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Basic homology



Chain complexes

m Chain complex: seq. of vector spaces and linear maps

0,
- — Vk+1 ﬂ> Vk Vk 1 — with ak o ak+1 =0.

m Alternative viewpoint: V = @y V is a graded vector space and
0:V — Vs a graded linear operator of degree —1 such that

dod =0
m Ve k-chains
3k = N(0g): k-cycles

B = R(0ky1): k-boundaries
Hy = 3x/By: k-th homology space



Simplicial complexes
m A k-simplex in R" is the convex hull f = [xg, ..., x;] of k+1
vertices in general position.
= A subset determines a face of f: [x,-o, ., xid].

m Simplicial complex: A finite set S of simplices in R”, such that

1. Faces of simplices in S are in S.
2. Iffng#@forf,g €S, thenitis a face of f and of g.

m If we order all vertices of S, then an ordering of the vertices of
the simplex determines an orientation.
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The boundary operator on chains

Ay (S): the set of k-simplices in &

Cy (k-chains): formal linear combinations ¢ = Z crf
fEM(S)

8k : Ak — Ck,1: B[xo,xl,. ..,Xk} = Zggzo(—l)i[. R P ]

ak : Ck — Ck*l: Jdc = ZCfaf
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The simplicial chain complex

Every simplicial complex gives rise to an associated chain complex.

05Ch2Ci1 S - 5C—0

Bi := dim Hj(C) is the kth Betti number

1,1,0,0 1,2,1,0 2,5,0,0 1,0,1,0
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m f(3) C 3,f(B) CPB,so0finducesf : H(V) — H(V').

= If V' is a subcomplex (V] C Vi and o' = d|y), and fo = v for
v € V!, we call f a chain projection.

PROPOSITION

A chain projection induces a surjection on homology.



Cochain complexes

A cochain complex is like a chain complex but with increasing indices.
k—1 k
____)kald_>vkd_>vk+l_>___
= cocycles 3, coboundaries B*, cohomology ¥, ...
® The dual of a chain complex is a cochain complex:

. * . * *
Ot1: Vipr = Vi = 91t Vi = Vi

dk vk



The de Rham complex for a domain in IR”

) d/dx

1-D: 00— C®(Q C®(Q) =0

2D 0 C(Q) B o2, R2) % c2(Q) - 0

grad div,

3D 0 C®(Q) B (R 2 c2(0,R?) 1% c2(Q) -0

D 0= A%Q) L ANQ) S A2 L LA Q) =0

The space AF(Q)) = C®(Q, R\ *"), the space of smooth
differential k-forms on Q).

w Exterior derivative:  d* : AK(QY) — AF1(Q)
m [ntegral of a k-form over an oriented k-simplex: ff veR

w Stokes theorem: [ du= [, u, ue AT ce g
m All this works on any smooth manifold



De Rham’s Theorem

® De Rham map: Ak(Q) — Ck(S) = Cr(S)”

u — (e [u)

m Stokes theorem

says it’s a cochain LN AK(Q) 4, A1) LN
map, so induces a

map from de Rham l l

to simplicial cohomology. 9~ ck o Ck+1 il

THEOREM (DE RHAM’S THEOREM)

The induced map is an isomorphism on cohomology.



Nonzero cohomology classes

u=grad6,0# 1 € H! u=grad 0% 7€ H:

on cylindrical shell on spherical shell



Unbounded
operators on
Hilbert space



Unbounded operators

m X,Y H-spaces (extensions to Banach spaces, TVSs,...)

m T:D(T) — Y linear, D(T) C X subspace (not necessarily closed),
T not necessarily bounded

m Not-necessarily-everywhere-defined-and-not-necessarily-bounded
linear operators

» Densely defined: D(T) = X
= Ex: X =[%(Q), Y = L*(O;R"), D(T) = H(Q), Tv = grad v
(changing D(T) to H'(Q) gives a different example)

m S, Tunbddops X - Y = D(S+T)=D(S)ND(T)
(may not be d.d.)

» X3 Y, Y5 Zunbdd ops = D(ToS) = {ve D(S)|Sve D(T)}
» Graph norm (and inner product): ||v||%)(T) = ||o]|% + || 0|3, v € D(T)
» Null space, range, graph: N (T), R(T), T(T)



Closed operators

m Tisclosed if T(T) is closed in X x Y.
m Equivalent definitions:
1. If v1,v2,... € D(T) satisfy v, X yand Toy, X, y for some
x€Xandy €Y, thenx € D(T) and Tx = y.
2. D(T) endowed with the graph norm is complete.
m If D(T) = X, then T is closed <= T is bdd (Closed Graph Thm)

Many properties of bounded operators extend to closed operators. E.g.,

PROPOSITION

Let T be a closed operator X to Y.
1. N(T) is closed in X.
2. 3y > 0s.t. || Tx|ly > v|x||lx <= N(T) =0, R(T) closed
3. IfdimY/ R(T) < oo, then R(T) is closed



Adjoint of a d.d.unbdd operator
Let T be a d.d.unbdd operator X — Y. Define
D(T*) ={w € Y|themapv € D(T) — (w, Tv)y € Risbdd in X-norm }
Forw e D(T*) 3'T"w € Xs.t.
(T"w,v)x = (w, Tv)y, ©veD(T), we D(T).
T* is a closed operator (even if T is not). Define the rotated graph

F(T*) = { (-T*w,w) |w € D(T*) } € X x Y,

Then T'(T)*+ = T(T*), T(T) = [(T*)*.
Let T be a closed d.d. operator X — Y. Then
1. T* is closed d.d.
2. T =T.
el R(T): = N(T*), N(T)t =R(T*),
R(T*): = N(T), N(T*)* =R(T).




Closed Range Theorem

THEOREM
Let T be a closed d.d.operator X — Y. If R(T) is closed in Y, then R(T*) is
closed in X.

Proof.
1. Reduce to case T is surjective.

2. Restrict to orthog comp of N'(T) in D(T) (w/ graph norm). Get
bounded linear isomorphism. 3 bounded inverse:

VyeYIxeXst.Tx=y, |x||x <clyly

3. This implies ||y||y < ¢||T*y||x, y € D(T*). O



Grad, curl, and div

Assume Q) C R3 with Lipschitz boundary (so trace theorem holds).

» (grad,H') is closed. Its adjoint is (— div, F').
» (curl, H(curl)) is closed, with adjoint (curl, H(curl))

» (div, H(div)) is closed, with adjoint (— grad, H")



Hilbert complexes



Hilbert complexes

DEFINITION

A Hilbert complex is a sequence of Hilbert spaces WX and a sequence
of closed d.d.linear operators d* from W* to W¥*1 such that
R(d¥) c N(dH1).

®» V; = D(d*) H-space with graph norm: ol = ||U||%Nk + Hd’%}”%\lwr1

» The domain complex
0oLyt dyn g

is a bounded Hilbert complex (with less information).

It is a cochain complex, so it has (co)cycles, boundaries, and homology.
® An H-complex is closed if B¥ is closed in W¥ (or V).
» An H-complex is Fredholm if dim H¥ < co.

Fredholm — closed



The dual complex

Define df : Vi C Wk — W1 as the adjoint of d*~1 : VF ¢ Wk=1 — Wk,
It is closed d.d.and, since R(d*~1) ¢ N (d¥),
R(diy1) € R(df ;) = N(d)*F c R = N(d),

so we get a Hilbert chain complex with domain complex

*
dn—l

00—V, —>V = Vi =0

If (W,d) is closed, then (W, d*) is as well, by the Closed Range
Theorem.

From now on we mainly deal with closed H-complexes. ..



Harmonic forms

The Hilbert structure of a closed H-complex allows us to identify the
homology space H¥ = 3* /B with a subspace ¥ of Wk:

=3 ns =3¢ N3 = (ue VEN V] |du =0, d*u = 0}.

An H-complex has the compactness property if V* N V} is dense and
compact in WX, This implies dim $* < co.

compactness property = Fredholm = closed



Two key properties of closed H-complexes

THEOREM (HODGE DECOMPOSITION)

For any closed Hilbert complex:
Wk = 8te 5* o B}
N—— R ,
3k SkJ_

——
Vk _ %k@y)k@:)kj_v

THEOREM (POINCARE INEQUALITY)

For any closed Hilbert complex, 3 a constant c' s.t.

lzllv < Pldz||, ze 3*v.



L? de Rham complex on () C R?

k Wk d* vk d; Vi dim $F
0 L*(Q) grad  H! 0 L? Bo
1| L2(GR3) || curl H(curl) | —div  H(div) B1
2 | L2(;R?) || div  H(div) curl  H(curl) B2
31 L2(Q) 0 L? —grad  H' 0

div

d
0— H' &% H(curl) -2 H(div) —2 12 50

_di o ° — d o
012 <« f(div) <2 F(curl) <Z5 1«0



The abstract Hodge Laplacian

d d
s Wl Wk WAL L grddd oWk L wk
d* d*
D(LF) = {u e VENV} |du € V}
N(LK) =9k, oF L R(LF)
Strong formulation: Find u € D(L¥) s.t. Lu = f — Psf, u L .
Primal weak formulation: Find u & vEN V,j N skt st

d'u e Vk-1y

+1/

(du,dv) + (d*u,d*v) = (f — Puf,v), v € VEN Vi N okt
» Mixed weak formulation. Find o € V=1, u € VF, and p € $* s.t.

(o, T) — (u,dt) =0, e vkl
(do,v) + (du,dv) + (p,v) = (f,0), ve Vk
(u,q) =0, g€ 9.



Equivalence and well-posedness

THEOREM

Let f € WK, Then u € WF solves the strong formulation <= it solves the
primal weak formulation. Moreover, in this case, if we set ¢ = d*u and

p = Pgu, then the triple (o, u,p) solves the mixed weak formulation.
Finally, if some (o, u,p) solves the mixed weak formulation, then o = d*u,
p = Pgu, and u solves the strong and primal formulations of the problem.

THEOREM
For each f € Wk there exists a unique solution. Moreover

el + lldul| + [|d*u|| + [|dd"ul] + [|d"du]] < c[lf = Pof]].

The constant depends only on the Poincaré inequality constant c”.



Proof of well-posedness

We used the mixed formulation. Set
B(o,u,p;T,0,q9) = (0, T) — (u,dt) — (do,v) — (du,dv) — (p,v) — (u,q)
We must prove the inf-sup condition: V (o, u,p) 3 (7,9,9) s.t.
B(o,u,p;7,0,q) = v(llellv + [lullv + D lIlv + llollv + llgl).,
with ¢ = y(c”) > 0. Via the Hodge decomposition,
U =Uyp +Ug + Up =dp + g + Ugp+

with p € 31v. Then take

T:U—WP, v=—u—do—p, g=p-—ug.



Hodge Laplacian and Hodge decomposition

m f =dd*u+ Pgf + d*du is the Hodge decomposition of f
® Define K : Wk — D(LF) by Kf = u (bdd lin op).

Py =dd*K, Py =d*dK

If f € V, then Kdf = dKf.

If f € 9B, then dKf = 0. Since Kf L $), Kf € B.

B problem: If f € B, then u = Kf solves

dd'u=f, du=0, ul$.

B* problem: If f € B*, then u = Kf solves

d'du=f, d'u=0, ul$.



The Hodge Laplacian on a domain in 3D

d .
0— H' 2% H(curl) —2L H(div) -2 1250

—di o 13 — d o
0 L2 « ™ f(div) <2 FA(curl) <2 '« 0

k LF = d*d + dd* BCs imposed on... vk x vk
0 —A ou/on H!
1| curlcurl —graddiv || u-n  curlu xn H' x H(curl)

2 ||—graddiv+curlcurl || uxn divu H(curl) x H(div)
3 —A u H(div) x L?

essential BC for primal form. \ natural BC for primal form.



The Hodge wave equation

U+ (dd* +d*d)u =0, U0)=1Uy, U()=U
Theno :=d*U, p:=dU, u:= u satisfy

log 0 —d* o0 o
|+ f(d 0 d°)|u]=0 strona
0 0 —d 0 0

Find (o,u,p):[0,T] — VOxVIxW? st

(6,7) — (u,d7) =0, eV,

. 1
(i,0) + (do,v) + (p,dv) =0, ©veV, wesk
(o) — (du, ) =0, ne W

THEOREM

Given initial data (0, ug, po) € VOx VI x W2, 31 solution
(o,u,p) € CO[0,T], VOx VIx W2) n CL([0, T], WO x W x W?).

Proof: Uniqueness: (7,v,17) = (,u, p). Existence: Hille-Yosida.



Example: Maxwell’s equations

D = curlH B= —curlE
divD =0 divB=0
D =¢E B =uH
WO = 12(Q)) (0,E,B) : [0,T] x Q@ = RxVxV solves
W! =1%(Q,V,edx) (¢,T)—(eE,grad T) = 0 V1,
W2 =L%(Q,V,u dx) (eE,F)+(egrad o, F) — (u~'B,curl F) = 0 VF,
wo 824 —curdp (u'B,C)+(u ' curl E,C) = 0 VC.

THEOREM

If o, div eE, and div B vanish for t = O, then they vanish for all t, and E, B,
D = €E, and H = !B satisfy Maxwell’s equations.



Some other complexes

R3*3 symmertric

d .
0 —s L2 QV Sym gra LZ Q6 curl T cur L2 RS div L2 QV =0

displacement strain stress load

.02 2V sym grad
2 208N 120V 0 mixed method for elasticity

[?®S  primal method for elasticity

R3*3 trace-free

d d ;
0288 12gg _cul 2o AV 20y 40

12 grad grad 12

m(0— ®S5 primal method for plate equation

curl

dgrad
2 81989 12 o6 U 12 oW Finstein-Bianchi eqs (GR)

m [



