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Computational
examples



Standard P; finite elements for 1D Laplacian




Mixed finite elements for Laplacian
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Vector Laplacian, L-shaped domain

curlcurlu — graddivu = fin Q

/(curlu-curlv+divudivv):/f~v Vv
Q Ja

Lagrange finite elements converge nicely
but not to the solution!




Vector Poisson equation

curlcurlu — graddivu = f in

f = 0 does not imply u = 0:

dm$ = o]
e AN
harmonic forms 1st Betti number
(solutions for f = 0) (number of holes)

curlcurl u — graddivu = f (mod ), u L $, b.c.




Maxwell eigenvalue problem

Find 0 # u € H(curl) s.t

/curlu-curlv/\/ u-v Vv e H(curl)
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Maxwell eigenvalue problem, crisscross mesh
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EM calculations based on the generalized RT elements

Schéberl, Zagimayr 2006, NGSolve




Homology 101




Chain complexes

m A chain complex (V, ) is a seq. of vector spaces and linear maps
5 ¢ .
"‘%Vk+1ﬂ>vkﬁ>vk_1—>"' Wlthak08k+1:0.

m In other words, V = €, Vi is a graded vector space and
0 : V — Vs a graded linear operator of degree —1 such that

0dod=0
m Vi k-chains
3k = N(0k): k-cycles

Bk = R(0k+1):  k-boundaries
Hi = 3k/Bk: k-th homology space

m Thus the elements of H are equivalence classes of k-cycles



Simplices and simplicial complexes

m A k-simplex in R is the convex hull f =[x, ..., xx] of k + 1
vertices in general position.

m A subset determines a face of f: [, . . ., Xi,]-

m Simplicial complex: A finite set S of simplices in R”, such that
1. Faces of simplices in S are in S.
2. lffng#(forf,g € S,thenitis aface of f and of g.

m |f we order all vertices of S, then an ordering of the vertices of the
simplex determines an orientation.

1 2 3
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The boundary operator on chains

Ag(S): the set of k-simplices in S

Ck (k-chains): formal linear combinations ¢ = Z cr f
fEAK(S)

O Dk — Chv: Ao, X1,y k] = S o (1), %, - ]

8;( : Cx — Ck_q: 8C:ZCf8f

SVATA
SoTL
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The simplicial chain complex
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Bk := dim H,(C) is the kth Betti number SERERRRERERE
D N
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Chain maps

0 0
- = Vit —4, Vi — Vi1 —---

fit1 J fkl fi—1 l

9/ 9!
o Vi /S VS VL e
m f(3) C 3, f(B) C B, so finduces f : H(V) — H(V').
m If V' is a subcomplex (V, C Vx and ' = d|y), and fv = v for
v € V', we call f a chain projection.

A chain projection induces a surjection on homology.
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Cochain complexes

A cochain complex is like a chain complex but with increasing indices.

- dk71 dk
N S T

m cocycles 3%, coboundaries B%, cohomology H¥, ...
m The dual of a chain complex is a cochain complex:

6k+1 : Vk+1 — Vi — (?Z_H : V: — V;_H

o vk
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The de Rham complex for a domain in R”

d/dx

1-D: 0 — c2(Q) L% c*(Q) - 0

grad

2-D:  0— C®(Q) LE c=(Q,R2) & ¢=(Q) - 0

div

3D: 00— C®(Q) L% co(Q,R%) 2 c(Q,R?) L% c=(Q) — 0

nD: 00— A(Q) SAQ) L AQ) S LAQ) >0

The space AK(Q) = C>°(Q,RL;, "), the space of smooth
differential k-forms on €.

m Exterior derivative: — d* : N(Q) — AT1(Q)

m Integral of a k-form over an oriented k-simplex: f (VER
m Stokes theorem: [ du= [, u, ue N ceCk

m All this works on any smooth manifold

15/94



De Rham’s Theorem

m De Rham map: N(Q) —  CYS) = Cu(S)

m Stokes theorem

says it’s a cochain S AK(Q) t /\k+1(Q) S
map, so induces a l l

map from de Rham

to simplicial cohomology. ... % ¢ %, Cty i

Theorem (De Rham’s theorem)

The induced map is an isomorphism on cohomology.
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Nonzero cohomology classes
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Unbounded
operators on
Hilbert space



Unbounded operators

m X,Y H-spaces

m 7 :D(T)— Ylinear, D(T) C X subspace
T not necessarily bounded

m Not-necessarily-everywhere-defined-and-not-necessarily-bounded
linear operators

m Densely defined: D(T) = X
m Ex: X = L3(Q), Y = L3(;R"), D(T) = H'(Q), Tv = grad v

m S Tunbddops X - Y = D(S+ T) = D(S)ND(T)

m X2y, VL Zunbddops = D(ToS) = {v e D(S)|Sve D(T)}
m Graph norm VIS = VI + ITvII§, v € D(T)

m Null space, range, graph: N (T), R(T), T(T)
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Closed operators

m Tis closedif ['(T)is closedin X x Y.

m Equivalent definitions:
1. f vy, vo,... € D(T) satisfy v, X, x and Tv, B y for some
xe€ Xandy € Y,thenx € D(T)and Tx = y.
2. D(T) endowed with the graph norm is complete.
m If D(T) = X, then Tisclosed <= T is bdd (Closed Graph Thm)

Many properties of bounded operators extend to closed operators. E.g.,

Let T be a closed operator X to Y.
1. N(T) is closed in X.
2. 3y > 0s.t || Tx||y = 9|x|lx < N(T)=0,R(T) closed
3. IfdimY/R(T) < oo, then R(T) is closed
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Adjoint of a d.d.unbdd operator

Let T be a d.d.unbdd operator X — Y. Define
D(T*)={we Y|themapv e D(T) — (w, Tv)y € Ris bdd in X-norm }

Forwe D(T*) 3'T*w e Xsit.
(T*w,v)x = (w, Tv)y, veD(T), we D(T").
T* is a closed operator (even if T is not). Define the rotated graph
F(T)={(~T*w,w)|we D(T*)} C X x Y,

Then I(T)*= = (7%, T(T) = [(T*)*.
Let T be a closed d.d. operator X — Y. Then
1. T* is closed d.d.

2. T =T.
3. R(T)L = N(T*), N(T)*: =R(TY),
R(T*)*: = N(T), N(T)t =R(T).
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Closed Range Theorem

Theorem

Let T be a closed d.d.operator X — Y. If R(T) is closed in Y, then
R(T*) is closed in X.

Proof.

1. Reduce to case T is surjective.

2. Restrict to orthog comp of A/(T) in D(T) (w/ graph norm). Get
bounded linear isomorphism. 3 bounded inverse:

VyeYaxeXst Tx=y, |xllx<clylly

3. This implies ||y|ly < c|| T*y|

x, ¥ € D(T*). [

21/94



Grad and div

Assume Q C R? with Lipschitz boundary (so trace theorem holds).

1. Start with —div : C° C L3(; R3) — L3(Q)
2. lts adjoint is grad with domain H' (this proves H' is complete).
3. The adjoint of (grad, H') is — div with domain

F(div) = {w € H(div) |y,w := w - n|pg =0}

4. div H(div) is finite-codimensional so closed. So grad H' is closed.
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1. Start with curl : C3° C L3(; R3) — L3(Q; R®)
2. Its adjoint is curl with domain H(curl) (complete).
3. Adjoint of (curl, H(curl)) with domain
H(curl) = {w € H(curl) | 1w := w x n|sq = 0}

4. We shall see that curl H(curl) is closed.
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Hilbert complexes



Hilbert complexes

Definition
A Hilbert complex is a sequence of Hilbert spaces W* and a sequence

of closed d.d.linear operators d* from WX to W*+! such that
R(d¥) C N(d*t).

m V. = D(d*) H-space with graph norm: [|v|2, = ||v|2 . + |[d* V|2
m The domain complex

0>V L v L. Ly,

is a bounded Hilbert complex (with less information).
m |t is a cochain complex, so it has (co)cycles, boundaries, and homology.
m An H-complex is closed if B is closed in W (or V¥).
m An H-complex is Fredholm if dim H* < oo.

Fredholm — closed

24/94



The dual complex

Define df : Vi C WK — WK1 as the adjoint of * =1 : VK ¢ Wk=1 — wk.

It is closed d.d.and, since R(d*~") ¢ N (d¥),
R(dey1) € R(dgyq) = N(d)" € R(d"T') = NM(dl),
so we get a Hilbert chain complex with domain complex
* d;;‘_ ax
VANV, S i U NSV, Y}

If (W, d) is closed, then (W, d*) is as well, by the Closed Range
Theorem.
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Harmonic forms

The Hilbert structure of a closed H-complex allows us to identify the
homology space HX = 3 /B with a subspace $* of Wk:

9 =3kNB =33 ={ue VNV |du=0, du=0}.
k k

An H-complex has the compactness property if VXN V) is dense and
compactin W . This implies dim $H* < oo.

compactness property — Fredholm — closed

26/94



Two key properties of closed H-complexes

Theorem (Hodge decomposition)

For any closed Hilbert complex:
Wk = Bk o 9% o B
—
3’( %kL

=
L/k :::ﬁzak €9 Sjk 69 ESKALV

Theorem (Poincaré inequality)

For any closed Hilbert complex, 3 a constant ¢’ s.t.

lzllv < cPllazl|, ze 3.
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L? de Rham complex on Q2 C R®

k Wk d* vk d; Vi dim §H*

0 L2(Q) grad H' 0 L2 Bo
1| L2(R%) || curl  H(eurl) | —div  A(div) B
2 || L2(;R3) || div  H(div) curl  H(curl) B2
31 L3Q) 0 L2 —grad A 0

0 H' 2% H(curl) % H(div) 2% 120

0 2 <™ fdiv) & Aourl) <2 F1 0
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The abstract Hodge Laplacian

d d
n W2 Wk WA Li=gfd fddt WK S wk
d* d*

m D(LY)={ueVknVi|due Vi, due v}
m V(LK) =9k oF L R(LK)
m Strong formulation: Find u € D(L¥) s.t. Lu = f — Psf, u 1 $.

m Primal weak formulation: Find u € V¥ N Vi N H*+ s.t.
(du, dv) + (d*u, d*v) = (f — Paf,v), v e Vkn Vi n skt
m Mixed weak formulation. Find o € VK=1, u € VX and p € H* sit.

(o,7) — (u,d1) =0, e vk,
(do, v) + {(du,dv) + (p,v) = (f,v), ve VK
(u,q) =0, qe 9.
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Equivalence and well-posedness

Theorem

Let f € WK. Then u € WX solves the strong formulation <= it
solves the primal weak formulation. Moreover, in this case, if we set

o = d*u and p = Pgu, then the triple (o, u, p) solves the mixed weak
formulation. Finally, if some (o, u, p) solves the mixed weak
formulation, then o = d*u, p = Pgu, and u solves the strong and
primal formulations of the problem.

Theorem

For each f € W* there exists a unique solution. Moreover
[ull + lldul] + [|d*ul| + [|dd”ul| + [|d"dul| < c[|f — Pyf|.

The constant depends only on the Poincaré inequality constant c”.
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Proof of well-posedness

We used the mixed formulation. Set

B(o,u,p;7,v,q) = (o,7)—(u, d7)—(do, v)—(du, dv)—(p, v)—(u, q)
We must prove the inf-sup condition: V (o, u, p) 3 (7, v, q) s.t.
B(o, u,p;7,v,q) = A(llollv + llullv + lel)(lI7llv + lIvIlv + llal),
with v = (cP) > 0. Via the Hodge decomposition,
U= Uy + Uy + Up+ = dp + Uy + Up+

with p € 3V, Then take

1

Tzo—wp, V=—u—do—p, q=p— Ug.
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Hodge Laplacian and Hodge decomposition

m f = dd*u+ Pgyf + d*du is the Hodge decomposition of f
m Define K : WX — D(L¥) by Kf = u (bdd lin op).

B Py = dd*K, Py- = d*dK

If f € V, then Kdf = dKf.

If f € B, then dKf = 0. Since Kf | 9, Kf € ‘B.

B problem: If f € B, then u = Kf solves

dd*u=1f, du=0, ul$.

B* problem: If f € 2B*, then u = Kf solves

d'du=1f, d'u=0, ul$.

32/94



The Hodge Laplacian on a domain in 3D

0 H 2% Hleurl) 2% Hdiv) 2% 1250

0 2 <™ fdiv) & Aeurl) <2 A« 0
k || L¥K=d"d+ dd* | BCsimposed on... V=1 x vk
0 -A du/on H!
1 curlcurl —graddiv || u-n curluxn H' x H(curl)

2 ||—graddiv+curlcurl || uxn divu H(curl) x H(div)
3 -A u H(div) x L2

essential BC for primal form. K natural BC for primal form.
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Approximation of
Hilbert complexes



Why mixed methods?

Naively, we might try to discretize the primal formulation with finite
elements. This works in some circumstances, but we have seen two
ways in which it can fail. It is not easy to construct a dense family of
subspaces of the primal energy space VX N Vi N H*.

We therefore consider finite element discretizations of the mixed
formulation:

Given f € WX findo € VA= ue VK and p € HF sit.

(o,7) — (u,dT) =0, e vk,
(do, v) + (du,dv) + (p,v) = (f,v), ve VK
(ugy=0,  geH".
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Galerkin method

m Choose f.d. subspaces V), C V/

m 3 ={ve V/;|dv:0}C5/ %f’,;:{dv\ve ViT'y ¢ B
9, ={ve3lvLlB}

Given f € WX, find o € VK, up € VE, and py € HE st

{op,T) — {up,dT) =0, T E V,’,‘q,
(don, v) + (dup, dv) + (pn, v) = (f,v), v € VF,
<Uh, q> — 07 q S 53ﬁ

If % ¢ $* this is a nonconforming method.

For any choice of the V,’; there exists a unique solution.
However, the consistency, stability, and accuracy of the discrete
solution depends vitally on the choice of subspaces.
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Key assumptions

We need the spaces V{, C Vi (atleastforj =k — 1,k k +1)to
satisfy three properties:

1. Approximation property: Of course V,’; must afford good
approximation of elements of V/. This can be formalized with
respect to a family of subspaces parametrized by h by requiring

lim inf |lw—v|ly=0, weV
h—0 veVvl

(or = O(h") for w in some dense subspace, or ...)
2. Subcomplex property: dV¥~" C Vf and dVf c Vi, so

1 d d
..._>\/,’7< 1—>V,’7‘—>V,’,‘+1—>---

is a subcomplex.
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Bounded cochain projection

3. Bounded cochain projection: Most important, we assume that
there exists a cochain map from the H-complex to the
subcomplex which is a projection and is bounded.

yk—1 g VK ﬁ) yh+

k—1 k k+1
ol I |

k=1 d vk Ak
76 — Vi =V

m For now, boundedness is in V-norm: ||xv||v < cl|v||v. But later
we will need W-boundedness, which is a stronger requirement.

m A bounded projection is quasioptimal:

|lv—mpv]lv <c inf |[v—w|y, veV
wevy
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First consequences from the assumptions

From the subcomplex property
k—1 d k d k+1
=V =V —= Ve =
is itself a closed H-complex. (We take W/ = V¥ but with the W-norm.)

Therefore there is a discrete adjoint operator dj; (its domain is all of
Wf,‘), a discrete Hodge decomposition

VE = BF @ HF o B},
and a discrete Poincaré inequality

lzllv < cfllazl, z € 35
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Preservation of cohomology

Theorem

Given: a closed H-complex, and a choice of f.d. subspaces satisfying
the subcomplex property and admitting a V' -bdd cochain projection .
Assume also the (very weak) approximation property

lg —mnqll < llall, 0+# q € $H.

Then 7y, induces an isomorphism from $ onto $¥.
Moreover,

gap (9, Hn) < sup g — mhallv.
€

qcs
llqll=1

ueH V€ vesH

gap($, Hx) = max( sup m% llu—v|lv, sup m}‘a ||lu— v||v)
flul|=1 IIVH
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Uniform Poincaré inequality and stability

Theorem

Given: a closed H-complex, and a choice of f.d. subspaces satisfying

the subcomplex property and admitting a V' -bdd cochain projection .
Then

Ivllv < "limallllavily, v e 35-nVvy.

Corollary (Stability and quasioptimality of the mixed method)

The mixed method is stable (uniform inf-sup condition) and satisfies

o —anllv + [|lu— unllv+ [lp— pnll
< C( inI 1”0’*7’||v+ inf [[u—v|v+ inf ||p—qlv
- ve Vv qeVk

TEV,

+ p inf ||Psu— v|v),
vevk

where = iy = sup  ||(1 — ma)r]|. !
resH’,||r||=1
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Improved error estimates

In addition to i = ||(/ — 7»)Pg||, define 6,7 = o(1) by
8 =101 = ) Kllinwowy: 1= (! = 7)d K | Linw,w)-
o(h?), r>0
When V£ S P, =0o(h*"), n=0(h), §= ’ ’
h O Pr, w=O(NT"), n=0(h) {O(h)’ A

Given: an H-complex satisfying the compactness property, and a

choice of f.d. subspaces satisfying the subcomplex property and
admitting a W -bdd cochain projection 7. Then

ld(o = on)|| < cE(da), o —anll < c[E(0) +nE(da)],
ld(u — un)l| < e{E(du) + n[E(do) + E(p)]},
lu = unl| < e{E(u) + n[E(du) + E(0)]
+(n? + 0)[E(do) + E(p)] + nE(Pyu)}.
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Numerical tests

—graddivu + curlrotu = fin Q (unit square), u-n=rotu= 0on 02
(magnetic BC)

0— H' 2% H(rot) 2 12 - 0
op € VO C H', u,e V! C H(rot
h h
<0ha7—> - <uhagrad 7_> - 07 T E VII;_17

(grad op, v) + (rot up, rot v) + (pp, v> = (f,v), ve VK

Uha Oa q S jjh
/\
/ \ JA

—
V0 La v R-T V2 DG
+ Lagrange M

All hypotheses are met. .. 42/94



Numerical solution of vector Laplacian, magnetic BC

Y.

\

—

y N

|lo —onl| | rate |[|V(c —aon)ll| rate|| |lu—un|| | rate||||rot(u— us)|| rate

2.16e-04 3.03|| 2.63e-02 1.98|| 2.14e-03 1.99 1.17e-02 1.99

2.70e-05 3.00 6.60e-03 1.99 5.37e-04 1.99 2.93e-03 2.00

3.37e-06 3.00 1.65e-03 2.00 1.34e-04 2.00|| 7.33e-04 2.00

4.16e-07 3.02|| 4.14e-04 2.00|| 3.36e-05 2.00 1.83e-04 2.00
3 2 2 2
/\ AN
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Numerical solution of vector Laplacian, Dirichlet BC

For Dirichlet boundary conditions, o = — div u is sought in H', u is
sought in H(rot) (the BC u - t = 0 is essential, u - n = 0 is natural).

There is no complex, so our theory does not apply.

lo —onll | rate ||[[V(c —on)||| rate || |lu—un|| | rate ||| rot(u— un)||| rate
1.90e-02 1.62|| 2.53e+00 0.63|| 1.22e-03 2.01 1.55e-02 1.58
6.36e-03 1.58|| 1.68e+00 0.60|| 3.05e-04 2.00|| 5.33e-03 1.54
2.18e-03 1.54| 1.14e+00 0.56|| 7.63e-05 2.00 1.85e-03 1.52
7.58e-04 1.52|| 7.89e-01 0.53|| 1.91e-05 2.00|| 6.49e-04 1.51

1.5 0.5 2 1.5

DNA-Falk-Gopalakrishnan M3AS 2011
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Eigenvalue problems

FindAeR,0#ue D(L)st Lu=Au,ul 9

Mull? = ||du]|® + ||d*u|® >0  so A>0and Ku=\""u.

By the compactness property, K : WK — W¥ is compact and
self-adjoint, s0 0 < Ay < Ao < -+ - — 0.
Denote by v; corresponding orthonormal eigenvalues, E; = Rv;.

Mixed discretization:
Find Ap €R, 0% (on,Un,pn) € VI x VEx 6 st

(o, T) — (up,dT) =0, TE V,’;_1,
(dop, v) + (dup, dv) + (pn, v) = Ap(up, v), v € VE,
<Uh7 q> - 07 q S 'ﬁg

0 < Mrn<don< ... < AN,hs Viporthonormal, Ej = Ry
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Convergence of eigenvalue problems

Let Z E be the span of the eigenspaces of the first j distinct
elgenvalues. The method convergesif V j,e > 0,3 hg > 0 s.t.

m(j)  m())

max ; <e and ga =8 E < if h < hy.
e -l < e gp<z,z,h>e < by

i=1 i=1

A sufficient (and necessary) condition for eigenvalue convergence is
operator norm convergence of the discrete solution operator K, P}, to
K (Kato, Babuska—Osborn, Boffi—-Brezzi—-Gastaldi):

The mixed discretization of the eigenvalue problem converges if

fim [[KnPn — Kl| c(w,w) = O
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Eigenvalue convergence follows from improved estimates

lu—un]l < e{E(u)+n[E(du)+E(0)]+(n*+0)[E(do)+E(p)]+1E(Psu)}

E(do) + E(p) + E(Pgu) < [ldo|| + [Ipll + [lull < [f]

E(u) <dllfll,  E(du) + E(a) <nl/f]

Therefore
I(K — KnPr)fl| <& +n° +p— 0

Rates of convergence also follow, included doubled convergence rates
for eigenvalues. . .
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Exterior calculus



The de Rham complex for a domain in R”

d/dx

1-D: 0 — c2(Q) L% c*(Q) - 0

grad

2-D:  0— C®(Q) LE c=(Q,R2) & ¢=(Q) - 0

div

3D: 00— C®(Q) L% co(Q,R%) 2 c(Q,R?) L% c=(Q) — 0

nD: 00— A(Q) SAQ) L AQ) S LAQ) >0

The space AK(Q) = C>°(Q,RL;, "), the space of smooth
differential k-forms on €.

m Exterior derivative: — d* : N(Q) — AT1(Q)

m Integral of a k-form over an oriented k-simplex: f (VER
m Stokes theorem: [ du= [, u, ue N ceCk

m All this works on any smooth manifold
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Exterior algebra

Multilinear forms on an n-dimensional vector space V

k times

m Link V: k-linear maps w : Vx - xVoR

m tensor product: (w & w)(Vi, ..., Viek) = W(Vay e ooy Vi) (Viety - - -, Vigk)
m dimLin® V = n*

m dual basis for Lin' R™:  dx',...,dx" with dx'(&;) = §;

m basis for LInR™:  dx?" ®@---@dx%, 1<o0y,...,06<n

Alternating multilinear forms

BwEAV fw( .., v,y ) = —w(ee, Ve iy .
m dimAIt‘V = (7)
m skew part: (skww)(vi,..., V) = 3 2 gex, SION(0O)W(Voy, - - s Vo)

exterior product: w A pi = (’j") skw(w ® p)

basis for AIFR™:  dxT' A ---Adx%, 1<o01<...<or<n
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Exterior algebra continued

m fw € Alt'V, v € V, the interior product w_v € AtV is
wav(Ve, ooy V1) = w(Vy Vi, ooy Vk—1) (wAND)av = (wav) AnEw A (nav)
m |f V has an inner product, pick any orthonormal basis vy, . .., v, and define

<w777> = ZJW(V0(1), ocag Va(k))n(va(1)7 sy VO'(k))? w,n € Altkv

m dimAlt"V = 1. Fix the volume form by vol(vy, ..., v,) = %1.
An orientation for V fixes the sign.

m Hodge star: * : Alt‘'V =5 Alt" ¥V defined by

WA= (xw,pyvol, we AV, ue A" v *x W = Fw
m OnR” vol = dx'a-- - adx" = det, *dx7n--- QX7 = £dxT7A- - - AdXTr~k
m Pullback: IfL:V — Wlinear, L* : AW — Alt“V is defined

Lraw(wy, ... wi) = w(Llwy, ..., Lwy)
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Exterior algebra in R®

AR = R c+ e
A'R® =5 R® Ui dxy + Us dxo + Us dXs <> U
vector proxy | A?R3 =, R3 Uy dXondXs — Us dXy AXs + Us dxyAdXe <> U
AR =5 R C <> cdxindXondxs
S - AIt'R® x AIt'R® — AIPR® | x : R® x R® —» R®
eXIenorprod. || - AR? x AIPR® — APR® | - :R® x R® = R
L* : APR® — AI'R® id:R—R
Iback L* : At'R® — AIt'R® LT :R® 5 R®
putha L* : AIRR® — AIPRS adjL: R® — R®
L* : AIPR® — AIPR® (detL) :R — R (c+ cdetl)
v AR — APR® v- :R* SR
interior prod. | _v : AIPR® — AIt'R® vx:R® > R®
v APR® — AIPR® v:R—>R® (c— cv)
inner prod. inner product on AIt“R® dot product on R and R®
e * 1 AR — AIPR® id:R =R
9 *: AI'R® = AIPR® id: R® = R
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Exterior calculus

m A differential k-form on a manifold Misamap x € M — wy € AltE T, M.
w takes a point x € M and k-tangent vectors and returns a number.
0-forms are functions, 1-forms are covector fields.
We write w € AK(M) or CA¥(M) if its continuous, C*°A¥(M) if its smooth, etc.

mIfM=QCR" w:Q— AItR". The general element of A“(Q) is
W=D, a dx7'a---adx7* with a, : @ = R.

m A smooth map ¢ : M — M’, induces a linear maps ¢/, : TyM — T,M’' and so
a pullback ¢* : N€(M’) — A¥(M) on differential forms:

((b*(U)x = d);*wti)(x) (¢*W)X(V1 3o Vk) = We(x ((bxvﬁ veag (ZS;VK)
¢ (wap) = (¢*w)a(d*n)  pullback of inclusion defines trace

m Forw = adx? - - Adx% € N¥(Q), the exterior derivative

dw = Z Z o dxadx 7T A adkE € NTT(Q). It satisfies

o k=1
dod=0, d(wrp)=(dw)rp+wrdy, ¢*(dw)= d(¢*w)

m We may use any coordinate chart to define d : AK(M) — A*'(M).
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Exterior calculus continued

m A differential n-form on an oriented n-dim’l manifold M may be integrated

very geometrically weR, weA(M)
JM

Jy@*w = [, w,w e A"(M) if ¢ preserves orientation.
For w = f(x) vol on 2 C R" we get what notation suggests.
m Stokes theorem: / dw = / trw, weAN(Q)
Q o0
Combining with Leibniz, we get the integration by parts formula
/ dwan = :l:/ wAdn—i—/ trwatrn, weA(Q), ne A"F1(Q)
Q Q 9

m For M an oriented Riemannian manifold we have inner prod and x on
Altk TyM and can define: (w, n)2pc = /(wx,m> vol = /CU/\ _
Q

m This allows us to rewrite the integration by parts formula
(dw, p) = (w, o) —l—/ troatrsp, we N e A,
Fol9)

where §p := % x d x 1 is the coderivative operator.
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Vector proxies in R"

k 0 1 n—1 n
A(Q) functions || vector fields vector fields functions
N(9Q) functions || tang vcir flds functions 0
tr: A(Q) — A (69) ulag TeUla ulag - n 0
d: A (Q) — AT(Q) grad curl div 0
§:N(Q) — N(Q) 0 —div curl —grad
[ N(Q) =R u(f) Jru-tdH, Jiu-ndH, JiudH,
¢" : N(Q') — N(Q) uod ()" (uog) || (adj¢y)(uog) || (detgy)(uog)

dimf =k Piola transform
¢:Q—
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L2 differential forms on a domain in R”

Q C R” Lipschitz boundary

m HAK = {u € [BA" | du € L2}
H*NC = {u € LPAK | §u € LPAK1} = xHA™K
B uc HN\N(Q) = truc H /2N (0Q)
u€ HN(Q) = trxu e H/2A"K(09Q)
m AN = {u € HN[tru =0}, HA*A* = {u € H*\"|trxu = 0}

Theorem

If we view d as an unbdd operator L2A* — 2N with domain HAX,
then d* = & with domain H*\¥. Consequently
K={we LPAK|dw =0, 6w =0, trxw = 0}.
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L? de Rham complex on a domain in R”

L? de Rham complex:
0= HA’ & HA' & ..o & HAT 0
Dual complex:
0 AN &AL LA 0

Theorem (R. Picard '84)

For a domain (or Riemannian manifold) w/ Lipschitz boundary the
compactness property holds: HAK N E*A¥ is compact in L2NX.

compactness property = Fredholm =— closed
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Finite element
spaces of differential
forms



Finite element spaces

Goal: define finite element spaces Nk C HAK(L2) satisfying the hypotheses
of approximation, subcomplexes, and bounded cochain projections.

A FE space is constructed by assembling three ingredients:

m A triangulation T consisting of polyhedral elements T
m For each T, a space of shape functions V(T), typically polynomial

m For each T, a set of DOFs: a set of functionals on V(T), each
associated to a face of T. These must be unisolvent, i.e., form a
basis for V(T)*.

The FE space Vj, is defined as functions piecewise in V(T) with DOFs
single-valued on faces. The DOFs determine (1) the interelement
continuity, and (2) a projection operator into V.
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Example: HA® = H': the Lagrange finite element family

Elements T € Ty are simplices in R".

Shape fns: V(T) = P,(T), some r > 1.

DOFs: u— [(trru)q, g € Pr—g—1(f), f € A(T), d=dimf

mveA(T): ur u(v)

mecA(T): u— [(treu)q, g€ Pr2(e)
mfeA(T): ur— [(trru)g, g € Pr—s(f)
CIE ur [ruq, g€ Pr_a(T)

Theorem

The number of DOFs = dim P,(T) and they are unisolvent. The
imposed continuity exactly forces inclusion in H'.
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Unisolvence for Lagrange elements in n dimensions

Shape fns: V(T) = P,(T), DOFs: u [,(trru)q, g € Pr_g_1(f),
#Ad(T) dlmp,,d,1(fd) dImP,(T)

DOF count: \ f /
#DOF = zn: (Z:) (r;1) = (rt ") — dimP,(T).

d=0

Unisolvence proved by induction on dimension (n = 1 is obvious).
Suppose u € P,(T) and all DOFs vanish. Let f be a facet of T. Note

m trru € P(f)
m the DOFs associated to f and its subfaces applied to u coincide
with the Lagrange DOFs in P,(f) applied to trs u
Therefore trs u vanishes by the inductive hypothesis. Thus
u=(T1_gA)p, P E Pr_n_1(T). Choose g = p in the interior
DOFs to see that p = 0.
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Polynomial differential forms

m Polynomial diff. forms:  P,AK(Q) S, a, ox71a- - ndx7k, a,€PH(Q)

Homogeneous polynomial diff. forms:  H,AX(Q)

: k_ [r+n\(n\ _[r+n\[(r+k
amer=(77) ()= (2 (3

: k_(r+n—=1\(n\ _n [(r+n\/(r+k
o= (177) () =7 (2 ()

m (Homogeneous) polynomial de Rham subcomplex:

0PN S PN S L P A S0

0 SHAN & A, AT oSy A 0
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The Koszul complex

For x € Q C R", T, may be identified with R", so the identity map
can be viewed as a vector field.

m The Koszul differential x : AK — A¥~" is the contraction with the
identity: ~w = wuid. Applied to polynomials it increases degree.
m koK =0 giving the Koszul complex:
0) 5 PA S P ARSI APl UAS g
mrdx =X, KlwA p) = (kw) At wA (kp)
m R(FaXT A adX® ) = f SO (=) dxTTa- - ax - adX®"
m 3D Koszul complex:

0 5PN 5 Prh2 =5 P! =5 P\’ —0

Theorem (Homotopy formula)

(dk + kd)w = (r + Kw, w € HAX.
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Proof of the homotopy formula

(dk 4+ kd)w = (r + Kw, weHAN, weHAN

Proof by induction on k. k = 0 is Euler’s identity.
Assume true for w € H,A =1, and verify it for w A dx’.

dr(w A dx') = d(kw A dx’ + (=1)Tw A x)
= d(kw) A dx' 4+ (=1)T(dw) A X" +w A dx'.

rd(w A dx') = K(dw A dx') = k(dw) A dx’ 4 (—1)*dw A X'

(dk + rd)(w A dx') = [(dk + kd)w] A dx' +w A dx = (r + k)(w A dx).
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Consequences of the homotopy formula

m The polynomial de Rham complex is exact
The Koszul complex is exact

Brdo=0 — dw=0, dkw=0 — Kw=0

m H AN = kH, N @ dH, N

m Define P, Af = P, AF £ RH, (AFH

m PN =P,N, P A"=P, A", else P,_1A* C PNk C PAK

1
dimP,Ak<r+n><r+k ) " dim P A
r+k

. r+k k
m R(d|P;AK) = R(d|PAX),  N(d|P;A) = N(d|P,_1A\¥)
m The complex

0PN LP-ATL ... L pAn 0

is exact
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Complexes mixing P, and P,

On an n-D domain there are 2"~ complexes beginning with P,A°
. At each step we have two choices:

P, N1 — PN PNk — PN
P _ Ak ! T P,_ Ak
In 3-D:
0= PA S PAT L PoA2 L P, A% 0.
0 PA S PAT L P A2 L PN 0,
0= PA L PN S P A2 PN 0,
0 PA L P AL P A2 L P oA o,
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The P,‘/\k family of simplicial FE differential forms

Given: a mesh 7, of simplices T, r > 1, 0 < k < n, we define
P N(Th) via:

Shape fns: P, A (T)
DOFs:

U /(trf UAG, qE Prik_dg_1N5(f), fe A(T), d=dmf>k
f

The number of DOFs = dim P~ AX(T) and they are unisolvent. The
imposed continuity exactly enforces inclusion in HN\X.
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Dimension count

#DOFs = > #A4(T)dim Pryk—g_ 1A (RY)
d>k

-2 () (s )
S RO
()@ -06) Z6HE6-C2)

to get
k-1
#poFs— () (7T — dim P A
r+k k
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Proof of unisolvence for P, Ak

Lemma
Ifue 75,_1/\"(T) and fT ung = 0Vq € PrknN"*(T), then u = 0.

Proof: This can be proved by an explicit choice of test function. [
Proof of unisolvence: Suppose u € P, AK(T) and all the DOFS
vanish: [,(trru)Aqg =0, q € Prik—a—1NK(f), f € A(T).
Then trs u € P, AK(f) and all its DOFs vanish. By induction on
dimension, tr u vanishes on the boundary. So we need to show:
uePN(T), [ung=0YqE PuuniA"*(T) = u=0
In view of lemma, we just need to show u € P,_{AX(T).
m By the homotopy formula, u € P, A¥, du =0 = u € P,_{Ak
So it remains to show that du = 0.
m du € P (AHI(T),
[7durp = £ [; undp = 0Vp € Prik—n\"K1(T).
Therefore du = 0 by the lemma (with kK — k+1).
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The P,A¥ family of simplicial FE differential forms

Given: a mesh 7, of simplices T, r > 1, 0 < k < n, we define
PNK(Tp) via:
Shape fns:  P,A(T)

DOFs:
U /(trf UAG, G € Pry_ogN T (f), FEA(T), d=dimf=>k
f

Theorem

The number of DOFs = dim P,AX(T) and they are unisolvent. The
imposed continuity exactly enforces inclusion in HN\X.
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The P, family in 2D

PO PrAT P2
Lagrange Raviart-Thomas '76 DG

44
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The P, A family in 3D

PN PA! P A PN
Lagrange Nédélec’'80  Nédélec '80 DG
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The P,AX family in 2D

PN\ PN PN\
Lagrange Brezzi-Douglas-Marini '85 DG

5
£
>
A dis
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The P, A family in 3D

PN P! PN PN
Lagrange Nédélec '86  Nédélec ‘86 DG
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Application of the P, and P, families to the Hodge Laplacian

m The shape function spaces P,A*(T) and P, A¥(T) combine into
de Rham subcomplexes.

m The DOFs connect these spaces across elements to create
subspaces of HAX(Q).

Therefore the assembled finite element spaces P,A*(75) and
P, N(T,) combine into de Rham subcomplexes

The DOFs of freedom determine projections from A*(Q) into the finite
element spaces. From Stokes thm, these commute with d. Suitably
modified, we obtain bounded cochain projections. Thus the abstract
theory applies. We may use any two adjacent spaces in any of the
complexes.

PN(T) PAK(T)
or — or
PN (T) PN (T)
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Rates of convergence

Rates of convergence are determined by the improved error estimates
from the abstract theory. They depend on

m The smoothness of the data f.
m The amount of elliptic regularity.

m The degree of of complete polynomials contained in the finite
element spaces.

The theory delivers the best possible results: with sufficiently smooth
data and elliptic regularity, the rate of convergence for each of the
quantities u, du, o, do, and p in the L2 norm is the best possible given
the degree of polynomials used for that quantity.

Eigenvalues converge as O(h?").
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Historical notes

m The P, A¥ complex is in Whitney '57 (Bossavit '88).

m In’76, Dodziuk and Patodi defined a finite difference
approximation based on the Whitney forms to compute the
eigenvalues of the Hodge Laplacian, and proved convergence. In
retrospect, that method can be better viewed as a mixed finite
element method. This was a step on the way to proving the
Ray-Singer conjecture, completed in *78 by W. Miller.

m The P,A¥ complex is in Sullivan '78.
m Hiptmair gave a uniform treatment of the ;- A¥ spaces in '99.

m The unified treatment and use of the Koszul complex is in
DNA-Falk-Winther *06.
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Bounded cochain projections

The DOFs defining P,A*(T,) and P, AX(Tp,) determine canonical
projection operators 1, from piecewise smooth forms in HA¥ onto AK.
However, My, is not bounded on HAX (much less uniformly bounded
wrt h). I}, is bounded on CAX.

If we have a smoothing operator A, » € Lin(L2AX, CAK) such that R,
commutes with d, we can define Q. , = IR, », and obtain a bounded
operator L2AK — AK which commutes with d (as suggested by
Christiansen).

However Qp, will not be a projection. We correct this by using
Schaberl’s trick: if the finite dimensional operator

. Ak k

is invertible, then
Th := (Qe,h|/\‘/§)_1oe,h7

is a bounded commuting projection. It remains to get uniform bds on 7.
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The two key estimates

For this we need two key estimates for Qc p := R p:

m For fixed €, Q. 5 is uniformly bounded:
Ve > 0 suff. small 3 c(e) > 0 s.t.

sup | Qe,nllingez,12) < c(e)

m Iim ||/ — Qe nllLin(z,2) = 0 uniformly in h
e—0 ’

Theorem

Suppose that these two estimates hold and define
mh := (Qeplpx) ™" Qe p, where N is either PN (Tp) or Pry N(Th).
Then, for h sufficiently small, 7y, is a cochain projection onto /\ﬁ‘7 and

lw = mrwl| < chllwllpspr, w € HAY, 0<s<r+1.
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The smoothing operator

The simplest definition is to take R. ,u to be an average over y € B of
(F!,)*uwhere F,(x) = x + ehy:

Rept(x) = / p()I(F,)" ul(x) dy

Needs modification near the boundary and for non-quasiuniform
meshes.

The key estimates can be proven using macroelements and scaling.
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Bases for the spaces



Bases

Since the DOFs determine a basis for the dual space of a FE space,
there is a corresponding basis for the FE space. An alternative is to
use the Bernstein basis fns which are given explicitly in terms of the
barycentric coordinates \;:

1 1
0 0
0 1 2 1 0 1 2 1
3 3 3 3
Basis of P; dual to the nodal DOFs. Bernstein basis functions AJ\,.

For the P, A¥ and P,AX families in n-dimensions, there is of course
again the basis determined by the DOFs. In addition, there is an
explicit basis analogous to the Bernstein basis (DNA-Falk-Winter
2009).
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Some computations with barycentric coordinates

m The barycentric coordinates A, . .., A, form the dual basis for
Pi(T) = Py A(T)

md\'a---Ad\ = cvol € Alt"T with
Ci(d)\1/\"'/\d)\n)(X1—Xo,...,Xn—Xo)7 1

. vol(X{ — Xo, - -, Xn — Xo) nl|T]|

(—1)

n!|T]|

m More generally, dXgn... /\(;Xj/\ ooadXp, = vol.

| /id)\,' = )\,’ — )\,‘(0), SO
k . —_—
K(AAgon - AdAg) = D (1) Ao, dAyr .. AGAgyn . AdAG, + 1),

i=0
(NS Po/\k.
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The Whitney forms

m Define the Whitney form associated to the k-face f with vertices
Xogs - - 3 Xo, DY
k —_—
¢r = (1) Ao, Dgon ... adAGA ... AdAg, € Py A"

i=0

vertices: Ai

edges: /\,'d)\j — )\jd)\,‘

triangles: Ai d)\j/\d)\k = )\/’ dAind g + Ak d)\j/\d)\/‘
etc.

U8 g#f,
m If f,g € Ay(T) then /tr =
9 € Ad(T) . o 01 {1/k!, g=f

m .. after normalization, the Whitney forms are a basis for P, A
dual to the DOFs.
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Explicit geometric bases

The Bernstein basis is an explicit alternative to the Lagrange basis
for the Lagrange finite elts.

Pr=span{ \* ;= X\;° - A2 | |a| = r}
P(T, f) :=span{ \*| suppa = {00, ...,0k}, o] =r}

There are similar geometric bases for all k:

@ PAN(T, £), PA(T, £) = PAK(F) = P k—aim N H(F)
dim >k "
PrN(T) = @ PrANK(T, 1), P AT, 1) = B A (1)

dim f>k

PN(T

> Prik—dimr—1 A ()
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Basis for P, A

To create a basis for Pf/\" (the easier case), we consider all products

)\810 000 )\ﬁ”()f fe Ak(T)/ Z(){,‘ =r—1
This form is associated the the face whose vertices are in f or for
which o > 0. E.g., \3¢1 o] is associated with the face [1,2, 3].
These span 73,_/\". However they are not linearly independent since

k

2(71 )i)\o’iqb[a'o-”é\',‘---gk] — 0

i=0

To get a linearly independent spanning set, we impose the extra
condition that if «;; # 0 then i > oq (the least vertex index of f). E.g.,
A A2y 2 and A5y o are included in the basis for P3 A but
A3y 2] is not.
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Example: explicit bases for P, A" and P, A? on a tet

PrN(Ts)

r Edge [xi, x] Face [xi, Xj, X] Tet [xi, Xj, Xk, XI]

1 bij

2 Aiij, Ajdi k@i, Ajik

3 {)\,27 )\/2, )\i)\j}(lﬁ,‘j {)\,‘, )\j, )\k})\k(ﬁ,‘j, {)\,‘, )\,‘7 )\k})\j(bik >\k>\l¢ij, )\,‘)\/(b,‘k, )\j)\k(ﬁ,'/
PrN3(Ts)

r Edge [xi, x] Face [xi, Xj, X] Tet [xi, Xj, Xk, XI]

1 Diik

2 Aiiiks NjPiks Ak Pijk AiGige, Ak Piis AjPina

3 {2, N2, A Yok {Nis Ajy Ak, AP ik

LN, Xidic, A} @i {5 Ajy Ak, A A

{05 Ajs Ay M A i
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Finite element
differential forms on
cubical meshes



The tensor product construction

Again there are two families (only?). One results from a tensor product
construction.

Suppose we have a finite element de Rham subcomplex V on an
element S C R™:

coo = Vki) Vk'H = oo
and another, W, on another element T C R”:
che —S Wki> Wk+1 — ...

The tensor-product construction produces a new complex V A W, a
subcomplex of the de Rham complex on S x T.
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The tensor product construction

Again there are two families (only?). One results from a tensor product
construction.

Suppose we have a finite element de Rham subcomplex V on an
element S C R™:

coo = Vki) Vk'H = oo
and another, W, on another element T C R":

poo =5 Wki> Wk+1 —S oo
The tensor-product construction produces a new complex V A W, a
subcomplex of the de Rham complex on S x T.
Shapefns: (VA W)K= @D nsV/ AmsW/

i+j=k

DOFs:  (n A p)(msvamiw) := n(v)p(w)
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Finite element differential forms on cubes: the Q,‘/\k family

Start with the simple 1-D degree r finite element de Rham complex, V;:

0 = PA() S P A1) =0
u(x) — u'(x)adx
Take tensor product ntimes:  Q, A“(1") := (V, A --- A V)"
Q=P RP;,, P_1@Prdxi+PrQPr_1dxe, Pr_1®Pr_q1dxqAdxz

QA oA QA
— ;=

v

—
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The 2nd family of finite element differential forms on cubes

The S,A%(I™) family of FEDFs:

Shape fns:
For a form monomial m = x{ - - - x5 dx, A - -+ A dx,, define

’H,yg/\’%l”) = span of monomials with deg = r, Ideg > /,
TN = EB M o1 N (17,

£2>1

SAN(U™ = PAU™) @ TN(I™) @ d T NHIM).

DOFs: uw [Lung, g€ Pr_agN\*(f), fe A(I")
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Key properties

Foranyn>1,r>1,0< k < n:

Degree property: PAK(17) C SIAK(1™) C PrinikN<(I")

Inclusion property: S,AK(17) C S, 4 AK(1™)

Trace property: For each face f of 17, trs S,AK(17) = S,AK(f).
Subcomplex property: dS,AK(1") C S,_yAAFT(1™)

Unisolvence: The indicated DOFs are correct in number and are unisolvent.

Commuting projections: The DOFs determine commuting projections
from the de Rham complex to the subcomplex
SN(IMY & S AT Lo G S, A,

88/94



The case of 0-forms (H' elements)

Define sdeg m of a monomial m to be the degree ignoring variables
that enter linearly: sdeg x3yz? = 5. For a polynomial p, sdeg p is the
maximum over its monomials.

S(I") ={peP(I")| sdegp < r}

1D: S,(1) = P:(1), 2D:S,(12) = P,(12) + span[x"y, xy']

B B B
. B 8 3 X

Si(1%) Sa(1?) Ss(1?) Sa(1?) Ss(1?)
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Serendipity 0-forms in more dimensions

Dimensions
Pr(17) Si(1M) Q(1")
3 4 5 1 2 3 4 5 2 3 4 5
4 5 6 2 3 4 5 6 3 4 5 6
9 16 25 36

27 64 125 216

1
2
5 21 4 8 12 17 23 4
8
6 81 256 625 1296

10 1
20 35 56 8 20 32 50 74
35 7

2
3
6
0
5 0 126 16 48 80 136 216

A WODN =S
a b~ W=
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The 2nd cubic family in 2-D

So/\°

-

SApSIgE

Sy /\17\ So/\?

[~ 1—I S
Sy SiA

SiNK(12)
12 3 45

N = O X

4 8 12 17 23
8 14 22 32 44
3 6 10 15 21
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The 2nd cubic family in 3
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Dimensions and low order cases

SNK(13)
1 2 3 4 5
8 20 32 50 74
48 84 135 204
18 39 72 120 186
4 10 20 35 56

WN = O x
N
N
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The 3D shape functions in traditional FE language

SN\ polynomials u such that sdegu < r

SN
(vi, vz, v3) + (Xex3(wo — ws), Xax1 (w3 — w1 ), x1X2(wi — w2)) +grad u,

vi € Pr, w; € Pr_qindependent of x;, sdegu < r+ 1

S,N\?:
(V1-, Vo, Vs) + CUF'(X2X3(W2 - Ws),X3X1(W3 - W1),X1X2(W1 - Wz)),
vi, w; € P,(1®) with w; independent of x;

SN: veP,
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