Periodic Table of the Finite Elements
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Finite elements

The table presents the primary spaces of finite elements for the
discretization of the fundamental operators of vector calculus: the
gradient, curl, and divergence. A finite element space is a space of
piecewise polynomial functions on a domain determined by: (1) a
mesh of the domain into polyhedral cells called elements, (2) a finite
dimensional space of polynomial functions on each element called
the shape functions, and (3) a unisolvent set of functionals on the
shape functions of each element called degrees of freedom (DOFs),
each DOF being associated to a (generalized) face of the element,
and specifying a quantity which takes a single value for all elements
sharing the face. The element diagrams depict the DOFs and their
association to faces.

The spaces P;/I" and P,AK depicted on the left half of the table
are the two primary families of finite element spaces for meshes of
simplices, and the spaces Q,‘A" and S,AK on the right side are for
meshes of cubes or boxes. Each is defined in any dimension n>171
for each value of the polynomial degree r>17, and each value of
0< k<n.The parameter krefers to the operator: the spaces consist
of differential k-forms which belong to the domain of the kth exterior

derivative. Thus for k= 0, the spaces discretize the Sobolev space H',
the domain of the gradient operator; for k=1, they discretize H (curl),
the domain of the curl; for k=n—1 they discretize H(div), the domain
of the divergence; and for k = n, they discretize L%

The spaces ;A% and P, A°, which coincide, are the earliest finite
elements, going back in the case r =1 of linear elements to Cou-
rant," and collectively referred to as the Lagrange elements. The
spaces P, ;A" and P, A", which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with
no interelement continuity imposed, first introduced by Reed and
Hill. The space P;~ A in 2 dimensions was introduced by Raviart
and Thomas ° and generalized to the 3-dimensional spaces P; A
and P;- A% by Nédélec,* while P, A" is due to Brezzi, Douglas and
Marini ® in 2 dimensions, its generalization to 3 dimensions again
due to Nédélec.® The unified treatment and notation of the P, A
and P, AX families is due to Amold, Falk and Winther as part of finite
element exterior calculus,” extending earlier work of Hiptmair for the
P,‘Ak family.® The space Py AX is the span of the elementary forms
introduced by Whitney.®

The family Q,‘A" of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor
product construction detailed by Amold, Boffi and Bonizzoni," but for
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical
family S, A is due to Arnold and Awanou."

The finite elements in this table have been implemented as part of

the FENICS Project.”>'>'* Each may be referenced in the Unified Form

Language (UFL)'™ by giving its family, shape, and degree, with the

family as shown on the table. For example, the space P3A*(As) may

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3)

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for ’P,‘/I", PAK, Q,‘Ak, and S, Ak, respectively.
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