- a) Write down the mixed weak formulation of the Hodge Laplacian corresponding to this situation.
- b) Write down the corresponding strong formulation including boundary conditions.
- 9. Let $W^0 = L^2(\Omega; \mathbb{R}^2)$ and $W^1 = L^2(\Omega)$. On W^1 use the usual L^2 norm, but on W^0 use the weighted norm

$$\|\tau\|_{W^0}^2 = \int_{\Omega} a(x) |\tau(x)|^2 dx$$

where $a: \Omega \to \mathbb{R}$ is a given continuous coefficient function with $0 < \underline{a} \le a(x) \le \overline{a}(x)$. Let T be the operator $W^0 \to W^1$ given by $T\tau = \operatorname{div} \tau$ with $D(T) = H(\operatorname{div})$, and consider the Hilbert complex

$$W^0 \xrightarrow{T} W^1 \to 0.$$

- a) Explain briefly why W^1 contains no harmonic forms in this case.
- b) Write out the mixed weak formulation of the Hodge Laplacian for this complex.
- c) What is the corresponding boundary value problem (PDE and boundary conditions).
- 10. For a closed Hilbert complex

$$\cdots \to W^{k-1} \xrightarrow{(d^{k-1}, V^{k-1})} W^k \xrightarrow{(d^k, V^k)} W^{k+1} \to \cdots,$$

- a) Define the harmonic forms \mathfrak{H}^k .
- b) State and prove the Hodge decomposition of W^k .
- c) Define the abstract Hodge Laplacian L^k .
- d) For a function $f \in W^k$ which is orthogonal to the harmonic form, express the Hodge decomposition of f in terms of a solution u to the equation $L^k u = f$.
- 11. Let Ω be a simply-connected domain in \mathbb{R}^2 and consider the Hilbert complex

$$L^2(\Omega) \xrightarrow{(\operatorname{curl},\mathring{H}^1)} L^2(\Omega; \mathbb{R}^2) \xrightarrow{(\operatorname{div},\mathring{H}(\operatorname{div}))} L^2(\Omega).$$

(Here curl $\phi = (\partial \phi / \partial y, -\partial \phi / \partial x)$.)

- a) Write down the mixed weak formulation of Hodge Laplacian.
- b) State the PDE and boundary conditions in terms of the primary variable $u: \Omega \to \mathbb{R}^2$.
- 12. Recall that an element $\omega \in \operatorname{Alt}^1 \mathbb{R}^n$ has a vector proxy $w \in \mathbb{R}^n$ given by $\omega(v) = w \cdot v$ for all $v \in \mathbb{R}^n$. (w is the vector proxy of ω). Now suppose that $L : \mathbb{R}^m \to \mathbb{R}^n$. Define the pullback $L^*\omega \in \operatorname{Alt}^1 \mathbb{R}^m$ and prove that the vector proxy of $L^*\omega$ is $L^Tw \in \mathbb{R}^m$.