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CHAPTER 6

C1 finite element spaces

1. Review of finite elements

We begin with a brief review of finite elements as presented last semester. We considered
the solution of boundary value problems for PDE that could be put into a weak formulation
of the following sort: find u ∈ V such that b(u, v) = F (v) for all v ∈ V . Here V is a Hilbert
space, b a bounded bilinear form, F a bounded linear form. In the case where b is symmetric
and coercive, this weak formulation is equivalent to the variational problem

u = argmin
v∈V

[
1

2
b(v, v)− F (v)

]
.

Such a weak formulation is well-posed if b is coercive, or, more generally, if the inf-sup
condition and dense range condition hold.

The numerical methods we considered were Galerkin methods, which means we seek uh
in a finite dimensional subspace Vh ⊂ V satisfying b(uh, v) = F (v) for all v ∈ Vh. If b is
coercive, this method is automatically stable with the stability constant Cs bounded by the
reciprocal of the coercivity constant. More generally, if the inf-sup condition holds on the
discrete level, Cs is bounded by the reciprocal of the inf-sup constant.

The consistency error for a Galerkin method is the approximation error for the space
Vh times the bound of b. From this we got the fundamental quasioptimal error estimate for
Galerkin’s method

‖u− uh‖V ≤ (1 + Cs‖b‖) inf
v∈Vh

‖u− v‖V .

For finite element methods, the spaces Vh are constructed to be spaces of piecewise polyno-
mials with respect to some simplicial decomposition of the domain, based on shape functions
and degrees of freedom. For the case where V is H1(Ω), a very natural family of finite element
spaces are the Lagrange finite elements, for which the shape functions on a simplex T are
the polynomials Pr(T ) for some r ≥ 1.

We bounded the approximation error for the Lagrange finite element spaces Vh using
the Bramble–Hilbert lemma and scaling. Putting together the above considerations, for
the model scalar second order elliptic PDE, − div a gradu + cu = f , we obtained H1 error
estimates. We then used the Aubin–Nitsche duality argument to obtain error estimates of
one higher order in L2.

Finally, we introduced the Clément interpolant into the Lagrange finite element spaces,
and used it to derive a posteriori error estimates, and error indicators which could be used
in adaptive mesh refinement algorithms.
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2 6. C1 FINITE ELEMENT SPACES

2. The plate problem

An elastic plate is a thin elastic body. First we recall that an elastic body is a sort of three-
dimensional analogue of a spring. When a spring is extended it generates an internal restoring
force, and in the simplest case, it satisfies Hooke’s law: the force is proportional to extension.
For an elastic body, a deformation in any direction provokes corresponding internal forces
in the body, in all directions. In the simplest case of a linearly elastic material, the internal
forces, or stresses are linear in the deformation. The simplest case is an homogeneous and
isotropic elastic material. In this case the response of the material can be characterized in
terms of two parameters, Young’s modulus E and Poisson’s ratio ν. Young’s modulus is
also called the tensile modulus, since it measures the tension (restoring force) in a length of
the material subject to longitudinal stretching. In other words, if a sample in the form of
a rectangular parallelpiped of width L in one direction is stretched by pulling on the two
opposite sides to increase their separation to L(1 + ε), then the restoring force per unit area
generated in the opposite direction will be Eε. Thus E is like the spring constant in Hooke’s
law. It has units of psi (pounds per square inch) in customary US units, or pascals (newtons
per square meter) in international units. Aluminum, for instance, has E around 1.0 × 107

psi, or 6.9× 1010 pascals.

Figure 6.1. Elastic cube under tension σε. Strain is ε in the direction of
tension, −δ in the normal directions. Young’s modulus is E = σε/ε. Poisson
ratio is ν = δ/ε.
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Under the same tension test, Poisson’s ratio is the ratio of the the compression in the
orthogonal directions, to the extension in the given direction. Thus Poisson’s ratio is dimen-
sionless. The statement that if a material is stretched its volume does not decrease leads to
ν ≤ 1/2. For most materials, ν ≥ 0, which we shall assume. For aluminum a value of about
.33 is typical. For materials which are nearly incompressible, like rubber, the value is close
to 1/2.



2. THE PLATE PROBLEM 3

We shall return to elasticity later in the course, but now we consider the transverse
deflection of an elastic plate.

Figure 6.2. Thin plate under a transverse loading. Its deformation is
measured by the vertical displacement of points on the middle plane.

Specifically, we suppose that our elastic body occupies the region Ω× (−t/2, t/2) where
Ω ⊂ R2 is a domain (of roughly unit size) giving the crosssection of the plate, and t << 1
is the thickness. We assume that the plate is subject to a vertical load per unit area g, and
let w : Ω → R denote the resulting vertical displacement of the middle surface. Then the
classic Kirchhoff plate bending model says that w minimizes the energy

1

2

Et3

12(1− ν2)

∫
Ω

[(1− ν)|∇2w|2 + ν|∆w|2] dx−
∫

Ω

gw dx.

The quantity D = Et3/[12(1 − ν2)] is called the bending modulus of the plate. By ∇2w
we mean the 2 × 2 Hessian matrix of w. (Warning: sometimes the notation ∇2 is used
for the Laplacian, but we do not follow this usage.) For a matrix τ we write |τ | for the
Frobenius norm (

∑2
i=1

∑2
j=1 τ

2
ij)

1/2 associated to the Frobenius inner product of matrices

τ : ρ =
∑2

i=1

∑2
j=1 τijρij. Thus in the plate energy

|∇2w|2 =
∑
i,j

∣∣∣∣ ∂2w

∂xi∂xj

∣∣∣∣2 , |∆w|2 =

∣∣∣∣∣∑
i

∂2w

∂x2
i

∣∣∣∣∣
2

The minimization of Kirchhoff’s energy must be subject to boundary conditions, such
as w = ∂w/∂n = 0 on ∂Ω for a clamped plate, or just w = 0 for a simply-supported plate.
Thus, if we define a bilinear form b over H2(Ω) by

b(w, v) = D

∫
Ω

[(1− ν)∇2w : ∇2v + ν∆w∆v] dx,

and the linear form F (v) =
∫

Ω
gv dx, the clamped plate problem is to find w ∈ V := H̊2(Ω)

such that
b(w, v) = F (v), v ∈ V.

The simply-supported plate problem has the same form, but with V = H2(Ω) ∩ H̊1(Ω).
Clearly b(v, v) ≥ D(1− ν)|v|22 (the Sobolev H2 seminorm), and there is a Poincaré type

inequality which says that ‖v‖2 ≤ cΩ|v|2 for all v ∈ H2(Ω) ∩ H̊1(Ω), so b is coercive over V
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(for both the clamped and simply-supported cases) and so the weak formulation of the plate
problem is well-posed.

Next we compute the strong form of the boundary value problems. First, for any smooth
u and v, we may integrate by parts twice and get Green’s second identity:∫

Ω

u∆v dx =

∫
Ω

u div grad v dx = −
∫

Ω

gradu · grad v dx+

∫
∂Ω

u
∂v

∂n
ds

=

∫
Ω

∆u v dx−
∫
∂Ω

∂u

∂n
v dx+

∫
∂Ω

u
∂v

∂n
.

Taking u = ∆w and v ∈ H̊2, we get∫
Ω

∆w∆v dx =

∫
Ω

∆2w v dx,

while for v ∈ H2 ∩ H̊1, ∫
Ω

∆w∆v dx =

∫
Ω

∆2w v dx+

∫
∂Ω

∆w
∂v

∂n
ds.

Now we consider the Hessian term. For a vector field φ, let gradφ denote the Jacobian matrix
field (∂φi/∂xj), and for a matrix field τ , let div τ denote the vector field (∂τi1/∂x1+∂τi2/∂x2).
Then ∫

Ω

τ : ∇2v dx =

∫
Ω

τ : grad grad v dx = −
∫

Ω

div τ · grad v dx+

∫
∂Ω

τn · grad v ds

=

∫
Ω

div div τ v dx−
∫
∂Ω

(div τ · n)v ds+

∫
∂Ω

τn · grad v ds.

Also, if s denotes the unit tangent, grad v = ∂v
∂n
n + ∂v

∂s
s and, if v ∈ H̊1, ∂v

∂s
= 0. Thus, for

v ∈ H2 ∩ H̊1, ∫
Ω

τ : ∇2v dx =

∫
Ω

div div τ v dx+

∫
∂Ω

n · τn ∂v
∂n

ds.

Taking τ = ∇2w = grad gradw, we get∫
Ω

∇2w : ∇2v dx =

∫
Ω

div div∇2w v dx+

∫
∂Ω

∂2w

∂n2

∂v

∂n
ds.

Now

div div∇2w =
∑
i

∂

∂xi

∑
j

∂

∂xj

∂2w

∂xi∂xj
=
∑
i

∂2

∂x2
i

∑
j

∂2w

∂x2
j

= ∆2w.

Putting all this together, we get for w ∈ H4, v ∈ H̊2,

b(w, v) =

∫
Ω

D∆2w v dx,

while for v ∈ H2 ∩ H̊1,

b(w, v) =

∫
Ω

D∆2w v dx+

∫
∂Ω

D[(1− ν)
∂2w

∂n2
+ ν∆w]

∂v

∂n
ds.
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Therefore the strong form of the clamped plate problem is

D∆2w = f in Ω, w =
∂w

∂n
= 0 on ∂Ω.

In this case both boundary conditions are essential.
The simply supported plate problem is

D∆2w = f in Ω, w = D[(1− ν)
∂2w

∂n2
+ ν∆w] = 0 on ∂Ω.

In this case, the second boundary condition (which physically means that the bending mo-
ment vanishes), is natural.

Remark. As an interesting digression, we describe the Babuška plate paradox. Suppose
that we want to solve the Dirichlet problem for Poisson’s equation on a smoothly bounded
domain, such as the unit disc. We might triangulate the domain, and then use standard finite
elements. The triangulation involves an approximation of the domain with a nearby polygon,
e.g., an inscribed polygon in the disc. It is true, and not surprising, that the solution to
the boundary value problem on the polygon converges to the solution on the disc, as more
sides are added to the polygon, so that it approaches the disc. However consider a circular
simply-supported plate (so the domain Ω is the unit disc). For simplicity we take the Poisson
ratio equal to 0. Then the plate equations are

(6.1) ∆2w = f in Ω, w =
∂2w

∂n2
= 0 on ∂Ω.

Now consider the same system on the domain Ωm which is an m-sided regular polygon
inscribed in the unit disc, and let wm be the corresponding solution. Then the paradox is
that w̄ := limm→∞wm exists but is different from w. In fact, in the case of a uniform load
f = D, w̄(0, 0) is 40% smaller than w(0, 0).

To see how this comes about, we consider the boundary conditions. On a straight edge
we may write

∆u =
∂2u

∂n2
+
∂2u

∂s2
,

and, if u = 0 on the edge, then the second term vanishes. Thus on a straight portion of the
boundary the simply-supported plate boundary conditions u = ∂2u/∂n2 = 0 are the same
as u = ∆u = 0. It can be shown rigorously that the same is true on a polygonal domain, in
which the boundary is straight everywhere except at finitely many points. Thus

∆2wm = f in Ωm, wm = ∆wm = 0 on ∂Ωm.

So it is not surprising that the limit w̄ of the wm satisfies the problem

(6.2) ∆2w̄ = f in Ω, w̄ = ∆w̄ = 0 on ∂Ω.

This can be proven rigorously using the fact that this problem decouples as two Poisson
problems. However, the expression for the Laplacian in polar coordinates is

∆w =
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
,
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so, on the boundary of the unit disc, for w vanishing there,

∆w =
∂2w

∂n2
+
∂w

∂n
.

Thus (6.1) becomes

∆2w = f in Ω, w = ∆w − ∂w

∂n
= 0 on ∂Ω,

which is a different problem from (6.2).
In fact, in the case f ≡ 1, the exact solution of (6.1) is w = (r4 − 6r2 + 5)/64, while the

exact solution to (6.2) is w̄ = (r4 − 4r2 + 3)/64.

3. Conforming finite elements for the plate problem

Since the weak formulation of the plate problem (with either Dirichlet or simply-supported
boundary conditions) is coercive over H2. Therefore, we may use the Galerkin method with
any subspace of H2 (satisfying the essential boundary conditions), and get quasioptimal
approximation in H2. Therefore we now consider finite element subspaces of H2.

As we know, a piecewise smooth function with respect to a triangulation belongs to H1

if and only if it is continuous. (Thus, for example, the space of all piecewise polynomials of
degree at most r is exactly the Lagrange finite element space of degree r, since it consists
precisely of the continuous piecewise polynomials of degree at most r.) A function belongs
to H2 only if it and all its first derivatives belong to H1, so a piecewise smooth function
belongs to H2 if and only if it is C1. This means that a finite element Galerkin method
for the plate bending problem requires C1 finite elements. This motivated a search to find
shape functions and degrees of freedom which would ensure C1 continuity.

3.1. Hermite quintic elements. In one-dimension it is not difficult to find C1 finite
elements (we could use these to solve the problem of the bending of an elastic bar). The
simplest are the Hermite cubic elements, illustrated in Figure 6.3, with P3 shape functions
and the values and first derivatives as DOFs on each interval. So let’s consider the 2D
analogue of these. On a triangle the Hermite cubic elements use P3 shape functions. Guided
by 1D, we take as degrees of freedom the values and the values of the first derivatives at
each vertex. Since there are two first derivatives, this gives 9 DOFs, leaving one more to be
chosen. For this we take the value at the barycenter (Figure 6.3, right).

Figure 6.3. Hermite cubic elements in 1D and 2D.

First we show the unisolvence of the proposed DOFs. Suppose u ∈ P3(T ) for some
triangle T , and all the DOFs for u vanish. For an edge e of T , let v = u|e. Using the
distance along e as a coordinate, we may view e as an interval, and v belongs to P3(e),
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and both v and its derivative vanish at the end points. Therefore (by unisolvence of the
Hermite cubic in 1D), v vanishes, i.e., u vanishes on e. This holds for all three edges, so u
is divisible by the bubble function λ1λ2λ3. Since u is cubic, it is a constant multiple. Since
u also vanishes at the barycenter (where the bubble function is positive), the constant must
be zero, so u ≡ 0.

Our argument also showed that the DOFs associated to an edge e determine u on the
edge e, so the resulting assembled finite element space will be C0. Let us try to show it
is C1. This means that we must show that ∂u/∂n is determined by the DOFs on e. But
the DOFs only determine ∂u/∂n at the two endpoints of e, and it is a polynomial of degree
2, which requires 3 values to be uniquely determined. Thus the Hermite cubic space is not
C1 in more than one dimension. (For a specific counterexample, consider two triangles with
a common edge and define a piecewise polynomial which vanishes on one of the triangles
and is equal to the bubble function on the other. This belongs to the Hermite cubic finite
element space, but is not C1.)

Figure 6.4. Hermite quintic elements in 1D and 2D.

Continuing our search for C1 finite elements, we look to the Hermite quintic space. In
1D this gives a C2 finite element. We shall show that in 2D it gives a C1 space. The shape
functions are, of course, P5(T ), a space of dimension 21. The DOF are the values of function
and all its first and second derivatives at the vertices, and the values of the normal derivatives
at the midpoints of each edge, which comes to 21 DOFs. This finite element is often called
the Argyris triangle. Unisolvence is straightforward. If all the DOFs for u vanish, then by
the unisolvence of the Hermite quintic in 1D, u vanishes on each edge. But also, on an edge
∂u/∂n is a quartic polynomial which vanishes along with its derivative at the endpoints,
and, moreover, it vanishes in the midpoint of the edge. This is a unisolvent set of DOFs
for a quartic in 1D, and hence the normal derivative vanishes on each edge as well. But a
polynomial and its normal derivative vanish on the line λi = 0 if and only if it is divisible
by λ2

i . Thus u is a multiple of λ2
1λ

2
2λ

2
3 which is a polynomial of degree 6, and hence u, a

polynomial of degree at most 5, must vanish.
Note that in the course of proving unisolvence we showed that u and its normal derivative

are determined on an edge by the degrees of freedom associated to the edge and its endpoints.
Consequently the assembled finite element space belongs to C1.

It is important to note that the assembled finite elements are, in fact, smoother than just
C1. They are, by definition, also C2 at the vertices. The assembled Hermite quintic finite
element space is precisely

{u ∈ C1(Ω) |u|T ∈ P5(T ) ∀T, u is C2 at all vertices }.
This extra restriction in the space is a mild shortcoming of the Hermite quintic element as
a C1 (or H2) finite element. In addition, with 21 degrees of freedom per triangle, of several
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different types (values, first derivatives, second derivatives, normal derivatives), the element
is regarded as quite complicated, especially in earlier days of finite element analysis. It is,
nonetheless, an important element for actual computation.

If we use the Hermite quintic finite element space Vh ⊂ V , we get the quasioptimal
estimate

(6.3) ‖w − wh‖2 ≤ c inf
v∈Vh

‖w − v‖2.

So next we consider the approximation error for the space. From the DOFs we can define
a projection operator Ih : H4(Ω) → Vh. (It is bounded on H4, but not on H3, because
it requires point values of the 2nd derivative.) Ih is built from projections which preserve
quintics on each triangle, so we would expect that we could use Bramble–Hilbert and scaling
to get

inf
v∈Vh

‖w − v‖2 ≤ chr‖w‖r+2, r = 2, 3, 4.

There is one complication. For Lagrange elements, we used the Bramble–Hilbert lemma to
get an estimate only on the unit triangle, and then for an arbitrary triangle, we used affine
scaling to the unit triangle. We found that the scaling brought in the correct powers of h
as long as we stuck to shape regular triangulations. To show this we needed the fact that
the interpolant of the affinely scaled function is the affine scaling of the interpolant. This
last fact does not hold when the interpolant is taken to be the Hermite quintic interpolant.
The reason is that normals are not mapped to normals (and normal derivatives to normal
derivatives) for general affine maps.

That is, given a triangle T and C2 function u on T , let ITu ∈ P6(T ) denote its Hermite

quintic interpolant. If T̂ is another triangle and F an affine map taking T̂ to T , we let
û = u◦F . Then (IT̂ û)◦F−1 need not coincide with ITu. For this reason, rather than general
affine maps, we shall consider only dilations (Fx̂ = hx̂). As long as F belongs to this class,
it is easy to see check that ITu = (IT̂ û) ◦ F−1.

For θ > 0, define Sθ to be the set of all triangles of diameter 1 all of whose angles are
bounded below by θ. Also let S ′θ denote the elements of Sθ which are normalized in the sense
that their longest edge lies on the interval from 0 to 1 on the x-axis and its third vertex lies
in the upper half plane. Note that the possible positions for the third vertex of T̂ ∈ S ′θ lie
inside a compact subset of the upper half plane. See Figure 6.5.

Now for any triangle T̂ , we know by the Bramble–Hilbert lemma that

(6.4) |u− IT̂u|r ≤ c|u|s,

for 0 ≤ r ≤ s, s = 4, 5, 6 (the lower bound on s comes from the need for point values of

the second derivative). Moreover a single constant c works for all T̂ ∈ S ′θ, since the best
constant depends continuously on the third vertex, which varies in a compact set. Of course
the estimate is unchanged if we transform T̂ by a rigid motion. Therefore, (6.4) holds with

c uniform over all T̂ ∈ Sθ.
Now let T by any triangle with least angle ≥ θ. Set hT = diamT , and define T̂ =

h−1
T T , which belongs to Sθ. Note that |T | = h2

T |T̂ |. Given a function u on T , define

û(x̂) = u(hT x̂), x̂ ∈ T̂ . As we mentioned above, IT̂ û(x̂) = ITu(hT x̂). Of course, we have
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Figure 6.5. The blue triangle belongs to S ′θ, i.e., its longest edge runs from
0 to 1 on the x-axis, its third vertex lies in the upper half plane, and all its
angles are bounded below by θ. Consequently the third vertex must lie in the
compact region shown in yellow.

θ
0 1

Dβû(x̂) = h
|β|
T D

βu(x). Thus we get from

|u− ITu|Hr(T ) = h−rT hT |û− IT̂ û|Hr(T̂ ) ≤ ch−rT hT |û|Hs(T̂ ) = chs−rT |u|Hs(T ).

Thus, through the usual approach of Bramble–Hilbert and scaling, but this time limiting the
scaling to dilation, we have proved the expected estimates for the Hermite quintic interpolant:

|u− ITu|r ≤ chs−rT |u|s,

where c only depends on the shape regularity of the triangle T . For a mesh of triangles, all
satisfying the shape regularity constraint and with h = maxhT , we can apply this element
by element, square, and add. In this way we get

|u− Ihu|r ≤ chs−r|u|s, u ∈ Hs(Ω),

for 0 ≤ r ≤ 2, 4 ≤ s ≤ 6 (the upper bound on r comes from the requirement that Ihu ∈
Hr(Ω).

Combining with the quasioptimality estimate (6.3), we immediately obtain error esti-
mates for the finite element solution.

‖w − wh‖2 ≤ chs−2|w|s,

where w is the exact solution and wh the finite element solution. In particular, if w is smooth,
then ‖w − wh‖2 = O(h4).

Concerning the smoothness of the exact solution, we run into a problem that we also ran
into when we considered the Poisson equation. If the domain Ω has a smooth boundary and
the data f is smooth, then the theory of elliptic regularity insures that w is smooth as well.
However, since we have assumed that our domain can be triangulated, it is a polygon and
therefore its boundary is not smooth. So in practice w may not be smooth enough to imply
O(h4) convergence.

Lack of regularity of the domain is also a problem when we try to apply an Aubin–Nitsche
duality argument to get high order convergence in H1 or L2, because this requires an elliptic
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regularity estimate, which will not hold on an arbitrary polygonal domain. For example,
suppose we try to prove an L2 estimate. We define φ ∈ V by

b(u, φ) =

∫
u(w − wh) dx, u ∈ V.

Then φ satisfies the plate problem with D∆2φ = w − wh. Taking u = w − wh, we get

‖w − wh‖2 = b(w − wh, φ) = inf
v∈Vh

b(w − wh, φ− v) ≤ c‖w − wh‖2 inf
v∈Vh

‖φ− v‖2.

If we knew that φ ∈ H4 and ‖φ‖4 ≤ c‖w−wh‖, we could then complete the argument: But

inf
v∈Vh

‖φ− v‖2 ≤ ch2‖φ‖4 ≤ ch2‖w − wh‖,

so ‖w−wh‖ ≤ ch2‖w−wh‖2. Unfortunately such 4-regularity of the plate problem does not
hold on a general polygon, or even a general convex polygon.

3.2. Reduced Hermite quintic. The difficulties with Hermite quintic elements (many
DOFs, need for second derivatives, complicated) motivate the search for simpler elements.
It turns out that one slight simplification can be made fairly easily. Define

P ′5(T ) = {u ∈ P5(T ) |u|e ∈ P4(e) for each edge }.

Then dimP ′5(T ) ≥ 18. Indeed if we write out a general element of P5(T ) in terms of 21
coefficients, then each of the conditions u|e ∈ P4(e) is a homogeneous linear equation which
must be satisfied the coefficients, so we get a system of 3 homogeneous linear equations in
21 unknowns. Now consider the 18 DOFs at the vertices we used for the Hermite quintic
(but ignore the 3 DOFs at the edge midpoints). If these 18 DOFs vanish for an element
u ∈ P ′5(T ), then u must vanish, by the same argument we used for P5. This implies that
dimP ′5(T ) ≤ 18, so we have equality, and we have a unisolvent set of degrees of freedom.

This finite element is called the reduced Hermite quintic or Bell’s triangle. Its advantage
over the full Hermite quintic is that it is in some ways simpler: it has 18 rather than 21
DOFs and all are values of the function or its derivatives at the vertices. The disadvantange
is that the shape functions contain all of P4(T ), but not all of P5(T ). Therefore the rate of
approximation for smooth functions is one order lower.

Figure 6.6. Reduced Hermite quintic element.
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3.3. Hsieh–Clough–Tocher composite elements. It is not possible to design sim-
pler conforming finite elements for the plate equation using polynomial shape functions. But
in the early 1960s the civil engineer R. Clough (who, incidentally, invented the term “finite
elements”) and his students J. Tocher and T. K. Hsieh designed an element using piecewise
polynomial shape functions on each triangle. To describe this HCT element, consider an
arbitrary triangle T , partitioned into 3 subtriangles by connecting each vertex to a point b
in the center. It is natural, but not necessary, to take b to be the barycenter of T , as we
shall do. Let K1, K2, K3 denote the 3-subtriangles. Then we shall use as the space of shape
functions on T

{u ∈ C1(T ) |u|Ki
∈ P3(Ki), i = 1, 2, 3 }.

Figure 6.7. A subdivided triangle (left), the HCT element (middle), and
the reduced HCT element (right).

K2 K1

K3

a1 a2

a3

f

f f

3

1 2

e1e2

e3

Our first task is to find the dimension of the space of shape functions. Each of the spaces
P3(Ki) is of dimension 10. We then impose the condition that u|K1 agrees with u|K2 and
u|K3 at b (which gives two homogeneous linear equations on the coefficients). We do similarly
for ∂u/∂x1 and ∂u/∂x2, so we obtain in this way 6 equations in all. Next we take any two
distinct points in the interior of the edge separating K1 and K2 and impose the equation
that u|K1 and u|K2 agree at these two points and similarly for ∂u/∂n. In this way we obtain
4 more equations. Doing this for all three interfaces, we obtain, altogether 18 homogeneous
linear equations the 30 coefficients must satisfy in order that they join together to make a
C1 function. Thus the dimension of the space of shape functions is ≥ 12. We now take as
DOFs the 12 quantities indicated in the center of Figure 6.7 and show that if all vanish, then
u vanishes. This will imply that the dimension is exactly 12 and the DOFs are unisolvent.

The argument, which is taken from the monograph of Ciarlet, begins in the usual way.
Let ui be the polynomial given by u|Ki

. On the edge of T contained in K1, ui is cubic and
the 4 DOFs on that edge imply that ui vanishes on the edge. Similarly we get that ∂ui/∂n
vanishes on the edge. Hence the polynomial ui is divisible by µ2

i , where µi is the barycentric
coordinate function on Ki which is 1 at b and vanishes on the two vertices of T in Ki. Thus
ui = piµi, where pi ∈ P1. Now µ1 and µ2 agree on f3. Since p1µ

2
1 and p2µ

2
2 must also agree

on f3 (by the continuity of u), we conclude that p1 = p2 on f3. In this way we conclude that
the piecewise linear which equals pi on Ki is continuous.

Now consider the continuity of ∇u across f3. This gives

(∇p1)µ2
1 + 2p1µ1∇µ1 = (∇p2)µ2

2 + 2p2µ2∇µ2 on f3.

On f3, µ1 = µ2 6= 0, so we can divide by this polynomial and recall that p1 = p2 on f3 to get
that

(∇p1)µ1 + 2p1∇µ1 = (∇p2)µ2 + 2p2∇µ2 on f3.
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Passing to the vertex a3 of f3, where µ1 = µ2 = 0,

p1∇µ1 = p1∇µ2 at a3.

Now ∇µ1 is a constant vector normal to e1 and ∇µ2 is a constant vector normal to e2. So
the above equation implies that p1(a3) = 0. Of course we get p1(a2) = 0 in the same way, so
the linear polynomial p1 vanishes on e1, so is a constant multiple of µ1. Thus we have shown
the u1 = Cµ3

1 for some constant C, which must be u(b). In the same way we get u2 = Cµ3
2

and u3 = Cµ3
3. Then we equate ∇u1 and ∇u2 on f3 and conclude that C must be zero.

Thus the HCT element is unisolvent. While the space of shape functions does not include
only polynomials (rather piecewise polynomials), it does include the space P3(T ). Therefore
the interpolant associated to the DOFs preserves cubics, and we can use a Bramble–Hilbert
argument with dilation, as for the Hermite quintics, and prove that infv∈Vh

‖u − v‖2 ≤
Ch2‖u‖4 when Vh is the HCT space.

It is also possible to define a reduced HCT space, a finite element space with 9 DOFs,
just as we defined a reduced Hermite quintic space. The DOFs are shown in Figure 6.7.



CHAPTER 7

Nonconforming elements

The complexity of finite element subspaces of H2 motivates the development of noncon-
forming finite elements. These are finite elements for which the assembled space Vh is not
contained in H2 (i.e., not contained in C1). For this reason ∆v and ∇2v do not make sense
(or at least are not L2 functions) for v ∈ Vh. However, on each element T ∈ Th ∇2v is
well-defined, so we can define wh ∈ Vh by∑

T∈Th

∫
T

∇2wh : ∇2v dx =

∫
Ω

fv dx, v ∈ Vh.

Not surprisingly, this method does not work in general. However, as we shall see, if we take
elements which are in some sense “nearly C1”, we obtain a convergent method.

1. Nonconforming finite elements for Poisson’s equation

First we will examine the idea of nonconforming finite elements in the simpler situation
of Poisson’s equation, which we will solve with finite element spaces which are not contained
in H1. Although we are doing this just to guide us in the more complicated case of H2

elements, it turns out that the non-conforming H1 elements are useful in some contexts.
We now define the space of non-conforming P1 finite elements. The shape functions are

P1(T ), like for Lagrange P1 elements, but the DOFs are the values at the midpoints of the
edges.

Figure 7.1. Nonconforming P1 finite element.

Consider now the Dirichlet problem

−∆u = f in Ω, u = 0 on ∂Ω.

As a finite element space Vh we use the nonconforming P1 space with all the DOFs on the
boundary set equal to zero. Thus dimVh is the number of interior edges of the mesh. The
finite element method is to find uh ∈ Vh such that∑

T∈Th

∫
T

graduh · grad v dx =

∫
Ω

fv dx, v ∈ Vh.

13
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Writing bh(w, v) =
∑

T∈Th

∫
T

gradw · grad v dx for any piecewise smooth w and v, we may
write the finite element method as: find uh ∈ Vh such that

(7.1) bh(uh, v) =

∫
Ω

fv dx, v ∈ Vh.

When we try to analyze this, the first difficulty we encounter is that the true solution
does not satisfy the discrete equations. That is, the equation∑

T∈Th

∫
T

gradu · grad v dx =

∫
Ω

fv dx,

holds if v ∈ H̊1(Ω), but need not hold for v ∈ Vh.
To understand better what is going on, we multiply the differential equation by a test

function v ∈ P1(T ) and integrate by parts over T :∫
T

fv dx = −
∫
T

∆u v dx =

∫
T

gradu · grad v dx−
∫
∂T

∂u

∂nT
v ds.

Next we add over T :∑
T

∫
T

gradu · grad v dx−
∑
T

∫
∂T

∂u

∂nT
v ds =

∫
Ω

fv dx.

In other words

(7.2) bh(u, v) =

∫
Ω

fv dx+ Eh(u, v), v ∈ Vh,

where

Eh(u, v) =
∑
T

∫
∂T

∂u

∂nT
v ds.

Note that Eh(u, v) measures the extent to which the true solution u fails to satisfy the
finite element equations, so it measures a kind of consistency error. This is different from
the consistency error we saw in conforming methods, which comes from the approximation
properties of the trial functions. Of course that sort of approximation error is also present
for nonconforming methods. But nonconforming methods also feature the consistency error
given by Eh(u, v), which is due to the fact that the test functions do not belong to the space
of test functions on the continuously level. (Note that it is the test functions, not the trial
functions that matter here.)

In order to analyze this method we introduce some notation. Define the space of piecewise
H1 functions with respect to the triangulation,

H1(Th) = { v ∈ L2(Ω) | v|T ∈ H1(T ), T ∈ Th },

Note that both H1 ⊂ H1(Th) and Vh ⊂ H1(Th), so this is a space in which we can compare
the exact solution and the finite element solution. We also define the piecewise gradient
gradh : H1(Th)→ L2(Ω,R2), given by

(gradh v)|T = grad(v|T ), v ∈ H1(Th), T ∈ Th.
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Then the bilinear form bh(w, v) =
∫

gradhw · gradh v dx is defined for all w, v ∈ H1(Th), and
the associated seminorm, the broken H1 seminorm, is

‖v‖h := ‖ gradh v‖.

Although it is just a seminorm on H1(Th), on the subspace H̊1 + Vh, it is a norm. Indeed
if ‖v‖h = 0, then v is piecewise constant. Since it is continuous at the midpoint of each
edge, it is globally constant, and since it vanishes at the midpoint of each boundary edge, it
vanishes altogether.

We clearly have the bilinear form is bounded and coercive with respect to this norm:

|bh(w, v)| ≤M‖w‖h‖v‖h, bh(v, v) ≥ γ‖v‖2
h, w, v ∈ H1(Th),

(in fact, with M = γ = 1).
Subtracting (7.1) from (7.2) we obtain the error equation.

bh(u− uh, v) = Eh(u, v), v ∈ Vh.

Let rhu ∈ Vh be an approximation of u (to be specified later). Then

bh(rhu− uh, v) = bh(rhu− u, v) + Eh(u, v), v ∈ Vh.

Taking v = rhu− uh, we get

‖rhu− uh‖2
h ≤ ‖rhu− u‖h‖rhu− uh‖h + |Eh(u, rhu− uh)|.

We shall prove:

Theorem 7.1 (Bound on consistency error for P1 nonconforming FE). There exists a
constant c such that

|Eh(u, v)| ≤ ch‖u‖2‖v‖h, v ∈ H̊1 + Vh.

Using this result it is easy to complete the argument. We immediately get

‖rhu− uh‖h ≤ ‖rhu− u‖h + ch‖u‖2,

and so

‖u− uh‖h ≤ 2‖rhu− u‖h + ch‖u‖2.

For the approximation error rhu − u we could take rhu to be the interpolant into Vh and
use a Bramble–Hilbert argument. But even easier, we take rhu to be the interpolant of u
into the Lagrange P1 space, which is a subspace of Vh, and for which we already known
‖rhu − u‖h ≤ ch‖u‖2. Thus we have proven (modulo Theorem 7.1) the following error
estimates that for the P1 nonconforming finite element method.

Theorem 7.2 (Convergence of P1 nonconforming FE). Let u solve the Dirichlet problem
for Poisson’s equation and let uh be the finite element solution computed using P1 noncon-
forming finite elements on a mesh of size h. Then

‖u− uh‖h ≤ ch‖u‖2.

It remains to prove the bound on the consistency error given in Theorem 7.1. The
theorem follows immediately from the following lemma (by taking φ = gradu).
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Lemma 7.3. There exists a constant c such that∣∣∣∣∣∑
T∈Th

∫
∂T

(φ · nT )v ds

∣∣∣∣∣ ≤ Ch‖ gradφ‖0‖ gradh v‖0, φ ∈ H1(Ω; R2), v ∈ H̊1(Ω) + Vh.

To see why a result like this should be true, think of each of the integrals over ∂T as a
sum of three integrals over the three edges of T . When we sum over all T , we will get two
terms which are integrals over each edge e in the interior of Ω, and one term for each edge
in ∂Ω. For an interior edge e, let T+ and T− be the triangles sharing the edge e and let ne
denote the unit normal pointing out of T+ into T−, (so ne = nT+ = −nT− on e). Define v+

and v− to be the restriction of v to T+ and T−, and set [[ v ]] = v+ − v− on e, the jump of v
across e. Then the contribution to the sum from e is

∫
e
(φ·ne)[[ v ]] ds. For e an edge contained

in ∂Ω, the contribution to the sum is just
∫
e
(φ ·nT )v ds, so for such edges we define ne to be

nT (the unit normal pointing exterior to Ω) and define [[ v ]] to be v|e. With this notation,
we have ∑

T∈Th

∫
∂T

(φ · nT )v ds =
∑
e

∫
e

(φ · ne)[[ v ]] ds,

where the second sum is over all edges. Now, if v ∈ H̊1, then [[ v ]] vanishes, but for v ∈ Vh
it need not. It is a linear polynomial on the edge e. However, it is not just any linear
polynomial: it is a linear polynomial on e (an edge of length at most h) which vanishes at
the midpoint of e. Therefore, roughly, we expect v to be of size h, which explains where the
factor of h arises in Lemma 7.3.

To prove Lemma 7.3, we need a new approximation estimate. Let T be a triangle and
e an edge of T . Let Pe : L2(e) → R be the L2(e) projection, i.e., the constant Peψ is the
average value of ψ ∈ L2(e).

Lemma 7.4. Let T be a triangle and e and edge. There exists a constant depending only
on the shape constant for T such that

‖φ|e − Pe(φ|e)‖L2(e) ≤ ch
1/2
T ‖ gradφ‖L2(T ), φ ∈ H1(T ).

Proof. The operator φ 7→ φ|e − Pe(φ|e) is a bounded linear operator H1(T ) → L2(e)
which vanishes on constants. From the Bramble–Hilbert lemma, we find

‖φ|e − Pe(φe)‖L2(e) ≤ cT‖ gradφ‖L2(T ), φ ∈ H1(T ).

We apply this result on the unit triangle T̂ , and then use affine scaling to get it on an
arbitrary element, leading to the claimed estimate. �

Proof of Lemma 7.3. Let e be an edge. Then∣∣∣∣∫
e

(φ · ne)[[ v ]] ds

∣∣∣∣ =

∣∣∣∣∫
e

[φ · ne − Pe(φ · ne)][[ v ]] ds

∣∣∣∣ ≤ ‖φ · ne − Pe(φ · ne)‖L2(e)‖[[ v ]]‖L2(e).

From the preceding lemma we obtain the bound

‖φ · ne − Pe(φ · ne)‖L2(e) ≤ ch1/2‖ grad(φ · ne)‖L2(e∗),

where h is the maximum triangle diameter and e∗ is the union of the one or two triangles
containing e (actually, here we could use either triangle, rather than the union, if we wished).
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Next we bound ‖[[ v ]]‖L2(e). On an interior edge, we may write

[[ v ]] = [[ v ]]− Pe[[ v ]] = [v+|e − Pe(v+|e)]− [v−|e − Pe(v−|e)].
Applying the previous lemma to each piece to get

‖[[ v ]]− Pe[[ v ]]‖L2(e) ≤ ch1/2‖ gradh v‖L2(e∗).

The same holds on a boundary edge, by a similar argument. Putting the bounds together,
we get ∣∣∣∣∫

e

(φ · ne)[[ v ]] ds

∣∣∣∣ ≤ ch‖ gradφ‖L2(e∗)‖ gradh v‖L2(e∗),

where h is the maximum element size. Then we sum over all edges e, using

∑
e

‖ gradφ‖L2(e∗)‖ grad v‖L2(e∗) ≤

[∑
e

‖ gradφ‖2
L2(e∗)

]1/2 [∑
e

‖ grad v‖2
L2(e∗)

]1/2

≤ 3‖ gradφ‖L2(Ω)‖ gradh v‖L2(Ω).

where the 3 comes from the fact that each triangle is contained in e∗ for 3 edges. Thus∑
T∈Th

∫
∂T

(φ · nT )v ds =
∑
e

∫
e

(φ · ne)[[ v ]] ds ≤ Ch‖ gradφ‖L2(Ω)‖ grad v‖L2(Ω).

�

We have proven O(h) convergence for the nonconforming P1 FEM in the norm ‖ · ‖h,
i.e., the broken H1 seminorm. On H̊1(Ω), the H1 seminorm bounds the L2 norm (Poincaré–
Friedrichs inequality), but this does not immediately apply to Vh. However we can use
Lemma 7.3 to show that the analogue of the Poincaré–Friedrichs inequality does indeed
hold.

Theorem 7.5 (Discrete Poincaré–Friedrichs inequality). There exists c > 0 such that

‖v‖ ≤ c‖v‖h, v ∈ H̊1(Ω) + Vh.

Proof. Choose a function φ ∈ H1(Ω; R2) such that div φ = v and ‖φ‖1 ≤ c‖v‖ (e.g.,
take ψ ∈ H2 with ∆ψ = v and set φ = gradψ. Even if the domain is not convex, we can
extend v by zero to a larger convex domain and solve a Dirichlet problem there to get ψ).
Then

‖v‖2 =

∫
Ω

div φ v dx = −
∫

Ω

φ · gradh v dx+
∑
T

∫
T

(φ · nh)v ds.

Clearly ∣∣∣∣∫
Ω

φ · gradh v dx

∣∣∣∣ ≤ ‖φ‖‖ gradh v‖ ≤ c‖v‖‖v‖h.

By Lemma 7.3, ∣∣∣∣∣∑
T

∫
T

(φ · nh)v ds

∣∣∣∣∣ ≤ ch‖φ‖1‖v‖h ≤ c‖v‖‖v‖h.

The theorem follows. �
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We have shown the that the nonconforming P1 finite element method satisfies the same
kind of H1 bound as the conforming P1 finite element method. We now obtain a higher order
error estimate in L2 using a duality argument just as we did for the conforming method.

Theorem 7.6. Assuming (in addition to the hypotheses of Theorem 7.2) that the domain
is convex,

‖u− uh‖ ≤ ch2‖u‖2.

Proof. Define φ by the Dirichlet problem

−∆φ = u− uh in Ω, φ = 0 on ∂Ω.

Ellipitic regularity tells us that φ ∈ H2 and ‖φ‖2 ≤ c‖u− uh‖. Then

(7.3) ‖u− uh‖2 = −
∫

∆φ(u− uh) dx =

∫
gradφ · gradh(u− uh) dx− Eh(φ, u− uh).

Now let v be any conforming finite element approximation in H̊1, i.e., any continuous piece-
wise linear function vanishing on the boundary. Then∫

gradh(u− uh) grad v dx = 0.

Therefore we can bound the first term on the right hand side of (7.3):∣∣∣∣∫ gradφ · gradh(u− uh) dx
∣∣∣∣ ≤ ∣∣∣∣∫ grad(φ− v) · gradh(u− uh) dx

∣∣∣∣
≤ ‖ grad(φ− v)‖‖ gradh(u− uh)‖.

Choosing v to be the interpolant of φ gives∣∣∣∣∫ gradφ · gradh(u− uh) dx
∣∣∣∣ ≤ ch‖φ‖2‖u− uh‖h ≤ ch‖u− uh‖‖u− uh‖h.

For the second term on the right hand side of (7.3), we have by Theorem 7.1 that

|Eh(φ, u− uh) ≤ ch‖φ‖2‖u− uh‖h ≤ ch‖u− uh‖‖u− uh‖h.
Thus (7.3) becomes

‖u− uh‖2 ≤ ch‖u− uh‖‖u− uh‖h,
which gives ‖u− uh‖ ≤ ch‖u− uh‖h, and so the theorem. �

1.1. Nonconforming spaces of higher degree. We close this section by discussing
the generalization to higher degree nonconforming elements. For r > 0, the nonconforming
Pr space is defined

(7.4) Vh = { v ∈ L2(Ω) | v|T ∈ Pr(T )∀T ∈ Th, [[ v ]] ⊥ Pr−1(e) ∀ edges e }.
For r = 1, this is the nonconforming piecewise linear space we just discussed, since a linear
function is orthogonal to constants on an interval if and only if it vanishes at the midpoint.
For r = 2, we can define a unique (up to a constant multiple) quadratic function on an
interval e which is orthogonal to P1(e). This is the Legendre polynomial, and its zeros
are the 2 Gauss points on the interval (if the interval is [−1, 1] the Legendre polynomial is
(3x2−1)/2, and the 2 Gauss points are ±1/

√
3. It is easy to see that a quadratic polynomial

is orthogonal to P1 if and only if it vanishes at the 2 Gauss points. More generally a
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polynomial of degree r is orthogonal to Pr−1 if and only if it is a multiple of the rth degree
Legendre polynomial, if and only if it vanishes at the r Gauss points (zeros of the rth degree
Legendre polynomial). See Figure 7.2.

Figure 7.2. Legendre polynomials of degree 1, 2, and 3, and their roots,
the Gauss points.

The analysis we gave above for nonconforming P1 extends easily to nonconforming Pr.
There is however one issue. The space Vh defined by (7.4) is a finite element space,

definable through shape functions and DOFs, for r odd, but not for r even. To see what
goes wrong in the even case, take r = 2. The shape function space is, of course, P2(T ),
and the natural choice of DOFs is the value at the 2 Gauss points on each edge. This gives
6 = dimP2(T ) DOFs, but they are not unisolvent. In fact, consider the case where the
triangle is equilateral with its barycenter at the origin. Then all 6 of the Gauss points lie on
a circle through the origin, so there is a nonzero quadratic polynomial, x2

1 +x2
2−c2, for which

all the DOFs vanish. See Figure 7.3. (Despite the fact that the nonconforming P2 space is
not a finite element space, in the strict sense of the word, it turns out that it is possible to
implement it in a practical fashion, and it is occasionally used. It is called the Fortin-Soulie
element [sic].)

Figure 7.3. The Gauss point values are not unisolvent over P2(T ).

This problem does not occur for nonconforming P3, for which we choose as DOFs the
values as the 3 Gauss points on each side and the value of the barycenter (scaled to the
interval [−1, 1] the cubic Legendre polynomial is (5x3 − 3x)/2 so the three Gauss points

are ±
√

3/5 and 0). See Figure 7.4. To see that these are unisolvent, suppose that a cubic
vanishes v at all of them. On each edge e, v vanishes at the three Gauss points, so the
restriction of v to each edge is a constant multiple of the Legendre polynomial on the edge.
Now let pi, i = 1, 2, 3, denote the vertices. Since v is a multiple of the Legendre polynomial
on the edge from p1 to p2, v(p1) = −v(p2). Similarly v(p2) = −v(p3) and v(p3) = −v(p1).
Therefore v(p1) = −v(p1), v(p1) = 0. From this we easily get that v ≡ 0 on the boundary
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Figure 7.4. The P3 nonconforming element.

of T . Thus v is a multiple of the bubble function on T , and so the DOF at the barycenter
implies v ≡ 0.

2. Nonconforming finite elements for the plate equation

A number of different nonconforming finite element methods have been devised for the
plate equation. (Some were proposed in the literature but later found not to converge or to
converge only for special mesh families.) We shall consider only one here, the very clever
Morley element. The shape functions for this element are P2(T ), and the DOFs are the values
at the vertices and the normal derivatives at the midpoints of edges. To see that these DOFs

Figure 7.5. The Morley nonconforming plate element.

are unisolvent, suppose that v ∈ P2(T ) has vanishing DOFs. Note that a quadratic that
vanishes at the endpoints of an interval has a vanishing derivative at the midpoint. Therefore
at the midpoints of the edges, not just the normal derivatives vanish, but also the tangential
derivatives, so the entire gradient vanishes. Each component of the gradient is a linear
polynomial, which vanishes at the three midpoint, so the gradient vanishes. Therefore v is
constant, and so zero.

Now let Vh denote the assembled Morley finite element space, approximating H̊2 (so that
we take all the DOFs on the boundary to be zero). For simplicity we consider the clamped

plate problem with 0 Poisson ratio: u ∈ H̊2,∫
∇2u : ∇2v dx =

∫
fv dx, v ∈ H̊2.

The Morley finite element solution uh ∈ Vh is defined by∫
∇2
huh : ∇2

hv dx =

∫
fv dx, v ∈ Vh.
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As before, the error analysis will hinge on the consistency error

Eh(u, v) :=
∑
T

∫
T

∇2u : ∇2v dx−
∫
fv dx, v ∈ Vh.

Since div∇2u = grad ∆u, we can write

Eh(u, v) =
∑
T

(∫
T

∇2u : ∇2v dx+

∫
T

div∇2u · grad v dx

)
+
∑
T

(
−
∫
T

grad ∆u · grad v dx−
∫
T

f v dx

)
=: E1 + E2.

Note that E2 vanishes if v ∈ H̊1(Ω). For any v belonging to the Morley space Vh, let Ihv be

the piecewise linear function with the same vertex values as v, so Ihv ∈ H̊1. Therefore

E2 =
∑
T

(
−
∫
T

grad ∆u · grad(v − Ihv) dx−
∫
T

f (v − Ihv) dx

)
.

By standard approximation properties we have

‖v − Ihv‖ ≤ ch2‖v‖h, ‖ gradh(v − Ihv)‖ ≤ ch‖v‖h.
Hence

|E2| ≤ c(h‖u‖3 + h2‖f‖)‖v‖h.
For E1, since∫

T

∇2u : ∇2v dx = −
∫
T

div∇2u · grad v dx+

∫
∂T

(∇2u)nT · grad v ds,

we get

E1 =
∑
T

∫
∂T

(∇2u)nT · grad v ds

Now each component of gradh v is a nonconforming P1, so we can applying Lemma 7.3 with
φ replaced by ∇2u and v replaced by gradh v to get

|E1| ≤ ch‖u‖3‖v‖h.
Thus we have shown that

|Eh(u, v)| ≤ ch(‖u‖3 + h‖f‖)‖v‖h.
From this point the analysis is straightforward and leads to

‖u− uh‖h ≤ ch(‖u‖3 + h‖f‖).
Note that the order h estimate is what we would expect since the norm is a broken H2

seminorm. The regularity required on u is just a bit more than u ∈ H3.
This result was established by Rannacher in 1979. In 1985 Arnold and Brezzi used a

duality argument to prove an O(h2) broken H1 estimate:

‖ gradh(u− uh)‖ ≤ ch2(‖u‖3 + ‖f‖).
It is not true that ‖u− uh‖ = O(h3).





CHAPTER 8

Mixed finite element methods

The Kirchhoff plate problem is difficult to solve by finite elements since it is a fourth
order PDE, leading to the need for finite element spaces contained in H2. One way we might
avoid this would be to formulate the fourth order PDE as a system of lower order PDEs.
For example, we can write the biharmonic ∆2w = f as

M = ∇2w, div divM = f,

i.e.,

Mij =
∂2w

∂xi∂xj
,
∑
ij

∂2Mij

∂xi∂xj
= f.

Actually, for plate problem with bending modulus D and Poisson ratio ν, a more physical way
to do this—and one which will be more appropriate when supplying boundary conditions—is
to define the bending moment tensor

M = D[(1− ν)∇2w + ν∆w)I],

i.e.,

Mij = D[(1− ν)
∂2w

∂xi∂xj
+ ν(∆w)δij],

which, together with div divM = f gives the plate equation. Of course, there are other ways
to factor the fourth order problem into lower order problems, including the obvious φ = ∆w,
∆φ = f . We could even factor the problem into a system of four first order equations:

θ = gradw, M = D[(1− ν)∇θ + ν(div θ)I], ζ = divM, div ζ = f.

All the variables in this formulation are physically meaningful: w is the vertical displacement
of the plate, θ the rotation of vertical fibers, M the bending moment tensor, and ζ the shear
stress.

For any such factorization, we can introduce a weak formulation, and then try to discretize
by finite elements. Such weak formulations are called mixed because they mix together fields
of different types in the same equation. The resulting finite element methods are called
mixed finite element methods.

In this chapter we will study mixed finite element methods, but for simpler problems,
like Poisson’s equation. Thus we will be reducing a second order equation to a system of
first order equations. The motivation for doing this (besides as a way to gain insight for
higher order problems) may not be clear, but it turns out that such mixed methods are of
great use.

23
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1. Mixed formulation for Poisson’s equation

We start with the simplest problem

(8.1) −∆u = f in Ω, u = 0 on ∂Ω.

We have discussed finite element methods based on the corresponding weak formulation. The
associated variational formulation is a minimization problem over H̊1(Ω). Now we consider
introducing a new variable σ = gradu (which is vector-valued), so we have the system

σ = gradu in Ω, − div σ = f in Ω, u = 0 on ∂Ω.

To obtain a weak formulation, we multiply the first PDE by a vector-valued test function
τ and the second by a scalar test function v, and integrate over Ω. We now proceed as
follows. First, we integrate the gradient in the first equation by parts, and use the boundary
condition. This leads to the weak formulation: find σ and u such that∫

Ω

σ · τ dx+

∫
Ω

u div τ dx = 0 ∀τ,
∫

Ω

div σv dx = −
∫

Ω

fv dx ∀v.

Note that we do not integrate by parts in the second equation, and we multiplied it by −1.
The reason is to obtain a symmetric bilinear form. That is, if we add the two equations, we
obtain a bilinear form acting on the trial function (σ, u) and the test function (τ, v) which
is symmetric: find (σ, u) such that

(8.2) B((σ, u), (τ, v)) =

∫
Ω

σ · τ dx+

∫
Ω

u div τ dx+

∫
Ω

div σv dx ∀(τ, v).

This reflects the fact that the original boundary value problem (8.1) is self-adjoint.
What are the correct spaces to use with this formulation? We see that the trial function

u and the corresponding test function v enter undifferentiated. Therefore the appropriate
Hilbert space is L2(Ω). On the other hand, we need to integrate not products involving σ
and τ , but also products involving div σ and div τ . Therefore we need τ ∈ L2(Ω; R2) and
also div τ ∈ L2(Ω) (and similarly for σ). We therefore define a new Hilbert space

H(div) = H(div,Ω) = { τ ∈ L2(Ω; R2) | div τ ∈ L2(Ω) }.

As an example of a function in H(div) we may take σ = gradu, where u ∈ H1 solves
Poisson’s equation −∆u = f for some f ∈ L2. Since div σ = −f , we see that σ ∈ H(div).
It may be that σ 6∈ H1(Ω; R2). This usually happens, for instance, for the Dirichlet problem
for a nonconvex polygon.

Thus the mixed weak formulation of the Dirichlet problem for Poisson’s equation is: Find
σ ∈ H(div) and u ∈ L2 such that

(8.3)

∫
Ω

σ·τ dx+

∫
Ω

u div τ dx = 0 ∀τ ∈ H(div),

∫
Ω

div σv dx = −
∫

Ω

fv dx ∀v ∈ L2.

We have shown that the solution to the Dirichlet problem does indeed satisfy this system.
We shall see below that there is a unique solution to this system for any f ∈ L2. Thus this is
a well-posed formulation of the Dirichlet problem. We may, of course, write it using a single
bilinear form B, as in (8.2), and the Hilbert space H(div)× L2.
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The weak formulation is associated to a variational formulation as well. Namely if we
define

(8.4) L(τ, v) =
1

2

∫
Ω

|τ |2 dx+

∫
Ω

v div τ dx+

∫
Ω

fv dx,

then (σ, u) is the unique critical point of L over H(div)× L2. In fact,

L(σ, v) ≤ L(σ, u) ≤ L(τ, u) ∀τ ∈ H(div), v ∈ L2,

so (σ, u) is a saddle point of L.
Note that div σ = −f , so L(σ, u) = 1

2

∫
|σ|2 dx. If τ ∈ H(div) is another function with

div τ = −f , then L(τ, u) = 1
2

∫
|τ |2 dx. Thus

1

2

∫
|σ|2 dx ≤ 1

2

∫
|τ |2.

The quantity (1/2)
∫
|τ |2 is called the complementary energy. We have just shown that,

subject to the constraint div τ = −f the unique minimizer of the complementary energy
(1/2)

∫
|τ |2 is τ = σ. Now recall how one computes the minimum of a function J(τ) subject

to a constraint L(τ) = 0. One introduces another variable v of the same type as L(τ),
and seeks a critical point of the extended function J(τ) + 〈L(τ), v〉 (where the angular
brackets denote the inner product). If (τ, v) = (σ, u) is the critical point of the extended
functional, that σ is the minimizer of J(τ) subject to the constraint L(τ) = 0. In our case,
L(τ) = div τ + f ∈ L2, so the extended functional is

1

2

∫
|τ |2 dx+

∫
(div τ + f)v dx, τ ∈ H(div), v ∈ L2,

which is exactly L(τ, v). Thus we find that the variational formulation of the mixed method
exactly characterizes σ as the minimizer of the complementary energy, and u as the Lagrange
multiplier associated to the divergence constraint.

2. A mixed finite element method

A Galerkin method for the Poisson equation now proceeds as follows. We choose finite
dimensional subspaces Vh ⊂ H(div) and Wh ⊂ L2, and seek σh ∈ Wh, uh ∈ Vh such that

(8.5)

∫
Ω

σh ·τ dx+

∫
Ω

uh div τ dx = 0 ∀τ ∈ Vh,
∫

Ω

div σhv dx = −
∫

Ω

fv dx ∀v ∈ Wh.

This is simply Galerkin’s method applied to the mixed formulation. However the bilinear
form B in the mixed formulation is not coercive, and so our theory thus far does not imply
that this method is stable.

Let us try out the method in a simple case. We consider the problem on the unit square,
with a uniform mesh of n×n subsquares, each divided in two by its positively sloped diagonal.
For finite elements we consider three possibilities:

• continuous piecewise linear vector fields for Vh, continuous piecewise linear scalar
fields for Wh;
• continuous piecewise linear vector fields for Vh, piecewise constants for Wh;
• the Raviart–Thomas elements, a subspace of H(div) we shall study below for Vh,

and piecewise constants for Wh.
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The first possibility, Lagrange elements for both variables, is a complete failure, in the
sense that the resulting matrix is singular. To see this, consider taking u as the piecewise
linear function with the vertex values shown in Figure 8.1, where a, b, and c are any three
real numbers adding to 0 (a 2-dimensional space). Then we have that

∫
T
u dx = 0 for each

triangle u. Therefore u is orthogonal to piecewise constants, and so
∫
u div τ dx = 0 for all

continuous piecewise linear τ . Therefore (0, u) ∈ Vh ×Wh satisfies

B((0, u), (τ, v)) = 0, (τ, v) ∈ Vh ×Wh,

i.e., (0, u) belongs to the kernel of the stiffness matrix. Thus the stiffness matrix is singular.

b a

b

c

a b

c

c

a

a

a

b

b

b

b

c

c

c

c a

a

a b

b c

Figure 8.1. A piecewise linear which is orthogonal to all piecewise constants
(a+ b+ c = 0).

The other two methods both lead to nonsingular matrices. To compare them, we choose
a very simple problem: u = x(1−x)y(1− y), so f = 2[x(1−x) + y(1− y)]. Figure 8.2 shows
the variable u for the two cases. Notice that the method using Lagrange elements for σ gives
complete nonsense. The solution is highly oscillatory on the level of the mesh, it ranges from
−0.15 to 0.25, while the true solution is in the range from 0 to 0.0625, and it has a line of
near zeros down the main diagonal, which is clearly an artifact of the particular mesh. The
Raviart–Thomas method gives a solution u that is a reasonably good approximation to the
true solution (considering it is a piecewise constant).

Clearly the choice of elements for mixed methods is very important. This is not a question
of approximation or consistency, but rather stability.

In fact, the issue already arises in one dimension. Consider the Poisson equation (−u′′ =
f) on an interval, say (−1, 1), written as σ = u′, −σ′ = f . Assuming homogeneous Dirichlet
boundary conditions, we get the mixed formulation: find σ ∈ H1, u ∈ L2 such that∫ 1

−1

στ dx+

∫ 1

−1

τ ′u dx = 0, τ ∈ H1,

∫ 1

−1

σ′v dx = −
∫ 1

−1

fv dx, v ∈ L2.

Notice that in one dimension H1 = H(div). If we again consider the possibility of continuous
piecewise linear functions for both variables, we again obtain a singular matrix. However in
one dimension, the choice of continuous piecewise linears for σ and piecewise constants for u
works just fine. In fact, this method is the 1-D analogue of the Raviart–Thomas method. In
Figure 8.3 we compare this method, and the method we obtain by using continuous piecewise
quadratics for σ and piecewise constants for u. That method is clearly unstable. (Our test
problem has u(x) = cos(πx/2).)
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−0.15

0.05

0.25

 

 

0

0.0312

0.0625

Figure 8.2. Approximation of the mixed formulation for Poisson’s equation
using piecewise constants for u and for σ using either continuous piecewise
linears (left), or Raviart–Thomas elements (right). The plotted quantity is u
in each case.

Figure 8.3. Approximation of the mixed formulation for −u′′ = f in one
dimension with two choices of elements, piecewise constants for u and piecewise
linears for σ (a stable method, shown in green), or piecewise constants for u
and piecewise quadratics for σ (unstable, shown in red). The left plot shows u
and the right plot shows σ, with the exact solution in blue. (In the right plot,
the blue curve essentially coincides with the green curve and hence is not
visible.)

An important goal is to understand what is going on these examples. How can we tell
which elements are stable for the mixed formulation? How can we find stable elements?

3. Inhomogeneous Dirichlet boundary conditions

Before continuing, we consider some other problems. Since the Dirichlet boundary con-
dition is natural in the mixed form, an inhomogeneous Dirichlet condition u = g on ∂Ω,
just modifies the right hand side. Here, to make things a bit more interesting, let us also
introduce a coefficient a in our equation:

− div a gradu = f.
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We assume that a(x) is bounded above and below by a positive constant. To obtain the
weak formulation, we introduce the new variable σ = a gradu. We write the system as

ασ − gradu = 0, div σ = −f,
where α = a−1. The reason for writing the first equation with α rather than a, is that this
will lead to a symmetric system, associated to a variational principle. Now if we multiply the
first equation by τ ∈ H(div), integrate by parts, and use the Dirichlet boundary condition,
we get ∫

ασ · τ dx+

∫
div τu dx =

∫
∂Ω

τ · ng dx, τ ∈ H(div),

The equilibrium equation remains unchanged∫
div σv dx = −

∫
fv dx, v ∈ L2.

This is again of the form

B((σ, u), (τ, v)) = F (τ, v) (τ, v) ∈ H(div)× L2,

but now the linear functional F acts on both variables.

4. The Neumann problem

We next consider the Neumann boundary condition a ∂u/∂n = 0. If we write the PDE
as the first order system

ασ − gradu = 0, div σ = −f,
then the boundary condition is σ · n = 0 on ∂Ω. Now if we multiply the first equation by
τ ∈ H(div) and integrate by parts, the boundary term

∫
∂Ω
uτ · n ds will not vanishes unless

τ · n vanishes on the boundary. Thus we are led to incorporate the Neumann boundary
condition into the space for σ and τ , and we define the space

H̊(div) = { τ ∈ H(div) | τ · n = 0 on ∂Ω }.
To do so, we need to make sure that the normal trace τ · n makes sense for τ ∈ H(div). We
shall return to this point, but let us accept it for now.

In this way we obtain a weak formulation for the Neumann problem: find σ ∈ H̊(div),
u ∈ L2 such that∫

ασ · τ dx+

∫
div τu dx = 0, τ ∈ H̊(div),

∫
div σv dx = −

∫
fv dx, v ∈ L2.

This problem is not well-posed, nor should it be, since the Neumann problem is not well-
posed. To have a solution we need

∫
f = 0 (take v ≡ 1), and then the solution is undeter-

mined up to addition of a constant. To get a well-posed problem, we replace L2 with

L̂2 = { v ∈ L2 |
∫
v = 0 }.

This leads to a well-posed problem (as we shall see below). Thus the solution of the Neumann

problem is a saddle point of L over H̊(div)× L̂2.
Note that the Neumann boundary conditions are built into the space used for the weak

and variational form (H̊(div)). Thus they are essential boundary conditions, while Dirichlet
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boundary conditions were natural. In this, the mixed formulation has the opposite behavior
as the standard one.

To complete this section, we show how to define the normal trace τ · n on ∂Ω for τ ∈
H(div). First we begin by giving a name to the trace space of H1(Ω). Define

H1/2(∂Ω) = {u|∂Ω | v ∈ H1(Ω) }.

Then H1/2 is a subspace of L2(∂Ω). If we define the norm

‖g‖H1/2(∂Ω) = inf
v∈H1(Ω)
u|∂Ω=g

‖v‖1,

then, by definition, the trace operator is bounded H1(Ω)→ H1/2(∂Ω). This way of defining
the trace space avoids many complications. Of course it would be nice to have a better
intrinsic sense of the space. This is possible to obtain, but we will not pursue it here.

Now consider a vector function τ ∈ H1(Ω; R2), and a function g ∈ H1/2(∂Ω). We can
find a function v ∈ H1(Ω) with v|∂Ω = g and ‖v‖1 ≤ 2‖g‖1/2,∂Ω (we can even replace 2 by
1). Then ∫

∂Ω

τ · ng ds =

∫
Ω

τ · grad v dx+

∫
Ω

div τv dx.

so ∣∣∣∣∫
∂Ω

τ · ng ds
∣∣∣∣ ≤ c‖v‖1‖τ‖H(div) ≤ c‖g‖1/2,∂Ω‖τ‖H(div).

Now we define the H−1/2(∂Ω) norm of some k ∈ L2(∂Ω) by

‖k‖H−1/2(∂Ω) = sup
g∈H1/2(∂Ω)

∫
∂Ω
kg ds

‖g‖H1/2(∂Ω)

.

Note that ‖k‖H−1/2(∂Ω) ≤ c‖k‖L2(∂Ω). With this definition we have that the map γ :

H1(Ω; R2)→ L2(∂Ω) given by γτ = τ · n satisfies

‖γτ‖H−1/2(∂Ω) ≤ c‖τ‖H(div), τ ∈ H1(Ω; R2).

We can extend this result to all of H(div) by density, but for this we need to define the space
H−1/2(∂Ω) as the completion of γH1(Ω) in the H−1/2(∂Ω) norm. If we do that we have the
following trace theorem.

Theorem 8.1 (Trace theorem in H(div)). The map γτ = τ · n extends to a bounded
linear map from H(div) onto H−1/2(∂Ω).

5. The Stokes equations

The Stokes equations seek a vector field u and a scalar field p, such that

−∆u+ grad p = f, div u = 0.

No slip boundary conditions are u = 0 on the boundary, and no conditions on p. Note that
in this equation ∆ represents the vector Laplacian, applied to each component. We shall see
that there is some similarity between this problem and the mixed Poisson equation, with u
here corresponding to σ there and p here to u there.
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The weak formulation of the Stokes equation is to find u ∈ H̊1(Ω; R2), p ∈ L2 such that∫
gradu : grad v dx−

∫
div vp dx =

∫
fv dx, v ∈ H̊1(Ω; R2),∫

div uq dx = 0, q ∈ L2.

6. Abstract framework

All the problems considered in this section may be put in the following form. We have
two Hilbert spaces V and W , two bilinear forms

a : V × V → R, b : V ×W → R,
and two linear forms

F : V → R, G : W → R.
Then we consider the weak formulation, find (σ, u) ∈ V ×W such that

(8.6)
a(σ, τ) + b(τ, u) = F (τ), τ ∈ V,

b(σ, v) = G(v), v ∈ W.
For the Poisson equation, V = H(div) and a is the L2 inner product (not the H(div) inner
product, or, in the case of a coefficient, a weighted L2 inner product. For the Stokes equations,
V = H1(Ω; R2) and a is the H1 seminorm. In both cases W = L2 and b(τ, v) =

∫
div τv dx.

Besides these there are many other examples of this structure.

7. Duality

Before proceeding we recall some results from functional analysis. If T : V → W is a
linear map between Hilbert (or Banach) spaces, then T ∗ : W ∗ → V ∗ is defined by

T ∗(g)(v) = g(Tv).

Then T ∗ is a bounded operator if T is:

|T ∗g(v)| = |g(Tv)| ≤ ‖g‖W ∗‖Tv‖W ≤ ‖g‖W ∗‖T‖L(V,W )‖v‖V ,
so ‖T ∗g‖V ∗ ≤ ‖g‖W ∗‖T‖L(V,W ), which means that ‖T ∗‖L(W ∗,V ∗) ≤ ‖T‖L(V,W ). Moreover if
S : W → X is another bounded linear operator, then, directly from the definition, (S ◦T )∗ =
T ∗ ◦ S∗. The dual of the identity operator V → V is the identity V ∗ → V ∗. This gives an
immediate theorem about the dual of an invertible map.

Theorem 8.2. If a bounded linear operator T : V → W between Hilbert spaces is invert-
ible, then T ∗ : W ∗ → V ∗ is invertible and (T ∗)−1 = (T−1)∗.

For the proof, we just take the dual of the equations T ◦ T−1 = IW and T−1 ◦ T = IV .
Recall that a Hilbert space is reflexive: (V ∗)∗ = V (where we think of v ∈ V as acting

on V ∗ by v(f) = f(v)). Therefore T ∗∗ = (T ∗)∗ : V → W . It is immediate that T ∗∗ = T :
indeed for v ∈ V , g ∈ W ∗, we have

g(T ∗∗v) = (T ∗∗v)g = v(T ∗g) = T ∗g(v) = g(Tv).

This allows us, whenever we have deduced a property of T ∗ from a property of T to reverse
the situation, deducing a property of T from one of T ∗ just by applying the first result to
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T ∗ rather than T . For example,we have ‖T‖L(V,W ) = ‖T ∗∗‖L(V ∗∗,W ∗∗) ≤ ‖T ∗‖L(W ∗,V ∗), which
gives the important result

‖T ∗‖L(W ∗,V ∗) = ‖T‖L(V,W ).

As another example, T ∗ is invertible if and only if T is invertible.
Now we introduce the notion of the annihilator of a subspace Z in a Hilbert (or Banach)

space V :

Za = { f ∈ V ∗ | f(v) = 0 ∀v ∈ Z } ⊂ V ∗.

Note that the annihilator Za is defined for any subspace of V , not just closed subspaces, but
Za is itself always closed. Of course we may apply the same notion to a subspace Y of V ∗ in
which case the annihilator belongs to V ∗∗ = V (in a Hilbert or reflexive Banach space) and
can be written

Y a = { v ∈ V | f(v) = 0 ∀f ∈ Y } ⊂ V.

If we start with a subspace Z of V and apply the annhilator twice, we obtain another
subspace of V , this one closed. In fact

(Za)a = Z̄,

the closure of Z in V (the smallest closed subspace containing Z). Indeed, it is obvious that
Z ⊂ (Za)a, and the latter is closed, so Z̄ ⊂ (Za)a. On the other hand, if v ∈ V , v /∈ Z̄, then
there exists f ∈ V ∗ such that f(z) = 0 ∀z ∈ Z, but f(v) 6= 0, showing that v /∈ (Za)a.

Now suppose T : V → W is a bounded linear map of Hilbert spaces. Then the null space
of T is precisely the annihilator of the range of T ∗:

N (T ) = R(T ∗)a.

Indeed, for v ∈ V ,

v ∈ N (T ) ⇐⇒ Tv = 0 ⇐⇒ g(Tv) = 0 ∀g ∈ W ∗ ⇐⇒ T ∗g(v) = 0 ∀g ∈ W ∗ ⇐⇒ v ∈ R(T ∗)a.

Replacing T with T ∗ we get N (T ∗) = R(T )a. Taking the annihilator of both sides we get

R(T ) = N (T ∗)a.

In summary:

Theorem 8.3. Let T : V → W be a bounded linear operator between Hilbert spaces.
Then

N (T ) = R(T ∗)a and R(T ) = N (T ∗)a.

Corollary 8.4. T is injective if and only if T ∗ has dense range, and T ∗ is injective if
and only if T has dense range.

Thus far we have used the identification of V with V ∗∗, but we have not used the iden-
tification, given by the Riesz Representation Theorem, of V with V ∗. For this reason, the
whole discussion so far carries over immediately to reflexive Banach spaces (and much of
it to general Banach spaces). However we now use the identification of V with V ∗ given
by the Riesz Representation Theorem, and really use the Hilbert space structure. This will
allow us to give a very simple proof of the Closed Range Theorem (although the theorem
is true for general Banach spaces). Let Z be a closed subspace of a Hilbert space, with
iZ : Z → V and πZ : V → Z the inclusion and the orthogonal projection, respectively.
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What are i∗Z : V ∗ → Z∗ and π∗Z : Z∗ → V ∗? It is easy to see that the following diagrams
commute

Z
iZ−−−→ V V

πZ−−−→ Zy∼= y∼= y∼= y∼=
Z∗

π∗Z−−−→ V ∗ V ∗
i∗Z−−−→ Z∗

where the vertical maps are the Riesz isomorphisms. This says, that Z∗ may be viewed
simply as a subspace of V ∗ with π∗Z the inclusion and i∗Z the orthogonal projection.

Theorem 8.5 (Closed Range Theorem). Let T : V → W be a bounded linear operator
between Hilbert spaces. Then R(T ) is closed in W if and only if R(T ∗) is closed in V ∗.

Proof. Suppose Y := R(T ) is closed in W . Let Z = N (T ) ⊂ V and define the map
T̃ : Z⊥ → Y by restriction of both the domain and range (T̃ v = Tv ∈ Y for all v ∈ Z⊥).
Clearly the following diagram commutes:

V
T−−−→ WyπZ⊥

xiY
Z⊥

T̃−−−→ Y

Taking duals we get the commuting diagram

V ∗
T ∗←−−− W ∗xi(Z⊥)∗

yπY ∗

(Z⊥)∗
T̃ ∗←−−− Y ∗

Now, T̃ is an isomorphism from Z⊥ to Y , so T̃ ∗ is an isomorphism from Y ∗ to (Z⊥)∗. We
can then read off the range of T ∗ from the last diagram: it is just the closed subspace (Z⊥)∗

of V ∗.
Thus if R(T ) is closed, R(T ∗) is closed. Applying this result to T ∗ we see if R(T ∗) is

closed, then R(T ) is closed. �

Corollary 8.6. T is injective with closed range if and only if T ∗ is surjective and vice
versa.

We close this section by remarking that, using the Riesz identification of V and V ∗, we
may view the dual of T : V → W as taking W → V (this is sometimes called the Hilbert
space dual, to distinguish it from the dual W ∗ → V ∗). In this view, Theorem 8.3 becomes

N (T ) = R(T ∗)⊥ and R(T ) = N (T ∗)⊥.

A simple case is when V = Rn and W = Rm so T can be viewed as an m× n matrix. Then
clearly N (T ) is the orthogonal complement of the span of the rows, i.e., the orthogonal
complement of the span of columns of the transpose. Thus the fact that N (T ) = R(T ∗)⊥ is
completely elementary (but nonetheless very useful) in this case.
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8. Well-posedness of saddle point problems

Consider now the abstract saddle point problem describe in Section 6. Associated to the
bilinear forms a and b, we have bounded bilinear operators A : V → V ∗ and B : V → W ∗,
and the problem may be stated in operator form: given F ∈ V ∗, and G ∈ W ∗ find σ ∈ V ,
u ∈ W such that

Aσ +B∗u = F, Bσ = G.

We now establish when this problem is well-posed, i.e., for all F , G, there exists a unique
solution σ, u, and there is a constant such that

(8.7) ‖σ‖V + ‖u‖W ≤ c(‖F‖V ∗ + ‖G‖W ∗).

Theorem 8.7 (Brezzi’s theorem in operator form). Let Z = N (B) and define AZZ :
Z → Z∗ by AZZ = πZ∗ ◦ A|Z. The abstract saddle point problem is well-posed if and only if

(1) AZZ is an isomorphism of Z onto Z∗.
(2) B maps V onto W ∗.

Moreover the well-posedness constant c in (8.7) may be bounded above in terms of the ‖A‖,
‖B‖, ‖A−1

ZZ‖, and ‖B|−1
Z⊥
‖.

Proof. In addition to AZZ , define maps AZ⊥ = πZ⊥∗ ◦ A|Z : Z → Z⊥∗ and, similarly,
A⊥Z and A⊥⊥. We also define B⊥ = B|Z⊥ : Z⊥ → W ∗. (The corresponding BZ is just the
zero map, so we don’t introduce that notation.) If we partition σ ∈ V = Z +Z⊥ as σZ + σ⊥
and F ∈ V ∗ = Z∗ + Z⊥∗ as FZ + F⊥, we may write the equations Aσ + B∗u = F , Bσ = G
in matrix form:

(8.8)

AZZ A⊥Z 0
AZ⊥ A⊥⊥ B∗⊥

0 B⊥ 0

σZσ⊥
u

 =

FZF⊥
G

 .

Now reorder the unknowns, putting u first, so the last column of the matrix moves in front
of the first:  0 AZZ A⊥Z

B∗⊥ AZ⊥ A⊥⊥
0 0 B⊥

 u
σZ
σ⊥

 =

FZF⊥
G

 .

Now reverse the first and second equation:

(8.9)

B∗⊥ AZ⊥ A⊥⊥
0 AZZ A⊥Z
0 0 B⊥

 u
σZ
σ⊥

 =

F⊥FZ
G

 .

From the upper triangular form of the matrix, we see that it is invertible if and only if all
the three matrices on the diagonal are invertible. But B⊥ is invertible if and only if B is
onto (since we restricted B to the orthogonal complement of its kernel), and B∗⊥ is invertible
if and only if B⊥ is. Therefore we have that (8.8) is invertible if and only if (1) and (2) hold.

When the conditions hold, we may write down the inverse matrix. Using the reordered
form we have B∗−1

⊥ −B∗−1
⊥ AZ⊥A

−1
ZZ B∗−1

⊥ (AZ⊥A
−1
ZZA⊥Z − A⊥⊥)B−1

⊥
0 A−1

ZZ −A−1
ZZA⊥ZB

−1
⊥

0 0 B−1
⊥


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from which can give an explicit bound on the well-posedness constant. �

Now we return to the statement of the problem in terms of bilinear forms rather than
operators. The operator AZZ corresponds to the restriction of the bilinear form a to Z ×Z.
Thus we know that a sufficient condition for condition (1) above is that a is coercive on
Z × Z, i.e., there exists γ1 > 0 such that

(8.10) a(z, z) ≥ γ1‖z‖2
V , z ∈ Z.

This condition is referred to as coercivity in the kernel or the first Brezzi condition. It is not
necessary, but usually sufficient in practice. If we prefer necessary and sufficient conditions,
we need to use the inf-sup condition: for all z1 ∈ Z there exists z2 ∈ Z such that

a(z1, z2) ≥ γ1‖z1‖‖z2‖,
together with the dense range condition: for all 0 6= z2 ∈ Z there exists 0 6= z1 ∈ Z such
that

a(z1, z2) 6= 0.

Note that γ−1
1 is a bound for A−1

ZZ .
Next we interpret condition (2) of the theorem in terms of the bilinear form b. The

condition is that B maps V onto W ∗, which is equivalent to B∗ maps W one-to-one onto
a closed subspace of V ∗, which is equivalent to the existence of a constant γ2 > 0 with
‖B∗w‖ ≥ γ2‖w‖ for all w ∈ W , which is equivalent to, that for all w ∈ W there exists
0 6= v ∈ V such that b(v, w) = B∗w(v) ≥ γ2‖w‖‖v‖, or, finally:

(8.11) inf
0 6=v∈Wh

sup
06=τ∈Vh

b(τ, v)

‖τ‖‖v‖
≥ γ2.

In this case γ−1
2 is a bound for ‖B−1

⊥ ‖. This is known as Brezzi’s inf-sup condition, or the
second Brezzi condition.

Putting things together we have proved:

Theorem 8.8 (Brezzi’s theorem). The abstract saddle point problem is well-posed if

(1) The bilinear form a is coercive over the kernel, that is, (8.10) holds for some γ1 > 0.
(2) The Brezzi inf-sup condition (8.11) holds for some γ2 > 0.

Moreover the well-posedness constant may be bounded above in terms of the ‖A‖, γ−1
1 , and

γ−1
2 .

Remark. Looking back at the inverse matrix we derived in the proof of Brezzi’s theorem
in operator form, we get explicit estimates:

‖σ‖ ≤ γ−1
2 (1+‖a‖γ−1

1 )‖G‖+γ−1
1 ‖F‖, ‖u‖ ≤ γ−2

2 ‖a‖(1+‖a‖γ−1
1 )‖G‖+γ−1

2 (1+‖a‖γ−1
1 )‖F‖.

Let us now look at some examples. For the mixed form of the Dirichlet problem, a :
H(div)×H(div)→ R is a(σ, τ) =

∫
ασ·τ dx, and b : H(div)×L2 → R is b(τ, v) =

∫
div τv dx.

Therefore Z = { τ ∈ H(div) | div τ = 0 }, the space of divergence free vector fields. Clearly
we have coercivity in the kernel:

a(τ, τ) ≥ α‖τ‖2 = α‖τ‖2
H(div).

Note that a is not coercive on all of H(div), just on the kernel.
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For the second Brezzi condition we show that for any v ∈ L2 we can find τ ∈ H(div)
with div τ = v and ‖τ‖H(div) ≤ c‖v‖. There are many ways to do this. For example, we can
extend v by zero and then define a primitive:

τ1(x, y) =

∫ x

0

u(t, y) dt, τ2 = 0.

Clearly div τ = v and it is easy to bound ‖τ‖ in terms of ‖v‖ and the diameter of the domain.
Or we could solve a Poisson equation ∆u = v and set τ = gradu.

As a second example, we consider the Stokes problem. In this case we seek the vector
variable (which we now call u) in H̊1(Ω; R2). It is not true that div maps this space onto

L2, but almost. Clearly
∫

div u dx = 0 for u ∈ H̊1, so to have the surjectivity of B we need
to take the pressure space as

L̂2 = { p ∈ L2 |
∫
p = 0 }.

For the Stokes problem, the coercivity in the kernel condition is trivial, because the a form
is coercive over all of H̊1(Ω; R2). This accounts for the fact that this condition is less well-
known than the second Brezzi condition. For the Stokes equations it is automatic, also on
the discrete level.

For the second condition we need to prove that div maps H̊1 onto L̂2. This result, usually
attributed to Ladyzhenskaya, is somewhat technical due to the boundary conditions , and
we do not give the proof.

9. Stability of mixed Galerkin methods

Now suppose we apply a Galerkin method to our abstract saddle point problem. That
is, we choose finite dimensional subspaces Vh ⊂ V and Wh ⊂ W and seek σh ∈ Vh, uh ∈ Wh

such that

(8.12)
a(σh, τ) + b(τ, uh) = F (τ), τ ∈ Vh,

b(σh, v) = G(v), v ∈ Wh.

We may apply Brezzi’s theorem to this problem. Suppose that

(8.13) a(z, z) ≥ γ1,h‖z‖2
V , z ∈ Zh := { τ ∈ Vh | b(τ, v) = 0, v ∈ Wh },

and

(8.14) inf
06=v∈Wh

sup
06=τ∈Vh

b(τ, v)

‖τ‖‖v‖
≥ γ2,h.

for some positive constants γ1,h, γ2,h. Then the discrete problem admits a unique solution
and we have the stability estimate

‖σh‖V + ‖uh‖W ≤ c(‖F |Vh
‖V ∗h + ‖G|Wh

‖W ∗h ),

where c depends only on γ1,h, γ2,h and ‖a‖. The general theory of Galerkin methods then
immediately gives a quasioptimality estimate.
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Theorem 8.9. Suppose that (σ, u) ∈ V ×W satisfy the abstract saddle point problem
(8.6) Let Vh ⊂ V and Wh ⊂ W be finite dimensional subspaces and suppose that the Brezzi
conditions (8.13) and (8.14) hold for some γ1,h, γ2,h > 0. Then the discrete problem (8.12)
has a unique solution (σh, uh) ∈ Vh ×Wh and

‖σ − σh‖V + ‖u− uh‖W ≤ c( inf
τ∈Vh

‖σ − τ‖V + inf
v∈Wh

‖u− v‖W ),

where the constant c depends only on γ1,h, γ2,h and the norms of a and b.

This estimate is the fundamental estimate for mixed methods. In many cases it is too
crude, since it couples the approximation of σ and u, and often other useful estimates can
be derived using a duality argument. We will see these in specific cases.

The major message from this theorem, however, is that, unlike for coercive formulations,
for saddle point problems the Galerkin subspaces Vh and Wh have to be chosen with a view
not only to approximation, but also stability, specifically, so that (8.13) and (8.14) hold.

10. Mixed finite elements for the Poisson equation

10.1. Mixed finite elements in 1D. As a simple example, let us return to the one-
dimensional example shown in Figure 8.3. Here

a(σ, τ) =

∫ 1

−1

στ dx, b(τ, v) =

∫ 1

−1

τ ′v dx.

If we choose both Vh and Wh to be the space of continuous piecewise linears for some mesh,
then γ2,h = 0, because for v a nonzero continuous piecewise linear which vanishes at each
element midpoint,

∫
τ ′v dx = 0 for all τ ∈ Vh. Thus this choice of elements violates the second

Brezzi condition in the worst possible way, γ2,h = 0, and does not even give a nonsingular
discrete problem. One might consider removing this highly oscillatory function from Wh,
e.g., by replacing Wh by its orthogonal complement, but in that case it turns our γ2,h → 0
with h.

Next we make the choice shown in green in Figure 8.3, namely Vh continuous piecewise
linear, Wh piecewise constant. Turning to the first Brezzi condition, Zh is the space of
continuous piecewise linears with derivative orthogonal to piecewise constants, which means
with vanishing derivative, i.e., Zh consists only of the constant functions. Clearly a(τ, τ) =∫
τ 2 dx coerces (actually equals) the H1 norm for a constant. So the first condition holds

with γ1,h = 1. For the second condition, given piecewise constant v, we let τ(x) =
∫ x

0
v(t) dt,

which is a continuous piecewise linear. Note that ‖τ‖0 ≤ ‖v‖0 and τ ′ = v, so ‖τ‖2
1 ≤ 2‖v‖2

0.
We have

b(τ, v) = ‖v‖2
0 ≥

1√
2
‖τ‖‖v‖.

which establishes the inf-sup condition with γ2,h = 1/
√

2. This proves the stability of the
method and justifies the good approximation quality we see in the figure.

Finally, consider the same choice for Wh but the use of continuous piecewise quadratics
for Vh, which is shown in red in Figure 8.3. Increasing the size of Vh only increases the
inf-sup constant, so the second condition is fulfilled. However it also increases the size of Zh,
and so makes the coercivity in the kernel condition more difficult. Specifically, let [x̄, x̄+ h]
be any mesh interval of length h and consider τ(x) = (x− x̄)(x− x̄− h) on this interval, 0
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everywhere else. Then τ ∈ Zh, ‖τ‖2
0 = O(h5), ‖τ‖2

1 = O(h3), and so a(τ, τ)/‖τ1‖2
1 = O(h2).

Therefore, γ1,h → 0 as h→ 0, explaining the instability we see.

10.2. Mixed finite elements in 2D. Now we return to mixed finite elements for
Poisson’s equation in two dimensions; see (8.5). What spaces Vh ⊂ H(div) and Wh ⊂ L2

can we choose for stable approximation? We saw by numerical example that the choice of
continuous piecewise linear elements for Vh and piecewise constants for Wh, while stable in
one dimension, are not stable in two dimensions.

The first stable spaces for this problem were provided by Raviart and Thomas in 1975.
We begin with the description of the simplest finite elements in the Raviart–Thomas family.
For the space Wh we do indeed take the space of piecewise constants (so the shape functions
on any triangle are simply the constants, and for each triangle T we take the single DOF
v 7→

∫
T
v dx). For the space Vh we take as shape functions on a triangle T

P−1 (T ; R2) := { τ(x) = a+ bx | a ∈ R2, b ∈ R, x = (x1, x2) }.

In other words, the shape function space is spanned by the constant vector fields (1, 0) and
(0, 1) together with the vector field x = (x1, x2). Note that P−1 (T ; R2) is a 3-dimensional
subspace of the 6-dimensional space P1(T ; R2). For example, the function τ(x) = (1 +
2x1, 3 + 2x2) is a shape function, but τ(x) = (1, x2) is not.

For DOFs, we assign one to each edge of the triangle, namely to the edge e of T we assign

τ 7→
∫
e

τ · ne ds,

where ne is one of the unit normals to e. Let us show that these DOFs are unisolvent. Let
τ = a + bx, a ∈ R2, b ∈ R, and suppose all three DOFs vanish for τ . Note that div τ = 2b.
Therefore

2|T |b =

∫
T

div τ dx =

∫
∂T

τ · n ds = 0.

Thus b = 0 and τ = a is a constant vector. But the DOFs imply that τ · ne vanish for each
of the three edges. Any two of these are linearly independent, so τ vanishes.

For any triangulation Th we have thus defined a finite element space Vh. It consists of all
the vector fields τ : Ω→ R2 such that τ |T ∈ P−1 (T ; R2) for all T ∈ Th and, if e is a common
edge of T−, T+ ∈ Th, and ne is one of the normals to e, then

(8.15)

∫
e

τ |T− · ne ds =

∫
e

τ |T+ · ne ds.

Our next goal is to show that Vh ⊂ H(div). Just as a piecewise smooth function with
respect to a triangulation belongs to H1 if and only if it is continuous across each edge, we
can show that a piecewise smooth vector field belongs to H(div) if and only if the normal
component is continuous across each edge. This basically follows from the computation

−
∫

Ω

τ · gradφ dx =
∑
T

∫
T

div τφ dx−
∑
T

∫
∂T

τ · nTφ ds.
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for any piecewise smooth τ and φ ∈ C̊∞(Ω). If τ has continuous normal components, then
we have cancellation, so ∑

T

∫
∂T

τ · nTφ ds = 0,

which means that

−
∫

Ω

τ · gradφ dx =

∫
Ω

divh τφ dx,

where divh τ ∈ L2(Ω) is the piecewise divergence of τ . This shows that the weak divergence
of τ exists and belongs to L2.

Now, by (8.15) we have for the Raviart–Thomas space Wh that the jump of the normal
component τ |T− ·ne− τ |T+ ·ne vanishes on average on e. However, for τ to belong to H(div)
we need this jump to vanish identically. This depends on a property of the space P−1 (T ; R2).

Lemma 8.10. Let τ ∈ P−1 (T ; R2) and let e be an edge of T . Then τ · ne is constant on e.

Proof. It is enough to consider the case τ(x) = x (since P−1 is spanned by this τ
and constants). Take any two points x, y ∈ e. Then x − y is a vector tangent to e, so
(x− y) · ne = 0, i.e., τ(x) · ne = τ(y) · ne. Thus τ · ne is indeed constant on e. �

We have thus defined the Raviart–Thomas space Vh ⊂ H(div) and the space of piecewise
constants Wh ⊂ L2. Clearly we have div Vh ⊂ Wh (since the vector fields in Vh are piecewise
linear). From this we have that the discrete kernel

Zh = { τ ∈ Vh |
∫

div τv dx = 0 ∀v ∈ Wh }

consists precisely of the divergence-free functions in Vh. From this the first Brezzi condition
(coercivity over Zh) holds (with constant 1).

The key point is prove the inf-sup condition. To this end we introduce the projection
operator πh : H1(Ω; R2)→ Vh determined by the DOFs:∫

e

πhτ · ne ds =

∫
e

τ · ne ds, τ ∈ H1(Ω; R2).

Note that we take the domain of πh as H1(Ω; R2) rather than H(div). The reason for this is
that

∫
e
τ · ne ds need not be defined for τ ∈ H(div), but certainly is for τ ∈ H1, since then

τ |∂T ∈ L2(∂T ).
We also define Ph : L2(T ) → Wh by

∫
T
Phv dx =

∫
T
v dx, i.e., the L2 projection. Then

we have the following very important result.

Theorem 8.11. div πhτ = Ph div τ, τ ∈ H1(Ω; R2).

Proof. The left hand side of the equation is a piecewise constant function, so it suffices
to show that ∫

T

div πhτ dx =

∫
T

div τ dx.

But this is an easy consequence of Green’s theorem:∫
T

div πhτ dx =

∫
∂T

πhτ · n ds =

∫
∂T

τ · n ds =

∫
T

div τ dx.

�
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The theorem can be restated as the commutativity of the following diagram:

H1 div−−−→ L2yπh

yPh

Vh
div−−−→ Wh.

We shall also prove below that πh is bounded on H1:

Theorem 8.12. There exists a constant independent of h such that

‖πhτ‖H(div) ≤ c‖τ‖1, τ ∈ H1(Ω; R2).

From these two results, together with the inf-sup condition on the continuous level, we
get the inf-sup condition for the Raviart–Thomas spaces.

Theorem 8.13. There exists γ > 0 independent of h such that

inf
06=v∈Wh

sup
06=τ∈Wh

∫
div τv dx

‖τ‖H(div)‖v‖
≥ γ.

Proof. It suffices to show that for any v ∈ Wh we can find τ ∈ Vh with div τ = v and
‖τ‖H(div) ≤ c‖v‖. First we find σ ∈ H1(Ω; R2) with div σ = v, ‖σ‖1 ≤ c‖v‖. For example,
we can extend v by zero to a disc or other smooth domain and define u ∈ H2 by ∆u = v
with Dirichlet boundary conditions, and then put σ = gradu. Finally, we let τ = πhσ. We
then have

div τ = div πhσ = Ph div σ = Phv = v.

Moreover,

‖τ‖H(div) ≤ c‖σ‖1 ≤ c‖v‖.
�

In view of Brezzi’s theorem, we then get quasioptimality:

Theorem 8.14. If (σ, u) ∈ H(div)×L2 solves the Poisson problem and (σh, uh) ∈ Vh×Wh

is the Galerkin solution using the Raviart–Thomas spaces, then

‖σ − σh‖H(div) + ‖u− uh‖ ≤ c( inf
τ∈Vh

‖σ − τ‖H(div) + inf
v∈Wh

‖u− v‖).

For the second infimum, we of course have

inf
v∈Wh

‖u− v‖ ≤ ch‖u‖1.

It remains to bound the first infimum, i.e., to investigate the approximation properties of
the Raviart–Thomas space Vh.

We will approach this in the usual way. Namely, we will use the projection operator
πh coming from the DOFs to provide approximation, and we will investigate this using
Bramble–Hilbert and scaling. We face the same difficulty we did when we analyzed the
Hermite quintic interpolant: πh is not invariant under affine scaling, because it depends on
the normals to the triangle. Therefore, just as for the Hermite quintic, we shall only use
scaling by dilation, together with a compactness argument.
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For any triangle T , set πT : H1(T ; R2)→ P−1 (T ; R2) denote the interpolant given by the
Raviart–Thomas degrees of freedom. Since the constant vector fields belong to P−1 , we get,
by the Bramble–Hilbert lemma, that

‖τ − πT τ‖L2(T ) ≤ cT |τ |H1(T ).

As in the Hermite quintic case, we denote by S(θ) the set of all triangles of diameter 1 with
angles bounded below by θ > 0. By compactness we get that the constant cT can be chosen
independent of T ∈ S(θ). Then we dilate an arbitrary triangle T by 1/hT to get a triangle
of diameter 1, and find that

‖τ − πT τ‖L2(T ) ≤ chT |τ |H1(T ),

where c depends only on the minimum angle condition. Adding over the triangles, we have

‖τ − πhτ‖L2(Ω) ≤ ch|τ |H1(Ω), τ ∈ H1(Ω),

where h is the maximum triangle size.
We also have, by Theorem 8.11, that

‖ div(τ − πhτ)‖L2(Ω) = ‖ div τ − Ph div τ‖L2(Ω) ≤ ch‖ div τ‖1 ≤ ch‖τ‖2.

Theorem 8.15.

‖τ − πhτ‖ ≤ ch‖τ‖1, τ ∈ H1(Ω; R2),

‖ div(τ − πhτ)‖ ≤ ch‖ div τ‖1, τ ∈ H1, div τ ∈ H1.

We immediately deduce Theorem 8.12 as well:

‖πhτ‖ ≤ ‖τ‖+ ‖πhτ − τ‖ ≤ c‖τ‖1,

‖ div πhτ‖ = ‖Ph div τ‖ ≤ ‖ div τ‖ ≤ ‖τ‖1.

Putting together Theorem 8.15 and Theorem 8.14 we get

‖σ − σh‖H(div) + ‖u− uh‖ ≤ ch(‖σ‖1 + ‖ div σ‖1 + ‖u‖1).

10.2.1. Improved estimates for σ. This theorem gives first order convergence for σ in L2,
div σ ∈ L2, and u ∈ L2, which, for each, is optimal. However, by tying the variables together
it requires more smoothness than is optimal. For example, it is not optimal that the L2

estimate for σ or u depend on the H1 norm of div σ. Here we show how to obtain improved
estimates for σ and div σ, and below we obtain an improved estimate for u.

We begin with the error equations∫
(σ − σh) · τ dx+

∫
div τ(u− uh) dx = 0, τ ∈ Vh,(8.16) ∫

div(σ − σh)v dx = 0, v ∈ Wh.(8.17)

Now, from the inclusion div σh ∈ Wh, we obtain

Ph div σ − div σh = Ph div(σ − σh).
But (8.17) implies Ph div(σ − σh) = 0. Thus

div σh = Ph div σ,
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and we have a truly optimal estimate for div σ:

‖ div(σ − σh)‖ = inf
v∈Vh

‖ div σ − v‖ ≤ ch‖ div σ‖1.

Next we use the commuting diagram property of Theorem 8.11 to see that div(πhσ−σh) = 0,
so if we take τ = πhσ − σh ∈ Vh in the first equation, we get∫

(σ − σh) · (πhσ − σh) dx = 0,

that is, σ − σh is L2-orthogonal to πhσ − σh. It follows that

‖σ − σh‖ ≤ ‖σ − πhσ‖,
and so,

‖σ − σh‖ ≤ ch‖σ‖1.

This is an optimal L2 estimate for σ.
We shall obtain an optimal L2 estimate for u below.

10.3. Higher order mixed finite elements. We have thus far discussed the lowest
order Raviart–Thomas finite element space, which uses the 3-dimensional space P−1 (T ) for
shape functions. We now consider the higher order Raviart–Thomas elements, with shape
functions

P−r = { a+ bx | a ∈ Pr−1(T ; R2), b ∈ Hr−1(T ) }.
Here Hr−1(T ) is the space of homogeneous polynomials of degree r− 1. We could allow b to
vary in Pr−1(T ) instead of Hr−1(T ), and the result space would be the same. Note that

dimP−r (T ) = dimPr−1(T ; R2) + dimHr−1(T ) = (r + 1)r + r = (r + 2)r.

Before giving the DOFs and proving unisolvence, we establish some useful facts about
polynomials.

Theorem 8.16. Let b ∈ Hr(R2) and x = (x1, x2). Then div(bx) = (r + 2)b

Proof. It suffices to check this for a monomial xα1x
β
2 with α + β = r. Then

div(bx) = div(xα+1
1 xβ2 , x

α
1x

β+1
2 ) =

∂

∂x1

xα+1
1 xβ2 +

∂

∂x2

xα1x
β+1
2

= (α + 1)xα1x
β
2 + (β + 1)xα1x

β
2 = (r + 2)b.

�

Corollary 8.17. The divergence map div maps Pr(R2; R2) onto Pr−1(R2). In fact, it
maps P−r (R2; R2) onto Pr−1(R2).

Proof. Given f ∈ Pr−1(R2) we have f =
∑r−1

i=0 bi, bi ∈ Hi(R2). We have

div(
∑

(i+ 2)−1bix) =
∑

(i+ 2)−1 div(bix) =
∑

bi = f,

and
r−1∑
i=0

(i+ 2)−1bix =
r−2∑
i=0

bix+ br−1x ∈ Pr−1(R2; R2) + xHr−1(R2) = P−r (R2; R2).

�
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For a 2-vector a = (a1, a2), we write a⊥ = (−a2, a1) (rotation by −π/2). If b is a function,
we write grad⊥ b = (grad b)⊥ = (−∂b/∂x1, ∂b/∂x2).

Theorem 8.18 (Polynomial de Rham sequence). For any r ≥ 1, the complex of maps

Pr(R2)
grad⊥−−−→ Pr−1(R2; R2)

div−→ Pr−2(R2)→ 0

is a resolution of the constants. In other words, the augmented complex

0→ R ⊂−→ Pr(R2)
grad⊥−−−→ Pr−1(R2; R2)

div−→ Pr−2(R2)→ 0.

is exact. (For r = 1 we interpret P−1(R2) as zero.

The statement that the sequence of maps is a complex means that the composition of
any two consecutive maps is zero, i.e., that the range of each map is contained in the kernel
of the next map. In this case that means that grad⊥ kills the constant functions (which is
obvious), and that div ◦ grad⊥ = 0, which is easy to check. The statement that the complex
is exact means that the range of each map precisely coincides with the kernel of the next
map.

Proof. Clearly the null space of the inclusion is zero, and the null space of grad⊥ is the
space of constants. We have shown that the range of div is all of Pr−2. So the only thing to
be proven is that

R(grad⊥) := { grad⊥ v | v ∈ Pr(R2) } = N (div) := { τ ∈ Pr−1(R2; R2) | div τ = 0 }.
We note that the first space is contained in the second, so it suffices to show that their
dimensions are equal. For any linear map L : V → W between vector spaces, dimN (L) +
dimR(L) = dimV . Thus

dimR(grad⊥) = dimPr(R2)− 1 =
(r + 1)(r + 2)

2
− 1 =

(r + 3)r

2
,

dimN (div) = dimPr−1(R2; R2)− dimPr−2(R2) = r(r + 1)− r(r − 1)

2
=

(r + 3)r

2
.

�

By a very similar argument we get an exact sequence involving P−r .

Theorem 8.19. For any r ≥ 1, the complex of maps

Pr(R2)
grad⊥−−−→ P−r (R2; R2)

div−→ Pr−1(R2)→ 0.

is a resolution of the constants.

We now give the degrees of freedom of the P−r finite element. These are

(8.18) τ 7→
∫
e

τ · nep(s) ds, p ∈ Pr−1(e),

and

(8.19) τ 7→
∫
T

τ · p(x) dx, p ∈ Pr−2(T ; R2).

Note: strictly speaking what we have defined is the span of the DOFs on each edge and
on T . By taking any basis of Pr−1(e) and for Pr−2(T ) we get the DOFs. See Figure 8.4.



10. MIXED FINITE ELEMENTS FOR THE POISSON EQUATION 43

Figure 8.4. Higher order Raviart–Thomas elements.

P−1 P0 P−2 P1 P−3 P2

Theorem 8.20. The DOFs given by (8.18) and (8.19) are unisolvent for P−r (T ; R2).

Proof. First, we count the number of DOFs. There are r per edge and 2× r(r − 1)/2
on the triangle, so 3r + r(r − 1) = r(r + 2) = dimP1

r−1(T ; R2) altogether. So, to show
unisolvence, all we need to do is show that if all the DOFs vanish, then τ ∈ P1

r−1(T ; R2)
vanishes.

Now we know that x · ne is constant on ne, so this implies that for τ ∈ P−r (T ; R2),
τ · ne ∈ Pr−1(e). Therefore the DOFs in (8.18) imply that τ · n vanishes on ∂T . We may
then use integration by parts to find that∫

T

| div τ |2 dx = −
∫
T

τ · grad div τ dx = 0,

with the last equality coming from (8.19). Thus div τ = 0. Writing τ = a + bx, a ∈
Pr−1(T ; R2), b ∈ Hr−1(T ) we conclude from Theorem 8.16 that b = 0, so τ ∈ Pr−1(T ; R2) and
div τ = 0. The polynomial de Rham sequence Theorem (8.18) then tells us that τ = grad⊥ φ,
where φ ∈ Pr(T ) is determined up to addition of a constant. The condition τ · n = 0 means
that ∂φ/∂s = 0 on each edge, so φ is equal to some constant on the boundary, which we can
take equal to 0. Therefore φ = bψ, with b ∈ P3(T ) the bubble function and ψ ∈ Pr−3(T ).
Using the polynomial de Rham sequence again, we can write ψ = div σ with σ ∈ Pr−2(T ; R2).
Then

(8.20)

∫
T

bψ2 dx =

∫
T

bψ div σ dx = −
∫
T

grad(bψ) · σ dx

= −
∫
T

grad⊥(bψ) · σ⊥ dx = −
∫
T

τ · σ⊥ dx = 0,

since σ⊥ ∈ Pr−2(T ; R2). Thus ψ = 0 so τ = 0 as claimed. �

Just as in the lowest order case, r = 1, considered previously, the choice of DOFs for the
higher order Raviart–Thomas spaces are designed to make the proof of stability straightfor-
ward. First of all, they ensure that τ · ne is continuous across each edge e, so the assembled
space is a subspace of H(div). Let us denote the assembled P−r space by Vh and denote by
Wh the space of all (not necessarily continuous) piecewise polynomials of degree r − 1. We
have div Vh ⊂ Wh, so the first Brezzi condition is automatic. Again let πh : H1(Ω; R2)→ Vh
be the projection determined by the DOFs, and let Ph : L2(Ω)→ Wh be the L2 projection.
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Then the diagram

H1 div−−−→ L2yπh

yPh

Vh
div−−−→ Wh.

commutes, as follows directly from integration by parts and the DOFs. The inf-sup condi-
tion follows from this, just as in the lowest order case, and the quasioptimality estimate of
Theorem 8.14 holds for all r ≥ 1. Assuming a smooth solution, we thus get

‖σ − σh‖H(div) + ‖u− uh‖ = O(hr).

The improved estimates for σ and div σ carry through as well (since they only used the
inclusion div Vh ⊂ Vh and the commuting diagram). Thus

‖σ − σh‖ ≤ chr‖σ‖r, ‖ div(σ − σh)‖ ≤ chr‖ div σ‖r.
We now use a duality argument to prove an improved estimate for u. As we have seen before,
when using duality, we need 2-regularity of the Dirichlet problem, and hence we require that
Ω be convex.

First we recall the error equations∫
(σ − σh) · τ dx+

∫
div τ(Phu− uh) dx = 0, τ ∈ Vh,(8.21) ∫

div(σ − σh)v dx = 0, v ∈ Wh.(8.22)

Note that we have replaced u with Phu in the first equation, which we can do, since div τ ∈
Wh for τ ∈ Vh. Now we follow Douglas and Roberts in defining w as the solution of the
Dirichlet problem

−∆w = Phu− uh in Ω, w = 0 on ∂Ω,

and set ρ = gradw. By elliptic regularity, we have ‖w‖2 + ‖ρ‖1 ≤ c‖Phu− uh‖.
Then

‖Phu− uh‖2 = (div ρ, Phu− uh) = (div πhρ, Phu− uh) = −(σ − σh, πhρ)

= (σ − σh, ρ− πhρ)− (σ − σh, ρ)

= (σ − σh, ρ− πhρ) + (div(σ − σh), w)

= (σ − σh, ρ− πhρ) + (div(σ − σh), w − Phw).

This gives
‖Phu− uh‖ ≤ C(h‖σ − σh‖+ h2‖ div(σ − σh)‖),

if r > 1, but for the lowest order elements, r = 1, it only gives

‖Phu− uh‖ ≤ Ch(‖σ − σh‖+ ‖ div(σ − σh)‖).
From this we easily get in the case r > 1 that

‖Phu− uh‖ ≤ Chr+1‖σ‖r ≤ Chr+1‖u‖r+1

(so uh and Ph are “super close”, closer than either to u). For the case r = 1 we get

‖Phu− uh‖ ≤ Ch2‖σ‖1 + h‖ div(σ − σh)‖ ≤ Ch‖σ‖1 ≤ Ch‖u‖2.
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Using the triangle inequality to combine these with estimates for ‖u − Phu‖ we get these
improved estimates for u:

‖u− uh‖ ≤

{
Chr‖u‖r, r > 1,

Ch‖u‖2, r = 1.

Finally, we close this section by mentioning that the whole theory easily adapts to a
second family of mixed elements, the BDM (Brezzi–Douglas–Marini) elements. Here the
shape functions for Vh are Pr(T ; R2), r ≥ 1, and the DOFs are

τ 7→
∫
e

τ · nep(s) ds, p ∈ Pr(e),

and, if r > 1,

τ 7→
∫
T

τ · p(x)⊥ dx, p ∈ P−r−1(T ; R2).

11. Mixed finite elements for the Stokes equation

We return now to the Stokes equation, given in weak form: Find u ∈ H̊1(Ω; R2), p ∈
L̂2(Ω), such that∫

gradu : grad v dx−
∫

div v p dx =

∫
fv dx, v ∈ H̊1(Ω; R2),∫

div u q dx = 0, q ∈ L̂2.

Recall that L̂2(Ω) consists of the functions in L2 with integral 0, and that we know that

div H̊1(Ω; R2) = L̂2(Ω), and so, for any q ∈ L̂2 there exists v ∈ H̊1(Ω; R2) with div v = q
and ‖v‖1 ≤ c‖q‖. This is equivalent to the inf-sup condition on the continuous level:

inf
0 6=q∈L̂2

sup
06=v∈H̊1

∫
div v p dx

‖v‖1‖p‖
≥ γ > 0.

Our goal is now to find stable finite element subspaces for Galerkin’s method. Compared
to the mixed Laplacian we see some differences.

• Because the bilinear form a(u, v) =
∫

gradu : grad v dx is coercive over H̊1, we
do not have to worry about the first Brezzi condition. It holds for any choices of
subspace.
• Since we need Vh ⊂ H1 rather than Vh ⊂ H(div), the finite elements we used for

the mixed Laplacian do not apply. We need finite elements which are continuous
across edges, not just with continuous normal component.
• The bilinear form b(u, q) =

∫
div uq dx is the same as for the mixed Laplacian, but

the fact that we need the inf-sup condition with the H1 norm rather than the H(div)
norm makes it more difficult to achieve.

We can rule out one simple choice of element which is vector-valued Lagrange P1 subject
to the Dirichlet boundary conditions for u and scalar Lagrange P1 elements subject to the
mean value zero condition for p. We already saw that on a simple mesh there are nonzero
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piecewise linears which are of mean value zero for which
∫

div v q dx = 0 for all piecewise
linear vector fields v.

We can rule out as well what may be regarded as the most obvious choice of elements,
vector-valued Lagrange P1 for u and piecewise constants for p. This method does not satisfy
the inf-sup condition, as we saw in the case of the mixed Laplacian (for which the inf-sup
condition is weaker).

However, we shall see that both these methods can be salvaged by keeping the same
pressure space Wh and enriching the velocity space Vh appropriately.

11.1. The P2-P0 element. One of the simplest and most natural ways to prove the
inf-sup condition is to construct a Fortin operator, by which we mean a linear operator
πh : H̊1(Ω; R2)→ Vh satisfying

(8.23) b(πhv, q) = b(v, q), q ∈ Wh,

and also the norm bound ‖πhv‖1 ≤ c‖v‖1. If we can find a Fortin operator, then we can
deduce the inf-sup condition for Vh ×Wh from the continuous inf-sup condition. Namely,
given q ∈ Wh, we use the continuous inf-sup condition to find v ∈ H̊1 with div v = q,
‖v‖1 ≤ γ−1‖q‖ for some γ > 0, so b(v, q) = ‖q‖2 ≥ γ‖v‖1‖q‖. We then get

b(πhv, q) = b(v, q) ≥ γ‖v‖1‖q‖ ≥ γc−1‖πhv‖1‖q‖,

which is the inf-sup condition at the discrete level.
Now suppose we want to create a stable pair of spaces with Wh the space of piecewise

constants. What choice should we make for Vh so that we can construct a Fortin operator
and prove the inf-sup condition? In the case of Wh equal piecewise constants, the condition
(8.23) comes down to ∫

T

div πhv dx =

∫
T

div v dx,

for each triangle T , or, equivalently,∫
∂T

πhv · n ds =

∫
∂T

v · n ds.

Therefore a sufficient condition is that

(8.24)

∫
e

πhv · ne ds =

∫
e

v · ne ds

for all edges e of the mesh. This suggests that use for Vh a finite element that includes the
integrals of the edge normals among the degrees of freedom. In particular, we need at least
one DOF per edge. A simple choice for this is the P2 Lagrange space, which has two DOFs
per edge, which can be taken to be the integral of the two components along the edge (and
so comprise the integral of the normal component). The other DOFs are the vertex values.
This choice, Lagrange P2 for velocity and P0 for pressure, was suggested in Fortin’s 1972
thesis, and analyzed by Crouzeix and Raviart in 1973. Given v : Ω → R2, we might define
πhv triangle-by-triangle, by

πhv(x) = v(x) for all vertices x,

∫
e

πhv ds =

∫
e

v ds for all edges e.
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These imply (8.24) and so (8.23). However, this operator is not bounded on H1, because it
involves vertex values. It can, however, be fixed using a Clément interpolant. Recall that
the Clément interpolant Πh : H̊1 → Vh satisfies

‖v − Πhv‖ ≤ Ch‖v‖1, ‖Πhv‖1 ≤ c‖v‖1,

(among other estimates). Next we define a second map π̃h : H̊1 → Vh by

π̃Tv = 0 at the vertices of T ,

∫
e

πTv ds =

∫
e

v ds for all edges e.

Note that π̃h can be defined triangle by triangle: (π̃hv)|T = π̃Tv|T . The map π̃T is defined
on H1(T ), since it only involves integrals on edges of v, not the values of v at vertices. Thus,

if we consider the unit triangle T̂ , we have

‖π̃T̂ v̂‖L2(T̂ ) ≤ c‖v̂‖H1(T̂ ).

The map π̃T̂ does not preserve constants, so we cannot use Bramble–Hilbert to reduce to the
seminorm on the right hand side. Therefore, when we do the usual scaling to an element T
of size h (with a shape regularity constraint), we get, in addition to the usual term h|v|H1(T )

also a term ‖v‖L2(T ). That is, scaling gives

‖π̃Tv‖L2(T ) ≤ c(‖v‖L2(T ) + h|v|H1(T )).

Scaling similarly gives us

|π̃Tv|H1(T ) ≤ c(h−1‖v‖L2(T ) + |v|H1(T )).

So, altogether, we get
‖π̃hv‖1 ≤ c(h−1‖v‖+ |v|1).

Now we are ready to define the Fortin operator πh:

πhv = π̃h(I − Πh)v + Πhv.

First we check the Fortin property:∫
e

πhv ds =

∫
e

(I − Πh)v ds+

∫
e

Πhv ds =

∫
e

v ds.

Next we check the boundedness. There is no trouble with the Clément interpolant Πhv, so
we need only bound

‖πh(I − Πh)v‖1 ≤ ch−1‖(I − Πh)v‖0 + c‖(I − Πh)v‖1 ≤ c‖v‖1.

Theorem 8.21. The choice Vh Lagrange P2, Wh piecewise constant is stable for the
Stokes equations.

It follows immediately that the Galerkin solution satisfies

‖u− uh‖1 + ‖p− ph‖ ≤ c( inf
v∈Vh

‖u− v‖1 + inf
q∈Wh

‖p− q‖),

and so
‖u− uh‖1 + ‖p− ph‖ ≤ ch(‖u‖2 + ‖p‖1).

Notice that the rate of converge is only O(h), the same as we would get for the best approxi-
mation using P1 Lagrange elements. The method in fact does not achieve ‖u−uh‖1 = O(h2),
because of the low order of pressure approximation.
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We now illustrate the performance of the P2-P0 with a simple computation coded in FEn-
iCS. The problem we solve is the homogeneous Stokes equations (f = 0) with inhomogeneous
Dirichlet data for flow over a backward facing step. The problem is illustrated in the first
subfigure of Figure 8.5, which shows the domain and the Dirichlet data. The inflow bound-
ary on the left side runs from x2 = 0 to x2 = 1 and the input velocity is u1(x2) = x2 − x2

2,
u2 = 0, while at the outflow boundary, which runs from x2 = −1 to x2 = 1, the profile
is u1 = (1 − x2

2)/8, u2 = 0, a parabolic profile of twice the width but half the amplitude.
The computational mesh, which has 768 elements, is shown in the second figure, and the
computed solution for u1 and p in the final two figures. We note that the computation seems
qualitatively reasonable, but artifacts of the discretization are clearly visible. Even though
the mesh is quite fine, the accuracy is severely limited arising due to the low order elements
(piecewise constants) for the pressure. The problem is greatest in a neighborhood of the
reentrant corner where the true pressure has a singularity which the numerical solution is
not able to capture at this resolution.

Figure 8.5. Flow over a step computed using P2-P0 elements. The quanti-
ties plotted are the horizontal component of velocity and the pressure.

11.2. The mini element. The mini element, introduced by Arnold, Brezzi, and Fortin
in 1985, is the pair P1+bubble for the velocity, and continuous P1 for the pressure. It is
the simplest stable element with continuous pressure space, just as the P2-P0 is the simplest
stable Stokes element with discontinuous pressures. The velocity space, which I described
as P1+bubble is defined as follows. First we define the scalar-valued P1+bubble Uh with
shape functions given by P1(T ) + RbT where bT is the cubic bubble function on T , i.e., the
unique (up to nonzero constant multiple) cubic polynomial which vanishes on the boundary
of the T and is positive in the interior. It may be written as λ1λ2λ3 where the λi are the
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barycentric coordinates of T . The DOFs for Uh the vertex values and the integral u 7→
∫
T
u.

It is easy to check unisolvence.
The mini element then takes Vh = Uh × Uh, while Wh is the usually Lagrange P1 space.
To prove stability, we again construct a Fortin operator πh : V → Vh, in a very similar

manner to that we used for the P2-P0 element. To achieve the Fortin property

(8.25)

∫
Ω

div πhv q dx =

∫
Ω

div v q dx, q ∈ Wh,

we use integration by parts. No boundary terms enter since q ∈ H1 (thanks to the continuous
pressure spaces) and v and πhv vanish of ∂Ω. Now grad q is a piecewise constant vector field,
so it is sufficient that ∫

T

div πhv dx =

∫
T

v dx.

We can accomplish this using the DOFs v 7→
∫
T
v dx for the mini space Vh. Specifically, we

define π̃T : L2(T )→ RbT by ∫
T

π̃Tv dx =

∫
T

ṽ dx.

Notice π̃T is a bounded operator on L2(T ) into a finite dimensional space. A simple scaling
argument gives

‖πTv‖H1(T ) ≤ ch−1‖v‖L2(T ).

We then define π̃h : V → Vh by applying π̃T element-by-element, and define

πh = π̃h(I − Πh) + Πh,

where Πh is the Clément interpolant. Just as for the P2-P0 element, we easily verify the
Fortin property (8.25) and uniform H1 boundedness. Thus we have proven stability for the
mini element. The estimate

‖u− uh‖1 + ‖p− ph‖ ≤ ch(‖u‖2 + ‖p‖1).

We can also use a straightforward Aubin–Nitsche duality argument to get

‖u− uh‖0 ≤ ch2‖u‖2.

We do not get second order convergence for p in L2.
The mini element can be easily generalized to give higher order elements. For example

we may use Lagrange P2 elements for the pressure and P2+quartic bubbles for the velocity
(the shape functions are P2(T ) + P1(T )bT . However, this is, in some sense, overkill. The
same rates of convergence are achieved by choosing Lagrange P2 for velocity and Lagrange
P1 for pressure. That simple, popular, element is called the Taylor–Hood element. It is
stable, but the proof is far more sophisticated.

11.3. Stable finite element for the Stokes equation. We have shown stability for
the simplest Stokes element with discontinuous pressures (P2-P0) and with continuous pres-
sures (mini). A similar analysis, can be used to to prove the stability of the P2+bubble–P1

element (with discontinuous P1 pressure elements), which, like the P2-P0 element was pub-
lished by Crouzeix and Raviart in their 1973 paper. A more complicated element family is
the Taylor–Hood family in which the velocity field is approximated by continuous piecewise
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polynomials of degree r ≥ 2 and the pressure is approximated by continuous piecewise poly-
nomials of degree r − 1. This method is stable with a very weak restriction on the mesh:
it must have at least 3 elements. Even more complicated is the Pr-Pr−1 element with dis-
continuous pressures. For smaller values of r this method is not stable on most meshes. For
r ≥ 4, the method is stable with fairly minor restrictions on the mesh. Specifically, a vertex
of the mesh (in the interior or on the boundary) is called singular if the edges containing
it lie on just two lines. An interior vertex with four incoming edges or a boundary vertex
with two or three incoming edges can be nearly singular as measured by the angles between
the edges. In 1985 Scott and Vogelius proved that the Pr-Pr−1 discontinuous is stable on
meshes with no singular or nearly singular vertices (i.e., the inf-sup condition deteriorates
as a vertex tends towards singular).

Figure 8.6. Stable finite elements for the Stokes equations: P2-P0, mini,
P2+bubble-P1, Taylor-Hood, P4-P3.

In 3D, the analogue of the P2-P0 element is the P3-P0 element, since P3 Lagrange element
has a degree of freedom in each face of a tetrahedron. We may also generalize the P2+bubble-
P1 element in 2D to P3+bubble-P1 in 3D (note that the bubble function has degree 4 in
3D. The mini element has a direct analogue in 3D: P1+bubble versus continuous P1. The
Taylor–Hood family has also been shown to generalize to 3D (see Boffi 1997, or, for a proof
using a Fortin operator, Falk 2008). As far as I know, the analogue of the Scott-Vogelius
result in 3D is not understood (and would likely involve very high order elements).



CHAPTER 9

Finite elements for elasticity

1. The boundary value problem of linear elasticity

The equations of elasticity model the deformation of a solid body under the action of
imposed forces. Recall that the primary variables used to describe the state of the body are
the displacement vector u : Ω → R3 and the stress tensor σ : Ω → R3×3. Here Ω ⊂ R3

describes the body, typically in an undeformed configuration. The meaning of the displace-
ment is that a point x ∈ Ω is displaced under the deformation to x+u(x). The stress tensor
measures the internal forces generated by the deformation. More precisely, if S is a hyper-
surface embedded in the body, e.g, a small square embedded in a three-dimensional body,
then the force across S, or traction, is given by

∫
S
σ(x)nS ds. In other words, the traction

vector σ(x)n is the force per unit area at x across a surface through x with normal n. The
fact that the traction vector has the form σn for a tensor (matrix) σ is known as Cauchy’s
Theorem. The same theorem shows that, as a consequence of the conservation of angular
momentum, the matrix σ is symmetric.

The statement that the body is in equilibrium is

(9.1) − div σ = f in Ω,

where f is the density of imposed forces.
To complete the system, we also need constitutive equations, which describe how internal

stresses relate to the the deformation of the body. For an elastic material, the stress tensor
σ at a point depends only the gradient of the displacement at a point. In the linear theory
of elasticity, the dependence is of the following form:

(9.2) σ = C ε(u),

where ε(u) = [gradu + (gradu)T ]/2 is the symmetric part of the matrix gradu, C = C(x) :
Rn×n

symm → Rn×n
symm is a symmetric positive definite linear operator. (This means that Cσ :

τ = Cτ : σ for all σ, τ ∈ Rn×n
symm and there exists γ > 0 such that Cτ : τ ≥ γ|τ |2 for all

τ ∈ Rn×n
symm.) The elasticity tensor C describes the elastic properties of the material. The

material is called homogeneous if C is independent of x. The material is called isotropic if
its response is invariant under rotations. In this case the elasticity tensor can be written

Cτ = 2µτ + λ tr(τ)I,

where µ > 0 and λ ≥ 0 are called the Lamé constants. Instead of the Lamé constants we
can use the Young’s modulus E and Poisson ratio ν:

Cτ =
E

1 + ν

[
τ +

ν

1− 2ν
tr(τ)I

]
51
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Then E > 0 is like a spring constant for the material, the ratio of tensile stress to strain in
the same direction (so it has units of stress). The Poisson ratio ν is dimensionless. It satisfies
0 ≤ ν < 1/2, with the limit ν ↑ 1/2, or equivalently λ→ +∞ being the incompressible limit
(nearly attained for some rubbers). For convenience we record the relations between the
Lamé constants and the Young’s modulus and Poisson ratio:

(9.3) µ =
E

2(1 + ν)
, λ =

E

1 + ν

ν

1− 2ν
, E = µ

3λ+ 2µ

λ+ µ
, ν =

λ

2(λ+ µ)
.

In order to obtain a well-posed problem, we need to combine the equilibrium equation
(9.1) and constitutive equation (9.2) with boundary conditions. Let ΓD and ΓN be disjoint
open subsets of ∂Ω whose closures cover ∂Ω. We assume that ΓD is not empty (it may be
all of ∂Ω). On ΓD we impose the displacement

(9.4) u = g on ΓD,

with g : ΓD → Rn given. On ΓN we impose the traction:

(9.5) σn = k on ΓN ,

with k : ΓN → Rn given. The equations (9.2), (9.1), (9.4), and (9.5) constitute a complete
boundary value problem for linear elasticity. In particular, we have pure Dirichlet problem

− divC ε(u) = f in Ω, u = g on ∂Ω.

We may eliminate the stress and write the elastic boundary value problem in terms of
the displacement alone:

− divC ε(u) = f in Ω,(9.6)

u = g on ΓD, [C ε(u)]n = k on ΓN .(9.7)

Note that

div ε(u) =
1

2
∆u+

1

2
grad div u,

so, in the case of a homogeneous isotropic material, the differential equation can be written

−µ∆u− (µ+ λ) grad div u = f.

2. The weak formulation

Our next goal is to derive a weak formulation. For this we will need to integrate by parts.
By the divergence theorem (applied row-by-row), we have∫

Ω

div τ · v dx = −
∫

Ω

τ : grad v dx+

∫
∂Ω

τn · v ds

for any sufficiently smooth matrix field τ and vector field v. If τ is a symmetric matrix field,
then τ : grad v = τ : ε(v) (since grad v − ε(v) is the skew-symmetric part of grad v, and,
at each point, τ is symmetric, and so orthogonal to all skew-symmetric matrices). Thus for
symmetric τ , ∫

Ω

div τ · v dx = −
∫

Ω

τ : ε(v) dx+

∫
∂Ω

τn · v ds.
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It is then straightforward to derive the weak formulation of the elastic boundary value
problem (9.6). Let

H1(Ω; Rn) = {u = (u1, . . . , un) |ui ∈ H1(Ω) },
H1

ΓD,g
= {u ∈ H1(Ω; Rn) |u = g on ΓD }, H1

ΓD
= {u ∈ H1(Ω; Rn) |u = 0 on ΓD }.

The weak formulation seeks u ∈ H1
ΓD,g

such that∫
Ω

C ε(u) : ε(v) dx =

∫
Ω

f · v dx+

∫
ΓN

k · v ds, v ∈ H1
ΓD
.

Defining

b : H1(Ω; Rn)×H1(Ω; Rn)→ R, b(u, v) =

∫
C ε(u) : ε(v) dx,

F : H1(Ω; Rn)→ R, F (v) =

∫
Ω

f · v dx+

∫
ΓN

k · v ds,

our problem takes the standard form: find u ∈ H1
ΓD,g

such that

b(u, v) = F (v), v ∈ H1
ΓD
.

As is common, we can reduce to the case where the Dirichlet data g vanishes, by assuming
that we can find a function ug ∈ H1(Ω; Rn) such that ug = g on ΓD. We can then write
u = ug + ũ where ũ ∈ H1

ΓD
satisfies

b(ũ, v) = F̃ (v), v ∈ H1
ΓD
.

where F̃ (v) = F (v)− b(ũ, v).
The bilinear form b is clearly satisfies b(v, v) ≥ 0. In fact, since we assumed that C is

positive definite on Rn×n
symm, we have

b(v, v) ≥ γ‖ ε(v)‖2, v ∈ H1(Ω; Rn).

We now show that the form b is coercive based on Korn’s inequality. We begin with a simple
case, known as Korn’s first inequality.

Theorem 9.1. Let Ω be a domain with Lipschitz boundary. Then there exists a constant
c such that

‖v‖1 ≤ c‖ ε(v)‖, u ∈ H̊1(Ω; Rn).

Proof.

(9.8)

‖ ε(v)‖2 =
1

4

∫
[grad v + (grad v)T ] : [grad v + (grad v)T ] dx

=
1

4
‖ grad v‖2 +

1

4
‖(grad v)T‖2 +

1

2

∫
grad v : (grad v)T dx

=
1

2
‖ grad v‖2 +

1

2

∫
grad v : (grad v)T dx.

Now if v ∈ H̊1 ∩H2 we can integrate by parts to find that∫
grad v : (grad v)T dx = −

∫
v · div(grad v)2 dx = −

∫
v · grad(div v) dx =

∫
(div v)2 dx,
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i.e., ∫
grad v : (grad v)T dx = ‖ div v‖2.

By density this holds for all v ∈ H̊1, without requiring also v ∈ H2. Combining with (9.8)
gives

‖ ε(v)‖2 ≥ 1

2
‖ grad v‖2, v ∈ H̊1.

The proof in completed by invoking Poincaré’s inequality ‖v‖1 ≤ c‖ grad v‖. �

Poincaré inequality holds not just for function in H̊1, but also for functions which vanish
on only an open subset of the boundary. The same is true for Korn’s inequality (9.9),
although the proof is considerably more difficult.

Theorem 9.2. Let Ω be a domain with a Lipschitz boundary and ΓD a nonempty open
subset of ∂Ω. Then there exists a constant C such that

(9.9) ‖v‖1 ≤ c‖ ε(v)‖, v ∈ H1
ΓD

(Ω; Rn).

Korn’s inequality and the positivity of the elasticity tensor C immediately give coercivity
of the bilinear form b:

b(v, v) ≥ γ‖v‖2
1, v ∈ H1

ΓD
(Ω; Rn).

The well-posedness of the weak formulation of the elastic boundary value problem then
follows using the Riesz representation theorem.

Theorem 9.3. Let F : H1
ΓD

(Ω; Rn) → R be a bounded linear functional. Then there
exists a unique u ∈ H1

ΓD
(Ω; Rn) such that

b(u, v) = F (v), v ∈ H1
ΓD

(Ω; Rn).

Moreover there is a constant C independent of F such that

‖u‖1 ≤ c‖F‖(H1
ΓD

)∗ .

3. Displacement finite element methods for elasticity

In view of the coercivity of b, we may choose any finite dimensional subspace Vh ⊂ H1
ΓD

and use Galerkin’s method to find a unique uh ∈ Vh satisfies

b(uh, v) = F (v), v ∈ Vh.
Such a method is called a displacement method since the only quantity taken as an un-
known is the displacement (in contrast to mixed methods which we will study below). The
quasioptimal error estimate

‖u− uh‖1 ≤ c inf
v∈Vh

‖u− v‖1

holds with the constant c depending only on the domain Ω, Dirichlet boundary ΓD, and
the elasticity tensor C. The most common finite element space to use for Vh are the vector
Lagrange spaces, i.e., each component is taken to be a continuous piecewise polynomial of
degree at most r with respect to a given triangulation. Assuming mesh size h and shape
regularity we get the estimate

‖u− uh‖1 ≤ chr‖u‖r+1.
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The Aubin-Nitsche duality argument allows us to improve this estimate to

‖u− uh‖ ≤ chr+1‖u‖r+1.

Next we show some computed examples. In the first example (see the file elas3d.py),
we consider a cantilever bar with square cross-section. The domain Ω = (0, 8) × (0, 1) ×
(0, 1). The left end x1 = 0 is clamped: u = 0. On the right end x1 = 8 we impose a
displacement which is a rigid motion. On the four rectangular sides we use traction-free
boundary conditions σn = 0. This was coded in FEniCS using a 64 × 8 × 8 mesh of
cubes, each subdivided into 6 tetrahedra, with Lagrange elements of degree 2. See the file
elas3d.py. Figure 9.1 shows the bar as deformed by the computed displacement. This is a
good way to visualize a displacement vector field, although it should be noted that actual
physical displacements for problems for which linear elasticity is a good model would be
much smaller, e.g., by a factor of 10 or 100.

Figure 9.1. Displacement of elastic bar with left face clamped and a rigid
displacement applied to the right face.

The second example is the analogous problem in two dimensions, except that the domain
is the rectangle (0, 8)×(0, 1) with three circular cut-outs removed. Figure 9.2 show the stress
component σ11, which gives the tension in the x1 direction (or the compression, if σ11 < 0).
This is an important quantity for applications, since if the stress is too large at some point,
the structure may fracture or otherwise fail there. Notice the high stress concentrations
around the circular cut-outs. For the computations we took E = 10, ν = .2, and used
Lagrange elements of degree 2. See the program elas2d.py for the code.

4. Nearly incompressible elasticity and Poisson locking

An isotropic elastic material is characterized by the two Lamé coefficients, µ > 0 and
λ ≥ 0, or, equivalently, by Young’s modulus E and the Poisson ratio ν ∈ [0, 1/2). (The
relation between these is given in (9.3). As the second Lamé coefficient λ increases toward
+∞, or, equivalently, as the Poisson ratio ν increases toward 1/2, the material becomes
nearly incompressible. It turns out that standard displacement finite element methods have
difficulty in solving such nearly incompressible problems. To see an example of this, consider
the example just computed, with the stress shown in Figure 9.2, but now take the Poisson
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Figure 9.2. Displacement of 2D elastic bar with cut-outs with left face
clamped and a rigid displacement applied to the right face.

ratio equal to 0.499 rather than 0.2 as previously. This gives λ ≈ 1664. The results are
show in the first plot of Figure 9.3. Unphysical oscillations in the stress are clearly visible
in the first plot, in contrast to the case of ν = 0.2 show in Figure 9.2. Thus the standard
displacement finite element method using Lagrange finite elements of degree 2 is not suitable
for nearly incompressible materials. The situation is even worse for Lagrange elements of
degree 1, show in the second plot of Figure 9.3.

Figure 9.3. For a nearly incompressible material, the stress shows unphysi-
cal oscillations for quadratic Lagrange elements (top) and, more pronouncedly,
for linear Lagrange elements (bottom).

We know that the displacement method gives the error estimate

(9.10) ‖u− uh‖1 ≤ Chr‖u‖r+1.
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So why do we not get good results in the nearly incompressible case? The problem is not that
the exact solution u degenerates. It can be shown that ‖σ‖r and ‖u‖r+1 remain uniformly
bounded as λ→∞ (for all values of r if the domain is smooth). So the problem must be the
constant C entering the error estimate: it must blow up as λ→∞. In short the accuracy of
the finite element method degenerates as λ grows, even though the exact solution does not
degenerate.

Let us investigate the dependence onλ of the constant C in the error bound (9.10). As
always, the error is bounded by the stability constant times the consistency error. In this
case, the bilinear form

b(u, v) = 2µ

∫
ε(u) : ε(v) dx+ λ

∫
(div u)(div v) dx,

so
b(v, v) ≥ 2µ‖ ε(u)‖2 ≥ γ‖u‖2

1,

with the contant γ > 0 depending only on µ and the constant in Korn’s inequality, but
entirely independent of λ. That is, the bilinear form is coercive uniformly in λ, and so
Galerkin’s method is stable uniformly in λ. Thus the difficulties in treating the nearly
incompressible cannot be attributed to a degeneration of stability, and we must look to the
consistency error.

Recall that the consistency error is bounded by

‖b‖ inf
v∈Vh

‖u− v‖1

where u is the exact solution, Vh is the finite element space, and ‖b‖ is the norm of the
bilinear form (with respect to the H1 norm of its arguments. The infimum is bounded by
chr‖u‖r+1 where c depends on the shape constant of the mesh, but has nothing to do with
λ. But finally we get to the culprit. Since the coefficient λ enters the bilinear form b, ‖b‖
tends to ∞ with λ.

5. Mixed finite elements for elasticity


