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De Rham complex

curl

0 = H'(Q) 2% H(curl, Q) <% H(div,0) 9% 12(Q) 0

grad

0 — H'(Q) == L2(O;R3):
standard formulation of scalar Laplacian

d
HY(Q) £25 H(curl, Q) <% [2(0; R3):
1-form Laplacian, Maxwell’s equation based on E and ¢ = diveE = 0

H(curl, Q) <% H(div, Q) 2% 12(Q):

2-form Laplacian, Maxwell’s equation based on B and E

H(div, Q) 5 12(Q) — 0
mixed formulation of scalar Laplacian



De Rham complex in 2D

0= H'(Q) 2% H(rot, Q) 5 12(Q0) - 0

or

curl

0 — HY(Q) & H(div, Q) &% 12(Q) — 0

" 0 HY(Q) 2 [2(0; R?):
standard formulation of scalar Laplacian

» H1(Q) L H(div, Q) &% 12(Q):
1-form Laplacian
H(div, Q) % 12(Q) — 0:
mixed formulation of scalar Laplacian (Darcy flow)



Stokes complex in 2D and 3D

curl div

0 — H2(Q) &5 HY (4 R?) 5 L2(Q) — 0

Falk-Neilan shape fns: PsA° / PyAl / P3A2

div,

0— H'(Q) &% HY(Q, cur; R¥) &% 71 (O; R3) % 12(Q) — 0

J. Evans "11



Elasticity complex

sym grad curl T curl
T —

0 — HY(;R3) H(curl T curl, Q) H(div, ; 8¥3) % 12(); R3) -

div

0 — H2(Q) 1 b (div, 0; §2°2) &Y, 12(; R?) — 0

sym grad

0 — HY(;R?) 2282 H(rotrot, 0; $2%2) 2% 12(0) — 0

sym grad

= 0 — H'((;R?) H(rotrot, (; S2*2):
displacement formulation of elasticity

H((div, 0; 8272) &% 12((; R?) — 0:

mixed formulation of elasticity (strong symmetry)



Mixed elasticity elements (2D strong symmetry)

0 — H2(Q) 1 F(div, 0; §272) 4% 12(; R?) — 0

ST
225 A

Hu Jun-Shangyou Zhang 2015




New complexes from old: a simple case

Suppose 0 — W1 W2 and 0 — W1 W2 are closed Hilbert
complexes, and that there is a bounded linear isomorphism S : W! — W2,
- v -
0 wl ; W2
0 Wi W2

We define a new short Hilbert complex:

V= {(u,¢) € VI x V! |du =S¢}

W! is the competion of V! wrt the norm ||u, ¢||w = [lull (S is injective)
. W2 — T2

d: Vi c W' — W2 is given by d(u, ¢) = d¢.

THEOREM

Suppose that the initial two H-complexes are closed and exact. Then

0—>W1dv

W2 s also a closed, exact H-complex.



The Hodge Laplacian for the derived complex

d, v
W2

0 Wi d, vt
T e w i
Y _

0 Wi W2

Hodge Lap: Find (u,¢) € Vst (d¢,dy) = (f,0), (v,9) € V?

)€ VI x V1 du =S¢}
)€ VEx VY| (du—Sp,u) = 0Vu € W2}

Vl

{(
{(

Implement via Lagrange multiplier: Find u € V1, ¢ € V!, A € W2 s.t.

u,¢
u,¢

(dp,dp) + (A, dv—Sy) = (f,0), ve V!, peVl
(du—S¢,u) =0, pew?
New norm on W2 |||u||| = sup {p,do—Sy) (SV! is dense)
et o ol + Tl
This mixed method satisfies the Brezzi conditions and so is well-posed.



Discretization

The idea is to mimic the construction on the discrete level. Choose
two discrete subcomplexes which admit commuting projections:

0— V492 0742

Create a discrete connection map as S, = [12S : V} — V2 where I'12 is
the canonical projection. This gives the mixed method:

Find uy € ‘7}11, (Ph S V;, /\h € Vﬁ s.t.

(dgy, dp) + (A, do —TI2Sp) = (f,0), ve V), pe V],
(duy, — TT3S¢n, 1) =0, nev;

We make the surjectivity assumption fIﬁSﬁ; = fl,%. We can then prove
that the mixed method is convergent.



Example: the biharmonic

rad, H'
0 12— I2(Q; R")

=

grad,Hl
0 — L2(O; R") —— L*((;R™")

V= {(u,¢) € H(Q) x H'((,;R") | ¢ = gradu}
= {(u,gradu) | u € F*(Q)}

~ fy?

d, Vi
0 Wi W2

Prad gras 2
0 12 grad grad, H LZ(Q,‘]RHX”)




FEEC discretization of the biharmonic

grad, H!

0 L2 L*(O;R")
I
0 — L*(;R") —— L?(Q; R™")

\ grad,lil1 \
0— — .
grad, ' \
0~ , QR —— v QR"
; ¢

This gives a family of mixed methods for the biharmonic based on a
different formulation than the classical methods (Ciarlet-Raviart,
Hellan-Herman-Johnson, ...). It is related (in 2D) to the approach of
Duran-Liberman for the Reissner-Mindlin plate.



Elasticity with weak symmetry

The mixed formulation of elasticity with weak symmetry is more
amenable to discretization than the standard mixed formulation.
Fraeijs de Veubeke "75

p =skwgradu, Ac =gradu—p

Find ¢ € L2(Q;R™"), u € L2((;R"), p € L*(O; RY™) st

skw
(Ao, T) + (u,divt) + (p,T) =0, T € L2((; R™™)
—(dive,v) = (f,v), ©v€L*(;R")
~(o,9) =0, q € L(QREY)

This is exactly the mixed Hodge Laplacian for the complex

Li(Q,‘IR”XH) (— div,—skw) LZ(Q;IRH) @LZ(Q,‘IRHXH) 0

skw

supposing that it is exact.



Well-posedness

— div,— skw
( ) 12

L3 (O R™™) (UR") @ L2 (O; RIS —— 0

skw

To show the complex is exactness, and so the system is well-posed,
we relate it to two de Rham complexes with commuting connecting
maps:

N
(R @ R —— L2(O;R) — 0
S — skw

_di
LZ(Q;]R”X”) curl , LZ(Q;]R”X") AN LZ(Q;]R”) s 0

St=1" —tr(7)] (invertible)



Well-posedness

— div,— skw
( ) 12

L3 (O R™™) (UR") @ L2 (O; RIS —— 0

skw

To show the complex is exactness, and so the system is well-posed,
we relate it to two de Rham complexes with commuting connecting

maps:
‘ q
LR @ RYM) — 2 [2(O; RIS — 0
S — skw
LZ(Q;]R”X”) curl , LZ(Q;]R”X") AN LZ(Q;]R”) s 0
(4

St=1" —tr(7)] (invertible)



Well-posedness

— div,— skw
( ) 12

L3 (O R™™) (UR") @ L2 (O; RIS —— 0

skw

To show the complex is exactness, and so the system is well-posed,
we relate it to two de Rham complexes with commuting connecting

maps:
‘ q
LR @ RYM) — 2 [2(O; RIS — 0
S — skw
LZ(Q;]R”X”) curl , LZ(Q;]R”X") AN LZ(Q;]R”) s 0
o 0

St=1" —tr(7)] (invertible)



Well-posedness

— div,— skw
( ) 12

L3 (O R™™) (UR") @ L2 (O; RIS —— 0

skw

To show the complex is exactness, and so the system is well-posed,
we relate it to two de Rham complexes with commuting connecting

maps:
q—skwp
O R @ R — s 12(0; —0
S — skw
LZ(Q;]R”X”) curl , LZ(Q;]R”X" (Qu;R™) s 0
o 0

St=1" —tr(7)] (invertible)



Well-posedness

— div,— skw
( ) 12

L3 (O R™™) (UR") @ L2 (O; RIS —— 0

skw

To show the complex is exactness, and so the system is well-posed,
we relate it to two de Rham complexes with commuting connecting

maps:
P q—skwp
O R @ R — s 12(0; —0
S — skw
LZ(Q;]R”X”) curl , LZ(Q;]R”X" (Qu;R™) s 0
o 0

St=1" —tr(7)] (invertible)



Well-posedness

— div,— skw
( ) 12

L5 (O; R™M) (GR") & L2(O; R —— 0

skw

To show the complex is exactness, and so the system is well-posed,
we relate it to two de Rham complexes with commuting connecting
maps:

R" ®]Rn><n) L LZ(Q;

skw

— skw

St=1" —tr(7)] (invertible)



Well-posedness

— div,— skw
( ) 12

L5 (O; R™M) (GR") & L2(O; R —— 0

skw

To show the complex is exactness, and so the system is well-posed,
we relate it to two de Rham complexes with commuting connecting

maps:
P q—skwp
R @ RYM) — s 12(0; —0
— skw

curl

n) ; LZ(Q;]R”X"
¢ curl g+ p v

St=1" —tr(7)] (invertible)



Discretization

To discretize we select discrete de Rham subcomplexes with
commuting projs

—1 div - - 1 =1 —div_ =
P V2 0, V= v S V250

to get the discrete complex

- — div,— 77 sk - _
7hoRr ST G2 0 Ru) o (V2 @ R 5 0

skw

We get stability if we can carry out the diagram chase on:
div

71 nxn 72 nxn
Vh ® IRskw Vh ® IRskw —0
7,8 — 72 skw.
curl div

Vo R" VIgR" ——— 72@R" — 0

This requires that 7,5 : V) @ R" — V} @ RIS is surjective.

skw



Stable elements

The requirement that 77,5 : V) @ R" — V] @ R is surjective
can be checked by looking at DOFs.

The simplest choice is

chV

PrAT Y poAT 0, P AT S P

1’+1 Pr 1A” — O

This gives the elements of DNA-Falk-Winther "07

Other elements:
) Cockburn—-Gopalakrishnan-Guzmadn,
m Gopalakrishnan-Guzman, Stenberg, ...
u p

14 /20



Nearly incompressible material

-

displacement mixed



Einstein—Bianchi equations
Riem = Ricci + Weyl

E B
Weyl = (Cabcd) - (B E>

E, B 3 x 3 symmetric, traceless

Einstein equations + Bianchi identity = Einstein-Bianchi eqs:

Find: E, B : [0, T] — &%*3 such that

E = —curlB, B = curlE,
divE =0, divB =0,
trE =0, trB =0.



Einstein—Bianchi as an abstract Hodge wave equation

d grad,H? 1, 1
LZ(Q) grad gra LZ(Q,'S) curl H(curl) LZ(Q;T)

Find (c,E,B):[0,T] — H? x H(cur; S) x L2((; T) s.t.

(0,7) — (u,gradgradt) =0, T € H?,
(E,F) + (grad grad o, F) + (B,curlF) =0, F € H(curl; S),
(B,C) — (curlE,C) =0, C e L2(O;T).

0 =divdivE, E = —gradgradc —symcurlB, B = curlE

THEOREM

Suppose 0(0) = 0 and E(0) and B(0) are TSD. Then o = 0 and E and B
are TSD for all time, and E and B satisfy the linearized EB equations.



Obstacles to discretization

To proceed we need finite element subspaces which form a
subcomplex with bounded cochain projections. There are two serious
obstacles.

1. Ttis difficult to create a finite element subspace of H? because of
the second derivatives.

2. Itis difficult to create a finite element subspace of H(curl; S)
because of the symmetry.

For each of these obstacles we are guided by their solution in simpler
context (biharmonic, elasticity).

18 /20



The FEEC formulation of the EB system

Combining these ideas leads to a first order formulation of EB using
six variables.

grad curl

L2(Q) L*(O;R3) ——— L2((;R3)
I skw
rad cur
12(O; R%) sl 12(0; R¥*3) _curl L2(0; R¥<3)
E B

FEEC guides us to an appropriate choice of elements.

\ grad \ curl \
\ — e N
r )
y I /

o sy

\ grad b curl \
P @RS T 48N oRS T ¢ QR



Which complexes can we construct from the de Rham complex?

0 12 F R el ppgRs dv g 0
0 —— LZ ® IR3 grad L2 ® ]R3><3 curl LZ ® R3><3 div L2 ® ]R3 50

e e

00— L2oRS 2% 2o RISl 2R3 AV, 120 R o

e e

2 ® 1R3 curl LZ ® ]R3 div 0

Diagram commutes. Diagonal maps are isomorphisms, subdiagonal
injections, superdiagonal surjections.



